819 research outputs found

    The double traveling salesman problem with partial last-in-first-out loading constraints

    Get PDF
    In this paper, we introduce the double traveling salesman problem with partial last-in-first-out loading constraints (DTSPPL). It is a pickup-and-delivery single-vehicle routing problem, where all pickup operations must be performed before any delivery operation because the pickup-and-delivery areas are geographically separated. The vehicle collects items in the pickup area and loads them into its container, a horizontal stack. After performing all pickup operations, the vehicle begins delivering the items in the delivery area. Loading and unloading operations must obey a partial last-in-first-out (LIFO) policy, that is, a version of the LIFO policy that may be violated within a given reloading depth. The objective of the DTSPPL is to minimize the total cost, which involves the total distance traveled by the vehicle and the number of items that are unloaded and then reloaded due to violations of the standard LIFO policy. We formally describe the DTSPPL through two integer linear programming (ILP) formulations and propose a heuristic algorithm based on the biased random-key genetic algorithm (BRKGA) to find high-quality solutions. The performance of the proposed solution approaches is assessed over a broad set of instances. Computational results have shown that both ILP formulations have been able to solve only the smaller instances, whereas the BRKGA obtained good-quality solutions for almost all instances, requiring short computational times

    Solution techniques for a crane sequencing problem

    Get PDF
    In shipyards and power plants, relocating resources (items) from existing positions to newly assigned locations are costly and may represent a significant portion of the overall project budget. Since the crane is the most popular material handling equipment for relocating bulky items, it is essential to develop a good crane route to ensure efficient utilization and lower cost. In this research, minimizing the total travel and loading/unloading costs for the crane to relocate resources in multiple time periods is defined as the crane sequencing problem (CSP). In other words, the objective of the CSP is to find routes such that the cost of crane travel and resource loading/unloading is minimized. However, the CSP considers the capacities of locations and intermediate drops (i.e., preemptions) during a multiple period planning horizon. Therefore, the CSP is a unique problem with many applications and is computationally intractable. A mathematical model is developed to obtain optimal solutions for small size problems. Since large size CSPs are computationally intractable, construction algorithms as well as improvement heuristics (e.g., simulated annealing, hybrid ant systems and tabu search heuristics) are proposed to solve the CSPs. Two sets of test problems with different problem sizes are generated to test the proposed heuristics. In other words, extensive computational experiments are conducted to evaluate the performances of the proposed heuristics

    Container Hinterland Drayage - On the Simultaneous Transportation of Containers Having Different Sizes

    Get PDF
    In an intermodal transportation chain drayage is the term used for the movement by truck of cargo that is filled in a loading unit. The most important intermodal transportation chain is the intermodal container transportation, in which containers represent the loading unit for cargo. Cost effectiveness constitutes a general problem of drayage operations. A major cost driver within container transportation chains is the movement and repositioning of empty containers. The present thesis investigates the potential to reduce drayage costs. Two solution methodologies are developed for operating a fleet of trucks that transports containers of different sizes, which addresses a recent gap in research in seaport hinterland regions

    The Position-Aware-Market: Optimizing Freight Delivery for Less-Than-Truckload Transportation

    Get PDF
    The increasing competition faced by logistics carriers requires them to ship at lower cost and higher efficiency. In reality, however, many trucks are running empty or with a partial load. Bridging such residual capacity with real time transportation demand enhances the efficiency of the carriers. We therefore introduce the Position-Aware-Market (PAM), where transportation requests are traded in real time to utilize transportation capacities optimally. In this paper we mainly focus on the decision support system for the truck driver, which solves a profit- maximizing Pickup and Delivery Problem with Time Windows (PM-PDPTW). We propose a novel Recursive Branch-and-Bound algorithm that solves the problem optimally, and apply it to a Tabu-Search heuristic for larger problem instances. Simulations show that problems with up to 50 requests can be solved optimally within seconds. Larger problems with 200 requests can be solved approximately by Tabu-Search in seconds, retaining 60% of the optimal profit

    The pickup and delivery traveling salesman problem with handling costs

    Get PDF
    This paper introduces the pickup and delivery traveling salesman problem with handling costs (PDTSPH). In the PDTSPH, a single vehicle has to transport loads from origins to destinations. Loading and unloading of the vehicle is operated in a last-in-first-out (LIFO) fashion. However, if a load must be unloaded that was not loaded last, additional handling operations are allowed to unload and reload other loads that block access. Since the additional handling operations take time and effort, penalty costs are associated with them. The aim of the PDTSPH is to find a feasible route such that the total costs, consisting of travel costs and penalty costs, are minimized. We show that the PDTSPH is a generalization of the pickup and delivery traveling salesman problem (PDTSP) and the pickup and delivery traveling salesman problem with LIFO loading (PDTSPL). We propose a large neighborhood search (LNS) heuristic to solve the problem. We compare our LNS heuristic against best known solutions on 163 benchmark instances for the PDTSP and 42 benchmark instances for the PDTSPL. We provide new best known solutions on 52 instances for the PDTSP and on 15 instances for the PDTSPL, besides finding the optimal or best known solution on 102 instances for the PDTSP and on 23 instances for the PDTSPL. The LNS finds optimal or near-optimal solutions on instances for the PDTSPH. Results show that PDTSPH solutions provide large reductions in handling compared to PDTSP solutions, increasing the travel distance by only a small percentage

    Heuristic Solution Approaches to the Double TSP with Multiple Stacks

    Get PDF
    This paper introduces the Double Travelling Salesman Problem with Multiple Stacks and presents three different metaheuristic approaches to its solution. The Double TSP with Multiple Stacks is concerned with determining the shortest route performing pickups and deliveries in two separated networks (one for pickups and one for deliveries) using only one container. Repacking is not allowed, instead each item can be positioned in one of several rows in the container, such that each row can be considered a LIFO stack, but no mutual constraints exist between the rows. Two different neighbourhood structures are developed for the problem and used with each of the heuristics. Finally some computational results are given along with lower bounds on the objective value.
    • …
    corecore