6 research outputs found

    Critical Repetition Rates for Perceptual Segregation of Time-Varying Auditory, Visual and Vibrotactile Stimulation

    Get PDF
    What sound quality has led to exclude infrasound from sound in the conventional hearing range? We examined whether temporal segregation of pressure pulses is a distinctive property and evaluated this perceptual limit via an adaptive psychophysical procedure for pure tones and carriers of different envelopes. Further, to examine across-domain similarity and individual covariation of this limit, here called the critical segregation rate (CSR), it was also measured for various periodic visual and vibrotactile stimuli. Results showed that sequential auditory or vibrotactile stimuli separated by at least ~80‒90 ms (~11‒12-Hz repetition rates), will be perceived as perceptually segregated from one another. While this limit did not statistically differ between these two modalities, it was significantly lower than the ~150 ms necessary to perceptually segregate successive visual stimuli. For the three sensory modalities, stimulus periodicity was the main factor determining the CSR, which apparently reflects neural recovery times of the different sensory systems. Among all experimental conditions, significant within- and across-modality individual CSR correlations were observed, despite the visual CSR (mean: 6.8 Hz) being significantly lower than that of both other modalities. The auditory CSR was found to be significantly lower than the frequency above which sinusoids start to elicit a tonal quality (19 Hz; recently published for the same subjects). Returning to our initial question, the latter suggests that the cessation of tonal quality — not the segregation of pressure fluctuations — is the perceptual quality that has led to exclude infrasound (sound with frequencies < 20 Hz) from the conventional hearing range

    Funzioni di alto livello nella corteccia somatosensoriale secondaria (SII)

    Get PDF
    Le proprietà della corteccia somato-sensoriale secondaria (SII) sono state largamente discusse in molteplici studi sia nella scimmia, sia nell’uomo, suggerendo che quest’area assolva funzioni di alto livello nel processamento dello stimolo tattile, quali, ad esempio, l’apprendimento o la memoria. Recentemente, alcuni studi su scimmia hanno evidenziato che, oltre agli stimoli somato-sensoriali, SII risponde anche alla stimolazione dello spazio peri-personale, all’esecuzione di azioni, alla vista di oggetti in movimento ed all’osservazione di azioni, candidando SII ad essere un’area complessa, non limitata a sole funzioni somato-sensoriali. Partendo dallo studio delle risposte di SII agli stimoli tattili, lo scopo di questa tesi è di investigare la risposta di quest’area a stimoli complessi, con particolare attenzione a task di integrazione visuo-tattile e all’osservazione di azioni nell’uomo. Con queste finalità, gli esperimenti presentati sono stati condotti mediante elettroencefalografia stereotassica (stereo-EEG) su pazienti epilettici farmaco-resistenti, impiantati come parte della loro valutazione pre-chirurgica. In una prima fase, sono stati studiati la distribuzione spaziale ed il profilo temporale delle risposte intra-corticali alla stimolazione del nervo mediano controlaterale ed ipsilaterale. I risultati ottenuti indicano che mentre la corteccia somato-sensoriale primaria (SI), il giro precentrale ed il solco intra-parietale rispondono solo alla stimolazione controlaterale, la corteccia somato-sensoriale secondaria e l’insula posteriore sono attivate bilateralmente. Inoltre, queste ultime sono caratterizzate da una risposta tonica e duratura nel tempo. Questa potrebbe rappresentare un meccanismo di ritenzione temporale dell’informazione tattile ed essere l’espressione di funzioni di alto livello quali appunto la memoria e l’apprendimento degli stimoli. Nella seconda sezione della tesi, per testare il possibile coinvolgimento dell’opercolo parietale nell’integrazione visuo-tattile, la stimolazione del nervo mediano controlaterale è stata somministrata congiuntamente ad una stimolazione visiva (i.e. flash). I risultati ottenuti evidenziano un aumento in ampiezza della componente tonica, se comparato alla sola stimolazione tattile, localizzato nell’insula posteriore e nelle porzioni più rostrali dell’opercolo parietale mentre SII mostra un comportamento del tutto inalterato. Tuttavia, tenendo in considerazione che studi su primati non umani riportano risposte visiva in SII a stimoli biologici, sono necessarie ulteriori indagini per comprendere quale tipologia di stimolazione determina l’attivazione di quest’area. Infine, la terza parte della tesi mostra le risposte intra-corticali di SI e SII ad un task motorio che include compiti di afferramento e manipolazione di oggetti, e all’osservazione delle stesse azioni eseguite da un altro individuo. I risultati evidenziano un’attivazione bilaterale di SII, sia durante l’esecuzione sia durante l’osservazione di azioni, con un profilo temporale sincrono. Al contrario SI è attiva solo durante l’esecuzione: l’input a SI durante l’osservazione non ha dunque una natura somato-sensoriale ma piuttosto deve essere sostenuto da un circuito visuo-motorio capace di operare in maniera simultanea. In conclusione, questa tesi dimostra il ruolo cruciale di SII non solo nel processamento degli stimoli tattili ma anche nell’integrazione di stimoli visuo-motori.The somatosensory properties of the second somatosensory cortex (SII) have been largely described by many studies in both monkeys and humans, suggesting for this area a high-order role in tactile stimulation processing with functions including tactile learning and memory. More interestingly, recent studies on monkeys showed that beyond somatosensory stimuli, SII responds to a wider number of stimuli including peripersonal space stimulation, active movements, observation of objects displacement and action observation. Taking into account these results, SII is a candidate to be more than just a somatosensory area. Starting from its somatosensory properties, this thesis aims to disentangle the role of SII in more complex tasks with particular attention to visuo-tactile integration and action observation in humans. To this purpose, the experiments presented in this thesis are carried with stereotactic electroencephalography (stereo-EEG) on drug-resistant epileptic patients to take advantage of its high temporal and spatial resolution. Firstly, I investigated the spatial distribution and the temporal profile of the intracortical responses to both contralateral and ipsilateral median nerve stimulation. Results indicated that while the primary somatosensory area, precentral gyrus and intra-parietal sulcus respond only to the contralateral stimulation, the secondary somatosensory cortex and posterior insula are activated bilaterally. Furthermore, these regions exhibit a tonic long-lasting temporal profile, which might represent a mechanism of temporal retention of the tactile information, and thus be the signature of high-level somatosensory functions such as tactile memory and awareness. In a second stage of the thesis, to test the possible involvement of parietal operculum in visuo-tactile integration, we administered to patients contralateral median nerve stimulation jointly with visual stimulation (i.e. flash) to about 100 drug-resistant epileptic patients. Results underline an enhancement of the tonic components relative to tactile stimulation only, limited to posterior insula and to the rostral areas of parietal operculum, with SII maintaining an unaltered behavior. Considering previous findings in non-human primates, which reported visual responses in SII in response to biological stimuli, further researches are needed to understand which threshold in the stimulus might determine the eventual activation of this area. With this aim, the third part of this thesis presents the intracortical responses of both SI and SII to a motor task requiring reaching, grasping and manipulation, as well as to the observation of the same actions performed by another individual. The results obtained highlighted that SII activates bilaterally, both during the execution and the observation of actions, with a synchronous temporal profile. Conversely, SI activates only during the execution, leading to the conclusion that the input to SII during the observation condition has not a somatosensory nature, but rather that it is sustained by visuo-motor circuits operating simultaneously. Taking together all the evidence, this thesis demonstrates the pivotal role of SII not only in somatosensory functions, as largely reported in literature, but also in the integration of visuo-motor stimuli

    Evidence for early physiotherapy after acute stroke: a scoping review

    Get PDF
    Neuroscience evidence indicates that early rehabilitation can guarantee better outcomes and quicker cortical re-organization after lesion. Although there are some studies related to the acute stroke physiotherapy intervention, it seems that few consider the evidence that link neuroplasticity and neurorehabilitation. Therefore, understanding the current state of the art of physiotherapy intervention is vital to potentialize the intervention so the enhance neuroplastic window is properly explored. To analyze the physiotherapy's intervention on acute stroke patients, so it reveals the underlined evidence for the selection of the approach and if the neurophysiological mechanisms are associated. This scoping review's methodology follows the Joanna Briggs Institue. A main search was conducted across Pubmed, PEdro and Web of science in December 2020, including only studies in Portuguese or English. Studies included focused on the concept of physiotherapy's intervention in a population of adult acute stroke patients, in an acute care context. Were identified 14 categories of interventions in 37 studies. 62% of studies didn't give any justification for the choic of method and the ones who did, weren't focused on neurophysiological knowledge. A wide range of interventions was found in which only 38% showed justifications that were considered insufficient and imprecise

    Data-driven re-referencing of intracranial EEG based on independent component analysis (ICA)

    Get PDF
    Background: Intracranial recordings from patients implanted with depth electrodes are a valuable source of information in neuroscience. They allow for the unique opportunity to record brain activity with high spatial and temporal resolution. A common pre-processing choice in stereotactic EEG (S-EEG) is to re-reference the data with a bipolar montage. In this, each channel is subtracted from its neighbor, to reduce commonalities between channels and isolate activity that is spatially confined. New Method: We challenge the assumption that bipolar reference effectively performs this task. To extract local activity, the distribution of the signal source of interest, interfering distant signals, and noise need to be considered. Referencing schemes with fixed coefficients can decrease the signal to noise ratio (SNR) of the data, they can lead to mislocalization of activity and consequently to misinterpretation of results. We propose to use Independent Component Analysis (ICA), to derive filter coefficients that reflect the statistical dependencies of the data at hand. Results: We describe and demonstrate this on human S-EEG recordings. In a simulation with real data, we quantitatively show that ICA outperforms the bipolar referencing operation in sensitivity and importantly in specificity when revealing local time series from the superposition of neighboring channels. Comparison with Existing Method: We argue that ICA already performs the same task that bipolar referencing pursues, namely undoing the linear superposition of activity and will identify activity that is local. Conclusions: When investigating local sources in human S-EEG, ICA should be preferred over re-referencing the data with a bipolar montage

    Multiple time courses of somatosensory responses in human cortex

    No full text
    Here we show how anatomical and functional data recorded from patients undergoing stereo-EEG can be used to decompose the cortical processing following nerve stimulation in different stages characterized by specific topography and time course. Tibial, median and trigeminal nerves were stimulated in 96 patients, and the increase in gamma power was evaluated over 11878 cortical sites. All three nerve datasets exhibited similar clusters of time courses: phasic, delayed/prolonged and tonic, which differed in topography, temporal organization and degree of spatial overlap. Strong phasic responses of the three nerves followed the classical somatotopic organization of SI, with no overlap in either time or space. Delayed responses presented overlaps between pairs of body parts in both time and space, and were confined to the dorsal motor cortices. Finally, tonic responses occurred in the perisylvian region including posterior insular cortex and were evoked by the stimulation of all three nerves, lacking any spatial and temporal specificity. These data indicate that the somatosensory processing following nerve stimulation is a multi-stage hierarchical process common to all three nerves, with the different stages likely subserving different functions. While phasic responses represent the neural basis of tactile perception, multi-nerve tonic responses may represent the neural signature of processes sustaining the capacity to become aware of tactile stimuli
    corecore