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ABSTRACT 

 
 

SOLUTION TECHNIQUES FOR A CRANE SEQUENCING PROBLEM 
 
 

Jin Shang 
 

 
In shipyards and power plants, relocating resources (items) from existing positions to 

newly assigned locations are costly and may represent a significant portion of the overall 
project budget. Since the crane is the most popular material handling equipment for 
relocating bulky items, it is essential to develop a good crane route to ensure efficient 
utilization and lower cost. In this research, minimizing the total travel and 
loading/unloading costs for the crane to relocate resources in multiple time periods is 
defined as the crane sequencing problem (CSP). In other words, the objective of the CSP 
is to find routes such that the cost of crane travel and resource loading/unloading is 
minimized. However, the CSP considers the capacities of locations and intermediate 
drops (i.e., preemptions) during a multiple period planning horizon. Therefore, the CSP is 
a unique problem with many applications and is computationally intractable. A 
mathematical model is developed to obtain optimal solutions for small size problems. 
Since large size CSPs are computationally intractable, construction algorithms as well as 
improvement heuristics (e.g., simulated annealing, hybrid ant systems and tabu search 
heuristics) are proposed to solve the CSPs. Two sets of test problems with different 
problem sizes are generated to test the proposed heuristics. In other words, extensive 
computational experiments are conducted to evaluate the performances of the proposed 
heuristics.  
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CHAPTER 1 

INTRODUCTION 

1.1 Routing Problems 

During recent years, logistics and transportation systems have become 

increasingly complex. This development is partly due to the large number of 

company mergers which leave logistics planners with larger and more complex 

problems. Another issue complicating logistic systems is the increased focus on 

timeliness. Time has become an extremely valuable resource. Nowadays most 

logistics systems must operate under time constraints. Furthermore, logistics and 

transportation account for a large portion of the economies in developed countries. 

Due to the rapid increase in fuel cost, moving commodities from suppliers to 

customers is a costly operation and may represent a significant portion of the overall 

budget. Therefore, companies should focus their attention on developing systems that 

could aid logistics managers to lower costs and to achieve greater efficiency.  

A lot of research has been performed in the field of logistics, and many problems 

have already been defined, from the well-known traveling salesman problem to 

complex dynamic routing problems. Generally, routing problems are responsible for 

determining how resources (items) are delivered from original locations to 

destination locations or from supplier(s) to customers. Routing problems that involve 

the periodic collection and delivery of goods and services are of great practical 

importance. Common examples of such problems include mail delivery, newspaper 

delivery, parcel pickup and delivery, trash collection, school bus routing, snow 
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removal, inventory rearrangement and fuel oil delivery. The most practical objectives 

for such problems are cost minimization and service improvement (Frederickson et 

al., 1978). For instance, the objective may be to minimize the transportation cost, 

construction cost, distance, travel time, inventory cost and environmental concerns; 

or maximize safety, demand satisfaction, accessibility, quality, flexibility and 

reliability of service, facility utilization, profit, and economic development (Current, 

1993). These objectives usually can be measured in distance, travel time or cost.  

 

1.2 Vehicle Routing and Traveling Salesman Problems 

A classical problem in distribution logistics is the optimization of the routes of a 

set of vehicles of given capacities that must deliver goods to a set of customers on a 

transportation network, starting from and returning to a common depot. This problem 

is known as the vehicle routing problem (VRP). The VRP is an important problem 

and can be applied to a wide range of logistics systems. It was initially studied by 

Dantzig and Ramser (1959) and Clarke and Wright (1964). A lot of effort has 

been devoted to research on various aspects of the VRP. Another important routing 

problem, the traveling salesman problem (TSP), considers the route for a single 

vehicle (or a traveling salesman), which is a special case of the VRP (single vehicle 

routing problem). It may be defined as follows. Given a set of customers and the cost 

of travel between all pairs of customers, the problem is to determine the least-cost 

salesman route which visits each customer exactly once (Burkard et al., 1998). 
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Extensive research on the VRP and the TSP has led to the development of 

continuously improving exact solution methods (Groetschel and Holland, 1991). 

However, exact methods are still unable to handle large-scale problems within 

reasonable computational time, and efficient heuristics are needed to solve such 

problems. A literature review of the VRP and the TSP will be given later in Chapter 3. 

Although the terms, “vehicle” and “traveling salesman” are used often in the routing 

problem literatures, many different kinds of material handling equipment (vehicles), 

such as trucks, tractors, and cranes are used to transport items from initial locations to 

destination locations. 

  

1.3 Material Handling Equipment (Vehicles) 

As previously mentioned, many kinds of material handling equipment or 

vehicles are widely considered in routing problems. To operate and maintain, they 

usually require a large portion of the project’s budget. The equipment is used to move 

the resources (e.g., construction materials, earth, petroleum products, or heavy 

materials) from their original locations to their destination locations. Typically, there 

are two cases of using material handling equipment. First, vehicles can be used to 

move items from suppliers (sources) to customers (destinations) over relatively long 

distances. In other words, suppliers and customers are different and are far apart. In 

the second, equipment may be used to move materials over relatively short distances. 

For example, material handling equipment is used to move items on or off vehicles 
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(e.g., trucks, trains, ships, etc.) to locations within a warehouse. In other words, 

vehicles may be used to move materials either around or within a construction site, 

factory, or warehouse. In this research, the latter is considered.  

Usually operators are needed to operate material handling equipment. Also, 

operators may control equipment by moving levers or foot pedals, operating switches, 

or turning dials. They may also set up and inspect equipment, make adjustments, and 

perform minor repairs when needed. Operators are classified by the type of vehicles 

or equipment they operate, such as trucks, industrial trucks, excavators, or cranes. In 

addition, each piece of equipment requires different skills to move different types of 

loads. There are four traditional kinds of material handling equipment: trucks, 

industrial trucks and tractors, excavation and loading machines, as well as cranes and 

towers (see U.S. Department of Labor, 2004). Below, the equipment types are 

discussed further as well as some of their advantages and disadvantages.  

1) Trucks, ships, trains, and airplanes are used to transport items over relatively 

long distances. Trucks are the dominant mode of freight transportation in many 

countries because they are the most flexible. They are flexible because items can 

be delivered to almost any location in any continent. Ships have very high 

capacities and very low cost; but transit times are very slow, and large areas of 

the world are not directly accessible to ships. Trains encourage large shipments 

over long distances with low cost, but transit times are long and may be 

subjective to variability. Airplanes are very fast but may have much higher cost 

(Chopra and Meindl, 2004).  
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2) Industrial truck and tractor operators drive and control industrial trucks or 

tractors equipped with lifting devices, such as a forklift, boom, or trailer hitch. A 

typical industrial truck, often called a forklift or a lifting truck, has a hydraulic 

lifting mechanism and forks. Industrial truck operators use these forks to carry 

loads on a skid, or pallet, within or around a factory or warehouse over relative 

short distances. Industrial trucks may also have trailers loaded with materials, 

goods, or equipment within factories, warehouses or around outdoor storage 

areas. 

3) Excavation and loading machines include bulldozers, excavators, backhoes, etc. 

A bulldozer is a powerful vehicle equipped with a blade and can be found on 

large and small scale construction sites, mines, roadsides, military bases, heavy 

industry factories, and large governmental projects. A backhoe is a piece of 

excavating equipment consisting of a digging bucket on the end of an articulated 

arm. A backhoe attached to a swiveling cab on top of tracks is called an 

excavator. Operators dig and load sand, gravel, earth, or similar materials into 

trucks or onto conveyors using machinery equipped with scoops, shovels, or 

buckets. Construction and mining industries employ virtually all excavation and 

loading machine operators.  

4) Crane and tower operators lift materials, machinery, or other heavy objects. They 

extend or retract a horizontally mounted boom to lower or raise a hook attached 

to the load line. Most operators coordinate these maneuvers in response to hand 

signals and radioed instructions. Operators position the loads from the on-board 
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console or from a remote console at the site. While crane and tower operators are 

most noticeable at office buildings and other construction sites, the largest group 

works in primary metal and metal fabrication. Also, they are used to move 

materials/equipment at power plants, ship yards, etc. Cranes are most widely 

used to move heavy, large, bulky resources within or around a construction, 

manufacturing or warehouse sites. It is the material handling equipment 

considered in this research. 

When many items need to be moved using a crane, the crane operator needs to 

decide which items should be moved first, second, third and so on, such that an 

objective is minimized (e.g., minimizing transportation cost as well as loading and 

unloading cost). In this research, this problem is defined as the crane sequencing 

problem (CSP).  

 

1.4 An Application of the CSP  

Based on the above discussions, it is obvious that the CSP is closely related to 

the TSP. In addition, the CSP considered in this research was defined from a real 

world problem. More specifically, the sequence in which the overhead crane inside a 

reactor containment building at a nuclear power plant moves resources (toolboxes) 

from one location to another will be considered. This problem was defined in 

McKendall et al. (2006). However, a complete explanation of how the CSP was 

developed is described below, but first, explanations of related problems, the resource 
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constrained project scheduling problem (RCPSP) and the dynamic space allocation 

problem (DSAP) are needed.  

At electric power plants, outage activities (e.g., laydown, preventative 

maintenance, and surveillance activities) are scheduled by solving the RCPSP. In 

other words, the RCPSP determines the start and finish times for each activity such 

that outage duration is minimized and constraints on resources, space, and 

precedence relationships between activities are satisfied. The resources needed to 

perform outage activities are cranes, toolboxes, space and work crews (e.g., laborers, 

operators, engineers, etc). A detail investigation of the RCPSP can be found in 

Kolisch and Hartmann (2004).  

Once the outage activities are scheduled at a power plant, the locations of the 

activities and resources need to be determined such that the total distance the 

resources travel throughout the duration of the outage is minimized. This problem 

was defined in McKendall et al. (2005) as the dynamic space allocation problem 

(DSAP). More specifically, during certain time periods, some resources are required 

to perform activities, and other resources are idle. The DSAP assigns activities and 

their required resources to workspaces and idle resources to storage spaces with 

respect to minimizing the sum of the distances the resources travel. Therefore, the 

input data for this problem are the schedule of maintenance activities obtained from 

solving the RCPSP, the list of resources required to perform each activity, locations 

of available workspaces used to perform activities, locations of storage spaces used to 

store idle resources, capacities of the storage spaces, and the distances between 
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locations. The outputs are the assignment of activities (required resources) to 

workspaces and idle resources to storage spaces for each period (or change in the 

schedule of activities), and the total distance the resources travel. For illustrative 

purposes, a DSAP instance is given below.  

Consider a DSAP instance which considers 2 time periods (T = 2), 9 resources (R 

= 9), and 6 locations (N = 6). The input data are given in Figures 1.1 and 1.2 as well 

as Table 1.1. The layout configuration in Figure 1.1 shows that locations 1 to 3 and 

locations 4 to 6 are workspaces and storage spaces, respectively. Each location has a 

capacity of 3 resources. In Figure 1.2, the distances between the 6 locations are given 

and defined as D = [dij], i, j =1, 2, …, N where dij is the distance from location i to j. 

There are 5 activities in this DSAP instance, and their resource requirements and the 

periods they are performed are given in Table 1.1. For example, activities A1, A2 and 

A3 are performed in period 1, and A1 is also performed in period 2, along with 

activities A4 and A5. Activity A1 requires resource 1, and activity A5 requires 

resource 7. In period 1, resources 1, 2, 3 and 4 are used to perform activities. 

However, resources 5, 6, 7, 8 and 9 are idle. Therefore, the DSAP is used to assign 

the activities and their required resources to workspaces and the idle resources to 

storage spaces. Using the mathematical formulation for the DSAP presented in 

McKendall et al. (2005), the optimal assignment is obtained and given in Figure 1.3. 

In period 1 (t = 1), activities A1, A2 and A3, along with their required resources, are 

assigned to locations 1, 2 and 3, respectively. In addition, idle resources (8, 9), (5, 6) 

and (7) are assigned to locations 4, 5 and 6 (i.e., storage spaces 1, 2 and 3), 

 8



respectively. The resources in bold represent resources which are to be relocated. 

That is, resources 2 and 3 are moved from location 2 to location 5 at the beginning of 

period 2. Thus, the total distance the 2 resources moved is 2 distance units. Also, 

resources 5 and 6 are moved from location 5 to location 2 at the beginning of period 

2, which gives a travel cost of 2 distance units for resources 5 and 6. In addition, 

resources 4 and 7 are reassigned to locations 6 and 3, respectively, which gives a 

travel cost of 2 distance units. Therefore, the total distance the resources travel is 6 

distance units. 

In the above DSAP instance, an overhead crane is used to move resources 2 – 7 

from their initial locations to their destination locations at the beginning of period 2. 

However, the DSAP does not specify the order in which the resources are moved. 

The order in which the resources are moved with respect to an objective is defined as 

the CSP. The objective considered in McKendall et al. (2006) was minimizing the 

distance the crane traveled. However, in this research, the objective of minimizing 

the cost of loading and unloading the crane is also considered. Therefore, the input 

data for the CSP are the assignments of activities (and their required resources) and 

idle resources to work spaces and storage spaces, respectively (i.e., DSAP solution). 

Other input data for the CSP will be discussed in the next Chapter, and a formal 

definition will be given. 
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Work space 1 Work space 2 Work space 3 
(Location 1) (Location 2) (Location 3) 

Storage space 1 Storage space 2 Storage space 3 
(Location 4) (Location 5) (Location 6) 

 

Figure 1.1: Layout configuration for the DSAP instance. 

 
i/j 1 2 3 4 5 6 
1 0 1 2 1 2 3 
2 1 0 1 2 1 2 
3 2 1 0 3 2 1 
4 1 2 3 0 1 2 
5 2 1 2 1 0 1 
6 3 2 1 2 1 0 

 

Figure 1.2: Distance matrix D for the DSAP instance. 

 

Period Activity 
Required
Resources

Idle  
Resources

A1 1 
A2 2, 3 1 
A3 4 

5, 6, 7, 
8, 9 

A1 1 
A4 5, 6 2 
A5 7 

2, 3, 4, 
8, 9 

 

Table 1.1: Activities and Resources Data for the DSAP instance. 

 
t = 1 1 (A1) 2,3 (A2) 4 (A3) 

 8,9 5,6  7 
    

t = 2 1 (A1) 5,6 (A4) 7 (A5) 
 8,9 2,3 4 

 

Figure 1.3: Optimal Solution for the DSAP instance. 
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1.5 Other Applications of the CSP 

Beside the application of the CSP in the power plant environment mentioned in 

section 1.4, there are other potential applications for applying the CSP in the areas of 

logistics or warehouse management. One application of the CSP occurs in the context 

of warehouse rearrangement. Since the demands of products change, warehouse 

managers may rearrange the layout of their products in warehouses. For example, 

products with high demand usually are located close to the input/output locations. 

Therefore, the CSP can be used to determine the most efficient way to rearrange the 

items in a warehouse. Another application of the CSP is in ship yards. When a ship 

arrives at the terminal, containers are normally discharged from the ship, mounted 

onto trucks by quay cranes, and then unloaded at various locations in the yard for 

storage. Before a ship arrives, terminal planners need to determine the sequence of 

discharging containers from the ship. The objective is to minimize the total loading 

and unloading as well as crane travel cost. Hence, there are several areas where the 

CSP can be applied. 
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CHAPTER 2 

PROBLEM STATEMENT 

2.1 Introduction 

Once resource assignments are determined (i.e., a solution to the DSAP is 

obtained) in a power plant, warehouse, or shipyard environment, the CSP could be 

used to determine the order in which the material handling equipment moves the 

resources to their required locations. Various vehicles or material handling equipment 

may be used to relocate resources (items). Different types of resources require 

different handling and moving techniques. For example, forklifts may be used to 

move products within manufacturing plants and warehouses. In this research, a single 

polar or overhead crane with single capacity is considered to relocate resources, since 

these cranes are the most popular material handling equipment for moving large 

bulky resources within facilities. In addition, an operator is needed to operate the 

crane, and additional workers are needed to load and unload it. Therefore, the 

objective of the CSP is to determine the order in which the crane moves resources 

such that the sum of the material handling and the loading/unloading costs are 

minimized.  

Often times, when the crane is needed to move many resources, bottlenecks 

occur. For example, in a construction or power plant environment, a number of 

activities performed during certain time periods may require multiple resources 

which are moved by the crane. In other words, when some activities are completed, 
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other activities will start, and the resources required to perform these activities are 

loaded and moved to their desired locations by the crane. To reduce bottlenecks (e.g., 

total time and cost spent operating the crane), the objective of minimizing the sum of 

material handling and loading/unloading costs is necessary; thus, overall project cost 

is reduced. Therefore, it is essential to develop a good crane schedule to obtain the 

above objectives.  

 

2.2 Problem Definition 

The CSP was first defined in McKendall et al. (2006), which is the problem of 

determining the sequences in which a single overhead crane moves resources to their 

assigned locations with respect to minimizing the total distance the crane travels. In 

other words, the objective is to find sequences (or routes in which resources are 

moved) for a crane that minimize the total distance traveled by the crane. However, 

in this research, the objective is to find routes for a crane such that the crane travel as 

well as loading/unloading costs are minimized. Therefore, loading/unloading costs 

have been added to the CSP. More specifically, when resources are rearranged, the 

crane is used to relocate the resources. First, a resource is loaded onto the crane. 

Second, the resource is moved from its original location to its new location. Third, 

the resource is unloaded. Then the process is repeated for each resource requiring a 

new location. Hence, the CSP determines the order in which the resources should be 

moved such that total cost is minimized. The total cost consists of two major costs. 

First, loading/unloading cost is the cost of loading the resources onto the crane and 
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the cost of unloading the resources. Second, the crane travel cost is the cost of 

moving the resources from their original locations to their destination locations using 

the crane. Therefore, the output of the CSP is a sequence of resources, which are 

moved by the crane at each time when resource assignments are changed.  

 

2.3 Problem Assumptions 

There are several assumptions which make the CSP different from other related 

problems given in the literature. These assumptions are listed as follows and the 

major assumptions will be explained in detail below. 

1) The CSP assumes that the locations of resources assigned at multiple periods are 

known in advance (DSAP solution is given); The initial locations of resources 

are known at first time period;  

2) Capacity for a single overhead crane is one unit of a resource (or item);  

3) At the first time period, the initial position of the crane is at location 1;  

4) After the first time period, the initial position of the crane is the last position of 

the crane in the previous time period;  

5) A temporary storage space may be necessary when the destination location for a 

resource to be moved is not available because of capacity restrictions. In addition, 

in some situations a temporary storage space may be required in order to reduce 

the travel cost;  

6) It is assumed that any available location can be used as a temporary storage 
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space; 

7) The resources are fixed at their locations if they are not scheduled to be moved at 

a specific time period; 

8) Last, the objective of the CSP is to find the sequences in which resources are to 

be moved by the crane such that the sum of the loading/unloading and crane 

travel costs is minimized.  

The CSP is a problem which considers multiple time periods (i.e., items may be 

reassigned to locations in different periods). As a result, the CSP determines the crane 

routes for each period items are rearranged. Without loss of generality, the initial 

location of the crane at the beginning of each period, not including period 1, is the 

last position of the crane in the previous period as defined in Assumption (3). 

However, if the initial position of the crane at the beginning of each period is known 

(i.e., independent of the previous period), the problem can be solved as a series of 

static CSPs, which is much easier than the CSP defined in this research. It is 

important to note that all items may not be rearranged from one period to the next as 

stated in Assumption (7).  

Next, some of the above assumptions are explained in details.  

 

2.3.1 Static vs. Dynamic 

The CSP is a problem of determining routes (or sequences) for a crane when 

relocating resources in multiple time periods. In the literature, many problems have 
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considered the single period (i.e., static environment) problem which means that the 

problem data are assumed to be static during the planning horizon. For example, if 

the initial location of the crane is known a priori for all time periods, then the CSP is 

static. In other words, the CSP for each time period can be obtained independently of 

the other periods. However, only the initial location of the crane (i.e., the location of 

the crane at period 1) is known. After the sequence of the crane is determined for the 

initial period, the initial location of the crane for the next period is the location of the 

crane at the end of the previous period. Hence, the CSP for each time period are 

dependent on the CSP for preceding and succeeding periods. Thus, the CSP is 

dynamic and should not be solved independently for each time period in order to 

obtain more efficient solutions. 

 

2.3.2 Objective of the CSP 

For the crane considered in the CSP, the status of the crane is either loaded or not 

loaded. Therefore, there are two corresponding types of moves: empty moves and 

non-empty moves (see Figure 2.1). An empty move is a move where the crane does 

not carry a resource (i.e., crane is not loaded); whereas a non-empty move is a move 

where the crane carries a resource (i.e., crane is loaded). An empty move may be 

necessary for the crane to obtain a resource to be moved. For instance, if there is no 

resource to be moved at the current location of the crane, the crane needs to perform 

an empty move to arrive at a location of a resource which needs to be moved. 
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Figure 2.1: Status of crane and move types. 

 

Based on the status or move types of the crane described above, the total costs of 

the CSP should include the costs related to empty moves and non-empty moves of the 

crane and the cost related with loading/unloading resources for the crane (see Figure 

2.2). The distances the crane travels can be used as a criterion to measure costs when 

the crane moves empty or non-empty. As a result, the travel cost of the crane is the 

product of the distances the crane travels (empty or non-empty) and the cost per 

distance unit. In contrast, the loading/unloading cost is directly related to the total 

number of non-empty crane moves. That is, the loading/unloading cost is the product 

of the number of non-empty moves and the cost per non-empty move. In other words, 

the cost of a non-empty move is the cost of loading an item onto the crane and the 

cost of unloading the item once it reaches its destination location. This is called the 

loading/unloading cost (non-empty move cost). An example is given in section 2.4 to 

illustrate how the different costs are obtained. 

 17



  

Figure 2.2: Costs considered in the CSP. 

 

2.3.3 Temporary Storage Space 

One of the most unique features of the CSP is the use of temporary storage 

spaces. As previously mentioned, temporary storage space may be necessary when: 

1) The destination location of a resource currently being moved is at full capacity. In 

this case, either the resource has to be moved to another available location (called the 

temporary storage space) or the resource is moved at a later time when the 

destination location is available.  

2) Routes of the crane can be improved (i.e., sum of total travel and 

loading/unloading costs for the crane is reduced) if temporary storage space is used.  

Once a resource is moved to a temporary storage space, it is assumed that it is stored 
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there until its assigned location is available and either i) the crane is at its temporary 

location or ii) after all the other resources have been moved to their assigned 

locations.  

Note, in similar applications, when a resource can be put into an intermediate 

(temporary) location before it is delivered to its final destination location, the 

resource is preempted from moving to its final destination. In the literature, this is 

called “preemption” or “intermediate drop.” In this research, temporary locations are 

defined as follows: 

a) Storage spaces not at full capacities  

b) Workspaces that are currently available (no activity is currently being 

performed in those locations).  

Below, a CSP instance is given to explain the temporary storage space assumptions as 

well as other assumptions for the CSP. 

 

2.4 A CSP Instance  

To illustrate the CSP and its assumptions, consider the CSP instance where the 

layout configuration and distance matrix are shown in Figures 1.1 and 1.2, 

respectively. Also, the assignment of activities (and their required resources) to 

workspaces and the assignment of the idle resources to storage spaces are given in 

Figure 2.3. This CSP instance has 3 time periods (T = 3), 9 resources (R = 9), 6 

locations (L = 6) and 4 activities (A = 4). Also, each location has a capacity of 3 items. 
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In period 1, activities 1 and 2 are performed in locations 1 and 2 (or workspaces 1 

and 2), respectively. Since resources (4) and (2, 3) are used to perform activities 1 

and 2, they are also assigned to locations 1 and 2, respectively. In addition, idle 

resources (1, 8, 9), (5, 6), and (7) are assigned to locations 4, 5, and 6 (or storage 

locations 1, 2, and 3), respectively. Notice that activity 2 is performed in both periods 

1 and 2, and activity 3 is performed in period 2. All the items in bold font represent 

the items which are to be relocated at the beginning of periods 2 and 3. More 

specifically, items 1 and 4 are reassigned to locations 1 and 4 at the beginning of 

period 2. In addition, items (1), (2, 3), and (5, 6) are reassigned to locations 6, 5, and 

2, respectively, at the beginning of period 3. Therefore, the CSP determines the order 

in which the crane moves the items for each of the periods such that the sum of the 

travel and loading/unloading costs is minimized.  

 
t = 1 4 (A1) 2,3 (A2)   

 1,8,9 5,6 7 
    

t = 2 1 (A3) 2,3 (A2)   
 4,8,9 5,6 7 
    

t = 3   5,6 (A4)   
 4,8,9 2,3 1,7 

 
Figure 2.3: Resource Assignments for the CSP instance. 

 
 

Period Sequence of resources
moved by the crane Actual moves of the crane Distance units

the crane travels
Number of

resource moves Cost

t  = 2 1 - 4 1 - 4 - 1 - 4 3 2 $21
t  = 2 4 - 1 1 - 5 - 4 - 1 - 5 - 4 7 3 $44  

 
Table 2.1: The CSP instance solutions at period t = 2. 
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As mentioned earlier, there are multiple periods (i.e., T = 3) considered in this 

CSP instance. As a result, the CSP will be used to generate T – 1 crane routes (i.e., 

crane routes for periods 2 and 3). Also, the capacity of the crane is one unit of an item. 

Assume that the travel cost per distance unit is $5, and the cost of loading and 

unloading each item (i.e., each non-empty move) is $3. In addition, the initial 

location of the crane at the beginning of period 2 is location 1 for this specific 

instance. At the beginning of period 2, the crane needs to move items 1 and 4 to 

locations 1 and 4, respectively. Hence, there are two possible sequences for the crane 

to relocate items 1 and 4 as shown in Table 2.1. If the sequence of items to be moved 

is 1–4, the crane first needs to perform an empty move from its initial location (i.e., 

location 1) to the location of item 1 (i.e., location 4) which gives a travel cost of 1 

distance unit. Once the crane arrives at location 4, item 1 is loaded and prepared for 

moving. Next, the crane moves item 1 from location 4 to location 1 which gives a 

travel cost of 1 distance unit. Also, item 1 is unloaded. Therefore, loading/unloading 

cost for item 1 is $3. Next, item 4 is considered to be moved, since it is the next item 

in the sequence. Since the crane is currently at location 1 where item 4 is located, 

item 4 is loaded and prepared for moving. Then, the crane moves item 4 from 

location 1 to location 4, which gives a travel cost of 1 distance unit, and it is unloaded. 

As a result, loading/unloading cost of item 4 is $3. Therefore, for this sequence, the 

total loading/unloading cost is $6, and the total crane travel cost is $15 (i.e., $5(3) 

where the total distance the crane travels is 3 distance units). Hence, the total cost of 

the sequence 1-4 is $21. On the other hand, if the sequence of items to be moved is 
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4–1, the number of item moves is 3 and the crane travels 7 distance units. Therefore, 

the total cost of this sequence is $44 (i.e., $3(3) + $5(7)). Note that for this sequence, 

the crane starts at location 1 where item 4 is loaded and moved from location 1 to a 

temporary storage location 5, since its destination location 4 is at full capacity. This is 

case (1) of temporary storage space usage. Initially, locations 1, 3, 5, and 6 can be 

used as temporary storage locations, since either no activity is currently being 

performed at these locations (workspace locations 1 and 3) or the locations (storage 

locations 5 and 6) are not at full capacities. However, since location 5 is closest to 

item 4’s destination location (location 4), location 5 is selected as the temporary 

storage location. This specific move gives a loading/unloading cost of $3 and a crane 

travel cost of $10. Then the crane moves from location 5 to location 4 (crane travel 

cost is $5), item 1 is loaded and moved from location 4 to location 1, and unloaded 

(crane travel cost = $5 and loading/unloading cost = $3). Now crane moves from 

location 1 to location 5 (crane travel cost = $10), item 4 is loaded and moved to 

location 4, and unloaded (crane travel cost = $5 and loading/unloading cost = $3). If 

we consider the combined problems of the DSAP and the CSP, it may be better to 

eliminate the movement of item 4 from location 5 to location 4. But we are restricting 

ourselves here to the result of the DSAP, which may restrict the CSP solution space. 

However, combining the DSAP and the CSP can be considered in future research. 

Thus, the sequence 4-1, gives the crane route 1-5-4-1-5-4 indicating the sequence in 

which the locations are visited by the crane. Nevertheless, sequence 1-4, which cost 

$21, is much better than sequence 4-1, which cost $44.  
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Period Sequence of resources
moved by the crane Actual moves of the crane Distance units

the crane travels
Number of

resource moves Cost

t  = 3 1 - 2- 5 - 3 - 6 4 - 1 - 6 - 2 - 5 - 2 - 5 - 6 10 5 $65
t  = 3 1 - 2- 5 - 3 - 6 4 - 1 - 2 - 5 -2 - 5 - 2 - 6 8 6 $58  

 

Table 2.2: The CSP instance solutions at period t = 3. 

 

For period 3, the initial location of the crane is the location of the last position of 

the crane in period 2. As a result, the crane is located at location 4. Also, the number 

of possible resource sequences is 5! = 120. However, if a sequence requires 

temporary storage space to either reduce total cost or capacity restrictions of 

destination locations, then more than one crane route may be constructed from this 

sequence of resources. In Table 2.2, one of the crane sequences is considered to 

illustrate temporary storage location issues, specifically, how different crane routes 

are formed from the same sequence. Consider crane sequence 1–2–5–3–6. First, the 

crane moves empty from location 4 to location 1 (crane travel cost = $5). Second, 

item 1 is loaded and moved from location 1 to location 2 (crane travel cost = $5 and 

loading/unloading cost = $3), since using location 2 as temporary storage space 

reduces total cost, which considers case (2) above.  Next, items 2, 5, 3 and 6 are 

loaded and moved in order from locations 2, 4, 2 and 4 to their assigned locations 4, 

2, 4, and 2, respectively (crane travel cost = $20 and loading/unloading cost = $12). 

Because all other items had been moved to their destination locations, item 1 is 

loaded and moved from its temporary location (location 2) to its required location 

(location 6) and is unloaded (crane travel cost = $10 and loading/unloading cost = $3). 

Therefore, the cost of sequence 1-2-5-3-6, specifically route 4-1-2-5-2-5-2-6, is $58. 
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Note, the sequence indicates the order in which the items are moved and does not 

indicate when an item is moved from temporary storage space. However, the crane 

route indicates the order in which the locations are visited, which gives a more 

detailed solution. For the same sequence, sequence 1-2-5-3-6, specifically route 

4-1-6-2-5-2-5-6, if the crane moves item 1 directly to its destination location, location 

6, and then moves items 2, 3, 5 and 6 to their destination locations, the total cost is 

$65. Therefore, using temporary storage location can reduce total cost.  

 

Period Sequence of resources
moved by the crane Actual moves of the crane Distance units

the crane travels
Number of

resource moves Cost

t  = 2 1 - 4 1 - 4 - 1 - 4 3 2 $21
t  = 3 1 - 2- 5 - 3 - 6 4 - 1 - 2 - 5 -2 - 5 - 2 - 6 8 6 $58

$79  
 

Table 2.3: Optimal Solution for the CSP instance. 

 

In Table 2.3, the optimal solution for this CSP instance is given as the following 

sequences for periods 2 and 3: 1–4 and 1–2–5–3–6, respectively. The total cost of this 

solution is $79 = $21 + $58. The optimal solution was obtained using the binary 

integer linear program presented in this research for the CSP and CPLEX, Version 6.6. 

It took 0.1 minutes on a Pentium IV 2.8 GHz PC. However, for another small CSP 

with 9 items and 4 periods, it required 8.1 hours of computation time. Therefore, only 

small-size CSPs were solved in reasonable computation time using the mathematical 

model and CPLEX. As a result, several meta-heuristics were developed to solve 

large-size problems in reasonable time. 
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2.5 Research Objectives                                                             

The objectives for this research are listed below: 

 Formulate a mathematical model for the CSP; 

 Use the mathematical model to obtain optimal solutions for small-size CSPs; 

 Develop construction algorithms to obtain initial solutions for the CSP; 

 Develop a simulated annealing, hybrid ant system and tabu search heuristics to 

solve large-size CSPs; 

 Generate a set of test problems to compare the solution techniques; 
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CHAPTER 3 

LITERATURE REVIEW 

3.1 Introduction 

The CSP considered in this research is to find the sequence for a crane to move 

resources to their destination locations at the beginning of each time period. Many 

types of sequencing problems exist in the literature, which are widely researched. For 

instance, Faggioli et al. (1998) studied a cutting stock problem dealing with the 

generation of a set of cutting patterns that minimizes waste. Smith et al. (1996) 

considered a problem of optimally sequencing different car models along an 

assembly line according to contiguity constraints, while ensuring that the demands 

for each of the models are satisfied. Wen et al. (1997) compared the solution 

procedures of the flow shop sequencing problems that have been studied in the 

literature based on a tabu search heuristic. Generally, these sequencing problems 

belong to a set of problems called permutation problems (i.e., solutions of these 

problems can be represented as permutations of jobs or items). However, the CSP 

considered in this research is a much more complex and more general sequencing 

problem with special constraints, which have been discussed in Chapter 2. That is, 

first, the resources moved in the CSP are not identical and each resource has specific 

origin and destination locations. Second, temporary storage spaces may be used to 

store resources temporarily. In other words, resources may be dropped into temporary 

storage spaces, and picked up later. Third, multiple periods (i.e., multiple resource 
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assignments) are considered in the CSP. For each period (after the first time period), 

the orders of resources to be moved by the crane should be determined. After the first 

time period, the initial position of the crane is the last position of the crane in the 

previous time period. In addition, a limited capacity is assumed for each of the 

locations. All of these assumptions make the CSP unique and much more difficult to 

solve. A survey of the literature reveals that the CSP is related to the TSP with 

additional assumptions such as non-Hamiltonian tours or preemption conditions. To 

illustrate the similarities and differences of the CSP with the related variations of the 

TSP in the literature, the VRP, which is a more general problem of the TSP, is 

discussed first.  

 

3.2 Vehicle Routing Problem 

The VRP is one of the prominent routing problems in the logistics area. It can be 

briefly described as a set of clients or customers with known and deterministic 

demands, which have to be served from a central depot or origin, with a fleet of 

delivery vehicles of known capacity. The total customer demand of a route must not 

exceed the vehicle capacity. Normally, the objective is to minimize the total distance 

traveled by the vehicle fleet, but it is also common to minimize total transportation 

(routing) costs. This combinatorial problem is NP-Hard (see Garey and Johnson, 

1979). A VRP example is given in Figure 3.1 with 9 customers and 3 vehicles. Three 

vehicles start from a Depot 0. Then 9 customers are assigned to one of three vehicles. 
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Each vehicle will visit the customers assigned to it exactly once and return to the 

depot. The objective is to minimize the total distance traveled by these vehicles (or 

total transportation cost). 

  

 

Figure 3.1: A VRP instance with 9 customers and 3 vehicles. 

 

The VRP is an important sub-problem in a wide range of distribution systems 

and a lot of effort has been devoted to researching various aspects of the VRP. In the 

literature, starting from the basic version of the VRP, many variations have been 

considered, such as capacitated vehicle routing with pickups and deliveries, VRP 

with precedence constraints, open VRP, VRP with backhauls, and many others. A 

comprehensive and detailed study of the VRP and its variations can be found in 

Bramel and Simchi-Levi (1999), Crainic and Laporte (1999) and Ball et al. 

(1995).  
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Since the CSP determines the routes for a single crane to move resources when 

resource arrangements are changed, the single vehicle version of the VRP with 

pickup and delivery is paid more attention in this literature review. The single vehicle 

version of the VRP, which is a special case of the VRP, was defined as a TSP and will 

be discussed below. 

 

3.3 Traveling Salesman Problems 

If only a single vehicle is available for deliveries and the vehicle has enough 

capacity, this problem is known as the traveling salesman problem (TSP). The TSP 

belongs to the most basic, important, and investigated problems in combinatorial 

optimization and is NP-hard (Burkard et al., 1998). Figure 3.2 shows a depot (a 

black dot with a circle) and cities (black dots) that need to be visited by a salesman 

(or a vehicle). The salesman (or vehicle) is required to start from the depot, visit all 

the cities exactly once and return to the depot. The objective of the TSP is to 

minimize the total distance traveled by the vehicle (or salesman). A feasible 

solution for this TSP example is shown in Figure 3.3.  

 

Figure 3.2: Cities and depot in a TSP instance. 
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Figure 3.3: A feasible solution for the TSP instance. 

 

Similar to the VRP, there are lots of variations of the TSP which exist in the 

literature. In this research, eight different factors are considered to categorize these 

variations of the TSP and the CSP. These factors are listed and discussed below.  

1. # of Origins-Destinations (“one to one”, “one to many”, “many to many”) 

2. Number of product types (1, m) 

3. Number of products per type (1, k) 

4. Pickup/Delivery quantity at a location (1, w) 

5. Capacity of a vehicle (1, Q, ∞ ) 

6. Hamiltonian Tour (“yes”, “no”) 

7. Preemption (“yes”, “no”) 

8. Capacity of a location (1, N, ∞ ) 

The factor, # of Origins-Destinations, considers the relation between the original 

location(s) and destination locations for items: “one to one” if each item picked up 

from an original location has a specific destination (or delivery location); and “one to 

many” if there is a single original location (depot) and multiple delivery locations 
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(destination locations) for items, and items picked up from the original location (or 

depot) can be delivered to many destination locations; “many to many” if there are 

multiple pickup locations (original locations) and multiple delivery locations 

(destination locations) for items, and items picked up from any original location can 

be delivered to any one of the destination locations; 

Number of item types and number of items per type are the number of item types 

delivered by the vehicle and number of items for a single item type. The number of 

item types can be either 1 or m. In addition, the number of items for a single item 

type can be either 1 or k. 

The factor, pickup/delivery quantity (1, w) at a location, considers the amounts of 

products picked up or delivered at a location, which can be either a single unit or a 

batch size of w units. Also, the capacity of the single vehicle can be 1, Q, or . ∞

 If the tour is a Hamiltonian tour (“yes”), then each location can be visited by the 

vehicle exact once. On the contrary, each location can be visited by the vehicle more 

than once which is a non-Hamiltonian tour (“no”). Obviously, non-Hamiltonian tours 

make the problem more complex.  

Preemption is another important factor consider in the CSP. If preemption can 

occur (“yes”), an item (or resource) can be stored in a temporary storage space one or 

more times before it is moved (or delivered) to its destination location. Otherwise, if 

preemption is not allowed (“no”), no temporary storage is permitted and an item must 

be delivered to its destination location directly once it is picked up.  

Moreover, the capacity of each location can be 1, N, or ∞ . If a location is at full 
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capacity, it is unavailable at that time. That is, no more items are permitted to be 

moved into this location before at least one item stored in this location is moved. Use 

“∞ ” when the capacity is not considered or capacity is unlimited.  

Based on the factors discussed above, the CSP is a problem with factors “one to 

one” origins and destinations relation; it has “m” item (or resource) types; the number 

of items per type is “1”; a single unit of each item is picked up and delivered to a 

location; the capacity of the vehicle is “1”; the Hamiltonian tour is not satisfied (i.e. 

“no”); preemptions (or intermediate drops) are allowed; and capacity of a location is 

“N.” Hence, the CSP can be represented using the format one-one/m/1/1/1/no/yes/N. 

As mentioned previously, several variations of the TSP known in literature are 

closely related to the CSP. These are: Q-delivery TSP, capacitated TSP with pickups 

and deliveries (CTSPPD), shortest route cut and fill problem (SRCFP), 

one-commodity pickup-and-delivery TSP (1-PDTSP), TSP with backhaul (TSPB), 

TSP with pick-up and delivery (TSPPD), swapping problem (SP), TSP with delivery 

and backhauls (TSPDB); pickup and delivery TSP (PDTSP), capacitated dial-a-ride 

problem (CDARP), stacker crane problem (SCP); motion planning problem (MPP); 

and warehouse rearrangement problem (WRP). These problems are summarized in 

Table 3.1 according to their corresponding factors and will be discussed individually 

in the following sections. 
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Problem 
Name 

# of Origins - 
Destinations 

# of 
Product 
Types 

# of 
Products
per Type

Pickup/Delivery 
Quantity at a 

Location 

Capacity 
of 

a Vehicle
Hamiltonian Preemption Capacity of 

a Location 

TSP one-many 1 k 1/w  yes no  
Q-delivery TSP many-many 1 k 1 Q no yes  
CTSPPD/SRCFP many-many 1 k 1 Q no no  
1-PDTSP many-many 1 k w Q yes no  
SP many-many m k 1 1 no yes  
TSPB one-many 2 k 1  yes no  
TSPPD/TSPDB one-many 2 k w Q yes no  
PDTSP one-one m 1 1  yes no  
CDARP one-one m 1 w Q no yes  
SCP/MPP one-one m 1 1 1 no  yes  
WRP one-one m 1 1 1 no yes 1 

N CSP one-one m 1 1 1 no yes 

∞
∞
∞
∞
∞
∞
∞
∞
∞
∞

Table 3.1: Factors of Closely Related Problems to the CSP. 

∞

∞

∞

 



3.3.1 Q-delivery TSP 

Chalasani and Motwani (1999) defined a Q-delivery TSP (Q-TSP) as: given a 

vehicle with a maximum capacity of Q, N identical products (i.e., single object type) in N 

arbitrary locations, and each of another N locations requires a product (i.e., “many to 

many” for factor “# of origins – destinations” and single object for pickup/delivery at a 

location ); the objective is to find a shortest tour for the vehicle in which all the products 

can be delivered to their locations without exceeding the capacity of the vehicle. Since 

only a single unit of product will be picked or delivered at a location, the vehicle only 

needs to visit each location exact once. Therefore, Hamiltonian tour is satisfied. Also, the 

TSP is a special case of Q-delivery problem, since replacing each city of the TSP by a 

location and a product yields an instance of the 1-delivery TSP. In this instance, the 

vehicle has to simply find a shortest tour that visits all the locations (i.e., a TSP solution), 

since any product that is picked up by the vehicle can immediately be delivered to this 

location. In addition, the permitted preemptive case for Q-delivery TSP is considered in 

Charikar et al. (2002), where products can be dropped at intermediate location and 

picked up to deliver later. This problem belongs to many-many/1/k/1/Q/yes/yes/ .  ∞

 

3.3.2 Capacitated TSP with Pickups and Deliveries 

The capacitated TSP with pickups and deliveries (CTSPPD) was discussed in Anily 

and Bramel (1999). CTSPPD consists of N pickup customers and N delivery customers 

and a vehicle with limited capacity of Q. One depot used as the starting and ending point 

for the vehicle. The vehicle picks up a unit of product from a pickup customer and 
 34



deliveries a unit of product to any delivery customer (i.e., “many to many”). The 

objective is to determine a minimal length feasible tour that picks up and deliveries all 

products and does not violate the vehicle capacities of Q units. This problem is equivalent 

to the Q-delivery TSP. However, a relaxation of the assumption of unit size loads without 

loss of generality was also discussed by the authors. For instance, a delivery (or pickup) 

of size 5 units can be delivered (or picker up) in 2 parts, one for 2 units and later one for 3 

units. This is when each delivery or pickup load is allowed to split in the context of 

inventory repositioning. Under this assumption, Hamiltonian tour is not necessary in this 

case. That is, multiple visits for a location will be tolerated. Based on theser factors, it is a 

manye-many/1/k/1/Q/no/no/ TSP. ∞

Henderson et al (2003) studied another generalization of the TSP under construction 

environment where the objective is to find a vehicle route that minimizes the total 

distance traveled by a single earthmoving vehicle between cut and fill locations. It is 

defined as a shortest route cut and fill problem (SRCFP), which is another case of the 

CTSPPD, since it consists of two location types, cut locations and fill locations. At each 

cut location, it loads a unit of earth, and travels to a fill location where it deposits the unit 

of earth. Therefore, the vehicle visits every unit cut and every unit fill locations exactly 

once. In other words, starting at a cut location, the vehicle visits cut and fill locations 

alternately and finally return to its starting location. This process is repeated until all 

excess earth has been moved. Lim et al. (2004) relaxed the Hamiltonian tour assumption. 

The vehicle can visit the same location more than once if there is more than one unit cut 

(or fill) at that location. They also extended SRCFP to include multiple vehicles and a 

makespan objective.  
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3.3.3 One-Commodity Pickup-and-Delivery TSP 

One commodity Pickup-and-Delivery TSP (1-PDTSP) was developed in 

Hernandez-Perez and Salazar-Gonzalez (2004). In this problem, a capacitated vehicle 

starts and ends the route at the depot like the traditional TSP. However, the customers are 

partitioned into two groups: delivery customers and pickup customers. A single type of 

commodity (or product) is delivered from the depot and pickup customers to delivery 

customers by the capacitated vehicle. Products picked up from a pickup customer can be 

supplied to any delivery customer (i.e., many to many). Each delivery customer requires a 

given amount of the commodities, while each pickup customer provides a given amount 

of the commodities (i.e., multiple units of products at a pickup/delivery location). The 

object is to minimize the distance tour for the vehicle visiting each customer once (i.e., 

Hamiltonian tour is satisfied) and satisfying the customer requirements without violating 

the vehicle capacity. In addition, preemption is not allowed in this problem. Moreover, 

Q-delivery TSP is the special case of the 1-PDTSP as well, where delivery and pickup 

quantities are all equal to one unit (Hernandez-Perez and Salazar-Gonzalez, 2004). 

Since a single product type, a capacitated vehicle and the Hamiltonian tour, etc are 

considered, this problem is represented as manye-many/1/k/w/Q/yes/no/∞ . 

 

3.3.4 Swapping Problem 

The swapping problem (SP) was proposed in Anily and Hassin (1992). For this 

problem, each location initially may contain a product of a known type. A final state, 

specifying the type of product desired at each location, is also given. A single vehicle of 
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unit capacity is available for shipping products among the locations so that the 

requirements of all locations are satisfied. The SP is more general than the variations of 

the TSP discussed above since the SP consists of a number of different product types. 

Each location is associated with the type of product currently at the location (if any) and 

the desired product type (if any) (see Anily and Bramel, 1999). In addition, the set of 

product-type is partitioned into two sets: products that may be temporarily dropped at 

intermediate locations before reaching their destinations and products that have to be 

shipped directly from their origins to their destination locations. Hence, the preemption is 

allowed for those products, which can be temporarily stored intermediately. Moreover, 

multiple visiting a location is permitted for this problem since a product will be moved 

out and another type of product will be moved in at each location (i.e., Hamiltonian tour 

is not satisfied). The objective is to design a route that starts and ends at depot and 

requirements of all locations are satisfied so that the total distance is minimized (Anily et 

al., 1999). Also, Chalasani and Motwani (1999) considered the special case of two 

product types which, in the context of the SP, is equivalent to the CTSPPD with Q = 1. 

The SP can be stated as many-many/m/k/1/1/no/yes/∞ . 

 

3.3.5 TSP with Backhaul 

TSP with backhual (TSPB) is a TSP with precedence constraint, which considers two 

types of customers: delivery customers and backhaul customers. It is defined as an 

un-capacitated vehicle must visit all the delivery customers before visiting a backhaul 

customer (see Gendreau et al., 1996 and Gendreau et al., 1997). The backhaul 
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customers are different from those pickup customers discussed in above sections, where 

the pickup customers may delivery products to any of the delivery customers including 

the depot, while backhaul customers are restricted to delivery products from their 

locations to the depot. Therefore, there are two kinds of products considered in this 

problem. One is delivered from the depot to delivery customers, and the other is picked 

up from backhaul customers and delivered to the depot. Therefore, for either type of these 

products, the factor # of origins – destinations is “one – many”. Thus, when leaving the 

depot, the vehicle carries the total backhaul requirements and gets all the products picked 

up from backhaul customers when back to the depot. The objective of the TSPB is to 

determine a least-cost Hamiltonian tour such that all backhaul customers are visited after 

all delivery customers. Hence, it is a one-many/2/k/1/∞ /yes/no/∞  TSP. 

 

3.3.6 TSP with Pick-Up and Delivery 

Mosheiov (1994) introduced a TSP with Pick-up and Delivery (TSPPD). There are 

also two kinds of customers: backhaul customer and delivery customer. Products 

collected from backhaul customers must be transported to the depot, similarly as the 

TSPB. However, a capacitated vehicle is considered in this problem and it starts and ends 

at a depot. At a delivery customer, the vehicle unloads required products from the depot; 

while at backhaul customer, the vehicle loads products that are to be delivered to the 

depot. Unlike the TSPB, there is no restriction that all delivery customers must be visited 

before any backhaul customer is visited. The objective of the TSPPD is to find a 

Hamiltonian tour with minimal distance traveled by the vehicle. Anily and Mosheiov 
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(1994) also discussed the TSPPD, but renamed as TSP with delivery and backhaul 

(TSPDB). Both of these problems can be represented as one-many/2/k/w/Q/yes/no/∞ . 

 

3.3.7 Pickup and Delivery TSP 

In this version of the TSP, customers are also of two types: pickup customers and 

delivery customers. However, each pickup customer is associated with one and only one 

delivery customer and a pickup customer should be visited before its associated delivery 

customer (i.e., a “one to one” of origins – destinations relation and multiple product types 

since products pickup up at each pickup customer will be delivered to their unique 

delivery customer or destination location). The un-capacitated vehicle starts and ends at 

the depot. The objective of problem is to find a Hamiltonian tour with minimal distance 

traveled by the vehicle such that each pickup customer is visited before its associated 

delivery customer (Renaud et al., 2002). The Pickup and delivery TSP (PDTSP) can be 

seen as a generalization of the TSPB (see Renaud et al., 2000) since an un-capacitated 

vehicle is used here. Because each customer is only visited exactly once, Hamiltonian 

tour is satisfied. Moreover, preemption (i.e., temporary drop) is not allowed in this 

problem either. This problem belongs to one-one/m/1/1/∞ /yes/no/∞ . 

 

3.3.8 Capacitated Dial-A-Ride Problem 

The capacitated dial-a-ride problem (CDARP) is another TSP with precedence 

relations where a capacitated vehicle should transport a number of passengers (see 
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Miyamoto et al., 2003). This problem involve dispatching a vehicle to satisfy demands 

form a set of customers who call a vehicle-operating agency requesting to be picked up 

from a specific location and delivery to a specific destination. The goal is to minimize the 

total distance traveled by the vehicle in transporting all the customers (Hunsaker and 

Savelsbergh, 2002). The Hamiltonian tour is not satisfied for this problem since 

customers may have same destination locations (i.e., multiple visits for a location is 

permitted). In addition, the preemption case of the CDARP was discussed in Charikar 

and Raghavachari (1998). The PDTSP can be seen as a special case of the CDARP with 

an un-capacitated capacity vehicle and a Hamiltonian tour. In addition, this problem 

differs from the Q-delivery TSP in that each customer must be dropped off at a specific 

destination. Hence, this problem is one-one/m/1/w/Q/no/yes/∞ . 

 

3.3.9 Stacker Crane Problem 

Another related work is the stacker crane problem (SCP). Frederickson et al. (1978) 

first introduced this problem. This problem also involves making deliveries with a vehicle 

of unit capacity like the CDARP. The products considered are not identical and each 

product has a specific destination location (Charikar et al., 2002). The goal is to find a 

shortest tour that performs the required transportation. Frederickson and Guan (1992) 

considered the preemptive case of this problem. In this case, products can be dropped, 

and picked up and transported at some later time. This SCP is a special case of the 

swapping problem since there is only one unit of each product type in the SCP (Anily et 

al., 1999). The SCP is also special case of the CDARP with a unit capacitated vehicle.  
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Based on the factors of the SCP (i.e., one-one/m/1/1/1/no/yes/∞ ), the SCP is one of 

most closely related problems to the CSP, which has factors of one-one/m/1/1/1/no/yes/N. 

However, there are still differences between them. First, the only reason to drop an object 

to temporary storage space in the SCP is to find a better rout with lower travel cost. 

However, in CSP, not only to lower travel cost, the another reason to use temporary 

storage space is the capacity of a location. If the destination location of a resource being 

carried is at full capacity, this resource has to be moved a temporary storage space. Also, 

multiple time periods (i.e., multiple resource assignments) are considered in the CSP. 

However, only 2 states (initial state and final state) are considered in the SCP. Therefore, 

the SCP is more general than the SCP, which makes the CSP much harder to solve and 

change the nature of the algorithm to solve the CSP from SCP.  

   

3.3.10 Warehouse rearrangement problem 

Another related problem found in the literature is warehouse rearrangement problem 

(WRP), which was defined in Christofides and Colloff (1973). This problem of 

rearranging items in a warehouse use a single vehicle of unit capacity such that the total 

cost of rearranging the items from one known configuration (initial/old arrangement) to 

another (new arrangement) is minimized. Similarly as the CSP, the location capacity is 

considered in this problem. During the rearrangement of items, a predetermined 

temporary storage space is used if maximum number of items (i.e., capacity) is met for a 

destination location.  The output is the sequence of item movements required to achieve 

the new arrangement of items and the total rearrangement cost. If group this problem into 
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the above variations of the TSPs, it belongs to a one-one/m/1/1/1no/yes/1. Unlike the CSP, 

the WAP only considered two arrangements (i.e., assignments of items to locations), 

which are given for the old and new arrangements. In contrast, the CSP has more than 

two arrangements.  The number of arrangements is based on the number of times the 

layout changes during the outage. In addition, in the CSP, there are multiple temporary 

storage locations and more than one item can be assigned to those locations. In contrast, 

only one fixed temporary location is defined, which has a capacity of M items, in the 

WAP. 

 

3.4 Other Related Problems  

  Beside the problems discussed above, there are other problems related to the CSP, or 

CSP can be applied to these problems. These problems try to find the routes for the 

material handling equipment with additional constraints.   

 

3.4.1 Warehouse Storage/Retrieval Problem 

An automated storage/retrieval system (AS/RS) is high-bay warehouse with 

storage/retrieval machines or automated stacker cranes that perform the storage and 

retrieval of storage modules (such as pallet or containers) (see Van den Berg, 1999). 

AS/RS are widely used in warehouses and distribution centers around the world. Some 

advantages of AS/RS over traditional warehousing systems are high space utilization, 

reduced labor costs and improved inventory control. An AS/RS consists of one or 
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multiple parallel aisles with storage racks alongside. Usually, in every aisle a 

Storage/Retrieval (S/R) machine travels and performs the storage and retrieval of goods. 

With respect to product retrieval, unit load retrieval systems and order picking systems 

are distinguished. In a unit load retrieval system complete unit-loads are retrieved. 

Accordingly, the vehicles either perform one stop (storage or retrieval) or two stops 

(storage followed by retrieval) in a single trip. These trips are referred as a single 

command cycle and dual command cycle, respectively. In an order-picking system 

typically less then unit load quantities are picked, so that there will be multiple stops per 

trip (multiple-command cycle). 

 

3.4.2 Crane Scheduling Problem 

Lim et al. (2002) proposed the crane scheduling problem. It mainly considers how to 

schedule cranes in a port. It assumes that ships can be divided into holds and that cranes 

can move from hold to hold but that only one crane can work on one hold or job at any 

one time. This important component of port operations management is studied when 

certain spatial constraints, which are common to crane operations, are considered. The 

objective is to find a crane-to-job matching which will maximize throughput for such 

operations under these basic spatial constraints.  

 

3.5 Conclusion 

Based on the factors and related problems discussed in this chapter, the CSP is a 
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more general and complex problem. The model and techniques for the CSP can be 

applied to other problems with little modifications. In other words, the CSP can be 

applied to some of the above TSPs by relaxing the location capacity constraint or 

preemption condition. Without these constraints, the crane will move the resource to its 

assigned location regardless of how many resources are in that location at that time. Then, 

each resource to be relocated is moved only once. However, space is considered an 

important scarce resource and temporary storage of resources is necessary in many 

industrial applications. Therefore, relaxing constraints of the CSP will result in infeasible 

routes in some applications 

The main objective of the CSP is to find routes for a crane to relocate (pickup and 

deliver) resources in multiple periods in order to minimize the total crane travel cost and 

loading/unloading cost. Although the CSP is related to the TSP problems above, it has its 

own unique features. First, multiple periods are considered. There is one resource 

assignment at each time period. From the beginning of the second period, the routes in 

which the crane is to move the resources should be determined. The initial position of the 

crane is the last position crane visited in previous period. Second, the capacity of 

locations and temporary storage spaces are considered in the CSP. Any available location 

can be used as a temporary storage location for intermediate drops. Whenever a 

destination location is at its capacity or the crane route can be improved (i.e., travel cost 

can be decreased), a resource may be dropped off at a temporary storage space. Last, after 

sequences of resources to be moved are determined, a detail move plan, using a serial 

method, should be generated for the crane to indicate its actual movements.  
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CHAPTER 4 

METHODOLOGY 

4.1 Introduction 

CSP is hard combinatorial optimization problem. Because of the location capacity, 

preemption, and multiple periods considered in the CSP, it is more general than some 

variants of the well-known TSP, such as the SCP. In this section, a mathematical model is 

formulated as an exact method to solve the CSP optimally. However, by using a 

mathematical model, only very small size CSP can be solved optimally in a reasonable 

amount of time. Therefore, heuristics, such as simulated annealing (SA), hybrid ant 

systems (HAS) heuristics, tabu search (TS), probability tabu search (PTS), tabu search 

with strategies (TS/S), as well as construction algorithms are proposed to solve the CSP 

in shorter amount of time with good solution qualities. 

 

4.2 Exact Method 

4.2.1 Mathematical Model and Notation 

In this section a binary integer linear program is presented for the CSP. First the 

notation is given below. The indices are as follows. 

Lhji ,...,1,, = : L is the number of locations; 

1,...,1 += Rr : R is the number of items (or resources) and R + 1 represents a dummy item 

(empty move); 

Kkk ,...,12, = : K is an upper bound on the number of moves; 
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Tt ,...,1= : T is the total number of periods; 

 The parameters are given below. 

tA  = Set of items to be moved at period t (not including R+1); 

tB  = Set of items to be moved at period t including R+1 ( { }1+∪ RAt ); 

tQ  = Set of locations which cannot be used as temporary storage locations because 

activities are being performed in those locations at period t; 

tUB  = Upper bound for the number of moves at period t; 

ijd  = Distance between locations i and j; 

rtl  = The location of item r at period t; 

jtn  = The number of items in location j at period t; 

p = The initial location of the crane at the beginning of period 2 (assume location 1); 

jC = Capacity of location j; 

M = A larger number; 

W1 = Travel cost per distance unit; 

W2 = Loading/unloading cost per item moved; 

The decision variables are defined as 

, , , ,

1  If at the end of period , item  is moved from location  to  at th crane move;   
0 Otherwise;t tt k UB r B i j

t r i j k
x ∈ ∈

⎧
= ⎨
⎩

 The binary integer linear program for the CSP is as follows. 

Minimize total cost =  

W1*  +W, , , ,*
t t

ij t k r i j
t k UB r B i j

d x
∈ ∈
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The objective function minimizes the sum of the total travel and loading/unloading 

costs, where the first term considers total travel cost and the second term considers total 

loading/unloading cost. Constraints (1) ensure that no item (or resource) can be moved 

before it is moved from its initial position, and constraints (2) ensure that each item being 

rearranged is always moved from its initial location. Similarly, constraints (3) ensure that 

no item can be moved after it is moved to its destination location, and constraints (4) 

guarantee that each item being rearranged is always moved to its destination location. 

Constraints (5) restrict an item from being moved to a location at full capacity. 
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Constraints (6) ensure that for each possible crane move, the crane can move only 

between two locations and can carry at most one item. Constraint (7) makes sure that the 

crane starts from its initial location p at the first period. Constraints (8) guarantee that 

each crane move destination is the starting position of the next crane move. For instance, 

if a crane move from location 1 to location 5, then the starting position of the next crane 

move is location 5. Constraints (9) ensure that the last crane move destination in period t 

– 1 is the initial position of the first crane move in period t. For example, if the last move 

in period 3 terminates at location 4, then the first move in period 4 starts at location 4. 

Constraints (10) and (11) are used to temporarily store items in temporary storage 

locations. Constraints (10) ensure that an item not at its destination location (i.e., either at 

its initial location or a temporary location) at the current move is moved to its destination 

location later. Constraints (11) allow an item to be moved to a temporary storage space. 

Constraints (12) ensure that once a crane starts to rearrange items in a period, it does not 

stop until all items have been rearranged. Constraints (13) restrict workspaces, currently 

used to perform activities, from being used as temporary storage spaces. Last, the 

restrictions on the decision variables are given in constraints (14).  

It is important to not that this formulation does not allow items to be stored 

temporarily at their initial locations at any time period. These conditions should rarely 

happen if ever. 

 

4.3 Heuristic Methods 

As mentioned previously, large- or even medium-size CSPs cannot be solved 
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optimally in reasonable computation time. Therefore, a heuristic approach needs to be 

used to obtain “good” solutions quickly. Hence, in this research, construction algorithms, 

hybrid ant system (HAS) heuristics, Tabu Search (TS), Probabilistic Tabu Search (PTS) 

and TS with strategies (TS/S) are presented for the CSP. As stated earlier, a simulated 

annealing (SA) heuristic for the CSP was presented in McKendall et al. (2006). However, 

the authors did not consider loading/unloading cost; therefore, the SA heuristic is 

modified and used to solve the CSPs presented in this research. Also, it is used to 

compare against the other heuristics presented. Before discussing the heuristics, a 

solution representation is defined for the CSP. 

 

4.3.1 Solution Representation 

In this research, πt is used to represent an ordered list of items (i.e., a sequence of 

items) to be moved by the crane at the beginning of each period t (where t = 2, …, T). In 

another words, πt is a permutation of items needed to be moved at the beginning of period 

t and is represented as follows: 

πt = (π1t, π2t, …, tnt
π ), for t = 2, …, T 

where πit is the ith item moved by the crane in period t, and tnt
π  is the last item to 

be moved by the crane in period t. Hence, the entire solution can be represented as  

π = {π2, …, πT} = {(π12, π22, …, 22nπ ), (π13, π23, …, 33nπ ), …, (π1T, π2T, …, TnT
π )}.  

Therefore, each sub-solution πt = (π1t, π2t, …, tnt
π ) is an ordered list of items to be 

moved by the crane. For instance, consider the CSP instance described in section 2.4, the 

feasible solution in Table 2.3 can be represented as π = {π2, π3} = {(1, 4), (1, 2, 5, 3, 6)} 
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where the total cost was determined to be $79 (i.e., f(π) = $79). Note in some cases, the 

permutation may represent different possible solutions with different cost unless a 

specific algorithm is used that leads to a unique solution. 

 

4.3.2 Determining Crane Routes using π 

Consider the CSP instance given in section 2.4 (see Figure 1.1, 1.2 and 2.3). Recall, 

when temporary storage locations are used, the solution (i.e., the permutation of items to 

be moved) may not indicate the actual movement of the crane (e.g., an item is moved 

more than once). For example, in the previous CSP instance the solution π = {π2, π3} = 

{(1, 4), (1, 2, 5, 3, 6)} indicates the order in which the crane should move the items in 

both periods 2 and 3. However, in period 3, item 1 was moved twice (first before item 2 

and after item 6) since item 1 was stored in a temporary storage location. As a result, the 

solution π does not show the movement of items from temporary storage locations to 

either other temporary storage locations or destination locations. Therefore, a serial 

heuristic is used to determine the specific movement of the items by the crane, 

considering temporary storage locations. However, if items are not moved to temporary 

storage locations (i.e., items move directly to their destination locations), the solution π 

would give the actual sequence of item moves by the crane. Next, a serial heuristic is 

given to obtain the actual sequence of the crane so that the total cost of the solution can 

be obtained. 

A serial heuristic is presented below for the CSP. As mentioned earlier, this heuristic 

is used to determine the actual sequence of items moved by the crane for each period. 
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Also, it is used to obtain the total cost of the solution. This heuristic is similar to a method 

that was used to schedule project activities with limited resources such that makespan is 

minimized (e.g., Kolisch (1996)). The steps for the serial heuristic are given as follows.  

 

Step 1: Set t = 1, where t is a period index; 

 Initialize Objective Function Value (OFV) f(π) = 0; 

 

 Step 2: Set t = t + 1; 

Initialize set RIT as empty, where RIT is the set of resources (items) in 

temporarily storage space in period t; 

Obtain set NRL, where NRL is the set of numbers indicating the number of 

resources (items) in each location at period t – 1; 

If t = 2, set crane current location x = p (e.g. location 1);   

Else, set current location x = η, which is the last position of the crane in period t 

– 1; 

Set i = 0, where i is the position index in πit; 

 

 Step 3: Set i = i + 1;  

   Set r = πit, where r is the resource in position i in period t; 

Update f(π) = f(π) + w1*d(x, S(r)), where S(r) is the location of item r in period t 

– 1, d(x, S(r)) is the distance from location x to S(r), and w1 is the cost per 

distance unit; 

Set x = S(r);  

 

Step 4: Obtain N(r), the destination location of item r in period t; 

  a) If NRL(N(r)) = Cap, where Cap is the capacity of the locations,  

Crane will move item r to the closest available temporary storage location tl 

(break tie by selecting an item with least item number), and insert item r into 

set RIT; 
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Update the NRL such that  

    NRL(S(r)) = NRL(S(r)) – 1;  

   NRL(tl) = NRL(tl) + 1; 

Update f(π) = f(π) + w1*d(x, tl) + w2, where w2 is unloading/loading cost/item; 

Update S(r) = tl, and set x = tl; 

  b) Else, move item r to its assigned (destination) location N(r). 

Update set NRL such that  

    NRL(S(r)) = NRL(S(r)) – 1; 

   NRL(N(r))= NRL(N(r)) + 1; 

Update f(π) = f(π) + w1*d(x, N(r)) + w2, and set x = N(r); 

 

Step 5:  If  RIT , x =  r′∃ ∈ )(rS ′ , and ))(( rNNRL ′ < Cap, 

Set r = r ′ , remove item r from RIT, and go to Step 4b; 

 

Step 6:  If i = nt, where tnt
π  is the last item in the sequence πt, go to Step 7; 

  Else, go to Step 3; 

 

Step 7:  If RIT ≠ Ø,  

Find item  RIT for which d(x, S(∈′′r r ′′ )) is minimum (break tie by 

selecting an item with least item number) and its destination location is 

not at capacity. 

If the destination locations of the items in RIT are at full capacity, select item 

∈′′r  RIT for which d(x, S( r ′′ )) is minimum (break tie by selecting an 

item with least item number) 

 Set r = r ′′ ;  

 Update f(π) = f(π) + w1*d(x, S(r)), set x = S(r), and remove item r from RIT; 

    Go to Step 4; 

Else, if t < T, go to Step 2; 

Else, terminate heuristic; 
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4.3.3 Construction Algorithms 

In order to obtain diverse solutions for the CSP, three construction algorithms are 

proposed in this research. The first is a very simple algorithm which lists the items to be 

moved in ascending order for each period. For example, if items 1, 2, 4, and 8 need to be 

reassigned to new locations in period t, then πt = {1, 2, 4, 8}. This construction algorithm 

is called CAI.  

The second construction algorithm, called CAII, is a nearest neighbor heuristic. In 

other words, the order in which the items are moved is based on the distances between the 

current location of the crane and the locations of the items to be moved. For instance, if 

items 1, 2, and 4 are reassigned to locations in period t and the distances between the 

current location of the crane and the locations of the items are 3, 2, and 1, respectively, 

then item 4 is assigned to the first position of the move sequence. If a tie exists, the item 

with the least number of items in its destination location is selected. Next, the item 

assigned to the second position of the sequence is the item closest to either the destination 

location or the temporary storage location of item 4. Nevertheless, the item closest to the 

current location of the crane is selected, say for instance item 1. As a result, πt = {4, 1, 2}. 

It is obvious that this heuristic attempts to minimize crane travel cost.  

In the third construction algorithm, CAIII, the location of the first item to be moved 

is selected where the location of the item has the most items to be moved. If a tie exists 

between one or more locations, the location closest to the crane is selected. Once this 

location is determined, the item in this location with the least number of items in its 
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destination location is selected first. This process is repeated for all items needed to be 

moved. This heuristic attempts to minimize the use of temporary storage locations such 

that loading/unloading costs are minimized. 

 

4.3.4 Local Neighborhood Search Techniques 

As stated previously, the CSP is to find the sequences in which a single overhead 

crane moves items to their assigned locations with respect to minimizing the total crane 

travel cost and loading/unloading cost. Hence, if nt is the total number of items to be 

moved at each period t and T is the total number of periods in the CSP, the solution space 

consists of  possible sequences. In order to improve a current solution π, a 

method to modify the sequences (i.e., find a neighboring solution) needs to be developed. 

In this research, neighboring solution is obtained by exchanging the positions of two 

items to be moved in π

∏
=

T

t
tn

2

)!(

t. Next, local neighborhood search techniques are used to improve 

the solution. Generally, a local neighborhood search technique starts with an initial 

solution π and keeps improving this solution until no further improvement can be found. 

Two local search techniques, random descent method and steepest descent method, and 

their neighborhood structure are presented in this section.  

 

a) Random Descent Method 

This local neighborhood search technique starts with an initial solution π, as the 

current solution, and randomly selects a neighboring solution π ′  in the neighborhood of 
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π, ∈′π N(π). A neighboring solution π ′  is obtained by randomly selecting a period t (1 

< t < T) and randomly exchanging the locations of two items in πt. If f(π ′ ) < f(π), then 

π ′  becomes the current solution (set π = π ′ ). Otherwise, the current solution π does not 

change. This process is repeated until a predefined stopping criterion has been met. This 

technique is known as the random descent heuristic. Since only improving solutions are 

accepted during the search process, this local search technique as well as others (e.g., 

steepest descent, first improvement), converge to the local optimum of the initial solution. 

Often times, this may result in a low-quality solution. Hence, this method does not 

guarantee a global optimum, but it is used within many meta-heuristics such as the 

proposed SA heuristic and HAS heuristics which are used to improve the performances of 

local neighborhood search techniques. More specifically, the random descent heuristic is 

used to search the neighborhoods of solutions, and other components of the proposed SA 

or HAS heuristics will be used to accept non-improving solutions so that the global 

optimum may be obtained. 

 

b) Steepest Descent Method 

The steepest descent heuristic starts from an initial solution π and explores its entire 

neighborhood, N(π). In other words, all possible pairwise exchanges between items to be 

moved are considered for each period t, and the best exchange is performed. That is, all 

the neighboring solutions in the neighborhood of π, N(π), is considered for each period t 

and the best neighbor ∈′π N(π) (i.e., the best move, move* = (t, u, v), which exchange 

the locations of items u and v in period t) is selected such that f(π ′ ) < f(π )∀ ∈π N(π). 
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The corresponding solution is the current solution at the next iteration (i.e., π = π ′ ). 

When a local optimum is obtained (i.e., no π ′  exist such that f(π ′ ) < f(π ) for 

∀ ∈π N(π)), the heuristic terminates. Therefore, the steepest descent heuristic accepts 

only improved solutions and do not accept non-improving (uphill) solutions as with other 

simple local search techniques such as the random descent heuristic. As a result, the 

steepest descent often converges to a poor local optimum, usually depending on the 

quality of the initial solution π. Therefore, different techniques (e.g., short term memory, 

aspiration criterion) are used in the heuristics (e.g. tabu search) to overcome these 

drawbacks of the simple steepest descent local search technique in search of the global 

optimum. Next, the proposed heuristics are presented for the CSP. 

 

4.3.5 Simulated Annealing Heuristic 

SA heuristic is a meta-heuristic used to solve many combinatorial optimization 

problems. Kirkpatrick (1983) was the first to use SA to solve combinatorial optimization 

problems. The major advantage when comparing SA with local search method described 

above is that SA allows for the escape from local optimum (i.e., allowing accepting 

non-improving solutions), with the possibility of reaching a global optimum, by allowing 

uphill moves. Its ability of escaping from local optimal solutions is based on analogy with 

a method of cooling metal which is known as “annealing”.  

 SA presented for the CSP starts with an initial solution π by using a construction 

algorithm. A neighboring solution π ′  is then generated by randomly exchanging the 

positions of two items at period t. If f(π ′ ) < f(π), then π ′  is accepted as the current 
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solution, else it is accepted with probability )/)]()([exp( Tempff ππ −′− , where Temp is 

a temperature parameter that is typically non-increasing at each iteration, iter. Initially, 

the probability of allowing a non-improved move by probability 

0exp( [ ( ) ( )] / )f f Tπ π′− −  will be relatively large. However, as Temp decreases, this 

probability also decreases. Thus, as a high quality solution is obtained, non-improved 

moves are less likely to be accepted. McKendall and Shang (2006) applied a SA 

heuristic to the CSP, which considered the objective of minimizing the crane travel cost. 

However, as mentioned earlier, in this research, the objective function is modified to 

consider both crane travel cost and loading/unloading cost. The steps for SA heuristic are 

as follows. 

 

Step 1: Set parameters and counters: 

 T0 = initial temperature; 

 ε = cooling ratio; 

 H0 = number of iterations performed at initial temperature epoch length; 

 γ = parameter used to increase epoch length; 

 Tf = final temperature;  

 π = current solution; 

 π* = best solution found; 

 Set current temperature Temp = T0; 

 Set current epoch length H = H0; 

 Set iteration counter at each temperature ic = 0;  

 Set π* = π; 

 

Step 2: Set ic = ic + 1; 

 Generate a neighboring solution π ′  in the neighborhood of current solution π 

by the random pairwise exchange (i.e., ∈′π N(π)). 
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Step 3: If f(π ′ ) < f(π*), then set π* =π ′ , π =π ′ , and go to step 4; 

 Else,  

if f(π ′ ) < f(π), then set π =π ′ ; 

  Else, the probability of accepting π ′ is )/)]()([exp( Tempff ππ −′− ; 

 

Step 4:  If ic < H, then go to step 2; 

 Else, set Temp = εTemp and H = H(1 + γ); 

  If Temp > Tf, set ic = 0 and go to step 2; 

  Else, terminate heuristic; 
 

First, the temperature Temp has been set to the initial value T0 at the beginning. The 

initial temperature T0 was determined by using the formula )/)]()([exp( 0Tff ππ −′− = 

0.25 and )(*1.0)()( πππ fff =−′ , where 0.10 and 0.25 were obtained experimentally. 

In other words, )25.0ln(/)(*10.00 πfT −=  and the initial probability of accepting a 

non-improving solution, which is 10% worse then solution π, is 25%. Then, Temp is 

decreased by εTemp (i.e., Temp = εTemp) at every temperature reduction. In other words, 

after performing a number of random pairwise exchanges, say H, the temperature is 

reduced by εTemp. The epoch length H is the number of iterations (random pairwise 

exchanges) performed at each temperature. At the initial temperature T0, the number of 

random pairwise exchanges is the number of periods (i.e., H0 = T). Otherwise, the number 

of random pairwise exchanges is H(1 + γ), as in the SA heuristic presented by Bouleimen 

and Lecocq (2003) for the resource constrained project scheduling problem.  The 

process is continued until a predefined stopping temperature has been met (i.e., Temp < 

Tf). Initially, the probability of allowing a non-improved move,  
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exp( [ ( ) ( )] / ),f f Tempπ π′− − will be relatively large. However, as Temp decreases, this 

probability also decreases. The values of γ and ε are obtained experimentally and 

explained in the computational results section. 

 

4.3.6 Hybrid Ant System Algorithms 

Gambardella et al. (1999) presented an ant system optimization, called HAS-QAP, 

used to improve randomly generated solutions. HAS is a modification of the ACO 

heuristics presented in Colorni et al. (1991) and Dorigo and Gambardella (1997). In 

both papers, the ACO heuristics were used to construct solutions for the TSP. Dorigo et al. 

(1999) discuss the applications of ant systems to construct solutions for some well-known 

problems such as the TSP and vehicle routing problem. Several authors presented ant 

systems for the quadratic assignment problem (QAP) such as Maniezzo and Colorni 

(1999), Stutzle and Dorigo (1999), and Gambardella et al. (1999). The ant colony 

optimization (ACO) and hybrid ant system (HAS) heuristics use the idea of how ants 

search for food and leave a chemical substance called pheromone so that other ants can 

find the food source, to solve combinatorial optimization problems. The pheromone trails 

in these ant systems serve as distributed, numerical information which the ants use to 

probabilistically construct (as in ACO) or improve (as in HAS) solutions to combinatorial 

optimization problems.  

Artificial ants used in HASs are stochastic solution improvement procedures that 

probabilistically improve solutions. In other words, the artificial ants are equipped with a 

local search heuristic function to guide their search through the set of feasible solutions. 
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HAS also provides mechanisms to either intensify or diversify the search. McKendall 

and Shang (2006) modified the HAS-QAP heuristic and presented three HASs for the 

dynamic facility layout problem (multi-period QAP). The first heuristic is a direct 

modification of HAS-QAP for the dynamic facility layout problem. The second heuristic 

uses a simulated annealing heuristic, instead of a random descent heuristic as in 

HAS-QAP, to improve the solutions obtained after performing pheromone trail swaps. 

The third heuristic is exactly like the first, except that the random descent heuristic has a 

look-ahead/look-back strategy. In this research, two HASs are presented for the CSP. The 

first is similar to the HAS-QAP (use random descent heuristic as a local search technique), 

and the second uses simulated annealing instead of a random descent heuristic. The first 

HAS, called HAS I, is briefly summarized below.    

 

Step 1:  Randomly generate a set of initial CSP solutions, calledΩ , where π . That 

is, list items to be moved in random order in each period for each ant, π

∈ Ω
m, where 

m =1, 2, …, M. 

 

Step 2: Set paremeters and counters:  

M = number of ants; 

Q = parameter used to determine the initial values of the pheromone trail matrix 

P; 

E = number of exchanges used to modify each CSP solution; 

q = the probability that pheromone trail exchange policy 1 will be selected to 

modify a CSP solution. As a result, policy 2 is chosen with a probability of 

1 – q; The policies will be discussed later. 

α1, α2 = parameters used to weaken and enforce pheromone trails, respectively; 

S = number of consecutive iterations, without improving best solution π*, before 

implementing diversification strategy; 
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Set intense = 1 (intensification strategy is active); 

run_time = run time of heuristic; 

 

Step 3:  Use the random descend method presented above to improve all M solutions and 

obtain improved set of solutionsΩ′ . Set { }Ω′∈= πππ |)(min*)( ff . 

 

Step 4: Initialize pheromone trail matrix P: 

 Set = Q/f(π*) , where the entries  measures the desirability 

of assigning item r =

rjtp tjAr t ,,∈∀ rjtp

itπ (item r in ith position in period t) to be moved to the jth 

position in tπ of π and At is a set of items to be moved. 

   

Step 5:  Modify each solution in setΩ′  by using the pheromone trail matrix and one of 

two policies to obtain another set of solutionsΩ . More specifically, for each ant 

π :  ∈Ω′

   set counter e = 1;    

   Step 5 a):  

    If e < E, 

    Randomly select a period t and an item x∈ tπ , say utπ ; 

    Randomly generate a number w between 0 and 1; 

    If w < q,  

 then use policy 1. That is, select new position v ≠ u for item x 

such that yutxvt pp +  is maximized where item y is currently in 

position v in period t (i.e., y = vtπ ); 

 Else, 

 use policy 2. That is, v ≠ u is chosen with a probability of 

∑
≠

+

+

uv
yutxvt

yutxvt

pp
pp

)(
 where y is currently in position v in period t 

(i.e., y = vtπ ); 
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 Exchange the locations of items x and y in tπ ; 

     Set e = e + 1, and go to the beginning of step 5 a); 

 Else, all solutions π ∈Ω′  have been modified such that the new set of 

solutions isΩ ; therefore, go to step 6. 

 

Step 6:  Use the random descent heuristic to improve solutions in the setΩ and obtain the 

set of solutions .  Ω ′′

  If there exist π∈ such that f(π) < f(π*), then Ω ′′

   set π* = π where { }Ω ′′∈= πππ |)(min*)( ff ; 

    

Step 7: If itw = S, set itw = 0, and randomly generate a set of M – 1 solutions. The M – 1 

solutions and π* make up a diverse set of solutionsΩ , and go to Step 3; 

 

Step 8: If there exists an πm such that f(πm ∈ Ω ′′ ) < f(πm ∈Ω′ ), then set temp = 1;  

 Else, set temp = 0; 

 If intense = 1,  

 For each ant πm, update new solution based on intensification strategy. That 

is, update  (for next iteration) where each solution πΩ′ m∈ Ω′ is such 

that { }Ω ′′∪Ω′∈mmf ππ )(min .  

 Else, set Ω′=Ω .  ′′

       Set intense = temp; 

 

Step 9: Update pheromone trail matrix as discussed below. 

 

Step 10: If heuristic run time > run_time, then terminate the heuristic. 

   Else, go to step 5; 

 

In step 3, the randomly generated solutions obtained in step 1 are improved using the 

random descent heuristic. Based on the value of the best solution obtained in step 3, the 
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pheromone trail matrix is initialized in step 4. In step 5, a period t and an item x in 

position u is randomly selected. The order in which the crane will move this item is 

exchanged with another item y in position v which is selected based on one of two policies. 

The first policy uses the pheromone trail matrix to select the item y in location v based on 

the most desirable exchange between the item x in position u and all other items.  The 

second policy selects an item y in location v randomly, but there is a higher probability 

that item y with the largest yutxvt pp +  will be accepted. After E exchanges using the 

pheromone trail matrix, the solutions are improved using the random descent heuristic in 

step 6. If S iterations are performed without improving the best found solution, the 

diversification strategy is implemented in step 7. This strategy is used to explore diverse 

areas of the solution space. Otherwise, the intensification strategy is invoke in step 8, if it 

is active (i.e., intense = 1). If intense = 0, then the intensification strategy is not activated. 

Intensification is used to explore promising areas of the solution space. Also, the set of 

solutions  for the next iteration is obtained. In step 9, the pheromone trail matrix P is 

updated such that only the best solution found so far is permitted to deposit pheromone. 

The pheromone trail matrix is updated according to Dorigo and Gambardella (1997). Set 

Ω′

  rjtrjt pp )1( 1α−= + )(2 rjtπδα  tjAr t ,,∈∀  

where 

  
1/ ( *)    if best solution *

( )
0                otherwise

rjt
rjt

f π π π
δ π

∈⎧
= ⎨
⎩

 

  The first terms in the expression, rjtp)1( 1α− , is used to weaken the pheromone trails 

where 0 < α1 < 1 is a parameter used to control the evaporation rate of the trails. A value 

close to zero indicates the trails will remain active for a longer time, and a value close to 
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one indicates a high degree of evaporation and a shorter memory of the system. However, 

the expression )(2 rjtπδα is used to strengthen the pheromone trails where 2α is a 

parameter used to control the reinforcement of the pheromone trails corresponding to the 

best solution π*. Using only the best solution π* speeds up the convergence of the 

heuristic (Gambardella et al., 1999). In step 10, the heuristic is terminated, if heuristic 

run time is at least run_time minutes.  

  The second HAS, called HAS II, uses the simulated annealing heuristic presented 

earlier, instead of the random descent heuristic, to improve solutions initially and after 

performing E pheromone trail exchanges. McKendall and Shang (2006) presented a 

similar HAS for the dynamic facility layout problem, which out-performed the HAS with 

a random descent heuristic. Therefore, it is applied to the CSP presented in this research. 

More specifically, the random descent heuristic presented in steps 3 and 6 are replaced by 

the SA heuristic presented previously in section 4.3.5. 

 

4.3.7 Tabu Search Heuristics 

The Tabu Search (TS) heuristic was first proposed by Glover (1986) and presented in 

detail in Glover (1990a) and (1990b) and Glover and Laguna (1992). The basic idea of 

TS is to improve a solution iteratively, using some guiding rules such as dynamic tabu list 

size as well as intensification and diversification strategies to obtain good solutions in 

complex solution spaces. The basic components of the TS heuristic are discussed below. 

The TS heuristic uses the steepest descent heuristic with short term memory (or 

recency based memory) to accept uphill moves. In other words, the steepest descent 
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heuristic converges to a local optimum; however, short term memory is used to forbid the 

recent moves so that the heuristic can climb out of the valley which contains the local 

optimum (i.e., accept uphill moves) in search of better local optima. In the CSP, if the 

best solution in the neighborhood of the current solution π is π ′  (i.e., f(π ′ ) < f(π ) for 

∀ ∈π N(π)) and π ′  is obtained by move* = (t, u, v), which exchanges the locations of 

items u and v in period t, then this move is tabu restricted for a certain duration 

(tabusize), called tabu list size. For the CSP, the tabu list size tabusizet are different for 

different periods. The tabu status and tabu list size of each move are maintained in the 

lower half of the tabu list structure tabu[t][u][v], where u > v. Sometimes a move which is 

tabu restricted may give the best solution found thus far. Therefore, the aspiration 

criterion is used to override the tabu restriction of a move when the move improves the 

best found solution thus far. For example, if at the current iteration (iter), items 2 and 6 

exchange positions in period 3 (i.e., move* = (3, 6, 2)) where π = {π2, π3} = {(1, 4), (1, 2, 

5, 3, 6)}, then π ′  = {π2, π3’} = {(1, 4), (1, 6, 5, 3, 2)} and tabu[3][6][2] = tabusize3 + 

iter. Therefore, the move, which considers exchanging items 2 and 6 in period 3, is tabu 

until iter = tabusize3 + iter. In other words, the move, which considers exchanging items 

2 and 6 in period 3, can be performed again when iter = tabusize3 + iter + 1. Also, if 

move* had been performed recently, is tabu restricted, and it improves the best solution 

found thus far, then the aspiration criterion is used to override its tabu restriction. Any 

move which is acceptable (e.g., nontabu move and tabu move overridden by aspiration 

criterion) is defined as an admissible move. Hence, move* is defined as the best 

admissible move. A simple TS heuristic is outlined below. 

 

 65



Step 1:  Initialize parameters and counters: 

T is the total number of periods; 

Tabu[][][] is the tabu list structure; 

tabusizet is the tabu tenure length for period t; 

iter is iteration number where iter = 0; 

TRT is total running time before terminating the heuristic; 

 

Step 2:  Obtain an initial solution π by using a construction algorithm and determine its 

objective function value f(π); 

 

Step 3: Set π* = π, where π* is the best solution found thus far and set f(π*) = f(π); 

 

Step 4:  Set iter = iter + 1; 

Find the best admissible move move* = (t, u, v) with respect to objective 

function value, which givesπ ′ ; 

 

Step 5:  Set π = π ′  and f(π) = f(π ′ ) ;    

If f(π) < f(π*),  

   Set π* = π and f(π*) = f(π) ; 

 

Step 6:  Update tabu list as tabu[t][u][v] = iter + tabusizet; 

 

Step 7:  Stopping Criteria 

If heuristic running time < TRT, go to Step 4.  

Else, terminate the heuristic and return solution π* and total cost f(π*); 
 

4.3.8 Probabilistic Tabu Search 

The probabilistic tabu search (PTS) heuristic for the CSP is an extension of the TS 

heuristic presented in the previous section. Although the TS heuristic accepts uphill 
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moves to escape from poor local optima, it is a deterministic heuristic which may not 

explore a large portion of the solution space far away from the initial solution. Therefore, 

the PTS heuristic is used to add randomness so that diverse solutions may be obtained. 

The main difference between the PTS and TS heuristic is how move* is selected at each 

iteration. Before, in the TS heuristic, move* is defined as the best admissible move. 

However, in the PTS heuristic, move* is selected randomly among the best G admissible 

moves. Similarly, move* is used to generate the new solutionπ ′ , which becomes the 

current solution π  for the next iteration. More specifically, for the PTS heuristic, move* 

is selected from the best G admissible moves according to their probabilities. In other 

words, the best G admissible moves are sorted based on their corresponding OFV. The 

probability to accept the first (i.e., best) move from the G moves is p. In this research, G 

is set to 10 and p is set to 0.4. If the first move is rejected, the second move is accepted 

with a probability p(1 - p). This process is repeated until a move is selected. However, if 

no move is selected after considering all G moves, the first move will be selected. An 

improved technique for selecting move* is to use the cumulative probability proposed in 

Chiang and Chiang (1998). More specifically, the cumulative probability table below is 

created using the following equations. 
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i P AP 
0 0 0 
1 0.4 1 
2 0.24 0.5939 
3 0.144 0.3539 
4 0.086 0.2099 
5 0.0518 0.1235 
6 0.0311 0.0717 
7 0.0186 0.0406 
8 0.0111 0.0219 
9 0.0067 0.0107 

10 0.0040 0.0040 
>10   0 

 

Table 4.1: Cumulative probabilities with G =10 and p = 0.4. 

 

 Then, a random number x between 0 and 1 is generated. If CP(i + 1) < x < CP(i), 

then the ith move out of the G moves is selected as move*.  In the cumulative 

probability table presented above, where G = 10 and p = 0.4. For instance, a random 

number x, say x = 0.25 is generated. Since CP(4) =0.2099 < x < CP(3) = 0.3539, the 3rd 

move from the list of G moves is defined as move*. Therefore, the PTS heuristic contains 

steps 1 – 7 of the TS heuristic. However, move* in step 4 is obtained using the cumulative 

probability table and the equations defined above. 

Although the PTS heuristic usually out-performs the basic TS heuristic, only a few 

researchers actually applied the PTS heuristic to combinatorial optimization problems in 

the literature. Chiang and Chiang (1998) applied the PTS heuristic to a quadratic 

assignment problem. Lim et al (2004) presented a similar PTS heuristic to solve a crane 

scheduling problem with spatial constraints.  
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4.3.9 Tabu Search with Strategies 

The main idea of the TS heuristics discussed above, TS and PTS heuristics, is as 

follows. The use of short term (recency-based) memory to keep track of the most recent 

moves is to avoid getting trapped at a local optimum by allowing uphill (non-improving) 

moves. More specifically, the steepest descent heuristic with recency-based memory and 

the aspiration criterion defined in this research is used to obtain the best admissible move 

move* in the TS heuristic. In the PTS heuristic, the same components are used to obtain 

G admissible moves, as in the TS heuristic. However, the admissible move selected, 

move*, may not be the best move but is in the top G admissible moves. More specifically, 

move* is selected based on cumulative probabilities. In retrospect, the proposed TS 

heuristic is a deterministic heuristic in which solution quality may depend on diverse 

initial solutions. However, the PTS heuristic adds randomness to the TS heuristic such 

that the solution quality does not depend on the initial solutions provided.   

Adding cumulative probabilities to the basic TS heuristic is a diversification strategy 

used to better explore different areas of the solution space. Other diversification 

techniques such as dynamic tabu list size and frequency-based (long-term) memory may 

be used to improve the performance of the basic TS heuristic. Also, intensification 

strategies may also be used to explore promising regions within the solution space more 

thoroughly. Next, the diversification and intensification strategies used to improve the 

basic TS heuristic for the CSP are discussed below. 
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a) Diversification Phase 

The ideas of diversification in Chiang and Kouvelis (1996) are used in this research. 

There are the dynamic tabu list size and frequency-based memory. With dynamic tabu list 

size, the tabu list size tabusizet is not fixed as in the basic TS procedure but is dynamic in 

order to diversify the search. In other words, tabu list size tabusizet is dynamic and 

updated at each iteration. More specifically, the tabusizet varies between a lower bound 

LBt and an upper bound UBt. To illustrate the dynamic tabu list size, first, an improvement 

of the total cost of the current solution is calculated as: 

 
)(
)(1

π
π

f
f z 

′
−=  

where π is the current solution and π ′  is a neighboring solution obtained by performing 

the best admissible move move*  in period t. Then, LBt and UBt are defined as: 

  13/* >∀= tTnLB tt  

12** >∀= tTnUB tt   

where nt is the total number of items to be moved at each period t and T is the total 

number of periods in the CSP. Since nt is changed between periods, LBt, UBt and tabusizet 

in different periods may not be same. Initially, the tabu list size tabusizet in period t 

equals to LBt. Then, at the end of each iteration, tabu list size tabusizet will be updated as 

follows. 
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where α and β are pre-defined parameters. The graph of this function for z > 0 is shown in 
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Figure 4.1.  
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Figure 4.1: Dynamic tabu list size tabusizet when z > 0 

 

Therefore, the basic TS heuristic can be easily modified to consider dynamic tabu list 

sizes by replacing step 6 with the following. 

 

Step 6:  Update tabusizet = f(tabusizet); 

Update tabu list as tabu[t][u][v] = iter + tabusizet; 
  

Another diversification technique is to use frequency-based (long term) memory. 

This diversification strategy is added to the TS heuristic to diversify the search space, 

forcing the search into unexplored regions of the solution space. It is employed only 

when no improving admissible move exists and a penalty is given for each 

non-improving move. In order to apply diversification strategy to the TS heuristic, a long 

term memory is needed. Unlike the short term (recency) memory discussed above, where 

only the recent moves are given, the long term memory keeps track of the frequencies of 
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all moves during the search process and shows the distribution of each move. For the CSP, 

the long term memory is used to keep track of the number of exchanges between pairs of 

items. The frequencies of the moves are kept in the upper half of the tabu list structure 

tabu[t][u][v], where u < v. For instance, if items u and v exchanged positions in period t 

(i.e. move* = (t, u, v)), then long term memory is updated as:  

tabu[t][u][v] = tabu[t][u][v] + 1 for u < v; 

See a tabu list structure instance below. The tabu structure in Figure 4.2 shows that 

in period 3, 5 items are to be relocated (i.e., item 1, 2, 3, 5, and 6) and after several 

iterations, a number of exchanges have been performed. For instance, tabu[3][3][5] = 13, 

which means that items 3 and 5 exchanged locations 13 times thus far during the 

execution of the heuristic.  

 

Tabu 
t = 3 

Item 

Item 1 2 3 5 6 
1 0 5 2 9 0 
2 140 0 0 0 0 
3 47 0 0 13 0 
5 212 102 320 0 17 
6 99 0 0 401 0 

 

Figure 4.2: A tabu structure instance. 

 

The long term memory structure, which is defined above, shows the distribution of 

moves in each period and is used in the diversification strategy to penalize non-improving 

moves by giving a larger penalty to the moves with greater frequency counts. Notice, in 

step 4 presented above, the basic TS heuristic selects the best admissible move move* = (t, 

u, v) and the corresponding solution π ′  is obtained by considering f(π ′ ) < f(π ) 
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∀ ∈π N(π)). However, if the penalty for non-improving moves is added, then a modified 

objective function is used. Thus, step 4 is modified as follows. 

 

Step 4: Set iter = iter + 1; 

Find the best admissible move move* = (t, u, v) which gives π ′  according to a 

revised OFV where the revised OFV is  

rf(π ′ ) = f(π ′ ) + *λ tabu(t, u, v) (assume u < v) 

   
⎩
⎨
⎧
Λ

<′
=

Otherwise;
);()( if0 ππ

λ
ff

Λ is a pre-defined parameter for penalty. For each non-improving move, a penalty is 

given based on the frequency of the move performed thus far. Then, move* = (t, u, v) will 

be selected based on this revised evaluation value for each move.  

 

b) Intensification Phase 

Unlike the diversification strategies presented above, intensification explores 

promising areas of the solution space more thoroughly. In the literature, intensification 

typically operates by restarting from relatively high quality solutions or modifying a 

solution to favor some attributes. In this research, the intensification method described in 

Chiang and Kouvelis (1996) is applied and integrated into the proposed TS heuristic for 

the CSP. This intensification strategy is implemented by fixing two items after 

exchanging their locations, if this exchange reduces the total cost of the current best 

solution π* by at leastα , and α  is the same value as the parameter used in the 

diversification strategy as used in Chiang and Kouvelis (1996). Also, experimental tests 

were performed which gave the same results. Similar to the TS aspiration criterion, a 
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fixed item can be freed to exchange its location with other items if the exchange results in 

an improvement better than the best solution found so far. Intensification is employed 

after a certain number (η ) of iterations have been performed, since there are relatively 

higher probabilities of having more solution improvements at earlier iterations. The steps 

of the basic TS heuristic are modified for the diversification and intensification strategies 

discussed above and are as follows. 

 

Step 1: Initialize parameters and counters: 

T is the total number of periods; 

Tabu[][][] is the tabu list structure; 

tabusizet is the tabu tenure length for period t; 

iter is iteration number where iter = 0; 

TRT is total running time before terminating the heuristic; 

LBt is the lower bound for tabusizet; 

UBt is the upper bound for tabusizet; 

α is the parameter for diversification and intensification strategy; 

β is the parameter for diversification strategy; 

Λ is a parameter for penalty 

η is the number of iterations performed before invoking the intensification 

strategy; 

F[][] stores all items fixed during the intensification process; 

 

Step 2:  Obtain an initial solution π by using a construction algorithm and determines its 

objective function value f(π); 

 

Step 3: Set π* = π, where π* is the best solution found thus far and set f(π*) = f(π); 

 

Step 4:  Set iter = iter + 1; 
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Find the best admissible move move* = (t, u, v) which gives π ′  with respect to 

a revised OFV where the revised OFV is 

rf(π ) = f(π ) + *λ tabu(t, u, v) (assume u < v) for 

  
0 if ( ) ( );

Otherwise;
f fπ π

λ
<⎧

= ⎨Λ⎩
 

If iter >η , 

The items u and v in selected move* cannot belong to the set F (i.e., move(t, 

u, v) is not fixed; or 

If either (t, u) or (t, v) belong to the set F, 

The move(t, u, v) is selected as the move* only when this move results 

in a new best solution found. 

Step 5:  
)(
)(1

π
π

f
f z 

′
−=  and set π =π ′ , f(π) = f(π ′ ); 

If f(π) < f(π*),  

  If iter >η  and ( )' 1
( *)

fz
f
π α
π

= − ≥ , 

Set  ( , ) ( , );F F t u t v= ∪ ∪

   Set π* = π and f(π*) = f(π) ; 

 

Step 6:  Update tabusizet = f(tabusizet) where  

  

  if 0

*  if 0
( )

if
3* if 

t

t t
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≤
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⎪
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. 

Update tabu list as tabu[t][u][v] = iter + tabusizet; 

  

Step 7:  Stopping Criteria: If heuristic running time < TRT, go to Step 4.  

Else, terminate the heuristic and return solution π* and total cost f(π*); 
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CHAPTER 5 

COMPUTATIONAL RESULTS 

5.1 Data Sets 

Two test data sets are created in this research in order to test the proposed heuristics. 

First, a set of test problems were generated by randomly assigning items to locations in 

multiple periods. Then, 24 problems were selected as the test problems in data set I based 

on the problem factors. More specifically, data set I is randomly generated based on the 

following factors: the number of items R, number of periods T and number of locations L. 

In addition, there are L/2 work space locations and L/2 storage space locations, and the 

distance between any two locations i and j are defined in the distance matrix D. The 

number of items (resources) to be moved (NORM) is uniformly distributed in the interval 

[1, R] at period t; the number of destination locations (NODL) is uniformly distributed in 

the interval [1, NORM], and the number of items in destination location is uniformly 

distributed in the interval [1, Cap], where Cap is the capacity of the locations. In the first 

data set, the number of items R is 9, the number of locations L is 6, and the number of 

periods T is from 3 to 8 as shown in Table 5.1.  

 

Pr. # R L T 
P01-P04 9 6 3 
P05-P08 9 6 4 
P09-P12 9 6 5 
P13-P16 9 6 6 
P17-P20 9 6 7 
P21-P24 9 6 8 

 

Table 5.1: Problem sizes for data set I. 
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Data set II was obtained by solving the dynamic space allocation problem (DSAP) 

instances presented in McKendall et al. (2005). The DSAP assigns activities and their 

required items (resources) to workspaces and idle items to storage spaces with respect to 

minimizing the sum of the distances the items travel. Therefore, the output of the DSAP 

can be used as input data for the CSP. This data set has 96 test problems. The sizes of the 

instances in this data set are shown in Table 5.2.  

 

Pr. # R L T Group 
P01-P08 9 6 10 
P09-P16 9 6 15 
P17-P24 9 6 20 

1 

P25-P32 18 12 10 
P33-P40 18 12 15 
P41-P48 18 12 20 

2 

P49-P56 30 20 10 
P57-P64 30 20 15 
P65-P72 30 20 20 

3 

P73_P80 48 32 10 
P81-P88 48 32 15 
P89-P96 48 32 20 

4 

 

Table 5.2: Problem sizes for data set II. 

 

5.2 Parameters Setting 

The heuristic parameters were set experimentally and some use a formula.  

• For the SA heuristic, the initial temperature T0 was determined by using the 

formula )/)]()([exp( 0Tff ππ −′− = 0.25 and )(*1.0)()( πππ fff =−′ , where 0.10 and 

0.25 were obtained experimentally. In other words, )25.0ln(/)(*10.00 πfT −=  and the 

initial probability of accepting a non-improving solution, which is 10% worse then 
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solution π, is 25%. In addition, ε, γ, Tf, and H0 were set to 0.95, 0.05, 0.1, and number of 

periods (T), respectively.  

• For HAS I & II heuristics, the following parameters setting are used. The numbers of 

ants (M) are set to 5, 10, 12, and 15 for the first 24 problems, second 24 problems, third 

24 problems, and the fourth 24 problems, respectively. E = R * T, 1 0.1α = , and 2α =Q 

= T * 103, q = 0.7, S = R * T. Furthermore, the settings for the SA heuristic embedded 

within HAS II are )25.0ln(/)(*10.00 πfT −= , as well as ε, γ, Tf, and H0 were set to 0.95, 

0.04, 0.1, and number of periods (T), respectively. 

• For the basic TS and PTS heuristics, tabusizet is set to nt * T / 2. Moreover, p = 0.4 and 

G = 10 are the parameters setting for the PTS heuristic. The intensification strategy 

parameters α, η and the diversification parametersΛ , α, β  are set by a statistical 

technique. More specifically, for each CSP problem, a certain numbers of initial 

solutions were generated randomly. Then, for each of these solutions, a steepest descend 

heuristic is used to improve the solution until no further improvement can be found (i.e., 

local optimum is reached). Next , the statistical information for these improved solutions 

are gathered, such as average percent improvement at each iteration (API), average 

iterations before reaching the local optimum (AI), average maximal percent 

improvement at each iteration (AMPI),  average median objective function value 

(AMOFV), and average minimal objective function value (AOFV). Then, the parameters 

α is set to API, η  is equal to AI, Λ is set to AMOFV/AOFV and β  is set to AMPI. In 

addition, LBt and UBt are defined as: 

  and 13/* >∀= tTnLB tt 12** >= ∀tTnttUB . 
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5.3 Test Environment 

In all experiments, a Pentium IV 2.4GHz computer with 1 Giga-byte of memory was 

used to solve the CSP instances from data set I and II using the proposed heuristics. The 

heuristics were coded using the C++ programming language under Windows XP 

operating system. In order to make fair comparisons, the proposed SA, HAS and TS 

heuristics ran for the same amount of computational time for each CSP problem instance.  

5.4 Experimental Results 

a) Data Set I 

For data set I, the first construction algorithm is used to generate initial solutions for 

the heuristics. SA, TS, PTS, TS with strategies (TS/S), and HAS I/II are applied to this 

data set. All proposed heuristics ran only once and ran the same amount of time for each 

test problem.  

Table 5.3 shows the results obtained from the proposed heuristics. The optimal 

solutions were obtained for all of the test problems in this set and were obtained using the 

mathematical model presented in section 4.2.1 and CPLEX version 6.6. The following 

CPLEX parameter settings were used: strong branching for variable selection, depth first 

for node selection, dual simplex for start algorithm, and the rest were default settings. 

Also, their computational times are listed. The bold numbers represent the optimal OFVs. 

All times in the tables are given in minutes. As a result, all of the proposed heuristics 

obtained the optimal solutions for all 48 test problems. Notice the run times for the 

heuristics are much less than the run time for the mathematical model with CPLEX. The 
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main reason for using this data set was to test the mathematical model.  

 

 

Optimal 
Solution Pb # 

Final Time 
SA TS PTS TS/S HASI/II Heuristic

Time 

0.00  P01 57 0.01 57 57 57 57 57 
0.00  P02 83 0.05 83 83 83 83 83 
0.00  P03 62 0.03 62 62 62 62 62 
0.01  P04 88 0.11 88 88 88 88 88 
0.01  P05 65 0.08 65 65 65 65 65 
0.01  P06 119 7.60 119 119 119 119 119 
0.01  P07 72 0.02 72 72 72 72 72 
0.02  P08 91 0.23 91 91 91 91 91 
0.02  P09 121 0.33 121 121 121 121 121 
0.02  P10 150 19.42 150 150 150 150 150 
0.02  P11 118 2.02 118 118 118 118 118 
0.01  P12 150 19.53 150 150 150 150 150 
0.01  P13 104 0.10 104 104 104 104 104 
0.02  P14 189 1527.36 189 189 189 189 189 
0.02  P15 114 0.12 114 114 114 114 114 
0.02  P16 229 8.48 229 229 229 229 229 
0.02  P17 145 7.05 145 145 145 145 145 
0.02  P18 278 1947.32 278 278 278 278 278 
0.02  P19 157 60.97 157 157 157 157 157 
0.03  P20 246 1014.73 246 246 246 246 246 
0.03  P21 169 12.93 169 169 169 169 169 
0.04  P22 320 2915.87 320 320 320 320 320 
0.04  P23 197 318.12 197 197 197 197 197 
0.03  P24 347 2755.59 347 347 347 347 347 

 

Table 5.3: Computational results for generated data set I. 

 

b) Data Set II 

The second data is used to further verify the speed and robustness of the proposed 

heuristics. This data set has test problems with 9-48 items, 6-32 locations and 10, 15 and 
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20 periods as shown in Table 5.2. Compared to data set I, data set II is much larger and 

has much larger problems, which cannot be solved by using exact methods (i.e., the 

proposed mathematical model and CPLEX) in reasonable time. The TS and TS/S 

heuristics, which are deterministic techniques, are run once with each of the solutions 

obtained using the construction algorithms for each test problem. SA, HAS I and II, PTS 

are run 5 times with each of the solutions obtained from the construction algorithms. Data 

set II is divided into 4 groups, each of which has 24 test problems. From group 1 to group 

4, the sizes of the test problems are increased. The test problems in group 1 are relative 

small, groups 2 and 3 have medium size test problems, and the test problems in group 4 

are the largest.  

 

No. TS PTS TS/S HASI HASII SA 
P01-P24 22 24 24 23 22 23 
P25-P48 5 12 15 12 12 13 
P49-P72 1 10 12 6 12 3 
P73-P96 0 5 12 4 11 4 

Total 28 51 63 45 57 43 
Percent 29.2% 53.1% 65.6% 46.9% 59.4% 44.8% 

 

Table 5.4: # of best solutions found obtained by the proposed heuristics. 

 

No. TS PTS TS/S HASI HASII SA 
P01-P24 0.22% 0.00% 0.00% 0.09% 0.12% 0.09% 
P25-P48 2.57% 0.43% 0.27% 0.47% 0.36% 0.44% 
P49-P72 3.51% 0.38% 0.14% 0.37% 0.26% 1.40% 
P73-P96 3.69% 0.27% 0.12% 0.31% 0.19% 1.15% 
Average 2.49% 0.27% 0.13% 0.31% 0.23% 0.77% 

 

Table 5.5: Average percent each heuristic is away from the best found solutions. 
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Table 5.4 shows the number of best solutions obtained by each of the proposed 

heuristics. For the first group (i.e., test problems 01-24), the test problems have 9 

resources, 6 locations, and 3 – 5 periods, which are the smaller size problems. All 

proposed heuristics performed well for this group of test problems. More specifically, TS 

obtained the best found solution 22 times, PTS 24 times, TS/S 24 times, HAS I 23 times, 

HAS II, 22 times, and SA 23 times. The detail results for the first group are given in 

Table 5.6. Note, the bolded OFVs are the best found OFVs. Table 5.5 gives the average 

percent each heuristic is away from best found solutions. 

However, the proposed heuristics perform differently for the other 3 groups of test 

problems. More specifically, TS obtained the best found solutions 5, 1, 0 time(s), PTS 

obtained 12, 10, 5 times, TS/S obtained 15, 12, 12 times, HAS I obtained 12, 6, 4 times, 

HAS II obtained 12, 12, 11 times, and SA obtained 13, 3 and 4 times. See the results for 

each test problem in groups 2, 3, and 4 in Tables 5.7, 5.8, and 5.9, respectively. Clearly, 

TS/S outperformed all other heuristics since it obtained 39 best solutions of 72 test 

problems, which is the most. In contrast, simple TS only found 6 best solutions. However, 

HAS II obtained 12, 12 and 11 times (total of 35 out of 72 test problems) for these 3 

groups of 24 test problems, which has the most stable performance for data set II. PTS 

performed well for medium size problems, but relatively worse for the last group of test 

problems. Moreover, HAS I performed slightly better than SA since HAS I obtained best 

found 22 times and SA obtained 20 of 72 test problems.  

Tables 5.6 – 5.9 list details results and computational times for each group of test 

problems in data set II. The bold numbers are the best found OFVs, and times are given 
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in minutes. The HAS II heuristic is HAS I combined with SA heuristic. Although this 

integration increases the computational complexity, the results show that HAS II 

improved HAS I, since the average percents HAS II OFVs are below HAS I are -0.01%, 

0.03%, 0.03% and 0.03% for groups 1, 2, 3, and 4, respectively. More importantly, HAS 

II obtained 42 solutions better than HAS I out of the 96 test problems (43.8%).  

Comparision of HAS I with SA
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Figure 5.1: % Improvement of HAS I over SA heuristic. 
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Comparision of HAS II with SA
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Figure 5.2: % Improvement of HAS II over SA heuristic. 

 
 

 When comparing the HAS I and HAS II with SA heuristic, overall, the solutions 

obtained from the HAS I and II heuristics are 0.46% and 0.54% improved to solutions 

obtained from the SA heuristic. However, when considering each of the groups of test 

problems separately, the percent of improvement of HAS I over SA heuristic are 0.00%, 

-0.03%, 1.03% and 0.84%, respectively. The percent of improvement of HAS II over SA 

heuristic are -0.04%, 0.08%, 1.14% and 0.96% for each of the four groups. Therefore, 

both the proposed HAS heuristics outperformed the SA heuristic for larger size problems, 

and the SA heuristic performed well for smaller size problems. See a comparisons of the 

HAS heuristics and SA in Figure 5.1 and Figure 5.2. It shows that both the HAS I and II 

heuristics have a relative stable percent improvement over the SA heuristic for large size 

problems. 
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Comparision of TS/S with PTS
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Figure 5.3: % Improvement of TS/S heuristic over PTS heuristic. 

 

 For the proposed TS heuristics, based on the previous analyses, it is obvious that both 

proposed PTS and TS/S heuristic outperformed the basic TS heuristic. See a comparisons 

of TS/S and PTS in Figure 5.3, which shows the percent improvement of TS/S heuristic 

over PTS heuristic for the CSP. More specifically, when comparing the TS/S heuristic 

with PTS heuristic, TS/S heuristic obtained better solutions than PTS 38 out of 96 test 

problems, and PTS heuristic outperformed TS/S heuristic 13 times. In addition, they 

obtained the same results 45 times, which include all test problems from P01 to P34. 

Therefore, TS/S heuristic performed better than PTS heuristic for medium and large size 

test problems. Also, it is important to note that PTS heuristic ran 15 times for each test 

problem (i.e., 5 runs for each of the 3 solutions obtained from the construction algorithms) 

and TS/S heuristic only ran 3 times for each problem (i.e., single run for each of 3 

solutions generated from the construction algorithms). Therefore, TS/S heuristic total run 
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time was 1/5 of the PTS total run time. 

 Moreover, computational experiments show that the solution qualities of the TS 

heuristic really depend on the qualities of the initial solutions. When comparing the 

construction algorithms, CAI, CAII, and CAIII obtained the better solution 2, 69, 66 

times, respectively. When only consider the solutions from the basic TS with CAI, CAII, 

and CAIII construction algorithms, TS/CAI performed best 32 times, TS/CAII 76 times, 

and TS/CAIII 73 times. Because the qualities of the constructed solutions by using CAII 

and CAIII are relative the same, both of them are much better than the solutions 

constructed by CAI. It is clear that the initial solution quality affects the performance of 

the TS heuristic. However, the performances of the other tabu search heuristics (i.e., PTS 

and TS/S) were not depended on the quality of the initial solutions. It is obvious that the 

performances of the stochastic heuristics (i.e., HAS I, HAS II, and SA) are not depended 

on the quality of the initial solutions. Therefore, when applying these heuristics to the 

CSP, more emphasis should be place on the heuristics themselves instead of the 

construction algorithms. 



TS HAS 
No Initial Cost 

TS PTS TS/S Best HASI HASII Best 
SA 

Best 
of All 

Time 

1 205 205 205 205 205 205 205 205 205 205 0.03  
2 359 339 339 339 339 339 339 339 339 339 0.05  
3 243 233 233 233 233 233 233 233 233 233 0.03  
4 324 314 314 314 314 314 314 314 314 314 0.05  
5 213 213 213 213 213 213 213 213 213 213 0.03  
6 385 375 375 375 375 375 375 375 375 375 0.05  
7 274 254 254 254 254 254 254 254 254 254 0.05  
8 369 346 346 346 346 346 346 346 346 346 0.03  
9 410 390 390 390 390 390 390 390 390 390 0.07  

10 655 645 645 645 645 645 645 645 645 645 0.07  
11 462 442 442 442 442 442 442 442 442 442 0.07  
12 720 657 637 637 637 637 647 637 637 637 0.07  
13 403 373 373 373 373 373 373 373 373 373 0.05  
14 595 585 585 585 585 585 585 585 585 585 0.05  
15 566 460 460 460 460 460 460 460 460 460 0.07  
16 733 670 670 670 670 670 670 670 670 670 0.07  
17 467 467 467 467 467 467 467 467 467 467 0.08  
18 856 806 806 806 806 806 806 806 806 806 0.08  
19 651 621 621 621 621 621 621 621 621 621 0.10  
20 1031 938 918 918 918 938 918 918 938 918 0.08  
21 711 615 615 615 615 615 615 615 615 615 0.08  
22 926 853 853 853 853 853 853 853 853 853 0.08  
23 848 692 692 692 692 692 702 692 692 692 0.10  
24 981 786 786 786 786 786 786 786 786 786 0.08  

Table 5.6: Computational results for 1st group in data set 2 
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TS HAS 
No Initial Cost 

TS PTS TS/S Best HASI HASII Best 
SA 

Best 
of All 

Time 

25 610 490 490 490 490 490 490 490 490 490 0.45  
26 813 622 622 622 622 632 622 622 622 622 0.43  
27 982 533 513 513 513 513 513 513 513 513 0.50  
28 1038 730 730 730 730 730 730 730 730 730 0.47  
29 544 441 441 441 441 441 441 441 441 441 0.43  
30 783 675 660 660 660 660 660 660 660 660 0.45  
31 791 572 537 537 537 557 537 537 537 537 0.48  
32 1167 824 824 824 824 827 837 827 824 824 0.48  
33 1107 834 794 794 794 794 794 794 794 794 0.70  
34 1434 1075 1065 1065 1065 1065 1065 1065 1065 1065 0.70  
35 1249 926 906 881 881 856 880 856 896 856 0.77  
36 1670 1266 1213 1214 1213 1214 1212 1212 1193 1193 0.73  
37 895 702 692 682 682 687 682 682 692 682 0.68  
38 1312 1099 1079 1083 1079 1085 1082 1082 1079 1079 0.70  
39 1276 827 817 818 817 819 817 817 827 817 0.75  
40 1793 1262 1236 1238 1236 1241 1238 1238 1229 1229 0.75  
41 1587 1171 1161 1160 1160 1159 1160 1159 1171 1159 0.93  
42 1844 1429 1409 1408 1408 1408 1409 1408 1409 1408 0.95  
43 1765 1379 1269 1268 1268 1275 1273 1273 1272 1268 1.05  
44 2566 1920 1864 1861 1861 1864 1858 1858 1860 1858 1.03  
45 1326 1023 1013 1012 1012 1016 1014 1014 1013 1012 0.90  
46 1798 1488 1455 1453 1453 1457 1457 1457 1455 1453 0.93  
47 1958 1346 1293 1295 1293 1291 1296 1291 1313 1291 1.05  
48 2562 1840 1830 1832 1830 1828 1835 1828 1830 1828 1.02  

Table 5.7: Computational results for 2nd group in data set 2 
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TS HAS 
No Initial Cost 

TS PTS TS/S Best HASI HASII Best 
SA 

Best 
of All 

Time 

49 1085 850 812 802 802 816 802 802 812 802 2.82  
50 1210 966 946 935 935 936 943 936 951 935 2.87  
51 1162 819 809 798 798 799 798 798 809 798 3.12  
52 1892 1315 1315 1317 1315 1317 1315 1315 1328 1315 3.05  
53 1164 821 791 791 791 791 796 791 781 781 2.78  
54 1351 975 942 936 936 943 940 940 932 932 2.83  
55 1404 885 847 847 847 851 847 847 885 847 3.15  
56 2002 1305 1302 1299 1299 1304 1297 1297 1305 1297 3.12  
57 1576 1127 1106 1106 1106 1107 1106 1106 1117 1106 4.28  
58 2047 1545 1535 1530 1530 1530 1534 1530 1525 1525 4.30  
59 2166 1406 1330 1330 1330 1335 1330 1330 1363 1330 4.88  
60 2166 1406 1336 1335 1335 1334 1336 1334 1356 1334 4.82  
61 1677 1184 1134 1134 1134 1134 1138 1134 1154 1134 4.43  
62 2416 1768 1689 1693 1689 1697 1693 1693 1706 1689 4.38  
63 2494 1720 1637 1632 1632 1638 1632 1632 1681 1632 5.03  
64 3775 2510 2411 2405 2405 2411 2409 2409 2441 2405 4.97  
65 2265 1603 1533 1538 1533 1544 1539 1539 1553 1533 5.90  
66 3094 2289 2224 2224 2224 2224 2224 2224 2242 2224 5.90  
67 3025 2122 2082 2077 2077 2074 2075 2074 2107 2074 6.80  
68 4364 3075 3025 3026 3025 3031 3025 3025 3051 3025 6.70  
69 2728 1760 1710 1702 1702 1708 1706 1706 1720 1702 6.22  
70 3646 2586 2477 2472 2472 2472 2469 2469 2525 2469 6.20  
71 3531 2540 2427 2427 2427 2425 2436 2425 2447 2425 7.18  
72 5223 3672 3547 3547 3547 3547 3547 3547 3642 3547 7.15  

Table 5.8: Computational results for 3rd group in data set 2 
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90

TS HAS 
No Initial Cost 

TS PTS TS/S Best HASI HASII Best 
SA 

Best 
of All 

Time 

73 2022 1393 1353 1346 1346 1347 1340 1340 1373 1340 17.28 
74 2101 1573 1543 1540 1540 1543 1540 1540 1548 1540 17.23 
75 2640 1790 1720 1700 1700 1736 1729 1729 1705 1700 18.93 
76 3636 2586 2558 2554 2554 2560 2556 2556 2538 2538 18.48 
77 2024 1255 1205 1200 1200 1200 1200 1200 1215 1200 16.22 
78 2436 1675 1635 1637 1635 1634 1636 1634 1645 1634 16.25 
79 3001 1790 1710 1706 1706 1710 1706 1706 1720 1706 18.52 
80 4323 2657 2492 2490 2490 2496 2493 2493 2483 2483 18.57 
81 2933 2064 1974 1978 1974 1984 1984 1984 2034 1974 27.50 
82 4445 3022 2932 2931 2931 2936 2927 2927 2937 2927 27.17 
83 4924 3062 2907 2907 2907 2910 2907 2907 2962 2907 30.27 
84 6585 4169 4004 4004 4004 4008 4005 4005 4054 4004 29.85 
85 3241 2063 1978 1977 1977 1976 1976 1976 1978 1976 26.78 
86 4787 3162 3112 3103 3103 3102 3104 3102 3087 3087 26.97 
87 5082 3154 2917 2910 2910 2914 2910 2910 3007 2910 30.62 
88 6896 4491 4441 4440 4440 4451 4440 4440 4444 4440 30.77 
89 4387 3002 2909 2903 2903 2911 2901 2901 2936 2901 36.49 
90 6202 4053 3946 3939 3939 3937 3939 3937 4010 3937 39.44 
91 6883 4490 4445 4442 4442 4450 4448 4448 4517 4442 41.63 
92 9285 6107 5916 5908 5908 5903 5912 5903 5902 5902 44.98 
93 4866 3013 2865 2861 2861 2870 2862 2862 2925 2861 40.66 
94 5982 4086 3960 3964 3960 3968 3960 3960 4070 3960 41.78 
95 7741 4967 4764 4764 4764 4767 4767 4767 4777 4764 49.56 
96 10542 6706 6526 6519 6519 6523 6521 6521 6655 48.17 6519 

Table 5.9: Computational results for 4th group in data set 2

 



CHAPTER 6 

CONCLUSIONS 
 

6.1Summary of Research 

In industry, rearranging the items (or resources) from existing positions to new 

locations may be a costly operation and may represent a significantly portion of the 

overall project budget. Cranes are the most popular material handling equipment for 

relocating items. However, such items are bulky, and moving these items with a single 

crane becomes difficult. Hence, it is essential to develop a good crane work route to 

ensure high efficiency and lower cost. In this research, this problem was defined as the 

CSP. More specifically, the CSP minimizes the total crane travel cost and 

loading/unloading cost for the crane to relocate items in a multiple time period horizon. 

The CSP is related to the well-known TSP and a variant of the TSP, SCP. A binary integer 

mathematical model was formulated for solving small CSPs. Since solving large size 

CSPs is computational intractable, 3 construction algorithms, SA, HAS I, HAS II, TS, 

PTS, and TS/S heuristics are developed to provide crane routes for larger problems in 

reasonable computation time. 

 

6.2 Recommendations for Future Research 

The following recommendations may be considered for future research: 

1. Integrate the CSP with its related problem, the dynamic space allocation problem, 

which may produce better solutions. 
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2. Consider length, width, height, and stackability of items as well as the volume of the 

locations when considering capacity of locations. 

3. Consider using multiple cranes.  

4. Combine other existing heuristics (e.g., TS and HAS) which may obtain better 

solutions for the CSP. 

5. Consider solving the CSP for other applications.  
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