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Abstract

The research summarized in this thesis is motivated by the events at the
Fukushima Daiichi nuclear power plant that resulted from the 2011 Tohoku
earthquake and tsunami. Those events exposed the need for an autonomous
vehicle that can be deployed remotely to closely inspect a facility that is
no longer accessible by personnel. Two key elements of this mission have
been identified as requiring further research. First is the need to improve
safety to avoid risk of damage or injury due to a crash while in transit to the
remote location. Second is the need for a sensor that can provide position
measurements with much greater precision than GPS or in environments
where GPS is not available.

0.1 Outline

Chapter 1 introduces the hexacopter rotorcraft configuration and compares it to other

types of hovering aircraft. Previous research on the subjects of fault-tolerant control of

multicopters and vision-based navigation Is reviewed.

Chapter 2 introduces the equations of motion that describe hexacopter flight. The

various forces and moments that are applied to the hexacopter are cataloged and mod-

eled. A linear model is developed for use in designing a simple Linear Quadratic Gaussian

(LQG) controller.

Chapter 3 proposes an adaptive controller that can simultaneously estimate and

adapt to changes in actuator effectiveness with guarantees on speed of estimation. An

error projection operator is proposed for projecting 4 error measurements to the 6 mo-

tors/propellers of the hexacopter. A method for smoothly reconfiguring upon detection
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of total loss of effectiveness is discussed.

Chapter 4 introduces the PTAM algorithm, which is the basis for the proposed vision-

based navigation. The merits and limitations of PTAM for vision-based navigation

are discussed. Several improvements are proposed to enhance the utility of PTAM

for robotic navigation. Extensions for control and communication with an embedded

attitude controller are presented.

Chapter 5 introduces the flying testbed that was used for control and navigation

experiments. It is composed of a Mikropkopter Hexa XL hexacopter paired with a

custom computer-vision package based on a Mac mini computer. The experimental

embedded software that was developed to facilitate this research is discussed in detail.

Chapter 6 presents data collected from simulated and real flight tests to evaluate the

performance of the methods and systems described in the preceding chapters. As a first

step, a baseline controller is evaluated. Next, test results that demonstrate the precision

of vision-based position estimation are presented. Then, data recorded from a successful

indoor autonomous navigation task is shown. Finally, a series of simulated trials demon-

strate the ability of the failure-tolerant controller to adapt to a total propeller failure

and compares its performance to the baseline controller in normal operation or when

subject to disturbances.

Chapter 7 concludes the thesis with a discussion of the proposed failure-tolerant

control and high-speed vision-based navigation system. The merits and deficiency of

each are summarized and suggestions for future work are listed.

Failure Tolerability of a Hexacopter and its Relatives

Some common configurations for hovering rotorcraft are: traditional helicopters, tri-

copters, quadrotors, hexacopters, and octocopters. Of these, only the hexacopter and

octocopter configurations remain controllable after any single actuator failure. For hex-

acopters, the propeller opposite the one that has failed must be operated near zero speed
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Figure 1: Single-propeller failure for some common multirotor configurations.

in order to maintain control, so that the weight of the vehicle is carried primarily on

four of the six propellers. A few select configurations are shown in Figure 1.

0.2 Control of a Hexacopter

For a traditional helicopter, control of the roll, pitch, yaw, and vertical accelerations is

decoupled through clever mechanical design. In the case of quadrotors, hexacopters and

octocopters, decoupling is typically accomplished through the use of a signal processor

that actively converts decoupled body-axis moment and thrust commands into individual

propeller speed commands by inverting the system dynamics. For a quadrotor, this

inversion is straightforward since the 4 propellers each orthogonally affect the 4 degrees

of control freedom, so the actuation matrix is square and invertible. A hexacopter

however, is an over-actuated system (it also has only 4 degrees of control freedom, but

has 6 actuators), so the actuation matrix is not square and cannot be inverted. Rather,

there exist an infinite number of pseudo-inversions. Taking the Moore-Penrose pseudo-

inverse results in propeller speed commands that are symmetrically distributed.

With the dynamics decoupled, feedback control can be applied separately to each

degree of control freedom. In the case of attitude control, typically only angular rates

are measurable from the IMU, but the other states are observable, so an observer (e.g.

a Kalman filter) may be used to estimate the other states in order to arbitrarily place
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the poles of the closed-loop dynamics with state feedback.

0.3 Adaptive Control

Adaptation to Control Effectiveness

For a critically actuated system such as a quadrotor (where the number of actuators

matches the number of degrees of control freedom), an adaptive law is proposed that si-

multaneously estimates and adapts to changes in actuator effectiveness. This is achieved

by comparing the measured state rates to those predicted by a model of the system. The

error between the two is projected back to the actuators by inverting the actuation ma-

trix. A combination of the projected error and the actuator command is then used to

drive the effectiveness estimate for each actuator. The model actuation matrix combined

with the estimated effectiveness is then inverted to compute a new control signal. The

control inversion and adaptive law are structured such that, under nominal conditions

(i.e. the system is well modeled, the real actuator effectiveness is not changing, and the

propeller speed commands are away from zero), the effectiveness estimates will approach

their true values exponentially with a time constant that is the reciprocal of the adaptive

gain.

Sensitivity

The adaptive law described in the above section is analyzed for sensitivity to distur-

bances, measurement noise, and modeling uncertainty. It is found that a fundamental

trade-off exists between the speed of convergence and the sensitivity to disturbances,

noise, and uncertainty in the state function, especially for small actuator commands.

A sufficient condition that guarantees stability in the presence of modeling uncertainty

remains an open area of investigation.
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Extension to the hexacopter

In the case of a hexacopter, even with perfect measurement of the state and state rates

and perfect knowledge of the propeller speeds, it is not possible to determine the ef-

fectiveness of 6 actuators from only 4 measurements. Rather, there exists an infinite

possibility of combinations of actuator effectiveness that could result in the measured

error. Some extra information is required to find a unique solution to this system, which

has six unknowns with only four relationships.

This thesis proposes applying likely constraints in order to make the problem solvable.

For example, it could be assumed that 5 of the 6 actuators are performing close to

design effectiveness and only 1 actuator is deviant. This constraint effectively reduces

the number of unknowns from 6 to 1. When examining each possible deviant propeller,

there are 4 equations and only 1 unknown. Each set of 4 equations can be solved for

each propeller, and the propeller with the least variance in its solutions is guaranteed to

be the propeller with the most deviant effectiveness. However, no information is learned

about the effectiveness of the other propellers.

Another possible constraint could be to assume that 3 propellers have some nominal

deviation from design effectiveness and the remaining 3 have unique deviations from

design effectiveness. This constraint reduces the number of unknowns from 6 to 4.

While it has the potential to give much higher fidelity in the effectiveness estimates for

each of propeller, it turns out that many of the possible scenarios are not testable due

to symmetry in the actuation matrix which leads to singularities in many cases.

Several other possible constraints lie in between the two mentioned above. It is

determined that the only practical constraint is to assume that 5 of the propellers have

some nominal deviation from design effectiveness and 1 propeller is uniquely degraded.

This constraint allows for adaptation to uniform differences in actual performance and

allows detection and adaptation to partial or total degradation of a single propeller.

Replacing the projection of measured error through inversion of the actuation matrix
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with the projection operator described above effectively extends the adaptive law to the

case of the hexacopter.

0.4 Vision-Based Navigation

PTAM

Parallel Tracking and Mapping (PTAM) is an algorithm developed by Klein and Murray

at the University of Oxford for the purpose of simultaneous localization and mapping

(SLAM) for augmented reality. As its name implies, this algorithm divides the local-

ization task and the map building task into separate parallel threads to improve perfor-

mance. “Map building” refers to the process of storing the location of observed features

for future comparison, even after those features have exited the field of view. “Localiza-

tion” refers to the process of matching currently observed features to those stored in the

map to attempt to determine the current position and rotation of the camera relative

to the origin of the map.

Modifications

The PTAM algorithm was originally designed for use with augmented reality, where the

position of a camera is tracked so that artificial objects can be superimposed onto the

scene of the real world. Several modifications have been made to adapt the algorithm

to the task of autonomous navigation.

PTAM arbitrarily sets the orientation and scale of the map upon initialization. Some

extra information is required to align PTAMs map with world coordinates. The ability

to recognize a fiducial marker of known size was added so that origin and scale of the

map could be aligned to the marker.

In the case of augmented reality, it is not expected that the camera will move large

distances, but that is not true for navigation. An expanding map consumes increasing
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computation time and memory and will saturate at some point. To alleviate this risk,

additions to the database were made more judicious.

For augmented reality, much of the computation is involved in rendering the scene.

For navigation, rendering is only necessary for visual confirmation of proper tracking

and therefore can be made much lower priority. To increase performance, rendering and

some other functions, were split into separate threads of execution so that tracking could

be performed as quickly as possible.

0.5 Experimental Results

Failure-Tolerant Control

Unfortunately, it was not possible to perform flight tests with the adaptive controller that

is proposed in this thesis. However, its performance was tested extensively in simulation.

Results are presented that show that this method can quickly recover in the case of

a single propeller failure. It can also accurately estimate the changing effectiveness

of several propellers. However, it is also shown that typical performance is degraded

compared to the baseline, non-adaptive, controller. Furthermore, strong disturbances

may cause instability. The hexacopter is particularly sensitive to yaw disturbances with

this control scheme.

Vision-based navigation

A pair of experiments compares the precision of position estimates from PTAM to those

from GPS and a high-precision motion capture system. In these experiments a camera

recorded downward-looking video aboard vehicles whose positions were tracked either

by GPS or a motion capture system. The recoded video was post-processed with PTAM

and the resulting trajectory was compared. It was found that the system is capable of

accuracy on the order of a few centimeters.
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Another experiment investigated the ability to perform indoor autonomous naviga-

tion using the proposed vision system. In this experiment, the hexacopter autonomously

repeated a circuit of takeoffs and landings at 3 waypoints. The circuit was repeated 5

times. It was found that the navigation was drift free and landing was accurate to within

20 cm.
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Chapter 1

Introduction

1.1 Motivating Mission

The research summarized in this thesis is motivated by the events of the Fukushima

Daiichi nuclear disaster: a series of equipment failures, nuclear meltdowns and releases

of radioactive materials at the Fukushima I Nuclear Power Plant following the Tohoku

earthquake and tsunami on 11 March 2011. Those events exposed the need for a robotic

vehicle that can be deployed remotely to closely inspect a facility that is no longer

accessible by personnel.

Table 1.1 attempts to formalize the mission requirements that drive the selection of

the aircraft configuration and focus of this research. The mission is illustrated in figure

1.1.

Requirements

1 The vehicle should be deployed at least 1 kilometer
from the inspection site

2 The vehicle should be able to inspect the entire
exterior of the site from a distance as close as 2 meters

3 The vehicle should be able to enter structures at the
site if accessible

Table 1.1: Assumed requirements for motivating mission

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Illustration of the motivating mission

A small hovering aerial vehicle is an obvious choice to satisfy such mission require-

ments. An aerial vehicle can easily traverse the distance from the deployment site to

the inspection site in a direct line without concern about obstructions on the ground.

Given adequate sensors, a hovering aerial vehicle should be able to freely navigate the

accessible 3-dimensional space in and around a structure.

Two key elements of this mission have been identified as requiring further research.

First is the need to improve safety to avoid risk of damage or injury due to a crash while

in transit to the remote location. Second is the need for a sensor that can provide position

measurements with much greater precision than the the global positioning system (GPS)

or in environments where GPS is not available.

1.2 Why a Hexacopter

Several aircraft configurations are capable of hover. Some of the more common configu-

rations are rotorcraft, blimps, ducted fans, and flapping wings. Of these, rotorcraft seem

to be the best suited for the missions requirements in section 1.1. Table 1.2 summarizes

the deficiencies of other hovering configurations when compared to rotorcraft.

Focusing on rotorcraft, they can be further sub-categorized according to the number

and orientation of the rotors. Some common rotorcraft configurations are: traditional

helicopters (two articulated rotors), tricopters, hexacopters, and octocopters.
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Configuration Deficiency

Blimp slow; sensitive to wind
Ducted Fan short endurance

Flapping Wing short endurance; unsteady

Table 1.2: Deficiencies of other hovering configurations when compared to rotorcraft

1.2.1 Traditional Helicopters

The traditional helicopter configuration (an example shown in figure 1.2) has been the

dominant choice for the production of rotorcraft of all sizes until the recent decade or

so. The traditional helicopter uses a pair of articulated rotors (typically a main rotor

and a smaller anti-torque rotor, or two counter-rotating main rotors) to achieve control.

The main benefit of this configuration is that the desired 4 degrees of control freedom

are decoupled through clever mechanical design and therefore an active controller is not

required. The disadvantage is that the complex mechanics introduce many potential

points of failure, the majority of which will lead to an immediate loss of control.1

Figure 1.2: Georgia Tech’s modified Yamaha RMax helicopter.

1.2.2 Quadrotors and Tricopters

Recently, quadrotors and tricopters (examples shown in figure 1.3) have become a pop-

ular configuration for miniature (on the order of 1 meter or smaller) rotorcraft. Both

1Helicopters can maintain control in the case of drive failure by autorotation, but this requires im-
mediate landing. Failure of any other actuator or linkage leads to a total loss of control.
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typically employ fixed-pitch propellers,2 so their mechanically complexity is dramatically

reduced compared to a traditional helicopter. As the names suggest, quadrotors employ

4 propellers, typically arranged so that the propellers lie at the vertices of an imaginary

square. Tricopters employ 3 propellers, with at least one hinged on the arm that it is

attached to so that a yawing torque can be produced by vectoring the thrust.

(a) Tricopter (b) Quadrotor

Figure 1.3: The Tricopter Delrin (a) from fpvmanuals.com and the MK-Quadrokopter
(b) from HiSystems GmBH.

These configurations were not practical until recently for several reasons. First,

control is typically achieved by modulating the speed of each propeller.2 The torque

that is required to accelerate a propeller is proportional to the 5th power of the length

of the propeller, as is shown in appendix A. Therefore, larger propellers require too

much torque to achieve the bandwidth necessary for control. At present it seems that the

upper limit for propeller size is on the order of about 20 centimeters. Second, each of the

propellers effect several of the desired degrees of control freedom and therefore require an

active controller to translate decoupled motion commands to propeller speed commands.

Third electric motors are much better suited to this application than combustion engines

and therefore require the vehicle to carry batteries. Only recently have the performance

to weight ratio of electronics and batteries become high enough to be carried aboard

rotorcraft with small propellers.

2The use of variable pitch rotors has been demonstrated as in [30], but had not yet come into popular
use.
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In terms of failure tolerability, tricopters will experience an immediate loss of control

in the event of loss of thrust from any of the propellers (drive failure, loss of propeller,

etc.). Quadrotors are subject to an uncontrollable yawing moment upon loss of thrust

from any singe propeller.3 Details of the failure-tolerance analysis can be found in

appendix B.

1.2.3 Hexacopters and Octocopters

Hexacopters and octocopters (examples shown in figure 1.4) can be thought of as an

extension of quadrotors since the mechanics are essentially the same except that hex-

acopters and octocopters employ 6 and 8 propellers respectively. The main reason for

the extra propellers is to increase payload while maintaining the use of small propellers

with small inertia. However, the presence of the extra propellers also has significant

consequences for the control of the vehicle.

(a) Hexacopter (b) Octocopter

Figure 1.4: The University of Tokyo’s modified MK-Hexa XL (a) and the MK-Okto XL
(b), both from HiSystems GmBH.

In the case of traditional helicopters, tricopters and quadrotors, the number of inde-

pendent means to affect the vehicle’s motion (hereto referred to as actuators) is equal

to the number of degrees of freedom. This type of system is called a critically-actuated

system. In such a system, total failure of an actuator implies the loss of at least one

3Control of a quadrotor with two failed propellers has been demonstrated in [45].
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degree of freedom.

In the case of hexacopters and octocopters, the number of actuators is greater than

the number of degrees of freedom. This type of system is called an over-actuated system.

There are two important consequences of this type of system. First, it might be possible

to maintain control of all degrees of freedom even upon total failure of an actuator.

Second, there are infinite possible combinations of actuator states that will give the

same effect to the degrees of freedom, so control design is not as straightforward as in

the case of a critically-actuated system.

For a hexacopter that experiences loss of thrust from a propeller, the propeller op-

posite the one that has failed must be operated near zero speed in order to maintain

control so that the weight of the vehicle is carried primarily on four of the six propellers.

That propeller may also have to operate in reverse in order to counteract the coupled

roll/yaw from the remaining propellers.

The octocopter configuration is the best suited to the loss of thrust from a propeller.

In such a case, an octocopter could simply revert to a quadrotor configuration. It is

also possible to distribute the thrust to all 7 of the remaining functional propellers so

that, unlike the hexacopter configuration, all functional propellers continue to support

the weight of the vehicle in hover and it is not necessary for any propeller to operate in

reverse.

Details of the failure-tolerability analysis can be found in appendix B.

1.2.4 Rotorcraft Configurations Summary

Table 1.3 summarizes a comparison between several miniature rotorcraft configurations.

It is the author’s opinion that for miniature rotorcraft (on the order of 1 meter or

less), the hexacopter offers the best blend of performance and safety due to its simple

mechanics and failure tolerability.

A depiction of the failure tolerance of a few select configurations is given in Figure 1.5.
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Configuration Pros Cons Single Rotor Failure

Helicopter mechanically
decoupled

control

many
points of
failure

immediate landing via autorotation
in case of drive failure, total loss of

control otherwise
Tricopter requires

propeller
swivel

total loss of control

Quadrotor simple
mechanics

uncontrollable yawing moment

Hexacopter simple
mechanics

structure
for 6

propellers

control maintained; one propeller
must operate near zero or in reverse

Octocopter simple
mechanics

structure
for 8

propellers

control maintained

Table 1.3: Comparison of rotorcraft configurations

Figure 1.5: Single-propeller failure for some common configurations.

A more detailed analysis of the failure tolerability of various rotorcraft configurations is

given in appendix B.

1.3 Failure-Tolerant Control

Avoiding the risk of property damage or bodily harm due to loss of control of an aerial

vehicle should be a primary concern for aeronautical engineers. Redundancy is a pow-

erful tool for decreasing the probability of such catastrophic failures. By definition,
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a redundant component can only cause a catastrophic failure when at least one other

component also fails. Even if the failure of only two redundant components can cause a

catastrophic failure, the probability of both of those components failing simultaneously is

the product of their individual probabilities of failure (assuming they are uncorrelated).

This multiplicative relationship makes catastrophic failure due to redundant components

extremely rare. However, the topic of safety and redundancy seems to be mostly ignored

for small autonomous vehicles. It is this author’s opinion that this subject requires more

consideration as small autonomous vehicles become more prolific and government bodies

attempt to apply regulations.

The ability to maintain controllability in the event of a fault or failure can be cate-

gorized as either active or passive fault-tolerant controls. Passive fault tolerant controls

are not adaptive in nature, but rather have accounted for possible failures during the de-

sign phase and robustness has been designed in to cover such cases. On the other hand,

active fault-tolerant controls are adaptive by nature and therefore change in structure

in the presence of a fault or failure.

1.3.1 Literature Review

Research into adaptive controls for aerospace applications has been active for at least 50

years, from MIT’s approach to model reference adaptive control (MRAC)[49]. Recently

much research has been published about the application of fault-tolerant adaptive control

for quadrotors.

A gain-scheduled PID approach was presented in [36]. A fault detection and diagnosis

module was used to estimate the health of each propeller. The health variable was

then used to smoothly transition between PID gain sets that had been pre-optimized

for various fault scenarios. The ability to recover control was proven in flight test by

cutting off the blade tips of one of the propellers in flight.

Three different versions of MRAC were compared for fault-tolerant control of a
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quadrotor in [7]. The authors referred to these variations on MRAC as the MIT rule

MRAC, conventional MRAC, and modified MRAC. In these types of adaptive controllers,

the measured performance of the real system is compared to the performance predicted

by a model of the system. In direct MRAC, the control parameters are directly adjusted

based on the error between the real and modeled performance. In indirect MRAC, the

error between the real and modeled performance is used to update the parameters of the

model to more closely represent the real system. The model parameters are then used

in constructing the control signal. In this case again, all three variations of MRAC were

proved to be effective at recovering controllability in flight tests where the blade tips of

a single propeller were cut off in flight.

Sliding mode control (SMC) for fault tolerant control of a quadrotor was presented

in [28]. SMC is a good candidate for passive fault tolerant control since it is robust to

uncertainties and disturbances. This method is a passive fault-tolerant method since

the controller is fixed (i.e. it does not adapt), but is robust. To achieve this robust-

ness, performance in fault scenarios are considered during design and an integral sliding

mode technique is employed to enhance the robustness and speed of convergence to

stable control compared to the case where faults are not considered. This method was

demonstrated successful in simulation where the effectiveness of a single propeller was

instantaneously reduced.

Backstepping control (BSC) was attempted in [48]. Like SMC, it is a passive ap-

proach to fault tolerance. A backstepping controller uses the control Lyapunov function

(CLF) to guarantee the global stability. As the name suggests, the controller is designed

from “stepping back” from the CLF to the control input. Simulation results showed that

this method is robust to small deviations in propeller effectiveness, but perhaps not as

suitable as an active fault-tolerant controller.

Model predictive control (MPC) was applied to quadrotors in [21]. MPC employs a

reference model and finds the optimal control input for a desired response over a finite
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horizon. This optimization is repeated at every time step. However, this method relies

on a nearly explicit model of the system, which must also include faults. Therefore a

separate health monitor is required to drive the fault parameters. This method was

proven to be effective in simulations where effectiveness of one or several propellers were

instantaneously reduced.

In all of the above-mentioned works, the faults that are being tolerated are partial

loss of effectiveness of one or more propellers. As mentioned in section 1.2.2, quadrotors

experience uncontrollable yaw acceleration upon the total loss of thrust from any single

propeller and therefore cannot maintain controllability. However, with the hexacopter

configuration, control can be maintained after complete failure of any single propeller.

To clarify this distinction, the author refers to the controller proposed in this work as

failure-tolerant controllers.

1.3.2 Application to Hexacopters

Surprisingly little has been published about control of a hexacopter (although it could be

considered a simple extension of quadrotor control), and no publications could be found

relating to fault-tolerant control of hexacopters. This is surprising because a hexacopter

is capable of continued controlled flight following total failure of a single propeller, while

a quadrotor is not.

This thesis explores the mechanics of a hexacopter that has experienced a complete

loss of thrust from any single propeller and the changes in control structure that are

required to maintain control in such a case. It is assumed that the hexacopter does not

have any special sensors for detecting a propeller failure, so a methodology is proposed

for inferring propeller effectiveness from the motion of the vehicle as measured by the

inertial measuring unit (IMU). Finally, an adaptive controller is proposed to compensate

for partial or total loss of effectiveness of any single propeller.
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1.4 Computer-Vision Based Navigation

The ability to sense position is critical for autonomous or semi-autonomous missions.

The use of the GPS is probably the most common method for determining position in

the earth reference frame. However, the spatial resolution of the GPS varies according

to Misra et al., from “tens of meters to millimeters” [31] depending upon a variety of

factors:

• quality of the GPS receiver

• number of satellites within the receiver’s line-of-sight

• fusion with other sensors such as an IMU

• atmospheric distortion

• signal reflections off of structures

One study [44] recorded GPS performance from many locations and estimated error

to be 6.9 meters vertically (elevation) and 3.0 meters horizontally (latitude and longi-

tude). Therefore, to achieve higher precision, GPS needs to be either replaced or fused

with another sensor.

1.4.1 Literature Review

Recently, much research has focused on the use of digital video cameras as a means

to enhance the sensor suite of aerial vehicles. Clever processing of the incoming video

stream can provide information about the camera’s speed, relative position, or global

position depending on the processing method and information available. This processing

of incoming digital images is referred to as computer vision. Several approaches have

been presented for various types of missions and environments. Approaches include: pat-

tern matching, monocular (single-camera) vision, stereo vision, and some unconventional

configurations.
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Pattern Matching

Computer vision was applied to the problem of precise autonomous helicopter landing in

[37]. The vision system searches for a pattern that the helicopter is to land on. If found,

it computes various parameters such as rotation and skew of the pattern compared to

the image that corresponds to the landing position. A behavior-based controller is used

to compute a trajectory that will move the camera (and vehicle) to the landing position.

This method is referred to as visual servoing, where the term servoing implies a direct

connection between the inferred vision parameters and the actuator commands. In this

case, the rotation and skew of the detected pattern is compared to that of the desired

image and the difference is used directly to manipulate the motion of the vehicle.

Another visual servoing technique is presented in [15]. In this case a quadrotor

carried a down-ward facing camera and was flown above a target pattern comprised of

four black circles. The difference from the current position and the desired position

could be determined by the particular arrangement of the four circles that appear in the

image. The quadrotor was shown to be able to achieve stable hover above the target

using this approach.

A visual-servoing technique similar to the above-mentioned was demonstrated in [33],

where color detection of four points, rather than the particular arrangement of circles

was used. Again, the vehicle was shown to achieve stable hover.

A unique application of computer vision was presented in [8] for navigating close

to and along power lines for inspection. In this case, the computer vision algorithm

compared the incoming images of the power lines to an a priori model to determine the

precise location of the camera relative to the power lines. This allowed the vehicle to fly

along the power lines or maintain a fixed position.

In [38] the regular features of man-made structures were exploited for navigation

and tracking. In particular, the windows of a building were detected using pattern

matching and tracked over time. The information was used to compute the velocity
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of the camera with respect to the windows. The vision system was carried aboard a

gas-powered helicopter. When combined with differential GPS, this vehicle was able to

perform precise navigation.

A vision-based navigation and control system was developed in [32] for use in a glider.

In this work, control was achieved using computer vision only. Inertial sensors such as

accelerometers and gyros were not used. Fast pattern matching was employed to detect

and compute the relative position of a known pattern on the ground. Combined with

an extended Kalman filter for state estimation, control commands for navigation could

be computed.

A vision system for autonomous navigation and object location and tracking for

Georgia Tech’s RMax helicopter was presented in [29]. Motion data from both the

inertial measuring unit and the computer-vision system were fused using an extended

Kalman filter to produce a full estimate of the vehicle’s state.

Monocular Vision

The works mentioned in the previous subsection relied on the use of land marks or

artificial features to perform localization. However, it is possible to determine some

information about position and/or velocity without any prior knowledge.

Images form a single camera combined with a structure-from-motion algorithm was

presented in [22] for landing in an location with unknown terrain. The structure-from-

motion algorithm allowed the creation of a topographical map of the area below the

helicopter that carried the computer-vision system. Using this map, the helicopter could

avoid landing on hazardous areas that might contain rocks, steep slopes, etc., and could

choose the most suitable landing location. The helicopter was able to land autonomously

using a hierarchical control structure.

A vision-based strategy that does not rely on prior knowledge of landmarks or the use

of other artificial visual cues was presented in [6]. This approach used visual odometry
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(VO), simultaneous localization and mapping (SLAM), and GPS to precisely determine

the location of the vehicle. GPS was used as the base sensor, but VO was used to fill in

the gaps when GPS did not provide sufficient precision. SLAM was used to remove the

drift of VO.

Visual and inertial measurements are combined in [2] in order to navigate an un-

known indoor environment without the use of GPS. The vision system, carried aboard

a quadrotor, demonstrated the ability to perform fast mapping and to avoid obstacles.

The motion of the quadrotor was estimated from the frame-by-frame motion of tracked

features. These motion estimates were combined with inertial measurements using an

extended Kalman filter.

Stereo Vision

As seen in the references in the previous subsection, it is possible to determine motion

from a single camera. Doing so however, requires the ability to recognize the size and

orientation of something in the scene, whether it be a predetermined marker or pattern,

or some previously unknown features that have been discovered and mapped. With two

cameras in a stereo configuration, depth can be computed without any previous knowl-

edge other than the position of the two cameras relative to each other (which is typically

predetermined and fixed). This allows direct estimation of the three-dimensional motion

of the vehicle without the need of assumptions for simplifying the problem.

Using a pair of cameras in a stereo arrangement to perform VO is descried in [1]. The

pose (position and orientation) of the stereo cameras is estimated with each incoming

image and the derivative is used to calculate the motion of the vehicle. A dense-stereo

procedure is employed to verify the pose estimation and the results drive a robust esti-

mate based on the random sample consensus (RANSAC) algorithm. SLAM is used to

remove any remaining drift.
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Unconventional Configurations

The stereo configuration used in the references mentioned in the previous subsection may

seem natural as it imitates the stereo configuration of our own eyes. However, we can

expand the possibilities by using more cameras, cameras of different type, or removing

the spatial constraint on the location of the cameras.

An interesting approach for estimating position and attitude using a pair of cameras

was presented in [3]. Rather than putting the cameras in a fixed stereo configuration,

one was attached to a quadrotor and the other was placed on the ground so that both

cameras could see each other. This approach was proven stable in flight experiments.

A technique in which cameras of different type are used in a stereo configuration

was presented in [11]. In this case an extremely wide-angle (fish-eye) lens was paired

with an ordinary rectilinear lens. The authors referred to this configuration as a mixed

stereoscopic vision system. It was shown that the disparity between the two cameras

could be used to for altitude estimation.

A vision systems employing omnidirectional cameras was explored in [19] for control

of a helicopter. Experiments showed that both navigation and obstacle avoidance could

be achieved with such a system.

Omnidirectional vision using a catadioptric (curved mirror) lens was demonstrated

in [9]. A method for determining the horizon by distinguishing the sky from the ground

was discussed in order to efficiently compute pitch and roll angles. Experiments were

carried out by post-processing video captured aboard a fixed-wing aircraft.

A combination of optical flow and stereo vision is presented in [18] for the purpose of

navigating through an urban environment. The combination of these two techniques was

evaluated in real-time experiments. Stereo vision allowed the vehicle to detect obstacles

ahead of itself, and optic flow allowed it to turn away from obstacles to the side.
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1.4.2 High-Speed Vision-Based Navigation for a Hexacopter

This thesis proposes the application of high-speed monocular SLAM to give precise

estimates of vehicle position and attitude. “High-speed” refers to the use of a video

stream that presents image frames much faster than the normal video rate of 30 frames

per second. While such rates are faster than is required for position control, they affords

several advantages such as: a more reliable track, higher trackable velocity (for the given

lens and camera geometry), and surplus phase margin for filtering to increase precision

and reduce noise.

The research into high-speed vision-based navigation was performed in collaboration

with the Ishikawa-Oku laboratory of the University of Tokyo School of Information

Science and Technology. Dr. Carson Reynolds and Daniel Henell both contributed

extensively to this research.

1.5 Thesis Outline

The following is a brief description of the contents of the coming chapters.

Chapter 2 introduces the mathematics that describes the motion of a hexacopter.

The various forces and moments that are applied to the hexacopter are cataloged and

modeled. Finally, a linear model is developed for use in designing a simple linear con-

troller.

Chapter 3 proposes and analyzes a controller that can adapt to changes in actuator

effectiveness. A method for estimating the effectiveness of the propellers from iner-

tial measurements is proposed. Finally, reconfiguration upon detection of total loss of

effectiveness is discussed.

Chapter 4 introduces the parallel tracking and mapping (PTAM) algorithm that is

the basis for the proposed high-speed vision-based navigation. Advantages and draw-

backs of the PTAM algorithm are discussed and modifications are presented to improve
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its capability for navigation. Finally, extensions for controlling the position of a hexa-

copter are introduced.

Chapter 5 introduces the hardware that was used as the flying testbed for control and

navigation experiments. This includes the hexacopter platform and the computer-vision

package. Modifications to the off-the-shelf hexacopter platform are described in detail.

Chapter 6 presents the data from simulated and real experiments. These experiments

include real tests of the accuracy of vision-based navigation versus GPS and a motion

capture system, autonomous vision-based navigation including takeoff and landing, and

simulated adaptation to a single-propeller failure.

Chapter 7 concludes the thesis the a discussion of the proposed failure-tolerant control

and high-speed vision-based navigation approaches. Suggestions for future work are

listed.
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Chapter 2

Hexacopter: Modeling and

Control

This chapter presents a methodology for designing a simple linear controller for a hexa-

copter. The process involves first formalizing a physical model of a hexacopter. Insights

from that model are then used to form a strategy for decoupling the desired degrees of

freedom. Finally the decoupled system is linearized and LQG is used to develop a robust

observer and state-feedback controller pair for each degree of freedom.

In order to develop the physical model, it will be assumed that the hexacopter can

be approximated as a rigid body so that it can be modeled using Newton-Euler rigid-

body dynamics. The following forces and moments will be considered as drivers of the

dynamics:

1. The force of gravity, Fg

2. Aerodynamic forces and moments from the propellers, Fap and Map

3. Gyroscopic moments of from the spinning propellers, Mgp

4. Aerodynamic forces and moments from the body, Fab and Mab

19
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2.1 Newton-Euler Rigid-Body Dynamics

In this section a model is developed for how the motion of the hexacopter is affected by

the application of forces and moments.

Assumption 1. The hexacopter can be approximated as a rigid body.

Assuming that a hexacopter can be closely approximated as a rigid body, it fol-

lows that its dynamics can be described by the Newton-Euler formalism of rigid-body

dynamics as given in [41] as:

mI3×3 0

0 I


V̇

Ω̇

+

Ω×mV

Ω× IΩ

 =

F

M

 (2.1)

where F is the body-frame force vector acting at the center of mass, M is the body-

frame torque vector acting at the center of mass, m is the hexacopter mass, I is the

hexacopter moment of inertia matrix about the center of mass, V is the body-frame

velocity vector at the center of mass, Ω is the body-frame angular velocity vector, and

I3×3 is the 3-by-3 identity matrix.

Using the body-fixed frame is beneficial for the following reasons:

1. The moment of inertia matrix is constant for a rigid body

2. Choosing body axes that coincide with principle axes will simply the mathematics,

as will be shown later

3. The aerodynamic and gyroscopic forces act along constant directions in the body

frame

4. Most sensors on the vehicle sense along constant directions in the body frame

Let the body axis be defined according to figure 2.1.
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Figure 2.1: A top-down view of a hexacopter showing the directions of the principle
body-axis vectors. the x axis points “forward,” the y axis points “right,” and the x axis
points “down.”

Assumption 2. The body axes defined according to figure 2.1 can be considered principle

axes.

The ideal hexacopter configuration shown in figure 2.1 has three planes of symmetry.

One corresponds to the x-z body-axis plane, and the other two occur at consecutive

60-degree rotations from the first plane along the z axis. From this information it can

be concluded that the z-axis must be one principle axis. Another principle axis can

be chosen perpendicular to the z-axis along one of the planes of symmetry. The final

principle axis is perpendicular to both of the previous axes. Indeed the body axes satisfy

these requirements. It is assumed that the real hexacopter is close to this ideal geometry.

If the body axes are coincident with principle axes, then the moment of inertia matrix
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is diagonal and can be written as:

I =


Ixx 0 0

0 Iyy 0

0 0 Izz

 (2.2)

Replacing I in equation 2.1 with the above moment of inertia matrix and expanding

the cross products gives:



Fx

Fy

Fz

Mx

My

Mz


=



m 0 0 0 0 0

0 m 0 0 0 0

0 0 m 0 0 0

0 0 0 Ixx 0 0

0 0 0 0 Iyy 0

0 0 0 0 0 Izz





u̇

v̇

ẇ

ṗ

q̇

ṙ


+



m(wq − vr)

m(ur − wp)

m(vp− uq)

(Izz − Iyy)qr

(Ixx − Izz)pr

(Iyy − Ixx)pq


(2.3)

where

[
u v w

]T
is V and

[
p q r

]T
is Ω. Solving equation 2.3 for the accelera-

tions gives: 

u̇

v̇

ẇ

ṗ

q̇

ṙ


=



1
mFx + vr − wq
1
mFy − ur + wp

1
mFz + uq − vp

[Mx + (Iyy − Izz)qr] 1
Ixx

[My + (Izz − Ixx)pr] 1
Iyy

[Mz + (Ixx − Iyy)pq] 1
Izz


(2.4)

Equation 2.4 shows that each acceleration in the body axis comes from a linear

response to a force or moment plus a nonlinear term accounting for the motion of the

body-axis reference frame relative to an inertial frame.
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2.2 Motion in the Earth Frame

In the previous section, a model of the acceleration of a rigid body given the application

of forces and moments was developed in the body-fixed frame. However, the goal is to

be able to control the attitude or position of the vehicle in the earth frame (assumed to

be approximately inertial). To that end, this section will introduce the conversions for

motion from the body frame to the earth frame.

The angular relation between the body frame and earth frame (referred to as the

vehicle’s attitude), can be described through a sequence of three consecutive rotations

of an intermediate rotating frame. This intermediate frame begins aligned to the earth

frame, but ends aligned to the body frame as a result of the rotations. The convention

in aeronautics is to first rotate about the earth z-axis, then about the new y-axis, and

finally about the new x-axis. The angle of each rotation is referred to as the heading

(ψ), pitch (θ), and roll (φ) Euler angles respectively.

Using this convention, a rotation matrix that transforms vector quantities from the

earth frame to the body frame and the reverse can be formulated as shown below. Details

of the derivation of these matrices are given in appendix C.

R =


cos θ cosψ cos θ sinψ − sin θ

− cosφ sinψ + sinφ sin θ cosψ cosφ cosψ + sinφ sin θ sinψ sinφ cos θ

sinφ sinψ + cosφ sin θ cosψ − sinφ cosψ + cosφ sin θ sinψ cosφ cos θ


(2.5)

R−1 =


cos θ cosψ − cosφ sinψ + sinφ sin θ cosψ sinφ sinψ + cosφ sin θ cosψ

cos θ sinψ cosφ cosψ + sinφ sin θ sinψ − sinφ cosψ + cosφ sin θ sinψ

− sin θ sinφ cos θ cosφ cos θ


(2.6)
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It follows then that the velocity vector in the earth frame can be derived from the

velocity vector in the body frame as follow:


ẋ

ẏ

ż

 = R(φ, θ, ψ)−1


u

v

w

 (2.7)

Finally, the derivative of the Euler angles can be derived from the angular velocity

with the following relation (see appendix C for the derivation):


φ̇

θ̇

ψ̇

 =


1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ



p

q

r

 (2.8)

2.3 Applied Forces and Moments

2.3.1 Gravity

Gravity acts directly down in the earth frame (along the positive z earth-axis). Therefore,

it can readily be converted to the body axis using the rotation matrix in equation 2.5.

Fg = R(φ, θ, ψ)


0

0

g

 =


−g sin θ

g sinφ cos θ

g cosφ cos θ

 (2.9)

2.3.2 Propeller Aerodynamics

The forces and moments generated by the spinning propellers are the primary means for

controlling the hexacopter. However, the aerodynamics of propellers is a very complex

phenomenon.

Assumption 3. The propeller aerodynamics can be approximated using a combination
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of momentum theory and blade-element theory with uniform flow through the propeller

disk, without interference from its own wake or the wake of other propellers.

To make modeling of the aerodynamics more tractable, several simplifying assump-

tions are imposed so that momentum theory can be used to determine the velocity of

the air flowing through the propeller disk, and blade element theory can be used to

determine the net force and moment at the hub.

The aerodynamic force and moment at the hub can be decomposed into the following

components:

Tn(ωn, wn,
√
u2
n + v2

n, ρ) (2.10a)

Dn(ωn, wn,
√
u2
n + v2

n, ρ) (2.10b)

Qn(ωn, wn,
√
u2
n + v2

n, ρ, dn) (2.10c)

Pn(ωn, wn,
√
u2
n + v2

n, ρ, dn) (2.10d)

where Tn, Dn, Qn, and Pn are the thrust, drag (opposite the direction of horizontal

motion), propeller torque (about the z body-axis), and rolling (about the direction of

horizontal motion) for the nth propeller. Each is a nonlinear function of the nth pro-

peller’s rotational speed (ωn), the velocity of the nth propeller hub along the z body-axis

(wn), the horizontal velocity of the nth propeller hub in the body frame (
√
u2
n + v2

n),

and the density of the air (ρ). The sign of Qn and Pn also depends on the direction of

rotation (dn) of the nth propeller. dn is defined such that 1 corresponds to right-hand

rotation about z body-axis and -1 corresponds to left-hand rotation about z body-axis.

The horizontal velocity is the norm of the vector sum of un and vn, which are the velocity

of the nth propeller hub along the x and y body-axes respectively.

Figure 2.2 shows how the blade aerodynamics vary with propeller speed, vertical

velocity, and horizontal velocity according to the relations in equations 2.10 From the
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figure, the following generalizations can be made:

• For a given vertical speed, T and Q vary almost linearly with the square of propeller

speed.

• The slopes of the above relationships vary with vertical speed.

• For a given horizontal speed and vertical speed, D and P vary almost linearly with

propeller speed.

• The slopes of the above relationships vary with horizontal speed, and the offsets

vary with both vertical and horizontal speed.

It should be noted that the above generalizations are only valid under “normal”

operating ranges where the propeller is neither “windmilling” (occurs when the vertical

velocity is greater than the inflow velocity) nor creating a ring vortex (occurs when the

vertical velocity is quite opposite the inflow velocity).

Since the hubs of each of the propellers are distant from the hexacopter’s cg, these

aerodynamic forces generated at the propeller hubs generate a moment through the

corresponding lever-arm. Collecting the aerodynamic moments and also the aerodynamic

forces with their corresponding lever-arms in equations 2.10 gives the following forces

and moments:

Fap =


−∑6

i=1Dxi∑6
i=1Dyi∑6
i=1 Ti

 (2.11)

Map =


∑6

i=1 [−Tilyi + Pxi]∑6
i=1 [Tilxi + Pyi]∑6

i=1 [−Dxilyi +Dyilxi +Qi]

 (2.12)

where lxn and lyn are the lever-arms from the cg to the nth propeller hub along the x
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Figure 2.2: Example forces and moments calculated using momentum theory and blade
element theory. Tn, Dn, Qn, and Pn are the thrust, drag (opposite the direction of
horizontal motion), propeller torque (about the shaft), and rolling (about the direction
of horizontal motion) for the nth propeller. Each is a nonlinear function of the nth

propeller’s rotational speed (ωn), the velocity of the nth propeller hub along the z body-
axis (wn), the horizontal velocity of the nth propeller hub in the body frame (Hn), and
the density of the air (ρ).
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and y body-axes respectively. Tn, Dn, Pn, and Qn are all functions of ωn, wn, Hn, ρ,

and dn (omitted from the above notation for brevity).

2.3.3 Gyroscopic Moments from the Spinning Propellers

Let Mgp be the body-frame reaction moment vector due to the acceleration and rotation

of the spinning propellers. Since it is the reaction moments, it can be formulated as

the opposite of the moments that are responsible for the acceleration and rotation the

propellers. Note that the angular motion of the propellers is restricted to the z body-axis:

Mgpn = −Ip


0

0

dnω̇n

− IpΩ×


0

0

dnωn

 =


−dnIpzzqωn
dnIpzzpωn

−dnIpzz ω̇n

 (2.13)

where Ip is the propeller moment of inertia matrix (which is diagonal due the symmetry

of the propellers).

Summing over the six propellers gives:

Mgp = Ipzz


−q ·∑6

i=1(diωi)

p ·∑6
i=1(diωi)

−∑6
i=1(diω̇i)

 (2.14)

2.3.4 Body Aerodynamics

Assumption 4. Body aerodynamics contribute only viscous drag.

Body aerodynamics is likely the least significant contributor of force and moments

of the sources consider thus far. In order to simplify the analysis, let us assume that the
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body’s sole aerodynamic contribution is drag, which can be represented as:

Fab = −ρ
2


CxAxu|u|

CyAyv|v|

CzAzw|w|

 (2.15)

where Cx, Cy, and Cz are non-dimensional drag coefficients, and Ax, Ay, and Az are

reference areas.

2.3.5 Forces and Moments Summary

The forces and moments modeled in this section can be collected and substituted into

equation 2.4 to give the following relations for the acceleration of the hexacopter in the

body axis:



u̇

v̇

ẇ

ṗ

q̇

ṙ


=



[
−g sin θ − ρ

2CxAxu|u|+
∑6

i=1Dix

]
1
m + vr − wq[

g sinφ cos θ − ρ
2CyAyv|v|+

∑6
i=1Diy

]
1
m + wp− ur[

g cosφ cos θ − ρ
2CzAzw|w| −

∑6
i=1 Ti

]
1
m + uq − vp{∑6

i=1 [Pix − Tilyi − Ipzzqdiωi] + (Iyy − Izz)qr
}

1
Ixx{∑6

i=1 [Piy + Tilxi + Ipzzpdiωi] + (Izz − Ixx)pr
}

1
Iyy{∑6

i=1 [Qi −Dxilyi +Dyilxi − Ipzzdiω̇i] + (Ixx − Iyy)pq
}

1
Izz


(2.16)

2.4 Actuator Dynamics

Assumption 5. The response to propeller speed commands can be approximated with a

lag filter.

An actuator refers to some mechanism for affecting the motion of a physical system.

In the case of the hexacopter, the actuators are the six propellers, each driven by an

electric motor. Either a brushed or brushless motor may be used for this purpose.

Brushless motors require an active controller for speed control. Brushed motors can be
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operated open-loop, but speed will vary with both load and applied voltage, so some

feedback controller must be used to guarantee faithful tracking of speed commands.

In either case, it is assumed that the bandwidth of the controlled motor/propeller

pair can be modeled by as simple lag filter as follows:

ω̇n = τ−1(un − ωn) (2.17)

where un is the speed command for the nth propeller.

2.5 Linear Model

In preparation for designing a simple linear controller, it is necessary to construct a

linear model of the system. Let us first note that the system dynamics can be fully

described by the differential equations 2.7, 2.8, 2.16, and 2.17.

These equations can be linearized by first choosing an operating condition (nominal

values for the dependent variables) and then finding the constant of proportionality for

the change in each of the derivatives due to an infinitesimally small perturbation of each

of the dependent variables (considered separately).

An obvious choice for the nominal operating condition is the hover condition. During

hover the hexacopter is stationary with respect to the earth, so V, and Ω are zero, which

further implies from equation 2.16 that θ and φ are zero. The propellers are spinning at

some constant velocity to generate thrust to counteract the force of gravity. ψ can be

assigned arbitrarily since it has no effect on the motion of the hexacopter other than the

orientation of subsequent motions relative to the z earth-axis. x, y, and z do not appear

as dependent variables and therefore have no effect on the linearization.

Using the above conditions, and arbitrarily setting ψ to zero, results in the following
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sets of independent linear equations (separated for readability):

∆̇ω = −1

τ
I6×6∆ω +

1

τ
I6×6u (2.18)



u̇

v̇

ẇ

ṗ

q̇

ṙ


=



0 −g 0 0 0 0 0 0

g 0 0 0 0 0 0 0

0 0 −kT
m −kT

m −kT
m −kT

m −kT
m −kT

m

0 0 0 −
√

3|l|
2

kT
Ixx

−
√

3|l|
2

kT
Ixx

0
√

3|l|
2

kT
Ixx

√
3|l|
2

kT
Ixx

0 0 |l| kTIyy
|l|
2
kT
Iyy

− |l|2
kT
Iyy

−|l| kTIyy − |l|2
kT
Iyy

|l|
2
kT
Iyy

0 0 − kQ
Izz

kQ
Izz

− kQ
Izz

kQ
Izz

− kQ
Izz

kQ
Izz




φ

θ

∆ω



(2.19)
ẋ

ẏ

ż

 = I3×3


u

v

w

 (2.20)


φ̇

θ̇

ψ̇

 = I3×3


p

q

r

 (2.21)

where ∆ω is the vector of deviations from the hover rotational speed of the propellers.

kT and kQ are the constants of proportionality for thrust and torque respectively due to

a change in rotational speed of a propeller.

For ease of notation, let us define the matrix E as the following from equation 2.19:

E =



−kT
m −kT

m −kT
m −kT

m −kT
m −kT

m

0 −
√

3|l|
2

kT
Ixx

−
√

3|l|
2

kT
Ixx

0
√

3|l|
2

kT
Ixx

√
3|l|
2

kT
Ixx

|l| kTIyy
|l|
2
kT
Iyy

− |l|2
kT
Iyy

−|l| kTIyy − |l|2
kT
Iyy

|l|
2
kT
Iyy

− kQ
Izz

kQ
Izz

− kQ
Izz

kQ
Izz

− kQ
Izz

kQ
Izz


(2.22)

Let us call this matrix the actuator mixing matrix, since it describes how the actuators
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mix to affect the controllable degrees of freedom. This matrix was derived with a little

bit of foresight, making assumption that all propellers are rotating with the same speed

in hover. If that is true, then linearization of thrust and torque will result in the same

constants of proportionality for each propeller. Also, the geometry of figure 2.1 was

assumed when determining the lever arms.

Next, let us attempt to restate equations 2.18 and 2.19 as a function of the second

derivative of V and Ω through a change of variables. First, let us take the derivative of

the last 4 rows of equation 2.19 and notice that:



ẅ

p̈

q̈

r̈


= E ˙(∆ω) (2.23)

Next, let us multiply 2.18 by E then substitute in 2.23 and the bottom 4 rows of

equation 2.19 to obtain:

E ˙(∆ω) = −1

τ
E(∆ω) +

1

τ
Eu

⇒



ẅ

p̈

q̈

r̈


= −1

τ



ẇ

ṗ

q̇

ṙ


+

1

τ
Eu (2.24)

Assembling equations 2.24, 2.20, and 2.21 gives the entire linearized dynamics as
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follows:



ẅ

p̈

q̈

r̈

u̇

v̇

ẇ

ṗ

q̇

ṙ

ẋ

ẏ

ż

φ̇

θ̇

ψ̇



=



− 1
τ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 − 1
τ 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 − 1
τ 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 − 1
τ 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −g 0

0 0 0 0 0 0 0 0 0 0 0 0 0 g 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0





ẇ

ṗ

q̇

ṙ

u

v

w

p

q

r

x

y

z

φ

θ

ψ



+
1

τ
Eu

(2.25)

2.6 Simple Control

For a traditional helicopter, control of ẇ, ṗ, q̇, and ṙ is decoupled through clever me-

chanical design so no active control is needed. In the case of multi-rotors like quadrotors

and hexacopter, each element of the control, u, affects several state rates through the

mixing in matrix E.
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2.6.1 Quadrotor Control

In the case a quadrotor, linearizing the dynamics about the hover condition results in the

same dynamics given in equation 2.25, but with the following actuator mixing matrix:

E =



−kT
m

−kT
m

−kT
m

−kT
m

0 −|l| kTIxx 0 |l| kTIxx
|l| kTIyy 0 −|l| kTIyy 0

− kQ
Iyy

kQ
Iyy

− kQ
Iyy

kQ
Iyy


(2.26)

This quadrotor version of the E matrix is square and non-singular, so it is readily

invertible. This means that an input u can be constructed from decoupled acceleration

commands as follows:

u = E−1



ẇcmd

ṗcmd

q̇cmd

ṙcmd


(2.27)

in which case, E cancels with E−1 and the dynamics decouple into the following four

equations: 
ẅ

ẇ

ż

 =


− 1
τ 0 0

1 0 0

0 1 0



ẇ

w

z

+


1
τ

0

0

 ẇcmd (2.28)



p̈

ṗ

φ̇

v̇

ẏ


=



− 1
τ 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 g 0 0

0 0 0 1 0





ṗ

p

φ

v

y


+



1
τ

0

0

0

0


ṗcmd (2.29)
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q̈

q̇

θ̇

u̇

ẋ


=



− 1
τ 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 −g 0 0

0 0 0 1 0





q̇

q

θ

u

x


+



1
τ

0

0

0

0


q̇cmd (2.30)


r̈

ṙ

ψ̇

 =


− 1
τ 0 0

1 0 0

0 1 0



ṙ

r

ψ

+


1
τ

0

0

 ṙcmd (2.31)

2.6.2 Hexacopter Control

In the case of a hexacopter, the dynamics are under-constrained, meaning that there

are more variables than degrees of freedom. As such, there are infinite possible com-

binations of pseudo-inversions of the E matrix. A good solution is the Moore-Penrose

pseudoinverse as proposed by Baranek [5], which results in the following relationship:

u =



− m
6kT

0 1
3|l|

Iyy
kT

− Izz
6kQ

− m
6kT

−
√

3
6|l|

Ixx
kT

1
6|l|

Iyy
kT

Izz
6kQ

− m
6kT

−
√

3
6|l|

Ixx
kT

− 1
6|l|

Iyy
kT

− Izz
6kQ

− m
6kT

0 − 1
3|l|

Iyy
kT

Izz
6kQ

− m
6kT

√
3

6|l|
Ixx
kT

− 1
6|l|

Iyy
kT

− Izz
6kQ

− m
6kT

√
3

6|l|
Ixx
kT

1
6|l|

Iyy
kT

Izz
6kQ





ẇcmd

ṗcmd

q̇cmd

ṙcmd


(2.32)

Using the Moore-Penrose pseudoinverse enforces the hexagonal symmetry of the hex-

acopter. In this way, a pure ẇcmd is distributed evenly across each of the propellers (con-

firming our previous assumption that all propellers should have the same speed during

hover) and angular acceleration about each of the arms looks identical but rotated 60

degrees.
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With the dynamics decoupled, feedback control can be applied separately to each

axis. Only some of the rates are measurable using typical sensor packages, but the

rest are observable so an observer may be used to estimate the other states in order to

arbitrarily place the poles of the closed-loop dynamics with state feedback.

2.6.3 Linear Quadratic Gaussian Controller

A well-known approach to control design for linear systems with incomplete and noisy

state measurements is the linear quadratic Gaussian (LQG) controller. This controller

combines a linear quadratic regulator (LQR) for optimal state feedback, with state

estimates from alinear quadratic estimator (LQE) (i.e. Kalman filter).

LQR is an approach that finds an optimal solution to the goal of driving the states

of a linear system to zero from some non-zero initial condition. State feedback gains

are solved for that will result in a response that minimizes a cost function. The cost

function is parameterized so that the control designer may decide how heavily to penalize

deviations of the state vector and control signal from zero.

LQE, or the Kalman filter, is a method to optimally blend noisy and/or incomplete

state measurements with predictions based on some knowledge of the system dynamics

to estimate the full state vector. This method assumes that the measurements and states

are subject to some Gaussian noise, referred to as the measurement noise and process

noise respectively.

2.6.4 Controller Modifications

The LQG controller described in the previous section is meant for linear systems, but

the hexacopter is not a linear system. However, with good choices of LQR cost-function

parameters, the resulting LQG gives good performance in a large region around the

hover operating condition. Still, some modifications to the LQG controller should made

to ensure that control remains stable, or to improve performance.
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Square Propeller Speed

As mentioned in section 2.3.2, for a given vertical speed, T and Q vary almost linearly

with the square of propeller speed. Therefore, equation 2.32 should be reformulated

so that the constants of proportionality, kT and kQ, are with respect to the square of

propeller speed and u is the square-root of the result.

As an aside, it was found that it is not unreasonable to consider the square of propeller

speed as a lag of the square of the propeller speed command. This means that the linear

model in equation 2.25 can be maintained with E reformulated as described above, and

u as the command of the square of propeller speeds.

Transit Speed Through Error Saturation

With a linear controller, a large error gives a large command. However, the actuators

have operational limits (i.e. there is a maximum speed that the motor controllers are able

to achieve). The commands issued to the actuators should never exceed their operational

limits. One way to achieve this is to apply a limit to the error.

Positional error is particularly critical since it could become extremely large in the

case of waypoint navigation and therefore must be limited. Conveniently, the value of this

limit determines the speed of transit. As a proof, let us first assume that the hexacopter

is at steady state; traveling with zero heading, at constant velocity and attitude, and that

the target destination is distant so the positional error is being limited (i.e. constant).

Then equation 2.30 becomes:



0

0

0

0

ẋ


=



− 1
τ 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 −g 0 0

0 0 0 1 0





0

0

θsteady

usteady

xlimit


+



1
τ

0

0

0

0


q̇cmd (2.33)
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where q̇cmd is the result of state feedback, so:

q̇cmd = K · x = Kq̇ · 0 +Kq · 0 +Kθ · θsteady +Ku · usteady +Kx · xlimit (2.34)

where K is the state feedback gain vector. Equation 2.33 implies that q̇cmd must be

zero in this case. Making the further (reasonable)assumption that Kθ · θsteady is small

and solving equation 2.34 for usteady gives:

usteady ≈
Kx

Ku
xlimit (2.35)

Appending Integrators

The hexacopter is most likely subject to some non-zero-mean disturbances. For example,

misalignment of a rotor, or deviation of the CG from the ideal location will mean that the

propellers will have to produce slightly different thrust in order to maintain equilibrium.

Integral control is typically used to deal with such steady-state errors.

In the context of the LQR, this is achieved by appending an extra state to the

dynamics and setting its derivative to the state that is desired to be regulated. For the

example, in the case of controlling altitude, integral control is achieved by solving the

LQG problem for equation 2.28 with an extra state appended as follows:



ẅ

ẇ

ż

żint


=



− 1
τ 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0





ẇ

w

z

zint


+



1
τ

0

0

0


ẇcmd (2.36)

Integrator Regions (Anti-Windup)

The function of the integrator described above is to push the command in the direction

opposite sustained error to force the system toward zero error. However, in some cases,
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sustained error is expected and allowing the integrator to accumulate the error will

lead to an unnecessarily large command in the direction opposite the error, which will

ultimately lead to a large overshoot (or instability or actuator saturation). For example,

in the case of waypoint navigation, positional error is expected to be sustained as the

hexacopter is in transit.

One strategy to prevent unnecessary winding of the integrator is to prevent its action

outside of some neighborhood of zero error. In the case of waypoint navigation, we may

be confident that the hexacopter will always be capable of arriving at within some radius

of the waypoint without the use of integral control, so the integrator is forbidden from

accumulating outside of that radius. Increasing the radius will increase confidence that

the hexacopter will arrive at its destination, but will also increase overshoot.

Attitude Washout

So far, discussion has been focused on position control. However, in cases where po-

sition information is not available or not reliable, a human pilot may assume the duty

of outer-loop position controller. In that case the pilot manipulates the hexacopter’s

attitude and thrust through visual feedback. The hexacopter’s controller should then

be responsible for tracking the attitude and thrust commands through sensor feedback.

However, typically attitude is estimated by integrating on-board gyros that measure the

hexacopter’s angular rates. Any noise in those measurements will also be integrated,

causing the estimates to drift. Left unchecked, the pilot may have to issue increasingly

larger commands to counteract the drifting attitude estimates, eventually reaching a

command limit, catastrophically losing the ability to counteract further drift.

A solution to this problem is to apply a high-pass filter to the attitude estimates to

gently push them back towards zero. However, the cutoff frequency must be chosen very

carefully since this filter will cause an instability. For a sustained attitude command, the

controller will drive the attitude to the command. The low-pass filter will then reduce
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the estimate of the attitude and the controller will drive the attitude further in order to

satisfy the command. This is a divergent situation. Therefore, the cutoff frequency must

be made as low as possible so that the divergence is very slow and well within the pilot’s

control bandwidth. However, the cutoff frequency should not be made so low that the

drift can overwhelm the filter.



Chapter 3

Failure-Tolerant Control

In section 1.2.3 it was stated that Hexacopters and Octocopters can recover control of all

4 desired degrees of control freedom upon total loss of effectiveness of a single propeller.

This chapter proposes a failure-tolerant controller for this purpose.

3.1 Control Inversion

3.2 Adaptive Compensation for Actuator Effectiveness

There are several ways to estimate propeller effectiveness. Thrust and torque could

be measured directly with sensors, or could be estimated from the current draw or

speed of the driving motor. However, in many cases (particularly in low-cost designs)

measurements of those quantities are not available. Typically, propeller speed commands

are issued to motor controllers and it is simply assumed that the motor controllers

dutifully track the commands. However, even without any information fed back from

the motor controllers, it is still possible to estimate propeller effectiveness by comparing

the measured dynamics to the modeled system dynamics.

As a first step, let us explore the possibility of adapting to deviation from design

41



42 CHAPTER 3. FAILURE-TOLERANT CONTROL

actuator effectiveness for a certain class of systems. Let us suppose that the ideal

(model) system can be represented by the following differential equation:

ẋm(t) = fm(xm(t)) +Bmr(t) (3.1)

where x(t) ∈ Rn is the state of the system; f : Rn → Rn is a possibly non-

linear state function that describes how the system state effects the state derivatives;

B ∈ Rn×m is a constant matrix that describes how ideally effective actuators affect the

state derivatives; and r(t) ∈ Rm is a reference actuator state. The subscript m indicates

that this is the model of the ideal system.

Without loss of generality, the system description in equation 3.1 can be divided as

follows: ẋmc(t)

ẋmu(t)

 =

fmc(xm(t))

fmu(xm(t))

+

Bmc
Bmu

 r(t) (3.2)

where xc(t) ∈ Rm, xu(t) ∈ Rn−m, fc : Rn → Rm, fu : Rn → Rm−n, Bc ∈ Rm×m,

and Bu ∈ R(n−m)×m. The subscript c indicates the grouping of state derivatives that

are desired to be directly controlled and the subscript u indicates the grouping of state

derivatives that are to be uncontrolled.

3.2.1 Unknown Actuator Effectiveness

Now suppose that in reality, the effectiveness of the actuators is either not precisely

known, or has changed due to some damage, failure, etc. In that case, the description

of the real system can be written as:

ẋc(t)

ẋu(t)

 =

fc(x(t))

fu(x(t))

+

Bc
Bu

Λ(t)u(t) (3.3)
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where Λ(t) ∈ R+m×m is a positive diagonal matrix representing actuator effectiveness,

and u(t) ∈ Rm is the real actuator state.

It is desired to construct an actuator state, u, such that the response of the real

system to this actuator state will match the response of the ideal (model) system to the

reference actuator state, r. By inspection of equations 3.2 and 3.3, it follows that the

response of the real system to u and the response of the ideally effective system to r,

will match if the modeled dynamics perfectly describe the real system and u = Λ−1r.

However, u cannot be constructed from Λ−1r since the diagonal matrix of actuator

effectiveness, Λ, is not known a priori. Rather, let us define Λ̂ as the estimate of Λ (the

hat indicates an estimated value), and construct u such that u = Λ̂−1r. Then the real

system dynamics become:

ẋc(t)

ẋu(t)

 =

fc(x(t))

fu(x(t))

+

Bc
Bu

Λ(t)Λ̂−1(t)r(t) (3.4)

Note that if the state, x, and the state derivatives that are desired to be controlled,

ẋc, are perfectly measurable, then Λ is the only unknown in the top row of equation 3.4.

However, Λ often cannot be solved for directly since one or more elements of r may be

(close to) zero. Rather, let us attempt to define an error and a derivative of Λ̂ such that

Λ̂ approaches Λ (i.e. an improved estimate) whenever r is not (close to) zero.

3.2.2 Adaptive Law

First, let us define error as the difference between the real and modeled state derivatives:

e(t) = ẋc(t)− ẋmc(t) (3.5)
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Similarly, measured error can be written as:

ẽ(t) = ˜̇xc(t)− ẋmc(t) (3.6)

where a tilde indicates a measured value.

Substituting equations 3.2 and 3.4 into the equation 3.6 gives:

ẽ(t) = [fc(x(t)) +BcΛ(t)Λ̂−1(t)r(t)]− [fmc(x̃(t)) +Bmcr(t)] (3.7)

Making the assumptions that the real system perfectly matches the model (i.e. fc =

fmc and Bc = Bmc) and that the system state is perfectly measurable (i.e. x̃ = x and

ẽ = e), equation 3.7 can be rewritten as:

e(t) =[���
��fmc(x(t)) +BmcΛ(t)Λ̂−1(t)r(t)]− [���

��fmc(x(t)) +Bmcr(t)]

=Bmc[Λ(t)Λ̂−1(t)− I]r(t) (3.8)

Notice that if the estimate Λ̂ approaches Λ, then error will approach zero.

Next, let us make the further assumption that the system is critically actuated, so

the number of actuators is equal to the number of state rates that are effected by the

actuators, and the corresponding Bmc is non-singular. With this assumption, let us

propose the definition for the derivative of Λ̂ as:

˙̂
Λ(t) = γ diag(B−1

mcẽ(t)) Λ̂(t) diag[g(r(t), ε)] (3.9)

where γ, ε ∈ R+ are constants to be defined by the control designer, and g(r(t), ε) is a
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modified inverting function given by:

(g(α, ε))i =


1/αi |αi| > ε

αi/ε2 |αi| ≤ ε
(3.10)

Assuming perfect measurement, equation 3.8 can be substituted into equation 3.9,

and properties of diagonal matrices can be employed to simplify the estimation dynamics

to:

˙̂
Λ(t) = γ diag[���

��
B−1
mcBmc(Λ(t)Λ̂−1(t)− I)r(t)]Λ̂(t) diag[g(r(t), ε)]

= γ (Λ(t)Λ̂−1(t)− I) diag(r(t))Λ̂(t) diag[g(r(t), ε)]§

= γ (Λ(t)Λ̂−1(t)− I)Λ̂(t) diag(r(t))diag[g(r(t), ε)]†

= γ (Λ(t)���
��Λ̂−1(t)Λ̂(t)− Λ̂(t)) diag(r(t))diag[g(r(t), ε)]

= γ (Λ(t)− Λ̂(t)) diag(r(t)) diag[g(r(t), ε)] (3.11)

In order to simplify future notation, let us define a few new matrices as follows:

R(t) = diag(r(t))

G(t, ε) = diag[g(r(t), ε)]

K(t, ε) = R(t)G(t, ε) (3.12)

†diag(~a)diag(~b) = diag(~b)diag(~a)
‡diag(~a)~b = diag(~b)~a
§diag(diag(~a)~b) = diag(~a)diag(~b)
¶diag(~a +~b) = diag(~a) + diag(~b)



46 CHAPTER 3. FAILURE-TOLERANT CONTROL

Upon inspection of K, we find that the elements are:

κii(t, ε) =


1 |ri(t)| > ε

r2i (t)/ε2 |ri(t)| ≤ ε
(3.13)

which indicates that K is a positive-diagonal matrix.

Substituting matrix K into equation 3.11 gives:

˙̂
Λ(t) = γ (Λ(t)− Λ̂(t)) K(t, ε) (3.14)

Note that the above equation is strictly diagonal, so each diagonal element can be

considered individually as follows:

˙̂
λii(t) = γ (λii − λ̂ii(t)) κii(t, ε) (3.15)

Now let us consider the above equation in 3 cases at some time t:

1. ri(t) = 0

2. |ri(t)| > ε

3. 0 < |ri(t)| ≤ ε

3.2.3 Analysis Case 1

In the first case, ri = 0 makes κii = 0, thereby simplifying equation 3.15 to:

˙̂
λii(t) = 0 (3.16)

So at time t, λ̂ii is neither converging toward nor diverging from the true value, λii

(i.e. critically stable).
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Figure 3.1: Approach trajectories of actuator effectiveness estimates.

3.2.4 Analysis Case 2

In the second case, |ri| > ε makes κii = 1, thereby simplifying equation 3.15 to:

˙̂
λii(t) = γ (λii − λ̂ii(t)) (3.17)

Taking the Laplace transform of this differential equation gives the following transfer

function:

λ̂ii(s)

λii(s)
=

1

γ−1s+ 1
(3.18)

which is a simple first-order lag of λii with time-constant γ−1.

Figure 3.1 shows the positive and negative approach trajectories for λ̂ii to a constant

λii, moving backwards in time from when λ̂ii is within 1% of the value of λii.

Notice that increasing γ increases the speed of the approach.

3.2.5 Analysis Case 3

In the third case, 0 < |ri(t)| ≤ ε makes κii(t, ε) = r2i (t)/ε2, and equation 3.15 becomes:

˙̂
λii(t) = γ (λii − λ̂ii(t))

r2
i (t)

ε2
(3.19)

The case statement 0 < |ri(t)| ≤ ε can be rephrased as 0 < r2i (t)/ε2 ≤ 1. Therefore,
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the effect of r2i (t)/ε2 in the above equations is equivalent to decreasing the value of γ, i.e.

a slower asymptotic approach to λii.

3.2.6 Error Dynamics

Sections 3.2.3 through 3.2.5 prove that, assuming perfect measurement and a perfect

model of the system, the estimates of actuator effectiveness, Λ̂, are guaranteed to asymp-

totically approach the true values, Λ, whenever r 6= 0. Furthermore, the speed of ap-

proach will be maximum (i.e. time constant of γ−1) whenever |r| ≥ ε.

Inspection of equation 3.8 has already shown that error, e, goes to zero when Λ̂

approaches Λ. Now let us examine the error dynamics during that approach.

Taking the derivative of equation 3.8 with respect to time gives:

ė(t) = Bmc[Λ(t)Λ̂−1(t)− I]ṙ(t)

+BmcΛ̇(t)Λ̂−1(t)r(t)

−BmcΛ(t)Λ̂−1(t)
˙̂
Λ(t)Λ̂−1(t)r(t) (3.20)

Let us make a few assumptions to simplify this analysis. First, let us assume that

real actuator effectiveness does not change often (i.e. damage or failures are rare) so Λ̇ is

typically zero and therefore the second term in equation 3.20 is typically zero. Second,

we have just shown that the estimate Λ̂ is guaranteed to approach a constant Λ, so

the first term in this equation is also guaranteed to go to zero. Furthermore, since r is

usually bounded and smooth for actuators, ṙ is also bounded and cannot be sustained

away from zero. Therefore, we can ignore the first two terms while being aware that

they may occasionally perturb the remaining dynamics.

Ignoring the first two terms of equation 3.20 and substituting in equation 3.8 and
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the simplified notation of equations 3.12 gives:

ė(t) = −BmcΛ(t)Λ̂−1(t)[γ diag(B−1
mce(t))�

��Λ̂(t)G(t, ε)]��
�

Λ̂−1(t)r(t)†

= − γ BmcΛ(t)Λ̂−1(t)G(t, ε) diag(r(t))B−1
mce(t)†‡

= −γ BmcΛ(t)Λ̂−1(t)K(t, ε)B−1
mc︸ ︷︷ ︸

A

e(t) (3.21)

According to [23] The stability of the above equation can be determined by analyzing

the eigenvalues of matrix A, where eigenvalues are all of the solutions, ν, to the equation:

det{A− νI} = 0 (3.22)

Expanding matrix A and using properties of determinants, equation 3.22 becomes:

det{−γ BmcΛ(t)Λ̂−1(t)K(t, ε)B−1
mc − νI} = 0

⇓

det{Bmc[−γ Λ(t)Λ̂−1(t)K(t, ε)− νI]B−1
mc} = 0

⇓

���
��det(Bmc) det{−γ Λ(t)Λ̂−1(t)K(t, ε)− νI}����

�
det(B−1

mc) = 0∗‖

⇓

det{−γ Λ(t)Λ̂−1(t)K(t, ε)− νI} = 0 (3.23)

What remains is purely diagonal, so the eigenvalues are simply each of the diagonal

∗det(AB) = det(A)det(B)
‖det(A−1) = det(A)−1
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elements of the inner left part:

νi(t) = −γ λii(t)
λ̂ii(t)

κii(t) (3.24)

Since γ, λii, λ̂ii, and κii are positive, it is clear that the ith eigenvalue is real and

negative when ri is not zero (and zero when it is). Negative eigenvalues indicate that

the error will asymptotically approach zero with speed proportional to the size of the

eigenvalue. Therefore, increasing γ and decreasing ε will generally result in an increase

the speed of the approach.

3.3 Sensitivity Analysis

Section 3.2 introduced the theory and stability proofs for the adaptive control inversion

method presented thus far. However, the stability proofs often relied on strict assump-

tions of perfect measurement and incorporation of a perfectly accurate model of the

system. This section will consider various deviations from those assumptions, similar to

the analysis performed in [24].

3.3.1 Measurement Noise and Disturbances

For this analysis, let us assume that the real system perfectly matches the model of the

system (i.e. fc = fmc and Bc = Bmc), except that it is subject to some disturbances to

both the state and state derivatives. In addition, let us assume that the measurements

of both the state and state derivatives contain some noise. Then the system can be
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described by:

ẋc(t) = fmc(x(t) + dx(t)) +BmcΛ(t)Λ̂−1(t)r(t)dẋc(t)

x̃(t) = x(t) + dx(t) + nx(t)

˜̇xc(t) = ẋc(t) + nẋc(t) (3.25)

In this case, the measured error, ẽ, will differ from true error since it will contain

measurement noise. Substituting the above system descriptions into the definition of

measured error, equation 3.6, gives:

ẽ(t) = [fmc(x(t) + dx(t)) +BmcΛ(t)Λ̂−1(t)r(t) + dẋc(t) + nẋc(t)]

− [fmc(x(t) + dx(t) + nx(t)) +Bmcr(t)]

= Bmc[Λ(t)Λ̂−1(t)− I]r(t)+

[dẋc(t) + nẋc(t) + fmc(x(t) + dx(t))

− fmc(x(t) + dx(t) + nx(t))]

 ñ(t)

= Bmc[Λ(t)Λ̂−1(t)− I]r(t) + ñ(t) (3.26)

where all of the noise and disturbance terms have been grouped into a single term called

ñ.

The above description of measured error can then be substituted into the definition
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of the estimate derivative, equation 3.9, and simplified as follows:

˙̂
Λ(t) = γ diag{B−1

mc[Bmc(Λ(t)Λ̂−1(t)− I)r(t) + ñ(t)]}Λ̂(t)G(t, ε)

= γ Λ̂(t){diag[(Λ(t)Λ̂−1(t)− I)r(t)] + diag(B−1
mcñ(t))}G(t, ε)†¶

= γ Λ̂(t){(Λ(t)Λ̂−1(t)− I)diag(r(t)) + diag(B−1
mcñ(t))}G(t, ε)§

= γ {(Λ(t)− Λ̂(t)) + Λ̂(t)diag(B−1
mcñ(t))R−1(t)}R(t)G(t, ε)

= γ {Λ(t)K(t, ε)− Λ̂(t)[K(t, ε)− diag(B−1
mcñ(t))G(t, ε)]} (3.27)

Upon inspection, we find that the resulting estimate dynamics are identical to the

ideal case, equation 3.14, except that they include an extra term containing ñ. Here are

few observations that can be made from the presence of this extra term:

• (B−1
mcñ)i · g(ri, ε) perturbs λ̂ii either toward zero if negative or toward positive

infinity if positive

• This perturbation will occur with a “gain” of γ · g(ri, ε)

• A sustained (B−1
mcñ)i · g(ri, ε) > λii · κii will cause λ̂ii to diverge toward infinity at

an exponentially increasing rate

Now let us examine the effects of these estimation dynamics on the real error dy-

namics. Substituting the system description from equations 3.25 into the definition of
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real error, equation 3.5, gives:

e(t) = [fmc(x(t) + dx(t)) +BmcΛ(t)Λ̂−1(t)r(t) + dẋc(t)]

− [fmc(x(t) + dx(t) + nx(t)) +Bmcr(t)]

= Bmc[Λ(t)Λ̂−1(t)− I]r(t)+

[dẋc(t) + fmc(x(t) + dx(t))

− fmc(x(t) + dx(t) + nx(t))]

n(t)

= Bmc[Λ(t)Λ̂−1(t)− I]r(t) + n(t) (3.28)

which is identical to the measured error, but without the influence of noise from the

measurement of the state rates.

Taking the derivative of the above equation with respect to time gives:

ė(t) = Bmc[Λ(t)Λ̂−1(t)− I]ṙ(t)

+BmcΛ̇(t)Λ̂−1(t)r(t)

−BmcΛ(t)Λ̂−1(t)
˙̂
Λ(t)Λ̂−1(t)r(t)

+ ˙vn(t) (3.29)

Let us analyze this equation one term at a time as had been done for the ideal case,

equation 3.8, in section 3.2.6. Let us again assume that real actuator effectiveness does

not change often (i.e. damage or failures are rare) so Λ̇ is typically zero and therefore

the second term in equation 3.29 is typically zero. It was also shown in section 3.2.6 that

the third term is stabilizing and will drive the error asymptotically toward zero. The

fourth term is the direct effect of the disturbances and noise on the error dynamics and

is not affected by the designer’s choice of γ and ε. While this term will perturb error

away from zero, the third term’s stabilizing effect will bring the error back toward zero.
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In section 3.2.6, it had been argued that the first term in equation 3.8 would quickly

go to zero since Λ̂ was guaranteed to approach Λ. In this case however, equation 3.27

shows that noise and disturbances can perturb Λ̂ away from Λ, and that those pertur-

bations have a “gain” of γ · g(ri, ε). A large deviation from Λ, especially toward zero,

can cause error to become very sensitive to actuator transients.

In order to mitigate the negative effects of noise and disturbances that have been

exposed in this section, the “gain”, γ · g(ri, ε), should be made as small as possible.

However, this exposes a design trade-off. It has been shown in section 3.2 that the speed

of approach of the effectiveness estimates to the true values is proportional to γ · κii,

which is γ · g(ri, ε) · ri. Clearly the designer must carefully choose γ and ε to get the

fastest estimation possible while protecting against sensitivity to noise and disturbances.

3.3.2 Uncertainty in the State Function

For this analysis, let us assume perfect measurements and that the real system input

matrix perfectly matches the model (i.e. Bc = Bmc), but that the real state function,

fc, differs from the model, fmc. Then the system can be described by:

˜̇xc(t) = ẋc(t) = fc(x(t)) +BmcΛ(t)Λ̂−1(t)r(t)

x̃(t) = x(t) (3.30)

Substituting the above system descriptions into the definition of measured error,
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equation 3.6, gives:

ẽ(t) = [fc(x(t)) +BmcΛ(t)Λ̂−1(t)r(t)]

− [fmc(x(t)) +Bmcr(t)]

= Bmc[Λ(t)Λ̂−1(t)− I]r(t)+

[fc(x(t))− fmc(x(t))]︸ ︷︷ ︸
δf (x(t))

(3.31)

where the difference in contribution from the modeled and real state functions has been

grouped into a single term called δf (x(t)).

The above description of measured error can then be substituted into the definition

of the estimate derivative, equation 3.9, giving:

˙̂
Λ(t) = γ {Λ(t)K(t, ε)− Λ̂(t)[K(t, ε)

− diag(B−1
mcδf (x(t)))G(t, ε)]} (3.32)

This result is strikingly similar to that for the previously investigated case of the

system in the presence of disturbances and noise. In this case again, modeling error

in the state function perturbs Λ̂ away from Λ with a “gain” of γ · g(ri, ε). The same

observations that were made about the influence of noise and disturbances can be made

about modeling error in the state function.

As for the error dynamics, since we have assumed perfect measurement, then real

error, e, is identical to measured error, ẽ, so the time derivative of e can be written by
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taking the derivative of equation 3.31, giving:

ė(t) = Bmc[Λ(t)Λ̂−1(t)− I]ṙ(t)

+BmcΛ̇(t)Λ̂−1(t)r(t)

− γ BmcΛ(t)Λ̂−1(t)K(t, ε)B−1
mce(t)

+ Jfc−fmc(x(t)) ẋc(t) (3.33)

This result is also similar to that for the previously investigated case of the system in

the presence of disturbances and measurement noise. The only difference in this case is

that the control designer may have some influence on the final term of the error dynamics

by the choice of the model state function. It behooves the control designer to include

a model that is as accurate as possible to mitigate the negative effects of state function

modeling error.

3.3.3 Uncertainty in the Input Matrix

For this analysis, let us assume perfect measurements and that the real system state

function perfectly matches the model (i.e. fc = fmc), but that the real input matrix,

Bc, differs from the model, Bmc. Then the system can be described by:

˜̇xc(t) = ẋc(t) = fmc(x(t)) +BcΛ(t)Λ̂−1(t)r(t)

x̃(t) = x(t) (3.34)

Substituting the above system descriptions into the definition of measured error,

equation 3.6, gives:

ẽ(t) = [���
��fmc(x(t)) +BcΛ(t)Λ̂−1(t)r(t)]− [���

��fmc(x(t)) +Bmcr(t)]

= [BcΛ(t)Λ̂−1(t)−Bmc]r(t) (3.35)
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The above description of measured error can then be substituted into the definition

of the estimate derivative, equation 3.9, giving:

˙̂
Λ(t) = γ diag{B−1

mc[Bc(Λ(t)Λ̂−1(t)− I)r(t)]}Λ̂(t)G(t, ε)

= γ Λ̂(t)[diag(B−1
mcBcΛ(t)Λ̂−1(t)r(t))− diag(r(t))]G(t, ε)

= γ [diag(Λ̂(t)B−1
mcBcΛ̂

−1(t)Λ(t)r(t))G(t, ε)− Λ̂(t)K(t, ε)] (3.36)

Here it is found that the failure of B−1
mc to cancel with Bc prevents much of the

simplification that would have been possible otherwise. This equation shows that the

estimate dynamics will act as a first-order lag filter of diag(Λ̂B−1
mcBcΛ̂

−1Λr)G(t, ε), which

will likely be different from the true values, Λ, as a function of r.

Ideally, B−1
mcBc should be close to I, but a reasonably sufficient condition for that

case has not yet been identified.

As for the error dynamics, since we have assumed perfect measurement, then real

error, e, is identical to measured error, ẽ, so the time derivative of e can be written by

taking the derivative of equation 3.35, giving:

ė(t) = Bmc[B
−1
mcBcΛ(t)Λ̂−1(t)− I]ṙ(t)

+BcΛ̇(t)Λ̂−1(t)r(t)

− γ BcΛ(t)Λ̂−1(t)K(t, ε)B−1
mce(t) (3.37)

To ensure stability of these dynamics the eigenvalues of the matrix−γBcΛΛ̂−1K(r, ε)B−1
mc

should be negative. However, a reasonably sufficient condition for that case has not yet

been identified.
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3.4 Extension to a Hexacopter

In the case of a hexacopter, the state rates that are desired to be controlled are: ẋc =[
ẇ ṗ q̇ ṙ

]T
. For the system model, let us tentatively use the linearized dynamics of

equation 2.19 from section 2.5. Then fmc = 04x1, Bmc = E, and u = ∆ω.

The adaptive controller presented in section 3.2 is premised on the assumption that

the system to be controlled is critically actuated, i.e. the number of actuators is equal to

the number of state rates that are effected. However, a hexacopter is an over-actuated

system, in that its 6 actuators effect only 4 state rates. As a consequence, the matrix

Bmc is not square and the effectiveness estimator of equation 3.9 cannot be employed.

The crux of the problem is the term B−1
mcẽ in equation 3.9. Essentially, this term uses

the left inverse of the actuation matrix to project state-rate error back into the actuators.

It is the inverse of the relationship e = Bmceu, where eu represents the contribution to

error from each of the actuators. However, for the hexacopter, the actuation matrix

is a 4 × 6 matrix and therefore does not have a left inverse. The implication is that

there exist a set of infinite possible propeller error combinations that result in the same

combination of state-rate error.

3.4.1 Applying Likely Constraints

Some extra information is required to determine which actuators are responsible for the

state-rate error. This system of equations has six unknowns with only four relationships.

One approach is to apply likely constraints. For example, one might be tempted

to assume that 3 of the 6 propellers have almost identical effectiveness and therefore

contribute the same nominal magnitude of error, while the other 3 propellers contribute

some unique error. When assuming that propellers #4, #5, and #6 share the same

nominal effectiveness, the state-rate error, e, can be re-expressed as a projection from

individual propeller contributions to error by equation 3.38.
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e =



b11 b12 b13 b14 + b15 + b16

b21 b22 b23 b24 + b25 + b26

b31 b32 b33 b34 + b35 + b36

b41 b42 b43 b44 + b45 + b46





eu1

eu2

eu3

3eun


(3.38)

If this assumption, that propellers #4, #5, and #6 share the same nominal effec-

tiveness, is correct, then the exact contribution to error from each propeller could be

extracted by inverting equation 3.38.

However, while it might be reasonable to assume that 3 of the 6 propellers share

almost the same effectiveness, there are 20 possible combinations of 3 nominally effective

propellers, but there is no way to determine which candidate combination is the best

fit. Furthermore, for 12 of those 20 possible combinations, the matrix in the relation is

rank deficient and therefore not invertible.

Another possibility would be to assume that 4 of the 6 propellers have almost identical

effectiveness, while the other 2 propellers are uniquely deviant. When assuming that

propellers #3, #4, #5, and #6 share the same nominal effectiveness, the state-rate

error, e, can be re-expressed as a projection from individual propeller contributions to

error by equation 3.39.

e =



b11 b12 b13 + b14 + b15 + b16

b21 b22 b23 + b24 + b25 + b26

b31 b32 b33 + b34 + b35 + b36

b41 b42 b43 + b44 + b45 + b46




eu1

eu2

4eun

 (3.39)

This represents a system of 4 equations with only 3 unknowns. Therefore, the system

might be solvable using only 3 of the 4 equations.

There are 15 possible combinations of 4 nominally effective propellers, and some

criterion is desired for selecting the combination that is the best fit. Since there are 3
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possible combinations of 3 of 4 equations, the variance of the solution of each of those

possible combinations of equations may give some clue to the fitness of the solution.

However, in the case of the hexacopter, at least one of the possible combinations of

equations for each of the 15 possible combinations of 4 nominally effective propellers

results in a singular matrix. For 3 of the propeller combinations, there is only a single

solvable combination of equations, and for another 3 propeller combinations, there is no

solution.

Another possibility would be to assume that 5 of the 6 propellers have almost identical

effectiveness, while only 1 propeller is uniquely deviant. When assuming that propellers

#2, #3, #4, #5, and #6 share the same nominal effectiveness, the state rate error e

can be re-expressed as a projection from individual propeller contributions to error by

equation 3.40.

e =



b11 b12 + b13 + b14 + b15 + b16

b21 b22 + b23 + b24 + b25 + b26

b31 b32 + b33 + b34 + b35 + b36

b41 b42 + b43 + b44 + b45 + b46




eu1

eu2

5eun

 (3.40)

This represents a system of 4 equations with only 2 unknowns. Therefore, the system

might be solvable using only 2 of the equations.

There are 6 possible combinations of 5 nominally effective propellers and there are 6

possible combinations of 2 equations. However, at least 3 of the possible combinations

of equations for each of the 6 possible combinations of 5 nominally effective propellers

results in a singular matrix. For 2 of the propeller combinations, there is only a 2 solv-

able combinations of equations. Furthermore, due to the symmetry of the hexacopter,

opposite combinations of propellers give symmetric results.

A final constraint may be to assume that several of the propellers are exactly as

effective as designed, while 1, 2, 3, or 4 of the remaining propellers have some deviance.
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Constraining
Assumption

Possible
Combina-
tions of

Propellers

Possible Combinations
of Equations (per

propeller combination)

Solvable Combinations
of Equations (per

propeller combination)

3 nominally
effective propellers,
3 uniquely deviant

20 1 1 or 0

4 nominally
effective propellers,
2 uniquely deviant

15 3 2, 1, or 0

5 nominally
effective propellers,
1 uniquely deviant

6 6 3 or 2

Table 3.1: Summary of constraining assumptions.

This is not a likely possibility, so it is ignored.

Table 3.1 summarizes the above analysis:

The consequence of the above analysis is that there is not enough information project

sate-rate error back to the propellers using the assumption that 3 or 4 propellers share

some nominal effectiveness. The only remaining option then is to assume that 5 pro-

pellers are nominally effective while only a single propeller is uniquely deviant. However,

as mentioned for this assumption earlier, due to the symmetry of the hexacopter, oppo-

site combinations of propellers give symmetric results. Therefor, an extra assumption

has to be made to determine which of the two symmetric results is more likely. We have

adopted the assumption that the result with the smallest variance in solutions and the

nominal error closest to zero is the most likely.

3.4.2 Estimating Effectiveness in an Over-Actuated System

To extend estimation of actuator effectiveness given in equation 3.9 to the case of an

over-actuated system such as a hexacopter, the control matrix inverse is replaced by the

above-mentioned likely constrained inverse as in the following equation:

˙̂
Λ(t) = γ h(ẽ(t)) Λ̂(t) diag[g(r(t), ε)] (3.41)
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where h(e) is the likely projection of error from the four controllable states to the 6

propellers, which is described in the next section. If h(e) can be properly formulated

and Λ is stationary, then the error given by equation 3.6 approaches zero asymptotically

with the time constant γ−1.

h(e) is constructed by assuming that error is contributed in a nominal way by 5 of

the 6 propellers and uniquely by the remaining propeller. The combination of propellers

with the smallest variance of solution, and the smallest nominal contribution, is assumed

to be the correct projection.

3.4.3 Reconfiguration upon Failure Detection

If a propeller has become so ineffective that it can no longer be relied upon to contribute

to the control task, it must be abandoned in favor of the remaining effective actuators.

This implies that the controller must be reconfigured.

To that end, the control mixing inversion performed in 2.32 in section 2.6 is refor-

mulated as follows:

u = (EΛ̂)−1
right



ẇcmd

ṗcmd

q̇cmd

ṙcmd


(3.42)

where the subscript “right” indicates the Moore-Penrose pseudoinverse. The resulting

propeller commands are redistributed to rely less upon less effective propellers.

3.4.4 Controller Limitations

Section 3.2 has already shown that this adaptive scheme is sensitive to measurement

noise with the inverse of the adaptive gain. In addition, it was shown that the dynamics

may become unstable if the input matrix is not well formed. The extension of this

adaptive approach to the hexacopter comes with several additional potential pitfalls.
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First, since it is assumed that 5 of the 6 actuators share some nominal effectiveness,

it is not possible to account for deviations of multiple actuators at the same time.

Second, there may be situations where the projection operator assigns error to the wrong

actuator.

Several of the limitations are explored experimental using simulation. The results

are presented in chapter 6.
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Chapter 4

Position and Attitude from

Computer Vision

Of all sensors available for robotic applications, the sensor with the highest information

density to cost ratio is probably a digital camera. Furthermore, the size and weight of

a digital camera is mostly determined by the size and weight of the lens, so the weight

and performance of the camera can be balanced to best fit the application.

The process of extracting information from a stream of digital video is referred to as

computer vision. The downside to computer vision is that it can be quite computationally

intensive, leading to extra cost, weight, and/or electrical draw.

This chapter discusses a particular approach to position sensing using computer

vision. This approach is made while considering the constraint that the system must

operate on board a small hexacopter.

4.1 Simultaneous Localization and Mapping

The use of a computer vision for positioning can be generalized into a problem of match-

ing features in the camera’s view to features of known location that have been stored in

65
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a database, then using that information to compute the pose (location and orientation)

of the camera. This process is referred to as localization, and the database of features

and their corresponding locations is known as the map.

However, in many cases, there is no prior knowledge about the environment that the

vehicle is operating in, and so there is no map. In such cases, a map can be built. The

position of a newly discovered feature can be computed if the position of the camera is

known. That feature and its corresponding location can then added to the database.

This process is called mapping.

The process of determining the camera’s location in a map while building that map

is called simultaneous localization and mapping (SLAM). However, SLAM has a start-

ing problem since localization depends on the map, and building the map depends on

localization. Therefore, some special starting routine must be used in order to perform

SLAM.

4.2 Parallel Tracking and Mapping

Parallel tracking and mapping (PTAM) is a SLAM algorithm published 2007 by George

Klein and David Murray of the University of Oxford [25]. It was intended to track a

hand-held camera for augmented reality, it has found a following in the application to

SLAM for robotic vehicles due to its ability to run real-time on relatively light computing

packages, including mobile devices.[26]

The PTAM source code was made open source, another reason for its popularity.

Several modifications have been made to adapt PTAM to the task of controlling the

position of a hexacopter.

The ability of PTAM to run real-time is owed mainly to its innovation of splitting

localization and mapping into separate tasks that run in separate CPU threads. This

means that the real-time constraint can be enforced on the localization task only while
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the mapping task is free to run at its own pace.

4.2.1 Prerequisites

Camera Model

For an ideal camera, light would be collected from the scene in a way such that it travels

in a perfectly straight line from the source to the image sensor thorough an infinitesimally

small focal point. In reality however, lenses distort the incoming light to a greater or

lesser degree depending on many factors. PTAM uses a fairly simple model of a camera

that accounts for the focal length and radial distortion of the lens. This model is used

to convert real images to an image on an ideal image plane, and vice versa.

An automatic camera calibration program is included with PTAM. This program

computes the optimal camera model parameters based on a series of images of a checker-

board.

Feature Detector

As mentioned in section 4.1, computer vision for positioning can be generalized into a

problem of matching features in the camera’s view to features of known location. The

term “feature” means something salient (easily noticeable or distinctive) in an image.

Many algorithms exist to identify different kinds of features in an image. PTAM employs

the features from accelerated segment test (FAST) feature detector of [34].

FAST is an algorithm that examines an image patch for some heuristics that are

representative of a corner. It examines pixel values in discrete positions along a path or

a mask around the candidate corner. Figure 4.1 shows an example mask, the Bresenham

circle. A corner is registered if there is some length of consecutive pixels along the circle

that are all lighter or darker than the candidate (center).



68 CHAPTER 4. POSITION AND ATTITUDE FROM COMPUTER VISION

Figure 4.1: The 16 pixel Bresenham circle mask used in FAST superimposed over the
examined image (Image from E. Rosten and T. Drummond [34])

Feature Quality Evaluator

It was found that, taken alone, the FAST algorithm does not produce features that are

robust and detectable between frames. A feature quality evaluator was added to remedy

this issue. PTAM employs the Shi-Tomasi interest operator from [40].

The Shi-Tomasi score is calculated from a window around a feature point in the

image. Some characteristics of the feature point can be inferred from the eigenvalues

of the structure tensor (a second-moment matrix of the window region). Two small

eigenvalues means that the image patch has almost constant intensity. One large and

one small value indicate that the image patch depicts something which has a shape only

unique in one direction such as a line. Two large eigenvalues means a corner, salt-and-

pepper texture or some other texture that can, in general, be tracked reliably. Since the

last case is desirable, the Shi-Tomasi score is taken as the minimum eigenvalue.
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4.2.2 The Point Cloud, Keyframes, and Pyramids

PTAM’s map can be thought of as a database of locations of previously detected salient

features (referred to as the point cloud), plus a set of keyframes. Each point in the point

cloud is also stored with a reference to its pixel location in single a keyframe (typically

the first keyframe it was observed in).

Keyframes

A keyframe is a single frame of video that is stored when the camera view begins to

move to a part of the world frame that has not yet been well explored. The keyframe

is stored along with the camera pose (position and orientation) at the time of capture.

The keyframe is then compared to the nearest previously captured keyframe, a set of

corresponding features is found and the locations of those features in the world frame

are triangulated. For features that had not been viewed in the previous keyframe, their

locations added to the point cloud with a reference to the pixel of the new keyframe

where it was observed.

Greyscale Pyramid

In order to accommodate various scales (i.e. the camera is close to a feature or far from

a feature), both the incoming images and the keyframes are processed into a pyramid of

greyscale images at 4 levels of decreasing resolution. For example, for an incoming image

with resolution 800x600, the bottom level (level 0) would be the full resolution image

converted to 8 bits-per-pixel greyscale. The next level (level 1) would be the level 0

image down-sampled by 2, yielding a 400x300 greyscale image. Subsequent levels follow

the same pattern so that level 2 would have a resolution of 200x150 and level 3 would

have resolution 100x75.

For each point in the point cloud, the reference to a keyframe includes the pyramid

level in which it can be found.
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Using this pyramid scheme allows features from images of different scale to be

matched. In addition, features at the higher levels are more resilient to motion blur, so

they are useful even for images of the same scale.

4.2.3 Tracking (localization)

The term tracking in the acronym PTAM corresponds to the term localization in the

acronym SLAM. As such, the tracking part of the PTAM algorithm is responsible for

determining the pose of the camera in the world frame. P The tracking part can be

described in the following steps:

1. The current pose of the camera is estimated from the previous pose and velocity.

2. The point cloud is reduced to a potentially visible set.

3. A wide search is performed for 50 of the points from the potentially visible set.

4. The camera pose is refined from the results of the above search.

5. A narrow search is performed for 1000 of the points in the potentially visible set

given the refined pose estimate.

6. The camera pose estimate is further refined from the results of the above search.

Motion Model

PTAM uses a simple motion model for estimating the pose for a newly acquired image.

In this model, velocity is calculated by differentiating the previous two poses. The

pose of the camera is then projected forward by integrating the velocity plus a constant

deceleration factor. Therefore, it is assumed that the camera is always decelerating

relative to the world frame.
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Potentially Visible Set

To reduce the point cloud to the potentially visible set of points, the points in the point

cloud are first projected into the image plane using the calibrated camera projection

with the current estimated camera pose. Points that lie outside the bounds of the image

after projection are eliminated.

Next, the unit normal vectors of the keyframes that correspond to each of the re-

maining points are projected into the image plane. Points where the associated keyframe

is oriented away from the camera, or nearly perpendicular to the camera, are discarded.

Finally, for the remaining points, the corresponding keyframe features is checked to

see of its scale is similar to any of the pyramid levels of the current image. If not it is

discarded.

Pose Estimate Refinement

The goal of this step is to refine the initial estimate of the camera’s pose by aligning

salient featured of the current image to some already-cataloged features (i.e. the map

points in the point cloud). To this end, salient features are first identified in each level

of the image’s greyscale pyramid using the FAST corner detector for comparison to the

potentially visible set of map points.

To perform the search potentially visible map points in the current image, a patch

of the keyframe corresponding to the map point being searched for is extracted and

warped to the current image plane using an affine transformation. The transformed

patch is then compared to each feature of the current image that has been identified

by the FAST corner detector, within a radius of where the feature is expected to be

found given the current estimate of the camera’s pose. The comparison is scored using

a zero-mean sum of square differences, and the feature of the current image with the

lowest score is selected as a match.

After a map point has been matched to a feature in the current image, the projection
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error (the difference between where it appears in the image and where it is expected to

appear given the current pose estimate) can be computed. The pose estimate is then

optimized to minimize the mean Tukey biweight objective score.[20]

As a first attempt at aligning to the point cloud, 50 map points that should appear

at the top level of the current image’s greyscale pyramid are searched for. If there are

not enough points are the highest level, or not enough are found in the image, then the

next level is also searched.

After completion of the above first attempt, the pose is further refined by repeating

the search for a much higher number of map points (around 1000) with a much smaller

search radius.

Tracking Quality

The tracking quality is evaluated according to the percentage of points from the po-

tentially visible set that were successfully matched in the latest image. Two thresholds

are given for this percentage. Below the higher threshold, tracking is considered poor.

Below the lower threshold, tracking is considered lost.

In the case of poor tacking, tracking will continue but new keyframes will not be

added since the probability of corrupting the map with a misaligned keyframe is high.

When tracking is lost, there is no confidence in the current pose estimate, and a poten-

tially visible set cannot be constructed. In such a case, the recovery method of [47] is

used until a pose estimate is is found, after which tracking will continue as normal.

4.2.4 Mapping

The previous section discussed camera localization, i.e. how to determine the location

of the camera relative to an already constructed map. This section discusses how the

map is built.
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Initialization

As mentioned in section 4.1, SLAM has a starting problem where a map is required to

localize the camera, but the position of the camera must be known in order to build the

map. PTAM addresses this problem with the use of a user-driven initialization routine.

The user initiates the routine with a key press, at which point the current image

is stored as the first keyframe. From there, 1000 of the most salient features at the

lowest pyramid level are tracked through smooth motion between subsequent frames.

The user ends the initialization with another key press, at which point the current

frame is recorded as the second keyframe in the database, and the correspondence of

the features that have been tracked since the first keyframe are used to with the 5-

point stereo algorithm in [42] and random sample consensus (RANSAC) to compute the

relative spatial locations of the features, which then forms the initial point cloud.

For this initialization to be successful, many of the initially identifies salient features

must remain tracked through every frame of the initialization routine. If a feature is

every lost from motion blur or because it has left the file of view, it cannot be recovered.

This means that the initialization must be done with a relatively short, smooth motion.

Also, the triangulation of the relative spatial locations of the points that were suc-

cessfully tracked relies on the assumption that there is a stereo baseline. Therefore,

initialization with pure rotation will not produce any disparity and will not give 3-

dimensional information, so some translation must be included.

Adding Keyframes

In section 4.2.2 it was mentioned that a new keyframe is stored when the camera view

begins to move to a part of the world frame that has not yet been well explored. To be

more precise, the conditions for adding a new keyframe are:

1. Tracking quality is good.
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2. At least 20 frames have arrived since the last added keyframe.

3. The nearest keyframe is farther than a certain threshold.

These criteria are monitored by the tracker. When met, the tracker sends the fol-

lowing to the mapper:

• The current image’s greyscale pyramid

• The camera pose when the image was obtained

• A list of FAST corners

• A list of map points that have been matched to some FAST corner

Upon reception of this information, the mapper will then abort its current task and

begin the process of appending the new keyframe to the map.

As a first step, the mapper revisits the existing map points that should be visible

in the image, but were not included in the list from the tracker. It is possible for the

mapper to perform a more thorough search since it does not have the tracker’s real-time

constraint. These points are re-projected onto the new image and added to the list of

they are observed in the image.

Next, the set of image features is reduced to only the most salient features in each

pyramid level. This is done by applying a non-maximal suppression and threshold based

on each feature’s Shi-Tomasi score, as described in section 4.2.1. The points that remain

after this reduction are then considered for addition to the map.

Taken alone, the candidate points have no depth information. However, if the can-

didate points can be identified in another keyframe, then the disparity between the two

occurrences gives the depth information. In particular, pixel patches around corner

points that lie on the epipolar line are compared to the candidate point using zero-

mean sum squared difference. This potentially means searching along long lines in many
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keyframes to match a single candidate. To make the search more tractable, the following

simplifications are used:

• Only the nearest keyframe is checked for correspondence.

• No template warping is preformed.

• Only equal pyramid levels are searched.

• The epipolar line is limited to a segment based on the range of depth where the

feature is likely to occur

If a match has been found, the candidate point is triangulated. If that triangulation

yields a result that is not close to a point that is already in the map, then the candidate

point is added to the map.

Bundle Adjustment

As keyframes are added to the map, small errors in the pose of the keyframes can

accumulate and make the map less and less accurate. To combat this, PTAM uses a

method called bundle adjustment to realign the pose of the keyframes to minimize the

projection error of the map points in each of the keyframes. PTAM uses the method

presented in appendix 6.6 of [16], but augments it with the Tukey M-estimator.

The complexity of this problem increases with at least the cube of the number of

keyframes. Furthermore, this process will be interrupted whenever a request for the

addition of a new keyframe arrives.

To make this more tractable, the mapper splits the task into a regional and global

optimization. For the local optimization, bundle adjustment is performed on the latest

keyframe plus the 4 nearest keyframes. The mapper only proceeds onto global bundle

adjustment after the local bundle adjustment has converged.
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4.3 Application to Hexacopter Navigation

As mentioned in section 4.2, PTAM was originally developed to track a hand-held camera

for augmented reality. However, its ability to run real-time on relatively light computing

packages makes it desirable for use onboard a small aerial vehicle such as a hexacopter.

In such a case, the camera is fixed to the body so that there is a simple relationship

between the pose of the camera and the position and orientation of the vehicle.

4.3.1 PTAM Limitations

While PTAM is very attractive due to its computational efficiency, it does have several

limitations. Some of the limitations discussed below are inherent in the PTAM algorithm,

others are a consequence of deviating from the intended purpose of tracking a hand-held

camera in a small space comes with some penalties.

Map Scale and Orientation

Perhaps the single largest hurdle to using PTAM (or any monocular SLAM algorithm)

for navigation is the ambiguity of the map scale and orientation with respect to the earth

frame.

PTAM uses the stereo disparity between two images of an unknown environment to

set the initial map. Because the environment is unknown, no information can gained

about the scale of the scene or the orientation of the points with respect to the earth

frame. The scale is set by arbitrarily setting the stereo baseline to 10 cm, and the

orientation is chosen such that the z world-axis is normal to the dominant plane in

initial tracked features (i.e. it is assumed that the scene is a roughly horizontal plane),

and the y world-axis is parallel to the y camera-axis at the end of the initialization.

Therefore, extra information is required to align the scale and orientation of PTAM’s

world frame to the earth frame.
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Map Size Limitation

The complexity of optimizing the map via bundle adjustment grows with at least the

cube of the number of keyframes. At some point, the number of keyframes becomes too

large for the bundle adjustment to be performed in real-time.

Drift and Loop Closure

In reality, when a new keyframe is added to the map, the pose estimate of that keyframe

has some error. That error is propagated to the pose estimate of future keyframes,

which will introduce further error. The effect is that the map becomes less accurate

with distance from the map origin. For example, if the hexacopter flew in a large circle,

the end of the map would most likely not coincide with the map at the start of the circle.

Camera Model

Similar to the above problem, a small difference between the true and modeled camera

distortion leads to a distortion of the triangulated map points. In such cases, perfectly

flat translation results in a curved map.

Dependence on Fixed Contrasting Features

The use of the FAST corner detector means that the scene must contain features that

have contrast. A uniform surface, such as a finished concrete slab, offers no contrasting

features to track.

Scenes with moving features will also confuse the tracker. For example, rippling

water or waving grains might offer features, but those features are not fixed to the earth

frame. In addition, the vehicle’s own shadow may confuse the tracker.

Finally, the absence of light would inhibit the ability of the camera to gather any

information from the scene. (This is essentially the same as the problem of the uniform

surface)
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Saliency Transitions

PTAM uses a fixed threshold for the Shi-Tomasi score to determine whether or not a

feature should be included in the map. However, the saliency of features in the scene

can vary widely between environments. For example, a rocky path contains many high-

contrast features, while a concrete sidewalk has few. Setting the threshold for a high-

saliency environment will lead to almost features will be rejected if the camera moves

to a low-saliency environment. Alternatively, setting the threshold for a low-saliency

environment means that the mapper will be overwhelmed with features if the camera

transitions to a high-saliency environment.

Manual Initialization

PTAM’s initialization routine requires user interaction. This is mainly because initial-

ization requires smooth translation, so the user interaction is a way of notifying PTAM

that a suitable movement is about to be performed. Also, success of the initialization

must be verified. The initialization often either aborts due to lack of features or stereo

baseline, or results in poor tracking. Either case is easily identifiable by the user who

must then re-initiate the initialization.

4.3.2 Modifications

This section contains a brief summary some of the modifications that were made to

PTAM to address some of the limitations for the purposes of hexacopter navigation.

Daniel Henell of the University of Tokyo’s Ishikawa-Oku Lab was the chief architect of

these changes, which are described in detail in his thesis, [17].

Alignment to the Earth Frame

As mentioned in section 4.3.1, it is not possible to determine the scale and orientation

of an unknown environment with a monocular camera. However, if an object of known
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size and orientation can be identified in the environment, then a transformation can be

constructed to align the map frame to the earth frame.

The object settled on for this purpose is a fiducial marker, a 2-dimensional symbol

that has been designed to be easily identifiable by computer vision. The open-source

library ARToolKit [27] is used for the specific implementation, and the particular fiducial

marker used is shown in figure 4.2.

ARToolKit was used to find the image coordinates of the marker’s corners. Virtual

rays are then constructed from the camera center through each of the marker corners.

It is assumed that the plane of the marker coincides with PTAM’s ground plane, so the

distance, in the map frame, between the intersection of the rays and the ground plane

is compared to the known size of the fiducial marker to construct a scale factor.

The assumption that the marker plane coincides with the ground plane means that z

direction already matches in both the map frame and the earth frame. Then the direction

of the fiducial sides is used to determine a simple rotation transformation about the z

axis.

Figure 4.2: The ARToolKit marker employed for aligning the scale and orientation of
the map frame to the earth frame.
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Architecture Restructuring

To improve performance and take advantage multi-thread processors, the program was

divided among 3 more threads, 5 in total. It was found that tracking performance could

be increased considerably when rendering was disabled, so the code was refactored so that

tracking could be run in a separate thread and therefore isolated from the computational

requirements of rendering and other system functions.

Next, it was found that the video capture uses a buffer to ensure smooth video

playback. When a video frame is requested, the oldest frame of the buffer is delivered.

This can cause delayed measurements. To combat this, video capture was placed in

another thread that constantly grabs the latest frame.

Finally, a 5th thread was created to handle all tasks related to control of and com-

munication with the hexacopter. This is discussed in section 4.4.

4.4 Extension for Control of a Hexacopter

Let us assume that a hexacopter has a minimal sensor suite consisting of a set of 3-

axis gyros and 3-axis accelerometers. Combined with an observer, this can give good

estimates of the linear and angular accelerations and angular rates. With some extra

assumptions, one might also be able to extract some reasonable estimates of linear speed

and attitude. This information allows for the design of a quite well-behaved attitude

and vertical acceleration controller with excellent disturbance rejection. Position control,

however, is out of the question since drift in the speed and attitude estimates would wreak

havoc on any position estimates.

Appending the sensor suite with computer vision gives drift free measurements of

position and attitude allowing very robust estimates of the full state.1 As an added

1In section 4.3.1 it was mentioned that PTAM’s estimates drift as the camera moves farther from
the origin. This drift is a function of position whereas the drift from integrating the accelerometers and
gyros is a function of time. If we assume bounds on the distance that the hexacopter will travel from
the map origin, then we can infer that the drift will also be bounded.
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benefit, the fact that computer vision is computationally intensive means that a relatively

powerful processor must be employed, which can easily handle some processing that

might be burdensome on a microcontroller. This benefit is exploited by performing

extended Kalman filtering on the vision computer and transmitting the results back to

the microcontroller.
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Chapter 5

The Hexamac Testbed

In this chapter, the University of Tokyo’s Hexamac testbed is introduced. The Hexamac

is a modified Mikrokopter Hexa XL with custom control software, paired with a custom

computer-vision package hosted on a stripped-down Mac mini computer.

5.1 MK Hexa XL Platform

The Mikrokopter Hexa XL is a relatively high-lift multirotor developed by the German

company HiSystems GmbH. Table 5.1 shows some relevant specifications of the Hexa

XL.

Although the Hexa XL is capable of producing 64 N of thrust, which could theoret-

ically allow for hovering with a payload of 4 kg, maneuvering with a payload of that

weight would not be possible since the actuators would be fully saturated (the motors

Mikrokopter Hexa XL

Empty weight (minus battery) 1.44 kg
Operational weight 2.15 kg
Maximum thrust (at hover) 64 N
Flight time (no payload) 30 min

Table 5.1: Some relevant specifications of the Mikrokopter Hexa XL

83
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are already operating at maximum speed). In practice, the payload should be well below

the lifting capacity to ensure maneuverability.1

5.1.1 Actuation

Actuation is achieved via 13-inch (0.33 m) propellers driven by brushless DC electric

motor (BLDC) motors. The motors employ 12 stator coils and a rotor with 14 magnets.

The motors do not include Hall effect sensors or a rotary encoder. Because the controller

must direct the rotor rotation, the controller requires some means of determining the

rotor’s orientation relative to the stator coils. In the absence of Hall effect sensors or a

rotary encoder to directly measure the rotor’s position, the back EMF in the undriven

coils is measured to infer the rotor position. As a consequence, the controller cannot

determine the orientation of the rotor when not rotating. Initiating rotation is typi-

cally accomplished by beginning rotation from an arbitrary phase, and then skipping to

the correct phase if it is found to be wrong. This can cause the motor to run briefly

backwards, adding even more complexity to the startup sequence.

The motor controllers are capable of delivering up to 35 Amps of continuous cur-

rent to each of the motors. Each of the motor controllers employs an ATMEGA168

microcontroller. However, the embedded software is not open and therefore it is not

modifiable.

With the motors off, the FlightCtrl, motor controllers, radio control (R/C) receiver,

and light emitting diodes (LEDs) draw approximately 0.28 A at 16 V. The battery

employed is a 4 cell lithium ion polymer (LiPO) battery with a capacity of 6.6 A·h and

the ability to deliver 132 A of continuous current. With this battery, the Hexa XL can

fly about 30 minutes without a payload. This implies that the motors consume the vast

majority of the battery’s charge.

1The Mikrokopter website recommends limiting the payload to 1.0 kg.[14]
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5.1.2 Structure

The structure of the Mikrokopter Hexa XL is mainly composed of 6 aluminum arms and

a pair of carbon-fiber connector plates.

The arms have a hollow square cross section with wall width of 1 millimeter. Each

arm is 0.36 meters in length. A pair of fairly large holes is included in the arms to allow

the passage of motor and LED wires. Experience showed that deformation occasionally

occurred in the area around the holes closest to the center of gravity during particularly

“hard landings,” which could necessitate the time consuming process of replacing the

arms (complicated by the fact that the motor wires are passing through the center).

The carbon-fiber plates act as a means of binding the 6 arms together so that they

are all coplanar with their endpoints lying at the vertices of a hexagon. The plates are

bound to the arms with bolts and locking nuts.

Other parts of the Hexa XL can be viewed as attachments to the main structure.

These include the battery cage, which is hung under the structure, the 3 legs, which are

attached three of the arms, and the controllers, which sit above the center of gravity

(CG) of the main structure.

The Hexa XL structure was modified slightly. First, several connectors were added

so that the arms could be separated, making it possible to disassemble the Hexa XL for

easy transport. Second, a pair of mounting brackets was added below the battery cage

to allow the addition of a custom payload (i.e. the vision package described in 5.4).

5.2 MK FlightCtrl v2.1

The Hexa XL comes with a compact control electronics circuit board called the FligtCtrl

v2.1. This board enables the manual control of the hexacopter’s attitude, thrust, and

height via R/C. It also offers some communication ports for the addition of supplemental

electronics. One such option is an add-on board called NaviCtrl, which adds the capa-
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bility to perform automatic position heading control. For the research presented here, a

custom electronics package was connected to the FlightCtrl in lieu of the NaviCtrl. This

package is discussed in section 5.4.

For the purposes of this research, it was desired to use the hardware components

of the FlightCtrl board, but embedded software was nearly completely replaced with

custom software that is optimized for research purposes. Therefore, while the FlightCtrl

is an off-the-shelf product, some detail of its hardware is presented here as a basis for

explaining how the custom embedded software was developed.

Table 5.2 lists the main components of the FlightCtrl V2.1, which can be seen in

figure 5.1.

Quantity Description Part

2 Voltage Regulators R-785.0-1.0
1 Microcontroller ATMega 1284p
1 3-axis Accelerometer LIS344ALH
3 Gyros ADXRS620
1 Pressure Sensor MPX4115
2 LED Drivers TS912D
1 Servo Driver 74HC4017PW
4 Communications Ports headers or pads

Table 5.2: The main component of the FlightCtrl v2.1 board.

In the most basic sense, the NaviCtrl performs the following functions:

• Read the sensors

• Receive commands from the radio control or other external device

• Compute propeller speed commands from the R/C commands plus feedback from

the sensors

• Send propeller speed commands to the motor controllers

• Manage the modes of operation (e.g. engine start/stop, calibration, etc.)
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(a) top (b) bottom

Figure 5.1: The components of the FlightCtrl board.

• Monitor for problems

• Provide physical status indicators

5.2.1 Microcontroller

The brains of the FlightCtrl is the ATMega 1284p microcontroller. This microcontroller

includes all of the following components on a single chip [4]:

• A 20 MHz, 8-bit CPU

• 128 Kb of flash memory (program memory)

• 4 Kb of electronically erasable programmable read-only memory

• 16 Kb of random access memory

• 2 8-bit timers

• 2 16-bit timers

• An 8-channel 10-bit analog-digital converter

• A two-wire-interface device
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• 2 universal synchronous and asynchronous serial receivers and transmitters

• A serial peripheral interface device

• A watchdog timer

• 32 I/O pins

The majority of the above-mentioned features are indeed employed in the control of

the hexacopter. The central processing unit (CPU) is extremely light. Because the pro-

cessor can only perform 8-bit mathematics, floating point operations require algorithms

that are prohibitively computationally expensive and should be avoided wherever possi-

ble. This, combined with the slow clock speed, means that advanced processing cannot

be achieved on this chip given the real-time control requirements.

5.2.2 Sensors

All of the sensors on the FlightCtrl (accelerometers, gyros, and pressure sensor) output

an analog voltage in proportion to the quantity they are sensing. Those outputs are

read via the microcontroller’s analog-to-digital converter (ADC). For the accelerometers

and gyros, a middle voltage corresponds to a reading of zero. This neutral voltage varies

with each sensor and must be calibrated. This is done by reading the voltage output

from each senor when the hexacopter is stationary on level ground. Those readings are

then used to debias future readings.

Accelerometers

The accelerometers on the FlightCtrl measure proper acceleration (acceleration relative

to free fall) along the x, y, and z body-axes independently. Because they measure relative

to free fall, the accelerometers register an acceleration of 1 g straight up due to gravity

when stationary in the earth frame. This is useful since the attitude of the hexacopter
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can be accurately deduced from the direction of the gravity vector prior to takeoff. This

attitude is used at the starting point for the future in-air attitude estimation.

The accelerometers are capable of measuring up to 2 g with an output relation of 0.6

V/g.[43] The microcontroller’s ADC has a resolution of approximately 2.93 mV (1024

bits over 3 V) [4] which leads to a resolution of 0.00488 g/step.

It has been found that the magnitude of the z body-axis measurement is corrupted

by vibrations in flight and therefore is not usable.2

Gyros

The gyros on the FlightCtrl measure the rotational rate along the x, y, and z body-axes

independently. They are capable of measuring angular rates up to 300 deg/s (5.2 rad/s)

with an output relation of 6 mV/(deg/s).[10] The microcontroller’s ADC has a resolution

of approximately 2.93 mV (1024 bits over 3 V) [4] which leads to a resolution of 0.814

(deg/s)/step (0.0142 (rad/s)/step).

Pressure (Altitude) Sensor

The FlightCtrl uses a pressure sensor to determine altitude by assuming the following

relation between change in barometric pressure and change in altitude: pressure(kPa) =

100 - 0.012 * altitude(m).[13] The voltage output from the pressure sensor follows the

following relation: Vout = 0.045 * pressure(kPa) - 0.48.[39] This leads to the relation:

Vout = 4.5 - 0.00054 * altitude(m). So, for a change in altitude of 1 m, the voltage

output from the sensor only changes by 0.00054V.

However, the microprocessor’s ADC has a measurement range of 3 Volts in steps of

approximately 2.93 mV (1024 bits).[4] This implies a resolution worse than 5 meters per

ADC step. To increase the resolution, a non-inverting operational amplifier is inserted

2This may also be true for the x and y body-axis measurements, but is difficult to confirm since
it requires the ability to apply a force of known magnitude along one of those axes while in flight to
compare to the resulting measurement.
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between the pressure sensor and the ADC. This op-amp has a gain of 30.12, which leads

to a resolution of 0.18 meters per step.

By increasing the resolution, the measurable range becomes much smaller. At 0.18 m

resolution, the 10-bit ADC can only capture a range of 180 meters. In order to operate

the Mikrokopter at locations of various elevations (e.g. 5 meters in Odaiba vs. 600

meters at Mt. Takao), and to compensate for meteorological variations in barometric

pressure, the measurable pressure range must be pre-shifted so that current pressure lies

within the measurable range. To accomplish this, the operational amplifier is wired such

the that its output can be biased via a pair of additional voltages. One of the voltages

provides coarse adjustment and the other fine adjustment. The voltages are controlled

via a pair of PWM signals generated from the microcontroller.

Battery Voltage

For a LiPO battery, voltage decreases with both increased current draw and decreased

capacity. If the voltage is ever allowed to drop below approximately 3.0 V per cell (used

in a series combination), the battery will subsequently no longer accept a full charge and

may experience problems holding voltage under load.[46] To prevent this, the remaining

ADC channel is used to monitor battery voltage so that warnings and/or limits can be

implemented.

5.2.3 Communication

The FlightCtrl board makes it possible to communicate with external devices via several

communication ports. Table 5.3 lists the communication ports and their uses.

Motor Controllers

Communication with the 6 motor controllers is accomplished through use of the two

wire interface (TWI) communication protocol. Using this protocol, many components
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Port Wires Typical Communications

TWI 2 Motor Controllers (bi-directional)
SPI 3 NaviCtrl (bi-directional)

USART0 2 NiviCtrl or External Computer (bi-directional)
USART1 2 Serial R/C Receivers (bi-directional)
Timer1 1 PPM R/C Receivers (RX only)

Table 5.3: The FlightCtrl v2.1 communication ports and the devices typically connected
to those ports.

can communicate with each other over a single pair of wires, so it is well suited to the

case of the FlightCtrl communicating with all of the motor controllers. This is achieved

by beginning each transmission with the address of the destination device.

Typically, the FlightCtrl will only send a speed command to each of the motor

controllers, and in response will receive information about the present current draw,

board temperature, and maximum allowable command from each of the motors. It is

also possible to get and set each of the motor controller parameters, which include limits

on operating temperature, current draw, and maximum command.

Radio Control

In order to accommodate a variety of brands of radio controllers, the FlightCtrl includes

a port to decode radio control receivers that output servo commands in a serial protocol

(e.g. Futaba S.Bus, Jeti, JR), and a port to decode receivers that output servo commands

using pulse-poisition modulation (PPM). In addition, with receiver models, it is possible

to return telemetry data to the radio controller. This is accomplished through serial

output.
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5.2.4 Other Features

Physical Indicators

The FlightCtrl board includes one port for driving a buzzer and two ports for driving

LEDs. These outputs are useful for giving physical indications of FlightCtrl status and

warnings in the form of beeps, flashing lights, color changes, etc.

Servo Control

The FlightCtrl board also includes circuitry that can control up to 7 external servos. This

is made possible via a timing chip that decodes PPM commands from the microcontroller

into separate pulse-width modulation (PWM) commands for servos. A separate power

regulator is also provided so that an overdraw from the servos won’t affect the critical

FlightCtrl functionality.

These servo outputs are most often used to drive a stabilized camera mount. Servos

are not used in this research.

5.3 Custom Embedded Software

The stock embedded software included with FlightCntrl is mostly open source.3 How-

ever, it was found that much of this code is poorly laid out, inefficient, not well doc-

umented, and not readily modifiable for the purposes of controls research. For these

reasons, it was decided to almost completely rewrite the embedded software. This sec-

tion describes the methodology and architecture of the custom embedded software.

The software can be roughly separated into three parts:

1. Initialization

3A pre-compiled binary is included with the FlightCtrl source code. This binary must be linked with
the rest of the source code. The functionality of this binary has not been identified, but the embedded
software will not execute without it.
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2. The main program

3. Interrupting functions

After initialization, the main program is repeated at 128 Hz. The main program is

constantly interrupted by high priority, fast-running, functions. Even so, the computa-

tionally intensive main program always finishes before its 128 Hz frame expires. Each of

these 3 parts will be described in detail in the following subsections.

5.3.1 The Main Program

The main program is generally responsible for the computationally intensive tasks. It

processes incoming information, manages the various modes of operation, executes the

control law, and prepares data for output. It is executed at 128 Hz and takes several

milliseconds to process. It is the lowest priority task, so any interrupting function will

(briefly) take the focus of the CPU. The following subsections describe the sub-functions

of the main program in order of execution.

Main 1: Process Serial Inputs

If any message has been received over the serial connection, it will have been placed into

a buffer and needs to be processed. This function first decodes the message and then

makes the appropriate response according to the address and command identifier in the

message header.

For example, a command identifier “b” is a request for the debug output stream.

This particular message does not carry any further data, but will be responded to by

initiating the debug output stream.

As another example, a reception addressed to the FlightCtrl with a command identi-

fier “w” indicates that the data following the message header is a set of motor controller
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parameters. The message is responded to by forwarding the parameters to the motor

controllers over the TWI bus.

Main 2: Process Serial R/C Inputs

The FlightCtrl can interface with R/C receivers that output servo-channel commands

in either a PPM or serial format. For PPM signals, the command at each channel can

be deduced directly from the pulse width and no extra processing is required. For serial

signals, the data must be decoded which requires extra computation time. This function

checks if a new set of serial R/C data has been received and if so proceeds to decode the

individual channel commands from the string of bytes received.

Main 3: Process Sensor Readings

When a new sensor reading is taken it is placed into a ring array (the newest data always

replaces the oldest data). For each of the sensors, this function averages the values of

the ring array and then applies a neutralizing bias if necessary.

Main 4: Mode Transitions

This function interprets various R/C and external inputs to do mode control. This

includes starting/stopping the motors, calibrating the sensors, and heuristics for deter-

mining whether or not the hexacopter is in the air.

Main 5: State Estimation

This function estimates the state vector so that state feedback may be used in the

control law. The convoluted way in which the stock embedded software performed state

estimation was one of the main motivating factors for implementing custom embedded

software. The ease with which sensor data can be accessed in this custom software makes

modification to this function for the purpose of research very user-friendly. A variety
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of state estimators can be implemented such as an optimal observer, or some kind of

Kalman filter.

Main 6: Control Law

This function combines inputs from the R/C or some other external component, with the

state estimates to produce propeller speed commands. Like the state estimate function,

it is very likely to be changed for the purposes of research.

Main 7: Initiate Transmission of Propeller Speed Commands

This function initiates the TWI device, which will transmit the speed setpoint to each

of the motor controllers and receive current, maximum command and temperature in-

formation in return. This function only initiates the transmission. Actual loading of

the transmit buffer and reading of the responses occurs upon interrupt from the TWI

device. This is discussed in section 5.3.2.

Main 8: Initiate Transmission of Serial Outputs

This function checks for requests for data transmissions in order of priority. If any

request is found, it takes the following action:

1. Assembles the data for transmission

2. Applies a header including destination address and command identifier

3. Encodes the data using the algorithm described in section 5.3.3

4. Computes a value for the circular redundancy check (CRC)

5. Loads the first byte into the UART transmit register

Subsequent byte transmissions will be done upon interrupt from the UART trans-

mitter, as is discussed in section 5.3.2.
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Priority Interrupting Device Indication

1 TIMER2 10 kHz timer tick
2 TIMER1 R/C PPM pulse received
3 USART0 UART byte received
4 USART0 UART byte sent
5 ADC ADC sample complete
6 TWI TWI device ready
7 USART1 R/C serial byte received
8 TIMER3 128 Hz timer tick

Table 5.4: The interrupting tasks in the custom embedded software, listed by priority.

5.3.2 Interrupting Functions

The custom embedded software for the FlightCtrl uses an interrupt-based architecture.

In such an architecture, the functions that must be run at the highest rate, are given the

highest priority so that they can interrupt any lower-priority function to execute when

necessary. For example, in the case of the FlightCtrl, it is desired to have the ADC

measure the sensors as often as possible since higher sampling frequency means a larger

average of samples can be computed without any penalty in time delay. The ADC on the

FLightCtrl’s microprocessor can perform readings faster than 10 kHz and function for

storing and initiating the next reading takes only a few clock cycles. On the other hand,

the function for computing the propeller speed commands from sensor feedback and

R/C commands requires several ms of computation, but is only required to be updated

around 100 Hz. Clearly, it would be detrimental if the ADC would have to wait for the

propeller speed controller to finish before initiating the next computation. Therefore,

an interrupt is issued when an ADC reading is complete so that the very short process

of storing that reading and initiating the next one can be performed immediately, after

which the processor returns to computing the propeller commands.

Table 5.4 lists the various functions that the embedded software performs in order

of priority.
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Interrupt 1: 10 kHz Timer Tick

This timer (TIMER2) ticks (posts an interrupt) every tenth of a millisecond, but is

primarily used as a millisecond counter. The millisecond counter from this timer is used

as the basis of several timing functions including wait, delay, and stopwatch functions.

The wait function blocks execution of the calling function for a specified time. The

delay functions do not block execution and allow an easy check if a specified amount of

time has elapsed since the setting of the delay. Stopwatch functions also do not block

execution and allow the measurement of the amount of time that has passed since the

start o the stopwatch.

Interrupt 2: R/C PPM Pulse Received

Various brands/models of R/C receivers employ different communication protocols.

However, the communication is generally encoded into PPM or some serial protocol.

In either case, data is received in chunks. For example, for PPM, the duration between

each pulse indicates the value of each channel. Therefore, a series of pulses is required

to transmit the values of all channels. Similarly, using the serial protocol, the values of

all channels are encoded into a series of bytes and each byte is received one at a time.

When a new PPM pulse received, an interrupt is triggered and the time that time that

elapsed since the previous pulse (the position) is computed. This duration is converted

into a command value via a simple offset.

Interrupt 3: UART Byte Received

When the USART0 device receives a new byte of data, it triggers an interrupt to the

CPU. When the CPU responds, it copies the received byte into an input buffer. It then

checks that byte for the end character “

r,” indicating the end of a string of bytes. If the byte matches the end character, the

CPU sets a flag indicating that there is new data in the buffer that is ready to be
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processed. This processing will be done by the main program during its next iteration.

The processing is computationally intensive, so performing it in the interrupt handler

might block other interrupts.

Interrupt 4: UART Byte Sent

After the USART0 device has sent a byte of data, it triggers an interrupt to the CPU.

When the CPU responds, it checks to see if there are any remaining bytes of the serial

message to be sent. If so, it copies the next byte into the USART0 transmit register to

initiate the next transmission. If there is no byte to be sent, it checks if there are any

other requests for data transmission to be handled and proceeds accordingly.

Interrupt 5: ADC Sample Complete

After the ADC has successfully performed an analog-to-digital conversion (referred to

as a sample), it triggers and interrupt to the CPU. When the CPU responds to this

interrupt, it first records the sample, then sets the next channel (sensor) to be read,

and initiates the analog-to-digital conversion on that channel. Readings are recorded

into a ring array (such that the oldest sample in the array is replaced with the newest

reading). The 6 high-priority sensors are recorded into 12-sample ring arrays and the 2

low-priority sensors (z-axis acceleration and battery voltage) are recorded into 4-sample

ring arrays. This function uniformly steps through each channel so that all of the ring

arrays are refreshed after 80 samples. The interrupt that triggers this function occurs

at approximately 10.2 kHz so the ring arrays are completely refreshed at approximately

128 Hz.

Interrupt 6: TWI Device Ready

The FlightCtrl communicates with the motor controllers using the TWI protocol. This

protocol uses two wires: one for a clock signal and one of data. Many devices can
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be connected in parallel to the same two wires and data can be both transmitted and

received across the same wire. The possibility of conflicts is extremely high with such

a simple physical setup. Therefore a set of strict rules is applied for determining which

device has control of the data line.

Whenever the TWI device requires direction for how to proceed, it triggers an in-

terrupt to the CPU with a message indicating the current status of the TWI bus. For

example, the following are some scenarios that the CPU must respond to:

• Communication has been initialized, send a destination address

• The addressed device acknowledged your transmission request, begin sending data

• The addressed device accepted your last byte, send next byte

• The addressed device didn’t respond to your transmission request

• The addressed device won’t accept more data

• The addressed device acknowledged your read request, data will follow

• Data received, more data will follow

• Data received, no more will follow

• The addressed device did not respond to your read request

• Some error occurred

In each case, the CPU will take a different response.

Interrupt 7: R/C Serial Byte Received

When an R/C receiver that outputs a serial signal is used, it is connected to the receiver

of the USART1 device. Similar to when the USART0 device receives data, when the
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USART1 device receives data, it also triggers an interrupt to the CPU. The CPU re-

sponds to this interrupt by placing the received byte into a buffer. If the CPU expects

that this is the last byte in the message, is sets a flag indicating that new R/C serial

data has been received and need to be processed.

Interrupt 8: 128 Hz Timer Tick

This timer (TIMER3) ticks (posts an interrupt) at 128 Hz. The primary purpose of this

timer is to initiate the main program at regular intervals. However, this timer is also

divided into lower frequencies to perform other low-priority tasks such as updating the

LEDs and buzzer.

5.3.3 Serial Communication Protocol

Serial communication between the FlightCtrl and a computer or other external device

occurs via universal asynchronous serial receiver and transmitter (UART). A UART uses

2 wires for data transmission: one for transmitting, and one for receiving. Data transfers

may be started at any time (hence the “Asynchronous” in UART), but must occur at

a pre-agreed rate, called the BAUD rate. Furthermore, transmit and receive can occur

simultaneously (i.e. one does not impact the other). When no data is being transferred,

the output is set to the high state (1). A single low bit (0) marks the start of a new

data packet. For the FlightCtrl USART0 has been set to the following:

• 57600 BAUD (57.6 kbits / second)

• 8 bits of data follow the single start bit

• Data packets are closed with a single high bit and without a parity bit

With the above settings, each byte of data requires a 10-bit packet. This means a

maximum data rate of 5.76 kB / second. However, MikroKopter uses an additional pro-

tocol to manage the data transfer. In this protocol, multiple bytes of data are wrapped
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into a single message with a header and a footer. The header includes the following at

the start of the frame:

• The start character “#”

• An address

• A command identifier

The footer includes the following at the end of the frame:

• 2 bytes containing the value for the Cyclic Redundancy Check (CRC)

• The end character “̊’’

Finally, to guarantee identification of the start and end characters, data is separated

into 3-byte chunks and each chunk is re-encoded into 4-bytes. Each of the encoded bytes

has a minimum value of 61, so that it cannot be confused with the start character “#”

(= 35) or the end character “̊’’ (= 13).

The following is a summary of the total overhead:

• 1 extra byte per 3-bytes of data in a frame for encoding

• 6 extra bytes per data frame for identification and error checking

• 2 extra bits per byte to mark the start and end of a transmitted byte

Here are some example maximum transfer rates for certain data sizes given the

information above:

• 1-3 bytes: 576 Hz

• 4-6 bytes: 411 Hz

• 7-9 bytes: 320 Hz
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• 22-24 bytes: 151 Hz

• 66 bytes: 61.3 Hz (this is the size of the DebugOut structure)

5.3.4 Initialization

When power is first applied to the FlightCtrl board, the microcontroller begins stepping

through the main program. The main program is divided into two parts: an initialization

part and a free-running loop. The following lists the various steps in order of execution

that are performed during initialization.

1. set the functions each of the microcontroller I/O pins

2. start the 1/10th ms timer

3. set the serial communications BAUD rate and ready for data exchange

4. load saved parameters from EEPROM

5. ready the R/C receiver signal decoder

6. initialize communication with motor controllers and query for connected controllers

7. start the 128Hz timer

8. start the ADC

9. reset gyro and accelerometer neutral values

10. calibrate the pressure altitude sensor

11. check the number of LiPO cells connected
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5.4 Custom Computing Package

This section describes the components of the custom computer vision package that was

assembled to be flown aboard the hexacopter testbed. Figure 5.2 shows this system in

detail.

Figure 5.2: A detailed view of the custom computer vision package.

5.4.1 The Onboard Computer

Early in the research, the computer vision software was attempted to be hosted on a

small arm-based mobile computing development board called a PandaBoard. However,

this platform proved underpowered for high-speed vision. As a result, it was decided to

move to a platform with as high a performance to weight ratio as possible under 750 kg.
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After some comparison, it was decided to use a Mac mini server. The specifications

for the specifications for this computer4 are as follows computer is as following:

• 2.0 GHz quad-core Intel Core i7-2635QM CPU

• 4 GB 1333 MHz DDR3 RAM

• Intel HD Graphics 3000 GPU with 384 MB DDR4 SDRAM

• Two 500 GB 7200-rpm SATA hard drives

The weight of the off-the-shelf Mac mini (excluding cables) is 1.2 kg. In order to

reduce weight the computer was removed from the casing. In addition, the AC-DC

converter was discarded (since the computer will be powered from the onboard DC

battery) and the 2 hard drives were replaced with one 500 GB solid state drive (SSD).

Using the solid state drive both reduces the weight and makes the system less susceptible

to vibration.

The stock AC-DC power supply for the Mac mini outputs 12 V at up to 6 A. The

power source aboard the hexacopter is a 4-cell LiPO battery, the voltage of which fluctu-

ates between 13.2 V and 16.8 V depending on the load and remaining capacity. There-

fore, a power regulator is required to convert the voltage from the LiPO battery to a

constant 12 V at a up to 6 A. A suitable part5 was found from Murata Power Solutions

Inc. The DC-DC converter accepts input voltages from 9 V to 36 V and outputs 12 V

at a maximum of 9 A.

A custom mount was fabricated to combine the innards of the Mac mini, the camera,

the power adapter, an antenna, and some status LEDs into a single unit. The weight of

the whole unit is 749 g.

4the Mac mini5,3, mid-2011 model was procured as it was the highest performance model at the time
5UQQ-12/8-Q12PB-C
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Resolution Frame Rate

800x600 30 Hz
640x480 60 Hz
320x240 120 Hz

Table 5.5: The fastest frame rate for the PlayStation Eye at each of the possible resolu-
tions.

5.4.2 Camera

The camera that is used for the vision package is a Sony PlayStation Eye. The PlaySta-

tion Eye is intended to be an accessory to the Sony PlayStation 3 game console, allowing

players to interact with games using motion and color detection as well as sound through

its built-in microphone array. The price-performance ratio is quite low for this camera.

The PlayStation Eye has attached to it a long universal serial bus (USB) cable that

provides the camera power and allows for two-way communication.

The native resolution of the PlayStation 3 Eye is 800x600 pixels, but the frame rate

output by the camera can be increased by decreasing the resolution. Table 5.5 shows

the fastest frame rate at each of the possible output resolutions.

In order to save weight, the housing and weighted base were removed from the

PlayStation Eye. The USB cable was also shortened. The lens was removed and replaced

with a standard M12 mount.

A number of lenses were compared. Wide angle lenses have the advantage of having

many features in view and are less susceptible to motion blur. More narrow lenses give

a more precise track. After some experimentation a lens that is slightly wider than the

stock PlayStation Eye lens was settled on.

5.4.3 Communicating With FlightCtrl

In order for position and attitude estimates obtained by the computer vision package to

be integrated into the rotor speed commands, it must be transmitted to the FlightCntrl.
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Figure 5.3: The blue cable in this figure is the two-way serial connection between the
computer vision package and the FlightCtrl.

This is achieved by serial communication via an FTDI6 chip that converts USB signals

to UART signals and vice versa. Figure 5.3 shows this connection. When connected to

the Mac mini, the chip appears to the system to be a serial (COM) port.

6FTDI is an acronym for Future Technology Devices International, the company that is the primary
supplier of USB to UART chips



Chapter 6

Experimental Results

This chapter describes the various experiments that were performed to prove the ca-

pabilities of the algorithms and systems that have been proposed in this thesis. As

a first step, the actual implementation of the nominal controller was flight tested for

handling qualities. Next, a series of experiments were performed to test the perfor-

mance of the proposed high-speed vision-based position and attitude sensor. Next, the

nominal controller was extended to interface with the computer-vision package and sim-

ple position-hold was attempted. Finally, a fully autonomous mission was performed,

including takeoffs and landings, using the fully integrated system.

Unfortunately, it was not possible to perform failure-tolerant control experiments

for a variety of reasons. However, the proposed controller was tested in simulation and

those results will be presented here.

6.1 Nominal Control Testing

Here, nominal control refers to the most basic level of control in which the user is

manually controlling the vehicle via radio control (R/C). The nominal controller provides

a foundation from which more advanced control techniques can be built. It is extremely

107
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Roll kṗ = 2.15 kp = 30 kφ = 100 kφi = 150
Pitch kq̇ = 2.15 kq = 30 kθ = 100 kθi = 120
Yaw kṙ = 0.775 kr = 5 kψ = 5 kψi = 1.25

Table 6.1: The state feedback gains from LQG controller for position control.

important that this controller is robust with good handling qualities since, if anything

goes wrong, the user should be able to immediately revert to the nominal controller to

manually recover the vehicle.

As mentioned in section 2.6, this controller was designed using a linear model of the

linear quadratic Gaussian (LQG) design method (which combines a linear quadratic reg-

ulator (LQR) with a Kalman filter). The parameters of this design are several weighting

matrices that define the tradeoff between tracking performance and control effort, as well

as matrices that describe the covariance of the process and measurement noise. Flight

testing is then used to evaluate the handling qualities that result from the choice of the

design parameters.

Following some trial and error, observer and state feedback gains were found that

gave excellent handling qualities. Table 6.2 presents the state-feedback gains that are

implemented in the attitude controller. Vertical control is achieved via open-loop bulk

propeller speed command.

6.2 High-Speed Vision Evaluation

Two experiments tested the performance of the high-speed computer vision system’s

relative position estimation against a motion capture (MoCap) system and the global

positioning system (GPS). In these experiments, a high-speed camera was attached to

an aircraft which was flown in geometric patterns of known shape while simultaneously

recording video and position information with one of the other systems. By algorithmi-

cally aligning the resulting trajectories, the error between the two could be estimated.
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Figure 6.1: A rendering of the GPS position log (red) plotted against a trajectory
estimated by PTAM (green). The left image shows an overhead view, while the right
image shows a perspective view.

6.2.1 Comparison to GPS

To compare the performance of the high-speed vision-based position estimates to GPS,

a high-speed camera was mounted on the hexacopter testbed (described in section 5.1),

so that the camera’s view was aligned with the hexacopter’s z body-axis. In this ex-

periment, the stock FlightCtrl embedded software was used in conjunction with the

NaviCntrl add-on board (enabling automatic navigation via GPS and a digital com-

pass). The hexacopter was commanded to fly under automatic navigation through a

series of waypoints that formed a large triangle over a vacant parking lot. The values of

latitude, longitude, and altitude reported from the on-board GPS sensor were logged to

a micro-SD card at a rate of 2 Hz while simultaneously recording high-speed video for

the duration of the flight.

The video was then post-processed with the modified version of the parallel track-

ing and mapping (PTAM) software that is described in section 4.3.2. The resulting

flight track was then algorithmically aligned with the flight track from the GPS log for

comparison.

Figure 6.1 shows a visualization comparing the trajectories from the GPS logs and

the high-speed computer-vision system. The RMS error between the aligned tracks was

found to be less than 2.5 m, which is on the order of typical GPS error.



110 CHAPTER 6. EXPERIMENTAL RESULTS

6.2.2 Comparison to Motion Capture

In order to get a better estimate of the precision of the high-speed computer-vision

system, is was compared to the position estimates from the MoCap system at Boeing’s

VEHICLE SWARM TECHNOLOGY LAB (VSTL) [35]. VSTL is a 30 x 15 x 6 m

room that couples a MoCap system with the ability to control vehicles based on visual

feedback.

The system can track an object of interest by employing multiple cameras to triangu-

late coordinated pules of visible light that are reflected from markers that are attached

to the object. Position accuracy is sub-millimeter and attitude accuracy is sub-degree.

Data provided at 100 frames per second with latency of approximately 10 ms. The VSTL

MoCap system includes 44 cameras with 16 megapixel and 4 megapixel resolution vari-

ants running at a capture rate of up to 1000 frames per second.

A high-speed camera was mounted on a VSTL helicopter such that its view was

aligned with the helicopter’s z body-axis. The helicopter was then flown autonomously

around the VSTL volume. The VSTL SwarmView operator interface commanded the

vehicle to take off, follow a series of waypoints, and land. High-speed video was recorded

for the duration of the flight and subsequently processed by PTAM offline to compute a

flight track. The PTAM and MoCap flight tracks were then algorithmically aligned for

comparison. As the 6-degree-of-freedom MoCap data was far more accurate than the

data provided by PTAM, it was considered ground truth for validation and comparison.

Figures 6.2, 6.3, and 6.4 visualize the difference between the track acquired by PTAM

and the track acquired by the MoCap system. From a 40 second segment of the flight,

RMS error of 2.4 cm was calculated between the PTAM and MoCap tracks.

6.2.3 Experimental Results

Experimental results show that the modified version of PTAM is capable of precision

as fine as several centimeters at rates as fast as 60 Hz. Both the precision and rate
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Figure 6.2: The flight paths recorded from MoCap (blue) and PTAM (green) plotted
from the top, side and front view.

are orders of magnitude better than that of GPS. However, the scale and position of

the map origin is not known a priori and requires additional information in order to be

aligned to the earth frame. Currently, a marker of known size and position is used for

this purpose.

6.3 High-Speed-Vision Based Navigation

With the capabilities of PTAM confirmed, the next step was to integrate its measure-

ments with the hexacopter’s onboard controller (FlightCtrl). As a first step, simple

position hold was performed to evaluate the position control gains. With the control

gains settled, the next step was to perform autonomous navigation.

6.3.1 Position Hold

The linear controller that was mentioned in section 2.6 and 6.1 was extended to include

speed and position. LQG was again employed for the design method and, after some trial

and error, design parameters that resulted in a good blend of tracking performance and

control effort was found. Figure 6.2 lists the feedback gains that have been implemented

in the position controller. Notice that the attitude gains are common with the attitude



112 CHAPTER 6. EXPERIMENTAL RESULTS

Figure 6.3: The flight paths recorded from MoCap (blue) and PTAM (green) plotted in
3D.

Figure 6.4: The flight paths recorded from MoCap (blue) and PTAM (green) plotted as
a function of time. Units are meters.

controller. This ensures smooth transition between attitude and position control and

vice versa.
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Roll kṗ = 2.15 kp = 30 kφ = 100 kv = 18.9 ky = 15 kyi = 6
Pitch kq̇ = 2.15 kq = 30 kθ = 100 ku = 18.9 kx = 15 kxi = 6
Yaw kṙ = 0.775 kr = 5 kψ = 5 kψi = 1.25

Altitude kż = 6.1 kz = 8.6 kzi = 1.72

Table 6.2: The state feedback gains from LQG controller for position control.

6.3.2 Autonomous Navigation

With the position control gains settled, the next step was to perform autonomous navi-

gation. The experiment can be summarized as the following steps:

1. The high-speed-vision system is initialized and the tracker’s frame is aligned to the

earth-inertial frame using a marker of known shape and size.

2. The hexacopter is placed at some arbitrary location away from the marker.

3. The experimental routine is initiated and the hexacopter, under control from the

computer-vision package, performs an aggressive takeoff and altitude hold at its

current location.

4. Upon reaching the desired altitude, the hexacopter proceeds to the first of three

predetermined landing sites.

5. Once it has arrived above the landing site, the hexacopter descends and lands.

6. The hexacopter takes off again within two seconds and proceeds to the next landing

site.

7. This process is repeated indefinitely.

Figure 6.5 depicts the plan for this experiment.

The only sensors employed in this experiment were a 3-axis MEMs gyro and our

computer-vision system. Even so, we were able to repeat an aggressive set of takeoffs

and landings at separated sites. The locations of the landings were repeatable, did not
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Figure 6.5: The plan for the autonomous navigation experiment.

suffer from drift, and recorded landing precision finer than 20 cm. Figure 6.6 plots the

position data that was estimated from the high-speed-vision system.

6.4 Failure-Tolerant Control Simulation

Unfortunately, time did not permit to perform experiments with the fault-tolerant con-

troller presented in chapter 3. The following tasks must be completed for the experiment

to be possible:

• The fault-tolerant controller must be implemented in the FlightCtrl embedded

software.

• An issue with the accelerometers on the FlightCtrl board must be resolved.

• It would be preferable to have a mechanism devised to physically remove the

propeller.

In lieu of experimental results, the following pages present simulation results for

various situations, demonstrating the capability and deficiency of this approach.
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Figure 6.8: From steady hover. At t = 1 seconds, propeller #2 becomes completely
ineffective. The solid line is the result using the adaptive controller, the dashed is
without adaptive control.
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Figure 6.9: From steady hover. At t = 1 seconds, propeller #1 becomes 70% effective,
propeller #1 becomes 70% effective, propeller #2 becomes 80% effective, propeller #3
becomes 90% effective, propeller #5 becomes 110% effective, propeller #6 becomes 120%
effective. The solid line is the result using the adaptive controller, the dashed is without
adaptive control.
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Figure 6.10: From steady hover. At t = 1 seconds, a 0.5 g acceleration is applied along
the x body-axis. The solid line is the result using the adaptive controller, the dashed is
without adaptive control.
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Figure 6.11: From steady hover. At t = 1 seconds, a 0.5 g acceleration is applied along
the y body-axis. The solid line is the result using the adaptive controller, the dashed is
without adaptive control.
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Figure 6.12: From steady hover. At t = 1 seconds, a 0.5 g acceleration is applied opposite
the z body-axis. The solid line is the result using the adaptive controller, the dashed is
without adaptive control.
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Figure 6.13: From steady hover. At t = 1 seconds, a 20 deg/s2 roll acceleration is
applied. The solid line is the result using the adaptive controller, the dashed is without
adaptive control.
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Figure 6.14: From steady hover. At t = 1 seconds, a 20 deg/s2 pitch acceleration is
applied. The solid line is the result using the adaptive controller, the dashed is without
adaptive control.
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Figure 6.15: From steady hover. At t = 1 seconds, an 5 deg/s2 yaw acceleration is
applied. The solid line is the result using the adaptive controller, the dashed is without
adaptive control.
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Figure 6.16: From steady hover. At t = 1 seconds, an 18 deg/s2 yaw acceleration is
applied. The solid line is the result using the adaptive controller, the dashed is without
adaptive control. This response is unstable.
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Figure 6.17: From steady hover. At t = 1 seconds, the hexacopter is commanded to
travel 1 m up, 4 m north and 2 m east. The speed of transit is set to 1 m/s laterally and
0.5 m/s vertically. The solid line is the result using the adaptive controller, the dashed
is without adaptive control.
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Figure 6.18: From steady hover. At t = 1 seconds, the hexacopter is commanded to
travel 1 m up, 4 m north and 2 m east. The speed of transit is set to 2.85 m/s laterally
and 1 m/s vertically. The solid line is the result using the adaptive controller, the dashed
is without adaptive control. This response is nearly unstable.
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Chapter 7

Conclusion

7.1 Summary

7.1.1 Failure-Tolerant Control Summary

This thesis proposed a controller to:

1. Decouple a hexacopter’s dynamics

2. Simultaneously estimate and adapt to differences in real and design control effec-

tiveness

3. Automatically reconfigure control when a propeller has become critically ineffective

The controller was demonstrated in simulation and was able to quickly identify and

adapt to a partial and subsequent total actuator failure. It was analyzed for sensitivity

to disturbances, measurement noise, and modeling uncertainty. A fundamental trade-off

was found to exist between the speed of convergence and the sensitivity to disturbances,

noise, and uncertainty in the state function, especially for small actuator commands. A

sufficient condition that guarantees stability in the presence of modeling uncertainty in

the input matrix could not yet be determined.
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Experimentation using simulation revealed that the controller is able to detect and

adapt to total failure of a single propeller. However, performance under normal cir-

cumstances seems to diminish qualitatively when the adaptive controller is employed.

The adaptive controller is robust to disturbances, but may cause the vehicle to become

unstable in extreme cases. The most troubling result is that aggressive maneuvering

causes the controller to become unstable.

7.1.2 High-Speed-Vision-Based Navigation Summary

This thesis demonstrated a self-contained computer vision system with size, weight, and

power that is compatible with flight on-board a small hexacopter. This sensor is capable

of determining position and attitude in GPS-denied areas. The positional accuracy and

update rate is at least one order of magnitude superior to that of uncorrected GPS. The

ability to perform aggressive autonomous navigation, including takeoffs and landings,

was successfully demonstrated.

7.2 Future Work

7.2.1 Failure-Tolerant Control Future Work

Further Investigation of Stability Bounds

As mentioned previously, analytical solutions to the stability bounds could not be de-

termined, but were attempted to be defined experimentally. It was found that the most

unacceptable behavior was the instability that occurred during aggressive maneuvering

under normal operating conditions. In such cases, good performance was achieved by

disabling the adaptive control. It is speculated that the degradation is due to the non-

linear effect of motion of the aircraft on thrust produced by the propellers, but more

investigation must be carried out to verify this. Perhaps if the cause can be identified,

then measures can be taken to prevent instability.
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Explore the Parameter and Operating Space

The simulation results presented in section 6.4 employed a rather high adaptive gain, γ,

of 2. However, the baseline controller is quite robust in the absence of adaptation, so

the speed of adaptation may be eased, which should improve performance.

It is proposed to use Monte Carlo simulation to explore both the controller param-

eter space, and the operating space. Doing so should find parameter settings that are

particularly robust, and expose operating conditions that are particularly destabilizing.

Refine Analytical Analysis

The analytical analysis of the feedback control scheme presented in this thesis should be

revisited. The definition of reasonable analytical stability bounds would be helpful for

the control designer.

Perform Flight Test

Proof of the ability to recover from total failure of a single propeller should be demon-

strated with flight test. It is proposed to modify one of the arms of the hexacopter so

that it can be physically discarded. Doing so has the dual benefit of unambiguously

indicating the failure of the propeller and moving the cg away from the failed propeller.

The later is important since it allows the propeller opposite the one that has failed to

rotate in the positive direction. This is necessary since the motor controllers on the

Hexamac testbed cannot rotate in the opposite direction.

Apply This Method to the Octocopter

In the course of studying this controller, it was found that an octocopter is much better

suited for failure tolerance. This is because, upon failure of a single propeller, the lifting

force required to maintain hover can be distributed among all of the remaining propellers.

None of the propellers have to operate in the opposite direction to maintain control.
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7.2.2 High-Speed-Vision-Based Navigation Future Work

Constrain the Feature Search with Motion Information

As explained in section 4.2.3, PTAM uses a simple motion model that extrapolates the

previous speed of the camera to estimate the current position of the camera. Feature

points from the point cloud are then searched for within some radius of the estimated

position. That radius is unnecessarily large, reflecting the low confidence in the current

position estimation. However, quite lot of information can be gathered about the motion

of the camera from the onboard inertial measuring unit (IMU) coupled with knowledge

of the aircraft dynamics. Feeding this information to PTAM would allow the search area

to be greatly reduced, thereby increasing performance and decreasing the probability of

incorrectly matching feature sets to the wrong location in space.

Automatic Initialization

The current implementation of PTAM relies on a user to perform the initialization. This

involves a key press that commands PTAM to start the initialization routine, a horizontal

movement to establish a stereo baseline, and another key press to declare the end of

initialization. This could easily be automated through cooperation between PTAM and

the attitude controller. In such an instance, the attitude controller could notify PTAM

of “safe” conditions to attempt initialization. PTAM proceeds with initialization until

it has detected some stereo baseline. The attitude controller could then verify that the

disparity is not due to rotation. If any of those conditions fail, the automatic initialization

would simply be repeated.

Set Scale On Ground

Currently, a fiducial marker is used to set the scale of PTAM’s map. However, it should

be possible to infer scale from the distance between the camera and the ground prior to
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takeoff.

Sensor Fusion

Combining position estimates from PTAM with GPS offers substantial benefits. GPS

can be used to align the scale and orientation of PTAM’s map to the world frame. PTAM

can be used to greatly increase the accuracy of position estimates and to maintain of

source of position estimates upon loss of GPS, or vice versa.

Adaptive Camera Model

It was found that deficiencies in the camera model are responsible for distortion of

PTAM’s map. As a result, position estimates become less accurate as the camera moves

away from its starting location. It may be possible to develop an adaptive camera model

that will adjust its own parameters to combat the distortion of the map when detected.

Vision-Only Control

Given position and attitude estimates of high enough quality, it should be possible to

achieve control from the use of computer-vision exclusively. The main obstacle is the

need for estimates of angular acceleration at rates of approximately 50 Hz. This means

taking the second derivative of attitude estimates. Any noise in the attitude estimate

would be greatly amplified, so measurements must be made at a rate much higher than

50 Hz in order to be properly smoothed. It is speculated that vision-only control may

be possible using a system that can provide estimates at 200 Hz.
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Appendix A

Torque and Propeller Size

This section describes a simple approximation for calculating the torque required to

accelerate a propeller as a function of propeller size. For this approximation, aerody-

namic forces are ignored and it is assumed that the propeller can be represented as a bar

with constant circular cross section as in figure A.1. It is also assumed that the radial

cross-section increases proportionally with propeller length.

Figure A.1: A propeller represented as a solid rod being rotated about its center

Using the above simplifications, the mass and moment of inertia of the the rotor can

be estimated using the following equations:
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mass = volume× density

= π × radius2 × length× density (A.1)

moment of inertia =
mass× length2

12

=
π × radius2 × length3 × density

12
(A.2)

Applying the second assumption, that cross-sectional radius increases proportionally

with propeller length, allows radius to be replaced by k×length, where k is some constant,

giving:

moment of inertia =
π × (k × length)2 × length3 × density

12

=
π × k2 × length5 × density

12
(A.3)

Equation A.3 implies that the torque required to accelerate a propeller is proportional

to the 5th power of the length of the propeller.

Miniature rotorcraft such as quadrotors and hexacopters typically achieve control

by modulating the speeds of each of the propellers. Therefore, the control bandwidth

is determined by the maximum achievable acceleration and so equation A.3 has strong

implications for the performance of the vehicle.

For example, let us assume quadrotor A employs propellers that are twice the size

of those employed for quadrotor B. In order for quadrotor A to have the same control

bandwidth as quadrotor B, quadrotor A must be capable of accelerating its propellers

at the same rate as quadrotor B. However, the moment of inertia of quadrotor A’s

propellers will be on the order of 32 times larger than quadrotor B’s and so the motors

and electronics employed by quadrotor A must be capable of providing 32 times the
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torque of quadrotor B. This is not practical and so rotorcraft that achieve control by

modulating propeller speed are limited to small propellers with small moments of inertia.

At present it seems that the upper limit for propeller size is on the order of about

20 centimeters.
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Appendix B

Rotorcraft Failure Tolerance

Of the many possible configurations for small rotorcraft, some of the more popular are

the traditional helicopter, tricopters, quadrotors, hexacopters and octocopters. In all of

these configurations, the aim is to control the 3-dimensional position of the aircraft plus

the heading direction. Also in all cases, this is achieved by applying a 3-dimensional

moment to the body plus a thrust force along the z body-axis (ignoring the unintended

side-force from the tail rotor of a helicopter or the swiveling propeller on a tricopter).

However, the actuators responsible for manipulating these 4 degrees of freedom are

different in each case, and so the consequence of a failed actuator is also different in each

case.

Helicopters

Traditional helicopters achieve control decoupling through clever mechanical design. The

blades of the main rotor are hinged so that they can be twisted about the axis from root

to tip. The twisting is controlled through linkages to a swash plate. The swash plate

resembles a pair of discs that are mechanically joined so that they remain parallel to each

other, but may slip rotationally along the axis that is normal to the center of the discs.

One of the discs rotates with the rotor about the z body-axis, the other is stationary with
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the body. Linkages from the flight controls in the body lift and rotate the stationary

part of the swash plate, which then lifts and rotates the rotating part, which in turn

pushes the blade-twisting linkages.

In the common single main-rotor with anti-torque tail-rotor configuration, a smaller

rotor is mounted on the tail with symmetric pitch control (i.e. no swashplate) to pro-

duce a force on a lever-arm long enough to generate a moment that exceeds the torque

generated by the main rotor.

A helicopter can survive a drive failure through autorotation, in which the rotor is

accelerated by twisting the blades downward so that, while descending, the upcoming air

blows through the blades like a windmill. When near the ground, blades are turned back

up, effectively exchanging the rotational inertia that is stored in the rotor to produce

decelerating thrust.

However, other failures are not recoverable. Failure of any of the linkages or failure

of the tail-rotor drive will lead to an irrecoverable instability.

Quadrotors

The quadrotor is probably the second most common configuration for small rotorcraft

after the traditional helicopter. Unlike the traditional helicopter configuration, quadro-

tors are mechanically very simple. Quadrotors typically employ 4 fixed-pitch propellers

arranged in the same plane so that their hubs coincide with the vertices of an imaginary

square. The propellers are typically attached directly to motors, so that the motors are

the only moving parts on the vehicle. Adjacent propellers spin in opposite directions.

Control of a quadrotor is typically achieved by modulating the speed of each pro-

peller1, thereby effecting the lift and torque that each generate. The effect of each pro-

peller can be seen in the rigid body-dynamics, which when linearized about the hover

1The use of variable pitch rotors has been demonstrated[30]
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condition, are given by:
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where Tn is the thrust from the nth propeller and kQ is the constant of proportionality

for propeller torque from thrust.

Equation B.1 shows that each propeller affects 3 of the 4 degrees of control freedom.

However, the matrix in that equation is square with full rank, so it is readily invertible.

Therefore, the thrust from each of the propellers that is required to achieve some de-

sired acceleration can be solved for directly by inverting equation B.1. Propeller speed

commands follow from the assumption that propeller thrust is generally proportional to

the square of propeller speed[12].

Figure B.1 shows a typical configuration with a single failed propeller. Notice that

hover is not an equilibrium condition in this case. As an intuitive proof, notice that the

thrust from the propeller opposite the failed propeller would produce a moment about

the arms of other 2 functional propellers. This moment cannot be countered by the those

2 propellers, so the the propeller opposite the failed propeller must be killed. However,

since the remaining 2 propellers spin in the same direction, they will produce a yawing

moment. This yawing moment will cause the quadrotor to experience yaw acceleration

until it is counteracted by drag.

Raffaello D’Andrea of ETH Zurich has demonstrated control of a quadrotor in this

condition using a high-speed motion capture system in [45]. However, such control is

probably not achievable outside of a lab environment with sensors of the current state-

of-the-art.

One might be tempted to try to construct a quadrotor so that the opposite propellers
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Figure B.1: A typical quadrotor configuration with a single propeller failure

spin in opposite directions, thereby removing the concern of the yaw acceleration in a

failure scenario. In such a case, the rigid-body dynamics linearized about hover condition

would be given by:
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The matrix in equation B.2 has a rank of 3 and therefore, it is not possible to decouple

control of all 4 of the desired degrees of control freedom.

Tricopters

Tricopters typically employ 3 fixed-pitch propellers arranged in the same plane. At least

one of the propellers is actuated so that it can be swiveled about the arm that it is

mounted to. The swiveling of one of the propellers allows the thrust to be vectored to
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control the yawing moment (though it will also produce some side force).

Figure B.2 shows an example of a typical tricopter configuration and a failed pro-

peller. It is clear that failure of any of the propellers results in an immediate and

catastrophic roll and/or pitching moment.

Figure B.2: A typical tricopter configuration with a single propeller failure

Hexacopter

Hexacopters typically employ 6 fixed-pitch propellers arranged in the same plane so

that their hubs coincide with the vertices of an imaginary hexagon. Like the quadrotor,

adjacent propellers spin in opposite directions. The rigid-body dynamics of a hexacopter
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linearized about the hover condition are given by:
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As in the case of the quadrotor, it is desired to invert these dynamics to solve for

the propeller thrust that is required to achieve the desired accelerations. However, the

matrix in equation B.3 is not square and therefore is not invertible. Rather, there exists

an infinite number of pseudoinverse matrices (matrices that will result in the 4-by-4

identity matrix when multiplied on the right of the matrix in equation B.3). Using the

Moore-Penrose pseudoinverse enforces the hexagonal symmetry of the hexacopter. In

this way, a pure ẇ command is distributed evenly across each of the propellers and angu-

lar acceleration commands about each of the arms result in identical thrust commands

but rotated 60 degrees. The inverted dynamics using the Moore-Penrose pseudoinverse

is given by: 
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Figure B.3 shows a typical configuration with a single failed propeller. Notice that

for the hover condition, the propeller opposite the one that has failed must be operated

near zero speed. As a proof, notice that any thrust from the propeller opposite the one
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that has failed produces a corresponding moment due to its lever-arm. To counteract

this moment, the propellers adjacent to the failed propeller must produce more thrust

than the combination of the other 3 propellers. Since those two propellers rotate in the

same direction, this implies that they will also produce more yawing moment than the

combination of the other 3 propellers, resulting in an yaw acceleration. Therefore, the

yawing moment can only be balanced when the propeller opposite the one that has failed

is not producing any thrust or yawing moment.

Figure B.3: A typical hexacopter configuration with a single propeller failure

Octocopter

Octocopters employ 8 fixed-pitch propellers and can be found in a variety of shapes.

Octocopters are well-suited for failure tolerance. As an example, let us assume that the

propeller hubs coincide with the vertices of an imaginary octagon. Then the rigid-body
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dynamics linearized about the hover condition are given by:
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In the case of a single propeller failure, there are many possible ways to recover control

of all 4 state rates, including reversion to a quadrotor-like configuration. However, it

is also possible to maintain the use of all 7 remaining propellers. For example, if the

first propeller fails, then the first column of the matrix in equation B.5 is replaced with

zeros. The Moore-Penrose pseudoinverse can then be used to solve for the thrusts that

will result in the desired accelerations. In the case of pure thrust along the z body-

axis without angular rotation, the Moore-Penrose pseudoinverse results in the following

contribution of thrust from each propeller:

[
0% 17% 19% 8% 12% 8% 19% 17%

]T



Appendix C

Inertial to Body-Axis Relations

This appendix details the modeling of the motion of a rigid body using a combination

of an earth-fixed reference frame and a body-fixed reference frame. This is convenient

for several reasons.

• The earth frame can be treated as approximately inertial.1

• Newton’s law of inertia only holds in inertial frames. In other non-inertial the

motion of the frame relative to an inertial frame must be accounted for.

• The moment-of-inertia matrix is constant in the body-fixed frame of a rigid body,

but varies with rotation in the inertial frame.

• In the case of an aircraft, it is easier to account for most forces in in the body

frame.

• The end goal is typically to control the attitude and/or position of the vehicle in

the earth frame.

1The earth-fixed frame is not inertial due to its rotation, but the associated Coriolis effect can be

assumed unlikeable in our case.

147



148 APPENDIX C. INERTIAL TO BODY-AXIS RELATIONS

Euler Angles

As a preliminary step, let us develop a transformation from the earth frame to the body

frame through the use of Euler angles.2 The Euler angles represent a set of 3 elemental

rotations that, when performed about the axes of a coordinate system, can fully describe

the transformation from the original orientation of the coordinate system to any other

orientation. In the aerospace convention, these angles are a rotation φ (heading angle)

about the z earth-axis (pointing down), then a rotation θ (pitch angle) about the newly

formed y axis, and finally a rotation ψ (roll angle) about the latest x axis. This series

of rotations is demonstrated in

Figure C.1: The series of elemental rotations that define the Euler angles in the aerospace
convention.

A rotation ψ about the z-axis is given by:

Rψ =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 (C.1)

2While commonly referred to as “Euler angles” in aerospace, they are more precisely referred to as

“Tait–Bryan angles” since they represent rotations about three distinct axes, while proper Euler angles

use the same axis for both the first and third elemental rotations.
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A rotation θ about the y-axis is given by:

Rθ =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 (C.2)

A rotation φ about the z-axis is given by:

Rφ =


1 0 0

0 cosφ sinφ

0 − sinφ cosφ

 (C.3)

Combing these three elemental rotations in the sequence of the aerospace convention

gives the full 3-dimensional transformation matrix:

R = RφRθRψ =

=


cos θ cosψ cos θ sinψ − sin θ

− cosφ sinψ + sinφ sin θ cosψ cosφ cosψ + sinφ sin θ sinψ sinφ cos θ

sinφ sinψ + cosφ sin θ cosψ − sinφ cosψ + cosφ sin θ sinψ cosφ cos θ


(C.4)

The reverse of a rotation is simply the transpose of the rotation matrix. This can

be seen intuitively in the case of the single axis rotation matrices in equations C.1, C.2,

and C.3. To prove this for the full 3-dimensional matrix, let us construct the inverse as:
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R−1 = (RφRθRψ)−1 = R−1
ψ R−1

θ R−1
φ = RTψR

T
θ R

T
φ =

=


cos θ cosψ − cosφ sinψ + sinφ sin θ cosψ sinφ sinψ + cosφ sin θ cosψ

cos θ sinψ cosφ cosψ + sinφ sin θ sinψ − sinφ cosψ + cosφ sin θ sinψ

− sin θ sinφ cos θ cosφ cos θ


= RT (C.5)

Newton’s Second Law

Newton’s second law for linear and angular motion of a rigid body about its center of

gravity is well known as:

FE = ma (C.6a)

ME = IEα (C.6b)

where FE , ME , a, and α are the force, moment, linear acceleration, and angular

acceleration vectors respectively, all given in the earth frame (considered inertial). IE

is the moment of inertia matrix of the rigid body with respect to the earth frame. m

is the mass (independent of reference frame). Note that the moment-of-inertia matrix

varies in the earth frame varies with the rotation of the rigid body.

It is desired to transform these equations into the body frame since the moment of

inertia matrix I is constant in the body frame and the applied forces and moments are

generally more easily accounted for in the body frame.

Let us first consider the linear version of Newton’s second law and attempt to trans-

form it to the body axis by distributing the rotation matrix, R.
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RFE = mRV̇E

⇒ FB = mRV̇E (C.7)

Now, let us recognize that velocity transformed from the inertial (earth) frame to

the body frame can be described by:

VB = RVE = RẊ (C.8)

Taking the derivative of velocity in the body axis gives:

V̇B = ṘVE +RV̇E

⇒ RV̇E = V̇B − ṘVE (C.9)

Using the definition of a derivative, we can rewrite the last term in equation C.9 as:

ṘVE = lim
∆t→0

R(t+ ∆t)−R(t)

∆T
VE

= lim
∆t→0

R(t+ ∆t)VE −R(t)VE

∆T
(C.10)

Note that Ṙ is equivalent to the rotational velocity, ΩB, of the body frame with

respect to the inertial frame, and that limit of the vector difference in the numerator

of equation C.10 is equivalent to −(ΩB ×VB)∆t since −(ΩB ×VB) is the tangential

component of the vector VB due to the rotation. Therefore we arrive at the result:

ṘVE = −(ΩB ×VB) (C.11)
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Substituting equation C.11 into equation C.7, we arrive at Newton’s second law for

linear motion of a rigid body with all terms given in the body frame:

FB = m
(
V̇B + ΩB ×VB

)
(C.12)

Substituting the body-frame vector quantity IΩB for mVB the above process gives

a similar result for Newton’s second law for angular motion of a rigid body:

MB = IΩ̇B + ΩB × IΩB (C.13)

Euler Angle Rates

Revisiting equation C.11 by expanding the cross product into a matrix multiplication

and substituting equation C.8 for VB gives the following relation:

Ṙ��VE =


0 r −q

−r 0 p

q −p 0

R��VE (C.14)

Examining equation C.14 element Ṙ31 gives the following relationship:

− θ̇ cos θ =

[
0 r −q

]
·
[
− sin θ sinφ cos θ cosφ cos θ

]T
⇒ θ̇ =

−1

���cos θ
(r sinφ���cos θ − q cosφ���cos θ)

⇒ θ̇ = q cosφ− r sinφ (C.15)

Using the same procedure for element Ṙ32 plus a substitution of equation C.15 for θ̇

gives:
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φ̇ cosφ cos θ − θ̇ sinφ sin θ =

[
−r 0 p

]
·
[
− sin θ sinφ cos θ cosφ cos θ

]T
⇒ φ̇ =

1

cosφ cos θ

[
r sin θ + p cosφ cos θ + (q cosφ− r sinφ) sinφ sin θ

]
⇒ φ̇ = p

�
��

�
��cosφ cos θ

cosφ cos θ
+ q�

��cosφ sinφ sin θ

��
�cosφ cos θ

+ r
(1− sin2φ) sin θ

cosφ cos θ

⇒ φ̇ = p+ q sinφ tan θ + r
cos�2φ tan θ

��
�cosφ

⇒ φ̇ = p+ q sinφ tan θ + r cosφ tan θ (C.16)

Using the same procedure for element Ṙ23 gives:

ψ̇ cos θ cosψ − θ̇ sin θ sinψ =

[
0 r −q

]
·
[
cos θ sinψ cosφ cosψ + sinφ sin θ sinψ − sinφ cosψ + cosφ sin θ sinψ

]T
⇒ ψ̇ =

1

cos θ��
�cosψ

[
r(cosφ��

�cosψ +((((
((((sinφ sin θ sinψ) + q(sinφ��

�cosψ −((((((
((

cosφ sin θ sinψ)

+ (���
�q cosφ−����r sinφ)���

��sin θ sinψ
]

⇒ ψ̇ = p cosφ sec θ + q sinφ sec θ (C.17)

Assembling equations C.16, C.15, and C.17 into a single matrix equality gives:


φ̇

θ̇

ψ̇

 =


1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ



p

q

r

 (C.18)
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