
UNIVERSITY OF BREMEN

FACULTY 7: BUSINESS STUDIES & ECONOMICS

CHAIR OF LOGISTICS

PHD THESIS

Container Hinterland Drayage
On the Simultaneous Transportation of Containers

Having Different Sizes

Author:
Dipl.-Math. Julia Funke

Bremen

Submitted to:
Promotionsausschuss Dr. rer. pol.

University of Bremen

Reviewers:
Prof. Dr.-Ing. Herbert Kopfer
Prof. Dr. Tobias Buer

Date of Colloquium:
October 23, 2017

Acknowledgment

First of all, I would like to thank my supervisor Prof. Herbert Kopfer for the
chance to work on this interesting topic at the Chair of Logistics at the Uni-
versity of Bremen as well as my entire dissertation committee; I am especially
grateful to Prof. Tobias Buer for being the second reviewer of my thesis.

I want to thank my family and my dear friends for the constant support
during the process. And I want to particularly thank my colleagues as well as
my former employers, colleagues and friends who gave me the chance to learn
about the topic: INFORM GmbH, who gave me a deep insight into logistic
decision-making in the field of route planning, and the Research Institute for
Discrete Mathematics of the Rheinische Friedrich-Wilhelms Universität Bonn,
where I had the chance to improve my programming skills and mathematical
expertise. Apart from that, I had some great times and many interesting dis-
cussions on several conferences that encouraged me to do my thesis and took
my ideas forward.

I hope you enjoy your reading.

Julia Funke

Contents

Contents v

List of Figures ix

List of Tables xi

Abbreviations xiii

1 Introduction 1

1.1 Containerization . 2

1.1.1 History . 2

1.1.2 Maritime Container Transportation 3

1.2 Intermodal Freight Transportation 5

1.2.1 Container Hinterland Drayage 6

1.2.2 Actors . 7

1.2.3 Empty Container Repositioning 9

1.3 Objectives and Structure of the Thesis 10

2 Basic Definitions 13

2.1 Combinatorial Optimization Problems 13

2.1.1 Linear, Integer and Mixed Integer Programming 14

2.1.2 Graphs . 14

2.1.3 Flow Problems . 17

2.1.4 Routing and Scheduling Problems 21

2.1.5 More Mathematics . 24

2.2 Algorithms . 25

2.2.1 Complete Algorithms/Exact Algorithms 25

2.2.2 Approximate Algorithms/Heuristics 25

2.2.3 Metaheuristics . 26

v

vi CONTENTS

3 Literature Overview 29
3.1 Classification of Drayage Problems 32

3.1.1 (Multiple) Traveling Salesman Problem 32
3.1.2 Vehicle Routing Problems with Synchronization 33

3.2 Full Truckload Problem . 34
3.3 Repositioning of Empty Containers 37

3.3.1 No Separation . 39
3.3.2 Separation . 44

3.4 Multi-size Container Transportation 50
3.5 Challenges . 56

4 Multi-size Container Inland Transportation 59
4.1 Problem Definition . 59

4.1.1 Hinterland Requests . 60
4.1.2 Instance . 62

4.2 Solution . 63

5 Exact Approach 65
5.1 Graph Definition . 66

5.1.1 Hinterland Requests . 67
5.1.2 (Un-)loading Operations 68
5.1.3 Container Storage Operations 71
5.1.4 Entire Graph Representation 72

5.2 Assigning Containers . 72
5.2.1 Decision Variables . 74
5.2.2 Balance Values . 74
5.2.3 Capacities . 75
5.2.4 Entire Model . 75

5.3 Building Routes . 76
5.3.1 Decision Variables . 77
5.3.2 Entire Model . 78

5.4 Coupling of the Models . 78
5.5 Objectives . 80

6 Heuristic Approach 81
6.1 Models for Containers . 82

6.1.1 Connected Components 82
6.1.2 Graph . 84
6.1.3 Assignment of Empty Containers 85
6.1.4 Assignment of Empty and Fully Loaded Containers . . . 88

6.2 Heuristics for Truck Routes . 90

CONTENTS vii

6.2.1 Preliminary Considerations 90
6.2.2 Construction of Routes . 93
6.2.3 Feasibility Check . 94
6.2.4 Estimations of Time Windows and Durations 96
6.2.5 Evaluators . 98

6.3 Large Neighborhood Search . 98
6.3.1 Construction of the Initial Solution 99
6.3.2 Improvement of the Initial Solution 104
6.3.3 Simulated Annealing . 109

6.4 Implementation Details . 109
6.4.1 Partitioning of Large Instances 109
6.4.2 Implementation of the Feasibility Check 110
6.4.3 Route Assignment . 111
6.4.4 Computation Time of the Exact Approach 111

7 Computational Study 113
7.1 Test Instances . 113

7.1.1 Randomly Generated Instances 114
7.1.2 Instances of Literature Sources 115

7.2 Structure of the Analysis . 118
7.3 Exact Approach . 119
7.4 Heuristic Approach . 120

7.4.1 Parameter Adjustments 121
7.4.2 Analysis of the Implemented Operators 129
7.4.3 Solution Quality . 130
7.4.4 Application to Real-world Instances 132

7.5 Summary of Findings . 136

8 Conclusion and Future Research 137
8.1 Conclusion . 138
8.2 Future Research . 140

Appendix A Further Computational Results 143

Bibliography 151

Index 164

List of Figures

1.1 Container Terminal Bremerhaven 2
1.2 Container Port Traffic, World . 4
1.3 Container Port Traffic, EU and Germany 4
1.4 Typical Transportation Chain . 5
1.5 Hinterland Drayage Operations 6

3.1 Full Truckload Problem . 35
3.2 Street-Turn . 38

4.1 Example Solution, mICTP . 63

5.1 Graph Representation of Request Types 66
5.2 (De-)coupling Possibilities . 68
5.3 Instance Graph . 73
5.4 Balance Values and Capacities . 77

6.1 Pickup and Delivery Tasks . 83
6.2 Characteristic of Connected Components 87
6.3 Connected Components as Multi-Task Units 90
6.4 Precedence Constraints . 91
6.5 Varying Duration of Connected Components 93
6.6 Distance Graph . 96

7.1 Structure, Instance04 . 117
7.2 Development of Objective Values, 11 Hinterland Requests . . . 124
7.3 Development of Objective Values, 75 Hinterland Requests . . . 125
7.4 Development of Objective Values, 75 Hinterland Requests . . . 135

A.1 Development of Objective Values, 75 Hinterland Requests . . . 148
A.2 Development of Objective Values, 75 Hinterland Requests . . . 149

ix

List of Tables

3.1 Overview of Literature Sources 56

4.1 Hinterland Requests . 62

5.1 Request Nodes . 70
5.2 Depot Nodes . 71
5.3 Arcs . 72

6.1 Balances, Pickup and Delivery Tasks 85

7.1 Instance Layout, 3-6 Hinterland Requests 114
7.2 Instance Layout, 11 Hinterland Requests 115
7.3 Instance Layout, 75 Hinterland Requests 117
7.4 Results Exact Approach, 3-6 Hinterland Request 119
7.5 Default Parameter Setting . 121
7.6 Results Different Parameter Settings, 11 Hinterland Requests . . 122
7.7 Results Different Parameter Settings, 75 Hinterland Requests . . 127
7.8 Final Parameter Setting . 128
7.9 Results Implemented Operators, 75 Hinterland Requests 129
7.10 Results, 11 Hinterland Requests 130
7.11 Detailed Results, DS2, DS7, DS8 131
7.12 Results Heuristic Approach, 75 Hinterland Requests 132
7.13 Detailed Results Heuristic Approach, Instance04, Instance07, In-

stance10, Instance13, Instance16, Instance21 134

A.1 Detailed Results Exact Approach, 3-6 Hinterland Requests . . . 144
A.2 Detailed Results Exact Approach, 3-6 Hinterland Requests . . . 145
A.3 Detailed Results, DS1, DS3, . . . DS6, DS9 and DS10 146
A.4 Detailed Results Heuristic Approach, 75 Hinterland Requests . 147

xi

Abbreviations

NP Non-deterministic Polynomial-time

P Polynomial-time

ALNS Adaptive Large Neighborhood Search

amTSP Asymmetric Multiple Traveling Salesman Problem

amTSPTW Asymmetric Multiple Traveling Salesman Problem with Time
Window Constraints

AP Assignment Problem

APMCFP Arc Partition Minimum Cost Flow Problem

APSP All Pairs Shortest Path Problem

aTSP Asymmetric Traveling Salesman Problem

BPP Bin Packing Problem

CG Column Generation

CO Combinatorial Optimization

FIFO Technique First In First Out Technique

FTL Full Truckload

FTPDP Full Truckload Pickup and Delivery Problem

FTPDPTW Full Truckload Pickup and Delivery Problem with Time Win-
dow Constraints

GAP Generalized Assignment Problem

ICT Inland Container Transportation Problem

IE Request Inbound Empty Hinterland Request

xiii

xiv LIST OF TABLES

IF Request Inbound Full Hinterland Request

IP Integer Program

ISL Institute of Shipping Economics and Logistics

LIFO Technique Last In First Out Technique

LNS Large Neighborhood Search

LR Linear Relaxation

LTL Less-than Truckload

MCFP Minimum Cost Flow Problem

MCNDP Minimum Cover of Nodes by Directed Paths

MFP Multicommodity Flow Problem

mICTP Multi-size Inland Container Transportation Problem

MIP Mixed Integer Program

mTSPTW Multiple Traveling Salesman Problem with Time Window
Constraints

mTSPTWP Multiple Traveling Salesman Problem with Time Windows
and Precedences

OE Request Outbound Empty Hinterland Request

OF Request Outbound Full Hinterland Request

OR Operations Research

OSC Ocean Shipping Consultants

PDP Pickup and Delivery Problem

PDPTW Pickup and Delivery Problem with Time Window Constraints

RTS Reactive Tabu Search

SA Simulated Annealing

SCP Set Covering Problem

SP Shortest Path Problem

SPP Set Partitioning Problem

LIST OF TABLES xv

TEU Twenty-foot Equivalent Unit, standard container’s size

TP Transportation Problem

TS Tabu Search

TSP Traveling Salesman Problem

TSPTW Traveling Salesman Problem with Time Window Constraints

VRP Vehicle Routing Problem

VRPB Vehicle Routing Problem with Backhauls

VRPMS Vehicle Routing Problem with Multiple Synchronization Con-
straints

VRPTW Vehicle Routing Problem with Time Window Constraints

WPB method Window Partition Based Method

Chapter 1

Introduction

In an intermodal transportation chain drayage is the term used for the move-
ment by truck of cargo that is filled in a loading unit. The most important in-
termodal transportation chain is the intermodal container transportation, in which
containers represent the loading unit for cargo. Cost effectiveness constitutes a
general problem of drayage operations: 25% to 40% of the total intermodal con-
tainer transportation cost are accrued in drayage (Macharis and Bontekoning
[2004]). The portion of inland costs are much higher, ranging from 40% to 80%
of the total cost of (intercontinental) container shipping (Notteboom and Ro-
drigue [2005]). These costs stand in high contrast to the low portion of total dis-
tance crossed in seaport hinterland regions (inland area served by a certain port)
of intercontinental container transportation chains, which is approximately 3%
of the total distance traveled. The large range of hinterland connections con-
stitutes a permanent challenge for fluent container traffic (Hildebrand [2008]).
A major cost driver within container transportation chains is the movement
and repositioning of empty containers; estimations for the share of such un-
productive movements of all containers being transported vary from 21% at sea
to about 40% on land (Konings [2005]). The present thesis investigates the po-
tential to reduce drayage costs. Two solution methodologies are developed for
operating a fleet of trucks that transports containers of different sizes, which
addresses a recent gap in research in seaport hinterland regions.

The remainder of this chapter is structured as follows: Sections 1.1 and 1.2
give an overview of containerization and intermodal freight transportation.
Afterwards, Section 1.3 defines the scope of the present research and explains
the structure of the thesis.

1

2 CHAPTER 1. INTRODUCTION

1.1 Containerization

These days containers that are normed according to some standards (mostly
ISO 668) represent the most important transportation techniques that are used
in international freight transportation. Maritime container traffic increased by
more than 40% from the year 2000 to the year 2010 (Nordsieck et al. [2016]).
Whereas nowadays the containerization of transportation processes is a world-
wide success story, in the past it was a difficult process due to shipowners.

1.1.1 History

Until the middle of the 19th century, truck drivers had to spend whole nights at
ports waiting for their trucks to be (un-)loaded. At the end of 1930, the hauler
Malcolm P. McLean first tried to avoid (un-)loading operations of cargo from
one means of transportation to another by starting to load complete trucks onto
ships with the aim of transporting these trucks as close as possible to their
specified points of destination. The invention of standardized containers and

Figure 1.1: Container terminal Bremerhaven.
Pictures from http://www.bremerhaven.de/ (accessed on 1st March 2016).

trailers made it possible to initially transport trailers loaded with containers,
and later to transport containers only by ship. However, none of the ship own-
ers were convinced by Malcolm P. McLean’s idea, which led to McLean giving
up America’s second largest trucking company and subsequently founding the
company Sea-Land Inc. and becoming a shipowner himself. Within a short pe-
riod of time Sea-Land Inc. successfully shipped containers. The first container
ships left ports in 1960. Ten years later ships transporting containers were also
being used in Europe.

The first containers were constructed to meet American norms, which are
difficult to adapt for Europe as well as other countries. Thus, the International
Organization for Standardization (ISO) standards were invented. According
to ISO standards, container lengths are set to 10 feet, 20 feet, 30 feet and 40

http://www.bremerhaven.de/

1.1. CONTAINERIZATION 3

feet, while widths are fixed at 8 feet and heights are set to 8 feet and 8 feet,
6 inches. The majority of produced containers adheres to ISO standards. In
particular, 20-foot and 40-foot containers are widely spread all over the world.
As stowage factors increase for most goods, so-called Jumbo containers that
exceed sizes defined by ISO standards (45-foot and 48-foot) have been used
more frequently in recent years. In the entire United States (US) it is addi-
tionally possible to transport 53-foot containers, while some states in the US
even allow transportation of 57-foot containers (Duken and Gesamtverband
der Deutschen Versicherungswirtschaft [2002-2016]). The length of a container
is measured in twenty-foot equivalent units (TEU). Apart from the size, con-
tainers can be classified based on cargo and the different requirements of cargo.
Examples are constituted by dry (normal) and special (e.g., refrigerated and
hazardous) containers; the latter container type can only be handled by spe-
cially equipped container vehicles (Chung et al. [2007]). Additionally, some
countries define limitations on the container’s weight for container transporta-
tion. While transportation of one fully loaded 20-foot or 40-foot container is
permitted for most countries, transportation of two fully loaded 20-foot con-
tainers exceeding the limitation of 26 tons is prohibited for standard vehicles.
As Popović et al. [2012], Vidović et al. [2011, 2012] state, vehicles that are used
in the US, Australia, Canada, Finland and Sweden offer the possibility to trans-
port two fully loaded 20-foot containers. In contrast, EU regulations only per-
mit certain types of vehicles (modular concept vehicles) to transport two fully
loaded 20-foot containers by using a special combined chassis. As a result, the
issue of efficiently building routes to transport containers hardly depends on
the provided technical solutions.

1.1.2 Maritime Container Transportation

The portion of maritime transportation in world trade varies between 90% and
95%. In the past decade maritime traffic grew about 3% and container shipping
grew about 9%.

For more than two decades container shipping constitutes the most strongly
expanding shipping market. In recent years the usage of containers for inter-
continental maritime transportation has been dramatically increased (Günther
and Kim [2006]). Figure 1.2 depicts the port container traffic, i.e. the flow
of (empty and fully loaded) containers in million TEU between the different
means of transportation that are used at sea and on land. Altogether, four
graphs are shown: the world’s port container traffic is colored blue, the regions
of East Asia and the Pacific are colored red, Europe’s together with Central
Asia’s port container traffic is colored brown, and North America is colored

4 CHAPTER 1. INTRODUCTION

2000 2002 2004 2006 2008 2010 2012 2014
0

100

200

300

400

500

600

700

M
ill

io
n

TE
U

World East Asia & Pacific Europe & Central Asia North America

Figure 1.2: Container port traffic of the world and some regions. Data from
http://data.worldbank.org, (accessed on 20th September 2016).

2000 2002 2004 2006 2008 2010 2012 2014
0

20

40

60

80

100

M
ill

io
n

TE
U

European Union Germany

Figure 1.3: Container port traffic of the European Union and Germany. Data from
http://data.worldbank.org, (accessed on 20th September 2016).

http://data.worldbank.org/indicator/IS.SHP.GOOD.TU/countries?display=graph
http://data.worldbank.org/indicator/IS.SHP.GOOD.TU/countries?display=graph

1.2. INTERMODAL FREIGHT TRANSPORTATION 5

gray. In 2005, 376 million TEU were handled in harbors worldwide. The to-
tal throughput of the world in 2007 was 490 million TEU. This number rose
to 679 million TEU in 2014. This trend continues; Drewry and Ocean Ship-
ping Consultants (OSC) as well as the Bremen Institute of Shipping Economics
and Logistics (ISL) forecast a doubling of the total world container turnover
by 2020 compared to 2010. Günther and Kim [2006] expect a further continu-
ous increase especially between Asia and Europe in the upcoming years. From
2000 to 2014, container port traffic from Europe and Central Asia rose from 48
million TEU to 116 million TEU. Figure 1.3 shows a similar graph development
of the container port traffic of the European Union (EU) and Germany.

1.2 Intermodal Freight Transportation

Intermodal freight transportation refers to the transportation of freight in a
container or vehicle by at least two different means of transportation (modes,
e.g., rail, road, deep sea vessel, barge) in a single transportation chain. Freight
is packed into loading units that do not change on their ways from senders to
receivers, i.e. no handling of the freight itself is performed while it is trans-
ported and transshipped between different transportation modes.

„Ship“ icon by Marc/„train“ icon by andriwidodo, from thenounproject.com

s1

s2

s3

s4

r1

r2

r3

r4

t1 t2

Pre-Haulage Main-Haulage End-Haulage

Figure 1.4: Typical transportation chain (own representation Funke and Kopfer
[2014] based on Macharis and Bontekoning [2004]).

Figure 1.4 shows a typical transportation chain of a flow of goods. Three
different sections are depicted, each of them being operated by a distinct trans-
portation mode. In the first section (pre-haulage) containerized cargo is trans-
ported from actual customers (senders) s1, s2, s3, s4 to terminals by truck. The
second section (main-haulage) consists of container transportation between ter-
minals t1, t2 that is mostly carried out by barge, deep sea shipping or rail. The
third section (end-haulage) implies container transportation from terminals to
customers (receivers) r1, r2, r3, r4 by truck.

https://thenounproject.com/

6 CHAPTER 1. INTRODUCTION

1.2.1 Container Hinterland Drayage

Figure 1.5 illustrates the locations and the tasks of pre- and end-haulage op-
erations, which are proceeded in a hinterland region. The main tasks are the
allocation of containers and the construction of routes for trucks to move con-
tainers. Containers have to be transported between terminals t, senders s1, s2,
receivers r1, r2, r3 and depots d. The transportation by truck constitutes one

s1

s2

r1

r2

r3

t d

Figure 1.5: Drayage operations in an inland region of a port.

of the most important transportation modes in seaport hinterland regions. By
now, transportation by truck offers the only possibility for comprehensive door-
to-door services to customers’ locations (Hildebrand [2008]). Road transporta-
tion continuously grows. Apart from the costs of drivers, the maintenance of
trucks and the rising fuel prices, the costs of congested roads and the delays
caused by traffic jam, the rising costs of emissions standards, toll charges and
the additional costs of the new regulation on driving times and rest periods
have to be considered (Hildebrand [2008]).

Pre-haulage Operations and End-haulage Operations

Pre-haulage operations include the supply of empty containers at senders’
locations and the subsequent transportation of fully loaded containers from
senders’ locations to terminals. Empty containers can be obtained from differ-
ent locations like depots, terminals and receivers’ locations. It is part of the
decision making process to determine the locations where empty containers
can be obtained from. End-haulage operations involve the transportation of
fully loaded containers from terminals to receivers’ locations and the subse-
quent collection of empty containers at receivers’ locations. Empty containers
can be delivered to different locations like depots, terminals and senders’ loca-
tions. Again, it is part of the decision making process to determine the locations
where empty containers can be delivered to.

1.2. INTERMODAL FREIGHT TRANSPORTATION 7

1.2.2 Actors

Several actors are involved in container hinterland transportation. Different
actors are faced with different challenges and operations.

Carriers

Transportation of cargo is performed by a carrier that is engaged due to the
customers’ transportation demand. A container transportation request can be
served in one of two ways. If the carrier owns suitable resources (e.g. ships,
trucks), then the carrier is allowed to serve the entire container transportation
request by itself. Another possibility is to let the carrier assigning parts of the
container transportation request to hinterland and sea transport operators. In
hinterland transportation trucking companies are responsible for moving con-
tainers between customers and terminals or vice versa; in sea transportation
shipping companies are responsible for moving containers between terminals.
Often the carrier is represented by one of the transport operators and instructs
trusted transport operators with required transportations. Since the longest
distances are crossed in the main-haulage, most of the times the shipping com-
pany organizes the entire transportation of containers between different hinter-
land regions (Hildebrand [2008], Sterzik [2013]). The term carrier haulage refers
to one transport operator organizing the entire transportation for a sender. If
an autonomous carrier or receiver organizes the entire transportation chain,
then this service is called merchant haulage (Sterzik [2013], Veenstra [2005]).

Container Depots

In container depots containers are stored, repaired, maintained and cleaned.
Moreover, container depots serve as transshipment points. In order to obtain a
fluent hinterland service, which allows an efficient distribution of empty con-
tainers over the entire region, container depots have to be located at central po-
sitions in the hinterland region. However, placing depots at central locations
stands in contrast to locating depots next to the home bases of shipping com-
panies, which want to control their containers (Sterzik [2013], Veenstra [2005]).

Ports and Container Terminals

Ports and container terminals represent a bottleneck of the global container
transportation chain. Ports have to handle mega-vessels that are able to trans-
port up to 21,100 TEU (Merk et al. [2015]). As a result, ports have to build
greater accesses for vessels. Furthermore, there is a need for efficient tech-
nologies to handle the turnover of cargo at ports (Hildebrand [2008]). Conse-

8 CHAPTER 1. INTRODUCTION

quently, container ports have to invest heavily to meet the stringent demands
for obtaining faster service and higher quality. The operations at container ter-
minals include stacking and pre-marshalling containers and transporting con-
tainers between land and sea. Container terminals are forced to reduce costs
and improve efficiency to compete with other terminals. At the same time,
container terminals have to meet strict instructions given by shipping com-
panies that ask for adherence of delivery dates and promised handling times
(Stahlbock and Voß [2008]). In order to cope with the increasing container
turnover (refer e.g. to Figure 1.2), the capacity at ports and terminals has to
be extended not only, but also the efficiency of hinterland connections has to
be increased.

Trucking Companies

An intermodal terminal is used by twelve and more trucking companies. Truck-
ing companies are faced with several challenges. Containerized cargo has to
be transported by truck in a cost-effective manner. The majority of delivery is
known in advance, which results in sequencing and scheduling problems be-
tween senders, receivers and at least one terminal, thereby meeting restrictions
like time windows at customers’ locations. Trucking companies have to give
realistic prognoses on the length of a working day including break times and
driving durations. The prognoses have to consider assumptions on a few short-
term deliveries as well. Due to traffic and delay at terminals some deliveries
might need to be reassigned. In addition, trucking companies have to provide
empty trailers/containers, which are used to transport goods. Consequently,
terminals store a sufficient large number of empty trailers/containers. Within
one day, empty trailers/containers are scattered over the whole hinterland area
resulting in unproductive movements being unavoidable.

Container Owners

The set of container owners mainly decomposes into container leasing companies
(around 41% of the total container volume) and shipping companies (around
59% of the total container volume) (Sterzik [2013]). Only a small amount of con-
tainers is owned by depots or trucking companies. One of the main reasons for
the introduction of container leasing companies is to overcome the different
requirements of empty containers caused by imbalances in trade in different
regions. In order to transport cargo, the carrier either uses its own available
containers or hires containers from leasing companies and returns them after
the cargo transportation requests have been fulfilled. Leasing contracts are dis-
tinguished into short-term and long-term contracts. Most of the times shipping

1.2. INTERMODAL FREIGHT TRANSPORTATION 9

companies have a sudden demand for containers, and therefore, enter into
short-term contracts. Containers that are hired by a long-term contract stay
at shipping companies for months and years (Sterzik [2013]). Shipping com-
panies and container leasing companies are pursuing conflicting objectives; in
contrast to shipping companies, which want to minimize container transporta-
tion and container handling costs, container leasing companies want to maxi-
mize the profit through the leasing of containers.

1.2.3 Empty Container Repositioning

The most of the flows of containerized cargo is asymmetric. Therefore, it is
necessary to reposition empty containers, which results in unproductive move-
ments. The repositioning of empty containers does not generate any revenue,
unproductive movements are associated with container handling and trans-
shipment costs instead. Furthermore, empty containers have to be stored,
maintained, cleaned and repaired. Consequently, the repositioning of empty
containers marks one of the ongoing issues for operating actors of sea and
land transportation (Sterzik [2013]). Due to its expensiveness, the reposition-
ing of empty containers has become one of the most important problems in the
shipping industry over the last years. The need for unproductive movements
appears on global and regional levels: between export- and import-oriented
areas, and between senders and receivers acting in the same hinterland region.

Imbalances in trade cause regions having different supply and demand for
empty containers, for instance the outbound flows from Asia to Europe and
North America were more than twice as high as the inbound flows of these re-
gions in 2010 (Sterzik [2013]). Export-oriented areas (like the Far East) export
more cargo to import-oriented regions (like Western regions) than vice versa.
As a result, export-oriented areas have to cope with a lack of empty containers,
while import-oriented areas are confronted with an overrun of empty contain-
ers. Unproductive movements represent a significant cost driver within the
entire container transportation chain. Drewry Shipping Consultants of Lon-
don estimate the share of empty containers that are repositioned at sea to be
around 20% of all maritime container movements (Boile et al. [2006], Braekers
et al. [2011]). Estimations of the rate of repositioned empty containers for land
transportation range from 40% to 50% (Braekers et al. [2011], Branch [2006],
Crainic et al. [1993], Konings and Thijs [2001]).

In order to reduce unproductive movements in hinterland regions, the bal-
ance of empty containers needed by senders and provided by receivers has
to be improved. Jula et al. [2006] analyze two different strategies for empty
container repositioning in hinterland regions. The first strategy (depot-direct

10 CHAPTER 1. INTRODUCTION

strategy) tries to relief intermodal terminals that store empty containers. There-
fore, several off-dock container depots are introduced at different places. The
implementation of further capacity in addtion to intermodal terminals should
minimize the distances that are caused by rearranging empty containers. In
the second strategy (street-turn strategy) empty containers that become avail-
able at receivers’ locations are directly moved to senders’ locations where they
are needed next. The street-turn strategy minimizes distances that are caused
by taking a detour via a depot for container stowage operations. The great cost
saving potential of street-turns stands highly in contrast to the small amount
of empty containers that is directly transferred between customers’ locations
in real-world applications (Sterzik [2013]). Limiting factors for street-turns are
for instance time windows at customer’s locations that do not match, expiring
contracts of leased containers and different container types.

1.3 Objectives and Structure of the Thesis

The objective of the present thesis is to pursue a further development in the
research area on container hinterland transportation by making a major con-
tribution regarding the transportation of 20-foot and 40-foot containers. To
achieve this, a widely studied drayage problem is investigated in new terms
by considering 20-foot and 40-foot containers, resulting in the definition of the
multi-size Inland Container Transportation Problem (mICTP). There is extensive
literature on the transportation of 40-foot containers by truck available (refer
to Chapter 3). However, the simultaneous transportation of containers hav-
ing different sizes constitutes an application that is often neglected in related
literature sources1. In this thesis, solution methodologies are designed to in-
crease the transportation efficiency of trucking companies operating in the hin-
terland region of a seaport. This goal is achieved by reducing transportation
costs. Trucking companies are concerned with the movement of containerized
cargo as well as the provision of empty containers, leading to route construc-
tion problems for trucks as well as assignment problems of empty containers
to transportation requests for cargo. A further consideration that is rarely in-
vestigated in literature sources is the separation of trucks and containers for
container handling operations (e.g., loading and unloading containers)2. Dur-
ing the time needed to (un-)load a container the truck is free to carry out other
tasks.

1See Section 3.4 for further details on literature sources investigating drayage problems for
containers having different sizes.

2See Section 3.3.2 for a review on literature sources investigating drayage problems, in which
trucks and containers are permitted to separate.

1.3. OBJECTIVES AND STRUCTURE OF THE THESIS 11

The present thesis consists of eight chapters and one attachment.
Chapter 1 introduces the topic, actors, challenges and cost drivers that are

involved in the research field of container hinterland transportation. Further-
more, the motivation of the thesis is outlined and an overview of the thesis is
given.

After the introduction, Chapter 2 moves on with defining and discussing
mathematical and logistical problem definitions that are needed for a deeper
understanding of the thesis. Different heuristic solution procedures and ex-
act formulations that are applied in literature sources are presented; these ap-
proaches compute solutions belonging to problem classes similar to the class
containing the mICTP.

An extensive literature overview is given in Chapter 3. As can be seen from
this chapter, several scientific papers addressing container hinterland trans-
portation problems can be found in literature. Chapter 3 classifies the mICTP
and points out the novelty of the considered problem definition.

As Chapter 5 and Chapter 6 both introduce solution methodologies for the
mICTP, the formal definition of the mICTP is separately given in Chapter 4.

Chapter 5 presents an exact mathematical programming approach to com-
pute solutions to the mICTP. In a later chapter it will be shown that the im-
plementation of the exact approach together with a commercial solver is able
to compute solutions to instances consisting of around eleven transportation
requests and ten trucks.

Chapter 6 presents a heuristic approach to compute solutions to the mICTP.
This chapter outlines a relevant high-quality approach that can be applied to
instances of the mICTP arising in real-world scenarios.

The approaches of Chapters 5 and 6 are implemented, and these implemen-
tations are evaluated in Chapter 7. In the evaluation two points are considered
in particular: the solution quality and the practicability of the approaches. The
benchmark instances in this chapter contain randomly generated instances as
well as instances that are taken from literature sources.

Chapter 8 concludes the thesis and gives an outlook of extensions that could
improve both the definition and solution approaches for the mICTP.

Attachment A shows detailed and summarized tables containing computa-
tional results that are not mentioned in Chapter 7.

Chapter 2

Basic Definitions

The following definitions and notations are needed by the remainder of this
thesis. Section 2.1 introduces some basic Combinatorial Optimization (CO)
problems and useful representations of these problems, like linear and inte-
ger programs (Section 2.1.1) and graphs (Section 2.1.2). Sections 2.1.3 and 2.1.4
give examples of CO problems that are required by Chapters 3, 5 and 6. The
structure of the problem introduction in these sections is as follows. Whenever
a problem P is newly introduced, it will be explained whether or not an algo-
rithm, which computes an optimum solution to P in polynomial running time,
exists. If such an algorithm exists, then the running time O(f) of the fastest
known algorithm f for P will be stated. On the other hand, if no such poly-
nomial time algorithm for P is known, then it will be stated, whether or not P

is NP (nondeterministic polynomial time)-hard. Furthermore, if it is required
by later chapters, linear and integer programming formulations of P will be
presented. Section 2.2 comprises algorithms for CO problems. In this chapter
we primarily follow the notations of Korte and Vygen [2008].

2.1 Combinatorial Optimization Problems

According to Blum and Roli [2003] many optimization problems aim in com-
puting the best configuration of a set of variables in order to achieve some
predefined goals. Typically, these problems can be distinguished by their solu-
tions, namely solutions that are allowed to consist of real-valued variables and
solutions that have to consist of discrete variables. CO problems are included
in the second class.

13

14 CHAPTER 2. BASIC DEFINITIONS

2.1.1 Linear, Integer and Mixed Integer Programming

The objective of Operations Research (OR) is the development and usage of
mathematical procedures to support decision-making processes (Alisch et al.
[2013]). A major area of OR comprises the transformation of problems arising
in practice to abstract optimization problems. As Williams [2013] states, model
building in mathematical programming covers a wide range of applications in
many diverse areas: physical laws, technical relationships, company internal
structures or the presented container transport problem can be represented in
mathematical relationships by using (in-)equalities and logical dependencies.
Linear programming is a widely used procedure in the field of OR.

Definition 2.1 (Linear, Integer and Mixed Integer Programming). Given a ma-
trix A ∈ Rm×n, a column vector b ∈ Rm and a row vector c ∈ Rn, Linear Pro-
gramming asks for a column vector x ∈ Rn maximizing cx such that Ax ≤ b,
or the decision whether the solution space {x ∈ Rn |Ax ≤ b } is either empty
(the problem is infeasible) or the value maximizing cx converges to infinity
for x in the solution space (the problem is unbounded). An instance of Lin-
ear Programming is called Linear Program (LP). The elements of the solution
space are called feasible solutions. A feasible solution attaining the maximum
is an optimum solution. The elements of x are called decision variables. If the
elements of x are restricted to be integral, then the problem is called Integer
Programming and the instance is called Integer Program (IP). If only a sub-set
of x is restricted to obtain integral values, while the remaining values of x are
allowed to obtain continuous values, then the problem is called Mixed Integer
Programming and the instance is called Mixed Integer Program (MIP).

2.1.2 Graphs

The illustration of CO instances in the form of a graph often improves know-
ledge and comprehension of the underlying problem formulation.

Definition 2.2. Let k ∈ N be a natural number. We denote by [k] the set of
natural numbers less than or equal to k, i.e. [k] := {1, 2, . . . , k}.

Definition 2.3 (Partition). A partition of a set V is a family M of sub-sets of V ,
such that the elements of M are pairwise disjoint, i.e.:

• ∀m ∈M : m ⊆ V

• ∀m, m′ ∈M : m ∩m′ = ∅

The symbol
·
∪ denotes a disjoint union of sets.

2.1. COMBINATORIAL OPTIMIZATION PROBLEMS 15

Definition 2.4 (Graphs, Nodes, Arcs). An undirected graph G is a pair of finite
sets G = (V, A), where V is a nonempty set and E is a set comprising pairs of
two different elements of V , i.e. it holds for e ∈ E: e ⊆ V with |e| = 2. A
directed graph or digraph G is a pair of finite sets G = (V, A), where again V

is a nonempty set and E comprises ordered pairs of two different elements of
V , i.e. it holds for e ∈ E: e = (v, w) ∈ V × V with v /= w. A graph is either
undirected or directed. The elements of V are called nodes and the elements
of A are called arcs. A sub-graph G′ = (V ′, A′) of a graph G = (V, A) is a
graph with V ′ ⊆ V and A′ ⊆ A. Let e = (v, w) ∈ A be an arc, the nodes
v and w are called the end-points of e; the node v is called the tail and the
node w is called the head of e. Furthermore, the nodes v and w are incident
with e, while v and w are adjacent. Let G = (V, A) be a digraph and v ∈ V

be a node. We denote by δ+
v := { (v, w) | (v, w) ∈ A } ⊆ A the set of out-going

and by δ−
v := { (w, v) | (w, v) ∈ A } ⊆ A the set of in-going arcs. An undirected

graph is called complete, if all nodes are adjacent with each other.

Unless otherwise stated, a graph is denoted by the pair G = (V, A). The
following mappings are often used in the present thesis.

Definition 2.5. Let e := (v, w)/{v, w} ∈ A be an arc. The cost of e is denoted
by cvw ∈ R and its capacity is denoted by uvw ∈ R+. A graph together with
a cost function is called weighted. Let v ∈ V be a node. The balance of v is
denoted by bv ∈ R. In the case of more than one (1 < dim ∈ N) different types
of commodities, we denote by the vector b

(k)
v for k ∈ [dim] the balance of v .

Graphs may have several different properties.

Definition 2.6 (Path, Cycle). Let 1 ≤ n be a natural number. A path from v1 to
vn (or v1-vn-path) is a graph P := ({v1, v2, . . . , vn}, {e1, e2, . . . , en−1}), such that
ei := (vi, vi+1)/{vi, vi+1} for all 1 ≤ i ≤ n−1 and vi /= vj for all 1 ≤ i < j ≤ n. A
graph C := ({v1, v2, . . . , vn}, {e1, e2, . . . , en}) is a cycle, if v1 = vn and the sub-
graph C ′ := ({v1, v2, . . . , vn−1}, {e1, e2, . . . , en−1}) ⊂ C is a path. A graph G is
called acyclic, if G does not contain any sub-graph that is a cycle. In digraphs
the term directed path/cycle also refers to a path/cycle.

Definition 2.7 (Connected, Connected Components). An undirected graph G =
(V, A) is called connected, if there is a v-w-path for all pairs of nodes v, w ∈ V .
The maximal connected sub-graphs of G are called connected components of
G. A digraph G is called connected, if the underlying undirected graph is
connected. The maximal connected sub-graphs of the underlying undirected
graph of G are called the connected components of G.

A more strict definition is given for digraphs.

16 CHAPTER 2. BASIC DEFINITIONS

Definition 2.8 (Strongly Connected Components, Condensation). A digraph
G = (V, A) is called strongly connected, if there are a v-w-path and a w-v-path
for all pairs of nodes v, w ∈ V . The maximal strongly connected sub-graphs
of G are called strongly connected components of G. The condensation of a
digraph G = (V, A) is a digraph G′ = (V ′, A′) with:

V ′ := {C ⊆ G |C is a strongly connected component of G }

A′ := { (Cv, Cw) ⊆ G×G |Cv /= Cw : ∃v ∈ Cv,∃v ∈ Cw : (v, w) ∈ A }
(2.1)

Remark 2.9. Strongly connected components or the condensation of a digraph
G = (V, A) can be obtained inO(|V |+ |A|) by using |V | times Depth-First Search
(König [1936]) or Breadth-First Search (Moore [1959]).

Definition 2.10 (Transitive Closure). A digraph G = (V, A) is called transitive,
if the following relation holds:

∀u, v, w ∈ V : (u, v) ∈ A and (v, w) ∈ A =⇒ (u, w) ∈ A (2.2)

The transitive closure1 of a digraph G, is the digraph G′ = (V, A′) with A′ :=
{ (v, w) ∈ V × V |G contains a v-w-path } .

In Section 6.3.1 the construction of lower bounds on the number of trucks
needed to serve all requests of an mICTP instance is proposed. In order to
construct this lower bound, the definition of bipartite graphs is required.

Definition 2.11 (Bipartite Graph). Let G = (V, A) be an (un-)directed graph. A
bipartition of G is a partition of the node set V = X

·
∪ Y , such that the head

and the tail of each arc are contained in different sets, i.e. ∀e ∈ A : e ∩ X /= ∅
and e ∩ Y /= ∅. We denote bipartite graphs by G = (X

·
∪ Y, A). A bipartite

graph is called complete, if each pair of nodes v ∈ X, w ∈ Y is adjacent in G.

Definition 2.12 (Vertex Cover). Let G be an (un-)directed graph. A vertex cover
in G is a set of nodes V C ⊆ V , such that each arc of G is incident to at least one
node in V C.

Definition 2.13 (Matching). A matching in an undirected graph G = (V, A) is
a set of arcs M ⊆ A, such that the arcs in M are pairwise disjoint, i.e.:

∀m, m′ ∈M : m ∩m′ = ∅

A matching is maximal, if M will no longer be a matching by adding an arc
e ∈ A to M . A matching is perfect, if each node v ∈ V is incident with an arc
in M .

1Remark 2.27 shows a construction of the transitive closure of a digraph.

2.1. COMBINATORIAL OPTIMIZATION PROBLEMS 17

Karp [1972] proofs that computing the minimum cardinality of a vertex
cover is in general NP-hard. However, this attribute does not apply to bi-
partite graphs:

Theorem 2.14 (König [1931]). Let G be a bipartite graph. The maximum cardinality
of a matching2 in G equals the minimum cardinality of a vertex cover in G.

2.1.3 Flow Problems

Two sub-problems constitute the mICTP: empty container assignment and route
construction. Therefore, this section introduces a bunch of flow problems,
which are required by the assignment problem of empty containers, while Sec-
tion 2.1.4 introduces routing and scheduling problems, which are required in
order to construct routes.

ASSIGNMENT PROBLEM

Instance: A weighted bipartite graph G = (X
·
∪ Y, A), where X and Y have

the same cardinality (|X| = |Y |), together with costs c : A→ R.
Task: Find a perfect matching M minimizing the total cost c(M) :=∑

e∈M ce, or decide that no perfect matching in G exists.

An IP formulation of the Assignment Problem (AP) is stated in the follow-
ing. A binary decision variable δvw is introduced for each arc (v, w) ∈ A:

δvw :=
{

1, if node v is assigned to node w

0, otherwise

The AP can be formulated as follows:

min
∑

{v,w}∈A

cvwδvw (2.3)

such that ∑
v∈X

δvw = 1 ∀w ∈ Y (2.4)∑
w∈Y

δvw = 1 ∀v ∈ X (2.5)

δvw ∈ {0, 1} ∀{v, w} ∈ A (2.6)

The Objective function 2.3 minimizes the total cost of the assignments. Con-
straints 2.4 and 2.5 assign exactly one element of the first bipartition to the
second bipartition and vice versa. The domains of the decision variables are
specified by Constraints 2.6.

2 A polynomial time algorithm for the computation of a maximum cardinality matching in
bipartite graphs is given by Remark 2.18.

18 CHAPTER 2. BASIC DEFINITIONS

Remark 2.15. Because of its special structure, the AP can be solved in polyno-
mial time, e.g. by the Hungarian Method (Kuhn [1955]) in O(|X

·
∪ Y |3).

While the AP can efficiently be applied to assign 40-foot containers, the
assignment problem of 20-foot containers requires more complex problem def-
initions.

Definition 2.16 (s-t-Flow). Let G = (V, A) be a digraph with capacities u :
A → R+. For two elements s, t ∈ V , a s-t-flow in G is a function f : A → R+

satisfying the capacity constraints

∀e ∈ A : f(e) ≤ ue (2.7)

and the flow conservation constraints

∀v ∈ V \ {s, t} :
∑

e∈δ+
v

f(e)−
∑

e∈δ−
v

f(e) = 0 (2.8)

together with∑
e∈δ+

s

f(e)−
∑

e∈δ−
s

f(e) ≥ 0,
∑

e∈δ+
t

f(e)−
∑

e∈δ−
t

f(e) ≤ 0 (2.9)

MAXIMUM FLOW PROBLEM

Instance: A digraph G = (V, A), capacities u : A → R+ and two nodes
s, t ∈ V .

Task: Find a s-t-flow f maximizing the value
∑

e∈δ+
s

f(e)−
∑

e∈δ−
s

f(e).

With the help of a continuous decision variable fe for each arc e ∈ A that
represents the s-t-flow, a LP formulation of the Maximum Flow Problem can
be stated as follows:

max
∑

e∈δ+
s

f(e)−
∑

e∈δ−
s

f(e) (2.10)

such that ∑
e∈δ+

v

f(e)−
∑

e∈δ−
v

f(e) = 0 ∀v ∈ V \ {s, t} (2.11)

fe ≤ ue ∀e ∈ A (2.12)

fe ∈ R+ ∀e ∈ A (2.13)

The Objective function 2.10 maximizes the total amount of flow traversing from
s to t. Flow conservation constraints are represented by Constraints 2.11 and
capacity constraints are represented by Constraints 2.12. The domains of the
decision variables are specified by Constraints 2.13.

2.1. COMBINATORIAL OPTIMIZATION PROBLEMS 19

Remark 2.17. Dantzig and Fulkerson [1956] proof that integral instances (ca-
pacities u : A → N) of the Maximum Flow Problem have got integral opti-
mum solutions, which can be obtained in polynomial running time. One of the
fastest known algorithms is able to compute optimum solutions to the Maxi-
mum Flow Problem in O(|V | · |A| · log2+ |A|

|V |·log |V |
|V |)) (King et al. [1992]).

Remark 2.18. The maximum cardinality matching in a bipartite graph G =
(V, A) can be solved as a Maximum (s-t-)Flow Problem with uniform capacities
u ≡ 1 in a digraph G′ = (V ′, A′) that is defined as follows:

V ′ := V ∪ {s, t}

A′ := A ∪ { {s, v}, {w, t} | (v, w) ∈ A }
(2.14)

Definition 2.19 (b-Flow). Let G = (V, A) be a digraph with capacities u : A →
R+ and balance values b : V → R with

∑
v∈V bv = 0. A b-flow in G is a function

f : A → R+ satisfying the capacity constraints (Constraints 2.7) and the flow
balance conservation constraints

∀v ∈ V :
∑

e∈δ+
v

f(e)−
∑

e∈δ−
v

f(e) = bv (2.15)

MINIMUM COST FLOW PROBLEM

Instance: A weighted digraph G = (V, A), capacities u : A → R+, balance
values b : V → R with

∑
v∈V b(v) = 0 and costs c : A→ R.

Task: Find a b-flow f minimizing the total cost c(f) :=
∑

e∈A ce ·f(e), or
decide that no b-flow in G exists.

We obtain a LP formulation of the Minimum Cost Flow Problem (MCFP)
from the Maximum Flow formulation by replacing the Objective function 2.10
by

min
∑
e∈A

cefe (2.16)

and by replacing the flow conservation Constraints 2.11 by flow balance con-
servation constraints ∑

e∈δ+
v

fe −
∑

e∈δ−
v

fe = bv ∀v ∈ V (2.17)

Remark 2.20. Similar to the formulation of the AP and the Maximum Flow
Problem, the LP formulation of the MCFP has got a special structure. Let G =
(V, A) be an instance of the MCFP. The existence of an optimum b-flow in G

that is integral (fe ∈ N for all arcs e ∈ A) follows for instances having integral
balance values (b : V → N) and integral capacities (u : A → N). The optimum

20 CHAPTER 2. BASIC DEFINITIONS

integral b-flow can be computed in polynomial time, e.g. by using the fastest
known polynomial algorithm for the general uncapacitated MCFP instances in
O(|V | · log |A| · (|A|+ |V | · log |V |)) time (Orlin [1988]).

The Transportation Problem (TP) (Hitchcock [1941]) states a further famous
problem definition that derives from the MCFP on bipartite digraphs without
capacities (Constraints 2.7):

TRANSPORTATION PROBLEM

Instance: A bipartite digraph G = (X
·
∪ Y, A) with A ⊆ X × Y , balance

values b : V → R with bv ≥ 0 (supplies) for v ∈ X , bv ≤ 0
(demands) for v ∈ Y ,

∑
v∈V b(v) = 0 and costs c : A→ R.

Task: Find a function (flow) f : A → R+ satisfying the flow bal-
ance constraints (Constraints 2.15) and minimizing the total cost
c(f) :=

∑
e∈A ce · f(e), or decide that no such function f in G ex-

ists.

A polynomial time algorithm for the computation of optimum integral so-
lutions is known to all of the flow problems that have been mentioned so far.
However, the existence of such algorithms to the remaining problem defini-
tions has not been proved up until now.

Definition 2.21 (Multicommodity-Flow). Let 2 ≤ dim ∈ N be a natural number
and let G = (V, A) be a digraph with capacities u : A → R+ and multidimen-
sional balance values b(k) : V → R with

∑
v∈V b

(k)
v = 0 for k ∈ [dim]. A

multicommodity-flow is a function f (k) : A → R+ for k ∈ [dim] satisfying the
combined capacity constraints

∀e ∈ A :
∑

k∈[dim]

f (k)
e ≤ ue (2.18)

and the flow balance conservation constraints (Constraints 2.15) for each com-
modity k ∈ [dim].

MULTICOMMODITY FLOW PROBLEM

Instance: A digraph G = (V, A), capacities u : A → R+, a natural number
dim ∈ N, multidimensional balance values b(k) : V → R, k ∈ [dim]
with

∑
v∈V b

(k)
v = 0 for all k ∈ [dim] and costs c : A→ R.

Task: Find a multicommodity-flow f (k) minimizing the total cost
c(f) :=

∑
e∈A

∑
k∈[dim] ce · f (k)(e), or decide that no

multicommodity-flow in G exists.

2.1. COMBINATORIAL OPTIMIZATION PROBLEMS 21

A continuous decision variable fk
e is introduced for each arc e ∈ A and for

each dimension k ∈ [dim] in order to give a LP formulation of the Multicom-
modity Flow Problem (MCP):

min
∑
e∈A

∑
k∈[dim]

cef (k)
e (2.19)

such that ∑
e∈δ+

v

f (k)
e −

∑
e∈δ−

v

f (k)
e = b(k)

v ∀v ∈ V,∀k ∈ [dim] (2.20)

∑
k∈[dim]

f (k)
e ≤ ue ∀e ∈ A (2.21)

f (k)
e ∈ R+ ∀e ∈ A,∀k ∈ [dim] (2.22)

The Objective function 2.19 minimizes the total cost of the flow. Flow bal-
ance conservation constraints for each dimension are represented by Constraints
2.20 and combined capacity constraints are represented by Constraints 2.21.
Constraints 2.22 define the domains of the decision variables.

Remark 2.22. Even et al. [1976] show that producing an integral multicom-
modity flow (i.e. replacing Constraints 2.22 by f

(k)
e ∈ N,∀e ∈ A,∀k ∈ [dim])

is NP-hard even if there are only two commodities specified by the problem
instance.

2.1.4 Routing and Scheduling Problems

The CO problems mentioned in this section are especially important for the
construction of routes of the mICTP. The following chapters often use the term
distance/distance matrix to refer to the cost mapping of a weighted graph G =
(V, A).

Definition 2.23. A distance matrix is called symmetric, if cvw = cwv holds for
all pairs of nodes v, w ∈ V ; otherwise the distance matrix is called asymmetric.

Definition 2.24. Let G = (V, A) be a weighted digraph with costs c : A → R.
The mapping c is called conservative, if there is no negative cost cycle C =
(Vc, Ac), i.e.

∑
e∈Ac

ce ≥ 0 for all cycles C ⊆ G.

SHORTEST PATH PROBLEM

Instance: A digraph G = (V, A), conservative costs c : A → R and two
nodes s, t ∈ V .

Task: Find a s-t-path P minimizing the total cost c(P) :=
∑

e∈P ce, or
decide that no s-t-path exists.

22 CHAPTER 2. BASIC DEFINITIONS

The Shortest Path Problem (SP) can be formulated as a MCFP with unlim-
ited capacities by introducing balances b : V → R, which are defined as fol-
lows:

bv :=

⎧⎪⎨⎪⎩
1, v = s

−1, v = t

0, otherwise

Remark 2.25. Let G = (V, A) be a weighted digraph with conservative costs.
The Moore-Bellman-Ford Algorithm (Bellman [1958], Ford [1956], Moore [1959])
solves the SP in O(|V | · |A|). This is the fastest known polynomial time algo-
rithm for the SP with conservative costs. However, if the costs are additionally
restricted to be nonnegative (c : A → R+), then the running time improves to
O(|A| + |V | · log |V |) by using an implementation of the algorithm of Dijkstra
[1959] (Fredman and Tarjan [1987]).

ALL PAIRS SHORTEST PATH PROBLEM

Instance: A digraph G = (V, A) and conservative costs c : A→ R.
Task: Solve the SP for all s, t ∈ V .

Observation 2.26. The fastest known algorithm for the All Pairs Shortest Path
Problem (APSP) computes in O(|A| · |V | + |V |2 log log |V |) (Pettie [2004]) the
optimum solution to an APSP instance (G = (V, A), c).

Observation 2.27. The transitive closure of a graph G (refer to Definition 2.10)
can be computed by solving the APSP in G.

While the SP and the APSP can be efficiently solved in polynomial running
time, the remaining problem definitions are much more complex; up until now,
the existence of polynomial time algorithms to those problems has not been
proven.

Definition 2.28 (Hamiltonian Circuit). A Hamiltonian Circuit or tour of a
graph G = (V, A) is a cycle G′ = (V, A′) ⊆ G on the same set of nodes.

In scientific sources, the following problem has received considerable atten-
tion specifically because of its conceptual simplicity, which is in contrast to the
difficulty of solving instances of this problem type in practice (Williams [2013],
Hoffman et al. [2013]).

TRAVELING SALESMAN PROBLEM

Instance: A complete graph G = (V, A) and costs c : A→ R.
Task: Find a Hamiltonian circuit G′ = (V, A′) ⊆ G minimizing the total

cost c(G′) :=
∑

e∈A′ ce.

2.1. COMBINATORIAL OPTIMIZATION PROBLEMS 23

The Traveling Salesman Problem (TSP) problem can be formulated similar
to the AP by extending Constraints 2.4 and 2.5 to the entire node set V and by
introducing a binary decision variable that is defined as follows:

δvw :=
{

1, if arc (v, w) is included in the Hamiltonian Circuit
0, otherwise

The current formulation allows solutions to comprise more than one cy-
cle (sub-tours), instead of only one Hamiltonian Circuit. Several different ap-
proaches for the exclusion of sub-tours are shown by literature sources; the
mathematical model of the mICTP includes the sub-tour elimination constraints
of Miller et al. [1960], which can be easily modified to also implement time win-
dow constraints. The sub-tour elimination constraints of Miller et al. [1960] re-
quire a continuous decision variable mv for each node v ∈ V together with a
special node (the depot) d ∈ V :

md = 0 (2.23)

δvw = 1 =⇒ mw ≥ mv + 1 ∀(v, w) ∈ A \ δ−
d (2.24)

MULTIPLE TRAVELING SALESMAN PROBLEM

Instance: A complete weighted graph G = (V, A), a node d ∈ V , costs c :
A→ R and a natural number k ∈ N.

Task: Find k cycles Gk = (Vk, Ak) ⊆ G, such that d ∈ Vk for all
k and V =

·
∪i∈[k] (Vi \ {d}) ∪ {d} minimizing the total cost∑

i∈[k]
∑

e∈Ai
ce.

An IP formulation of the Multiple Traveling Salesman Problem (mTSP) can
be obtained by replacing the Constraints 2.4 and 2.5 for the set δ+

d /δ+
d by∑

e∈δ+
d

δe =
∑

e∈δ−
d

δe = k (2.25)

There is a wide variety of (m)TSP problems presented in scientific litera-
ture, like time window and synchronization constraints (refer to Sections 3.1.1
and 3.1.2 for variations of the (m)TSP). The (m)TSP can be distinguished in
symmetric and asymmetric problem definitions regarding to its practical appli-
cation. The additional consideration of balance values for nodes and capacity
limitations for routes leads to a problem that is called Vehicle Routing Problem.

The Full Truckload Pickup and Delivery Problem (FTPDP) is a Pickup and De-
livery Problem (PDP) (see e.g. Berbeglia et al. [2007], Parragh et al. [2008a,b],
Savelsbergh and Sol [1995]) with a special structure such that it can be formu-
lated as an asymmetric mTSP (amTSP) (see also Sections 3.1 and 3.2).

24 CHAPTER 2. BASIC DEFINITIONS

Definition 2.29 (FTPDP structure). Let G = ({d} ∪ V + ∪ V −, A) be a graph,
where the ordered sets V + = (v+

1 , . . . v+
n) and V − = (v−

1 , . . . v−
n) have the same

cardinality n. Then G includes a FTPDP structure, if the arc set is defined as
follows:

A :=
{

(v+
i , v−

i)
⏐⏐ i ∈ {1, . . . , n}

}
∪

{
(v, w)

⏐⏐ v ∈ {d} ∪ V −, w ∈ {d} ∪ V + }
This means that each node in the set V +/V − is the tail/head of exactly one arc,
while the remaining graph is complete.

Given this definition, the FTPDP can be formulated analogous to the mTSP:

FULL TRUCKLOAD PICKUP & DELIVERY PROBLEM

Instance: A graph G = ({d} ∪ V + ∪ V −, A) in a FTPDP structure, costs
c : A→ R and a natural number k ∈ N.

Task: Find k cycles Gk = (Vk, Ak) ⊆ G, such that d ∈ Vk for all
k and V =

·
∪i∈[k] (Vi \ {d}) ∪ {d} minimizing the total cost∑

i∈[k]
∑

e∈Ai
ce.

Because of the FTPDP structure, each feasible solution to the FTPDP covers
the arc (v+

i , v−
i) for all i ∈ {1, . . . , n}. In other words, a good is picked up at

node v+
i ∈ V + and delivered to node v−

i ∈ V − on the direct route.

2.1.5 More Mathematics

The following definitions on sets and properties of sets are required by Section
6.3.1. Section 6.3.1 gives a construction of lower bounds on the number of
trucks needed to serve all requests of a mICTP instance.

Definition 2.30 (Chains, Antichains). A set R := {r1, r2, . . . , rn} is a collection
of distinct elements. A partial order over a set is a relation ≤ that is reflexive,
antisymmetric and transitive, i.e.:

• reflexivity: ∀r ∈ R : r ≤ r

• antisymmetry: ∀r1, r2 ∈ R : r1 ≤ r2 and r2 ≤ r1 =⇒ r1 = r2

• transitivity: ∀r1, r2, r3 ∈ R : r1 ≤ r2 and r2 ≤ r3 =⇒ r1 ≤ r3

A partially ordered set (poset) (R,≤) is a set together with an partial order.
Two elements r1, r2 ∈ R are comparable, if r1 ≤ r2 or r2 ≤ r1 holds. Chain-
s/antichains are subsets of pairwise comparable/incomparable elements of R.

Theorem 2.31 (Dilworth [1950]). In any finite poset the maximum size of an an-
tichain equals the minimum number of chains into which the poset can be partitioned.

2.2. ALGORITHMS 25

The subsequent NP-hard problems are mentioned in the literature review
that is contained in Chapter 3:

Definition 2.32. Given an ordered set S = (s1, . . . , sn) of objects and a class
S of sub-sets of S together with a cost function c : S → R. The Set Covering
Problem asks for a selection S ′ of sub-sets of S, such that each element of S

is contained in at least one element of S ′, thereby minimizing the total cost∑
i∈S′ c(i). The Set Partitioning Problem asks (if existent) for a partition of S

consisting of elements of S minimizing the total cost.

2.2 Algorithms

This section provides a general overview of algorithms for CO problems; we
mainly follow the notations of Blum and Roli [2003] in the following. Algo-
rithms for CO problems can be categorized into complete and approximate algo-
rithms.

2.2.1 Complete Algorithms/Exact Algorithms

Complete algorithms (or exact algorithms) guarantee to find optimum solu-
tions to all finite-sized instances of the considered CO problem within bounded
time. If no polynomial time algorithm to a CO problem is known (this is cur-
rently the case for NP-hard problems), then the search for an optimum solu-
tion might need exponential running time in the worst case (Blum and Roli
[2003]).

2.2.2 Approximate Algorithms/Heuristics

Approximate algorithms (or heuristics) forgo the guarantee to find optimum
solutions in order to compute "good" solutions within a significantly reduced
amount of time (Blum and Roli [2003]). In general, heuristics are distinguished
into constructive and local search algorithms. Constructive algorithms are fast
methods, which start from scratch, i.e. an empty partial solution, and continue
to add components to the partial solution until the solution finally is complete.
In contrast, a complete (nonempty initial) solution serves as input for local
search algorithms. Afterwards the local search algorithm applies operators,
which specify the way a solution can be modified, to the current solution; in
this step the current solution is replaced by a better one. The determined set of
operators is called neighborhood structure; the neighborhood of a solution S is the
set of solutions deriving from having once applied an operator to S. Construc-
tive algorithms tend to produce significantly worse solutions than local search

26 CHAPTER 2. BASIC DEFINITIONS

algorithms. As a result, constructive and local search algorithms are typically
combined in a single algorithm.

2.2.3 Metaheuristics

Local search algorithms that only replace solutions by better ones (the so-called
hill climbing strategy) run the risk of converging to local optimum solutions,
which do not have to be (global) optimum solutions. Conversely, metaheuristics
combine basic heuristic methods in high-level frameworks to overcome non-
optimum, local minimum solutions. In order to attain this objective, meta-
heuristics create a balance between diversification, i.e. the exploration of search
space, and intensification, i.e. the exploitation of accumulated search experience
(Blum and Roli [2003]).

This chapter is closed by presenting three different metaheuristics that are
primarily included in the heuristic approach that is introduced in Chapter 6.

Simulated Annealing

Simulated Annealing (SA)(Černỳ [1985], Kirkpatrick et al. [1983]) is a strategy to
escape from converging to local minimum solutions; a solution is allowed to
be replaced by a worse solution. The probability of allowing moves to a worse
solution is decreased (cooling schedule) within the search on a nature-inspired
way (Blum and Roli [2003]). The general structure of SA is to initialize some
starting temperature T at the beginning of the algorithm. A newly computed
solution S ′ replaces the current solution S with probability according to the
Boltzman distribution e− c(S′)−c(S)

T , in this term c(S) denotes the cost of a so-
lution S. The temperature T is reduced during the search; the choice of an
appropriate cooling schedule is critical for the performance of the SA.

Large Neighborhood Search

Large Neighborhood Search (LNS) (Shaw [1997]) systematically explores neigh-
borhoods in order to move from one promising area in the solution space to
another one. Removal (a part of the solution is destroyed) and insertion (the de-
stroyed solution is repaired) operators define the neighborhood of LNS. This
metaheuristic is particularly suitable for instances having large neighborhoods
or instances having neighborhoods containing only a few feasible solutions,
which might result from restrictions like time windows (Blum and Roli [2003]).

Ropke and Pisinger [2006] propose an adaptive LNS (ALNS) that is inspired
by the algorithms of Schrimpf et al. [2000], Shaw [1997]. Several destroy and
fast repair operators are combined in one single step of the algorithm; opera-
tors for the successive modification of the solution are selected based on statis-

2.2. ALGORITHMS 27

tics concerning their previous efficiency in the search, i.e. the search is guided.
Instead of applying neighborhood structures in such a way that the current
solution is only slightly modified, the algorithm of Pisinger and Ropke [2010]
spends considerable computation time in one single move that is able to mod-
ify 30%−40% of the current solution. Afterwards solutions are updated in a SA
strategy. The heuristic approach that is presented in Chapter 6 also includes a
SA strategy and some of the operators proposed by Ropke and Pisinger [2006];
however, the approach is classified as LNS because of a non-guided selection
of operators.

Matheuristics

Nowadays, commercial MIP solvers can easily be embedded in users’ imple-
mentations of common programming languages not only, but also commercial
MIP solvers as well as machines have been highly improved and have become
sufficiently faster. This is reason to the fact that the number of mathematical
programming models that are used in heuristic frameworks rises in order to
obtain high-quality solutions to complex problem definitions. The approach
that combines mathematical models with heuristics is referred to as matheuris-
tic. Archetti and Speranza [2014] surveys matheuristics for routing problems;
matheuristics are classified into three different categories in this survey. De-
composition approaches divide problems into smaller sub-problems of which at
least one is solved by using a MIP. Improvement heuristics use mathematical
models to improve solutions that are found by heuristics. The third variant ob-
tains heuristic solutions by branch and price or column generation based approaches.
The matheuristic approach that is presented in Chapter 6 is a decomposition
approach; a MIP is formulated to compute solutions to the sub-problem of as-
signing empty containers to cargo transportation requests. A further survey on
matheuristics is given by Ball [2011]; a survey on matheuristics for rich vehicle
routing problems is given by Doerner and Schmid [2010].

Chapter 3

Literature Overview

Problems arising in the field of moving containerized cargo and repositioning
empty containers are a topical subject of high relevance from both, a scientific
perspective as well as an economic and an ecological perspective. In this con-
text especially the importance of operations in the hinterland of intermodal
container terminals such as seaports or railway stations has to be emphasized.
At container terminals containers are transshipped between different means
of transportation for onward transportation. A bunch of surveys and reviews
that has been recently published demonstrates the relevance and the actuality
of tasks taking place at container terminals. Günther and Kim [2006] inves-
tigate container terminals and terminal operations, an overview of the trans-
shipment of containers at a container terminal is given by Vis and De Koster
[2003], Steenken et al. [2004] conduct a classification and a literature review
of container terminal operations, a literature update of Operations Research
(OR) at container terminals is presented by Stahlbock and Voß [2008], Macharis
and Bontekoning [2004] review and discuss opportunities for OR in intermodal
freight transport, an overview of container shipping and ports is provided by
Notteboom [2004]. The following literature overview is restricted to scientific
literature on applying quantitative methods to economic decision making in
the field of drayage operations. Most of the papers consider one trucking com-
pany that has to transport cargo by trucks, whereby empty containers serve
as transportation media for cargo. Empty containers have to be collected and
repositioned. For this reason, a trucking company is also responsible to fulfill
so-called unproductive movements.

Definition 3.1 (Unproductive Movement). An unproductive movement is a
part of a truck’s route, in which the truck travels without having loaded any
container or having loaded only empty containers.

29

30 CHAPTER 3. LITERATURE OVERVIEW

In general, tractors, trailers and containers can be classified as resources
(tractors, trailers, drivers, containers and so on). Smilowitz [2006] classify re-
sources by their jobs; while containers and trailers are used for storage of cargo,
but do not include a mechanism for locomotion (i.e. non-autonomous resources,
Drexl [2012] that must be pulled by a compatible autonomous resource), trac-
tors provide locomotion (i.e. autonomous resources, Drexl [2012]), but do not
provide storage and require another resource (a driver) to operate. The subse-
quent literature overview either focuses on container or on trailer transporta-
tion. Depending on the transportation media, it is either assumed that tractors
and drivers form one unit (trailer transportation), or that tractors, drivers and
chassis form one unit (container transportation), i.e. tractors/trucks are always
able to move in space on their own and no more than two types of resources
need to be synchronized. In order to refer to container transportation, the term
truck is used in the following. A truck is defined according to a container vehicle
that is defined by Chung et al. [2007]. The definition distinguishes between
three truck types:

Definition 3.2. A truck comprises a driver, a tractor and a chassis. Three types
of chassis can be distinguished: 20-foot container chassis, 40-foot container
chassis and combined chassis. Tractors having coupled the first or second chas-
sis type are able to transport one 20-foot or 40-foot container respectively, while
tractors having coupled the third chassis type are able to transport up to one
40-foot or two 20-foot containers. Depending on the coupled chassis, trucks
are divided into 20-foot trucks, 40-foot trucks and combined trucks.

Sections 3.2 and 3.3 consider full truckload (FTL) problems, i.e. trailer trans-
portation by tractor or 40-foot container transportation by 40-foot truck. The
other types of trucks become interesting from Section 3.4; in this section a
distinction is additionally made between different container sizes leading to
less-than truckload (LTL) problems. In literature sources several terms are used
to describe the movement of fully loaded containers, container handling op-
erations ((de-)coupling and (un-)loading containers) and the repositioning of
empty containers by truck. These terms are for example loads, container move-
ments, transportation requests, tasks and so on. The term hinterland request is
used in the following to refer to the different tasks a trucking company is con-
fronted with.

Definition 3.3 (Hinterland Request). The term hinterland request refers to one
task or the combination of different tasks (empty container transportation, con-
tainer handling and cargo transportation) of a trucking company to form one
multi-task unit.

31

Container types are subdivided depending on container transportation tak-
ing place in pre- or end-haulage.

Definition 3.4. Export/outbound containers are fully loaded containers that
have to be transported from a customer’s (sender’s) location to the terminal.
An Export is a hinterland request referring to the associated export container
transportation. Import/inbound containers are fully loaded containers that
have to be transported from the terminal to a customer’s (receiver’s) location.
An import is a hinterland request referring to the associated import container
transportation.

Container movements may be further split into movements having previ-
ously known points of origin and destination (fully loaded container trans-
portation) and movements, for which either the point of origin or the point of
destination is known in advance and the missing location has to be examined
during the solution making process (empty container transportation). This dis-
tinction is based on the fact that empty containers are assumed to be inter-
changeable; as soon as empty container movements are considered, the empty
container transporting the cargo is not further specified. For instance, after
a fully loaded import container has been transported from the terminal to the
customer’s location, where it has been unloaded, the obtained empty container
can either be reused as an export container by transporting the container to a
customer’s location, where it will be filled again, or the container can be carried
to a terminal/depot for stowage. We follow the notations of Smilowitz [2006]
to distinguish between the different attributes of a container/truck movement:

Definition 3.5 (Well-defined and Flexible Tasks, Smilowitz [2006]). A well-
defined task is given points of origin and destination in advance. A flexible
task is given only one location (either the point of origin or the point of desti-
nation) beforehand. The point of origin or the point of destination of a flexible
task is missing, and therefore is a matter of optimization. A hinterland request
is called well-defined, if it is comprised of well-defined tasks only. A hinter-
land request is called flexible, if it starts/ends with a flexible task that has got
an undetermined point of origin/destination.

The reminder of this chapter is structured as follows. Section 3.1 gives a
classification on the different types of problems appearing in drayage. Sections
3.2 and 3.3 review transportation problems of 40-foot containers. Whereas Sec-
tion 3.2 amplifies problems containing well-defined hinterland requests only,
Section 3.3 expands to problems containing well-defined and flexible hinter-
land requests. Problems considering the simultaneous transportation of con-
tainers having different sizes, mainly 20-foot and 40-foot containers, are an-

32 CHAPTER 3. LITERATURE OVERVIEW

alyzed in Section 3.4. Section 3.5 summarizes different challenges arising in
container hinterland transportation.

3.1 Classification of Drayage Problems

The problems that are stated in Sections 3.2 and 3.3 consider the transportation
of 40-foot containers/trailers only. These problems can be classified as FTPDP
(Erera and Smilowitz [2008]) (see also Definition 2.29), in which trucks/tractors
can carry a maximum of one good (40-foot container/trailer). Each customer
defines two locations: one location where the good has to be picked up and an-
other location where the good has to be delivered. The objective is to minimize
costs like the total operating time or the total travel distance of the trucks. The
trucks start and end their routes at the depot and visit all customers’ locations,
whereby the destination of a customer has to be visited immediately after its
origin. If time windows are additionally given, then the problem is referred to
as Full Truckload Pickup and Delivery Problem with Time Window Constraints (FT-
PDPTW), in which trucks have to arrive at the different locations within the
locations’ time windows. Among others, Jula et al. [2005], Wang and Regan
[2002] show how to transform the FTPDP/FTPDPTW into an asymmetric mT-
SP/mTSPTW (amTSP/amTSPTW) (as detailed in Section 3.2).

3.1.1 (Multiple) Traveling Salesman Problem

For a finite set of locations the TSP asks for a route, in which each location
is visited exactly once by a salesman, thereby minimizes the total travel dis-
tance of the salesman. Problem definitions including time windows, in which
the salesman has to arrive at the different locations, are called Traveling Sales-
man Problem with Time Window Constraints (TSPTW). Karp [1972] proves the
TSP to be NP-hard. However, in practice, there are fast approximate algo-
rithms as well as complete algorithms for solving large TSP instances. For
instance, Helsgaun [2000] implemented the approximate algorithm of Lin and
Kernighan [1973] so as to compute solutions of a superior level of solution
quality to TSP instances containing up to 100,000 locations. One famous com-
plete TSP algorithm is called Concorde (Applegate et al. [1995], Applegate et al.
[2011]). Concorde is able to compute optimum solutions to instances like the
85,900-location instance of the TSPLIB (Reinelt [1991]). Nowadays, scientists
are trying to optimally solve a world instance consisting of up to 1,904,711 lo-
cations (World-TSP-Pictures [2004]). However, for unknown reasons, optimum
solutions to instances of such a magnitude can only be computed for the sym-
metric TSP. In practice, the asymmetric TSP (aTSP) seems to be much harder

3.1. CLASSIFICATION OF DRAYAGE PROBLEMS 33

to solve (Grötschel [2015]). An analysis of heuristics for the aTSP is presented
by Johnson et al. [2007].

The mTSP that considers several salesmen states a generalization of the TSP.
Bektas [2006] gives an overview of formulations and solution procedures for
the mTSP. Although several complete mTSP algorithms are introduced in lit-
erature, one outcome of the overview of Bektas [2006] is that in contrast to the
TSP, the largest optimally solved amTSP instances contain about 500 locations,
while the largest optimally solved symmetric TSP instances contain about 100
locations (Gavish and Srikanth [1986]). The consideration of time windows
at the different locations constitutes a further extension of the mTSP/amTSP
that is called (asymmetric) multiple Traveling Salesman Problem with Time Window
Constraints (mTSPTW/amTSPTW). Computing solutions to reasonable-sized in-
stances can prove to be very difficult for problem definitions including time
window constraints (Williams [2013]). One of the reasons for this is that time
window constraints are non-linear (see for example Constraints 5.17). How-
ever, linearizing time window constraints makes the problem hard to solve for
general solution approaches, as the linearized constraints are not the facets of
the polytope of the convex hull of the feasible solutions (Langevin et al. [1990],
Wang and Regan [2002]). Surveys of time window constrained routing prob-
lems are for example given by Desroches et al. [1988], Solomon [1987], Solomon
and Desrosiers [1988]. If the salesmen are given maximum capacities that have
to be obtained, then the problem is called Vehicle Routing Problem (VRP). Sur-
veys of the VRP have been conducted by e.g. Laporte [1992], Toth and Vigo
[2002].

3.1.2 Vehicle Routing Problems with Synchronization

The consideration of the simultaneous transportation of 40-foot and 20-foot
containers transforms the FTL problem to a LTL problem. Trucks can transport
either one 40-foot container or two 20-foot containers at the most. Compared
to common definitions of routing problems, additional synchronization con-
straints are required for the construction of routes in this case. Synchronization
constraints may lead to routes that are dependent on one another:

Definition 3.6 (Interdependence Problem, Drexl [2011, 2012]). In routing prob-
lems, the term interdependence problem refers to a change in one route r that
may effect changes in routes different from r.

This special class of vehicle routing problems has become a highly topical
subject of many literature sources in the recent years. A general definition is
stated by Drexl [2011, 2012]:

34 CHAPTER 3. LITERATURE OVERVIEW

Definition 3.7 (Drexl [2011, 2012]). The Vehicle Routing Problem with Multi-
ple Synchronization Constraints (VRPMS) is a VRP, in which more than one
vehicle may or must be used to perform a task.

Surveys of VRPMS are conducted by Drexl [2011, 2012]. Depending on the
subject (i.e. task, operation, movement, load, resource) that needs to be syn-
chronized, Drexl [2011, 2012] establishes a classification scheme for VRPMS.
Drayage problems including the handling of different sized containers might
ask for synchronization in the following aspects: trucks transporting two or
more containers at the same point in time simultaneously perform more than
one task, routes for trucks and flows for containers have to be synchronized,
empty and fully loaded container transportation has to be synchronized when-
ever container (un-)loading operations are allowed to take place without the
presence of trucks.

Multiple Traveling Salesman Problem with Time Windows and Precedences

The mICTP includes a sub-problem that is a VRPMS, which has been origi-
nally defined for an application different from container hinterland drayage.
For the routing and scheduling of workers that have to perform a set of elec-
tricity maintenance jobs Goel and Meisel [2013] define the Multiple Traveling
Salesman Problem with Time Windows and Precedences (mTSPTWP) that consti-
tutes an extension of the mTSPTW. A mTSPTWP instance comprises a set J
of multi-task jobs. Each job j ∈ J is represented by a task set Tj . The differ-
ent tasks that are combined in Tj have to be performed in a given sequence.
Precedence constraints Pj ⊂ Tj ×Tj are introduced in order to ensure the com-
pliance with the defined sequence of tasks Tj belonging to the same job j. A
precedence constraint between two tasks (τ, τ ′) ∈ Pj specifies that task τ has
been completed before task τ ′ is allowed to start.

3.2 Full Truckload Problem

Wang and Regan [2002] investigate a FTPDPTW, in which a homogeneous fleet
of trucks (each having a capacity of one) has to serve a set of well-defined
hinterland requests. A hinterland request defines a load to be moved from a
pickup to a delivery location. Trucks have to arrive at the loads’ pickup loca-
tions within a predefined time interval. Initially, trucks are scattered through-
out the entire service region. The considered problem is an open routing prob-
lem; that means, no destination is specified at which the trucks have to arrive
at the end of the time horizon. The service region contains one or more in-
termodal facilities. The objective is to serve as many hinterland requests as

3.2. FULL TRUCKLOAD PROBLEM 35

possible and thereby minimize the total travel cost of the trucks’ fleet, i.e. a
solution remains feasible, if some of the hinterland requests are not executed.
Figure 3.1 shows the routes of three trucks. A hinterland request i is depicted

p1

p2p3
p4

p5

p6

p7p8

p9

p10

d1

d2
d3

d4

d5

d6

d7

d8

d9

d10

route 1

route 2

route 3

route 4

Figure 3.1: Representation of a full truckload problem due to Jula et al. [2005].

by the node pair (pi, di) representing the transportation of one load from its
pickup pi to its delivery location di. As the problem is a FTL problem, the hin-
terland requests constitute sub-sets of the routes. This means that the loads’
transportation (shown by solid lines) is already determined, while the order in
which the hinterland requests are to be served and the assignment to the trucks
(shown by dashed lines) remain a matter of optimization. Wang and Regan
[2002] model the problem as an amTSPTW by introducing one node for each
hinterland request. This means that the pairs (pi, di) (solid lines) are merged
into one node, with the node’s point of origin differing from the node’s point of
destination. This implementation is the reason why an asymmetric problem is
obtained: the costs of arcs entering a node are equal to distances to the pickup
locations, while the costs of arcs leaving a node are equal to distances from
the delivery locations. Nodes have assigned time intervals equal to the time
windows of the pickup locations and service times (the minimum time a truck
has to stay at a node), which are equal to the sum of service times obtained at
pickup and delivery locations with the travel duration from pickup to deliv-
ery locations. For the computation of solutions to the formulation, Wang and
Regan [2002] propose an iterative solution approach named window partition
based (WPB) method. The WPB method replaces time window constraints with
binary variables. Each iteration consists of solving two different models, both

36 CHAPTER 3. LITERATURE OVERVIEW

representing a simplification of the same problem definition. The first model is
a copy of the original amTSPTW formulation in which arcs (l1, l2) are excluded
whenever time constraints between the end points of the time intervals of l1

and l2 are not satisfied (regardless of whether the movement (l1, l2) is feasible
or infeasible). This model is called over-constrained, since feasible solutions to
this model are also feasible solutions to the original problem definition. The
second model is a copy of the original amTSPTW formulation in which infea-
sible arcs (l1, l2) are added whenever time constraints between the start point
of the time interval of l1 and the end point of the time interval of l2 are sat-
isfied. This model is called under-constrained, since feasible solutions to this
model are not necessarily feasible solutions to the original problem definition.
The objective value of the over-constrained/under-constrained model yields
an upper/lower bound on the objective value of the original problem defini-
tion. That is, the smaller the gap between the objective values of the two mod-
els, the better the approximation to the objective value to the original problem
formulation. Smaller time window widths of the nodes result in smaller gaps
between the models. As a result, Wang and Regan [2002] partition the time
windows into sub-sets and introduce a node for each time window sub-set. A
load is served, when a truck visits one of the nodes representing a sub-set of
the load’s time window. As the computation time increases for larger problem
sizes, the challenge of the approach is to determine a width for the time win-
dow partition (i.e. the number of nodes) that achieves a good solution quality
within an adequate computation time. Therefore, the WPB method consists of
several iterations. In each iteration the preceding partition of time windows is
repartitioned until a time window width is achieved that leads to high-quality
solutions.

The main difference between the problem definition of Wang and Regan
[2002] and the problem definition of Jula et al. [2005] is that the entire set
of hinterland requests must be served in the problem definition of Jula et al.
[2005]. Consequently, the objective minimizes the total distance of unproduc-
tive movements (i.e. the dashed lines in Figure 3.1) since the movement of
loads is predefined and therefore cannot be modified by any solution making
process. The authors build an amTSPTW and add social constraints in order to
ensure that the time horizon is not exceeded by the duration of a truck route.
Jula et al. [2005] additionally propose a two-phase exact algorithm based on dy-
namic programming. In the first phase, a set of feasible solutions is generated.
In order to cover all hinterland requests at minimum costs, the second phase
solves a Set Partitioning Problem (SPP) (see also Definition 2.32), which con-
tains these truck routes that have been computed in the first phase. Since the
computation time increases with the time window widths, optimum solutions

3.3. REPOSITIONING OF EMPTY CONTAINERS 37

can only be computed to instances containing up to 13 hinterland requests in
the case of wide time windows. Therefore, Jula et al. [2005] propose two heuris-
tics. The first heuristic approach differs from the exact approach by solving the
SPP by a heuristic genetic algorithm. The second heuristic approach is an in-
sertion heuristic method (Jaw et al. [1986]) that iteratively adds hinterland re-
quests to an initial empty set of routes. In more detail, one iteration comprises
two steps. In the first step the unserved hinterland request causing the least
cost when inserting it into the currently computed set of routes is determined.
In the second step this hinterland request is inserted into the cheapest position.
A new route is initialized whenever a hinterland request cannot be added to
the current set of routes.

3.3 Repositioning of Empty Containers

If the FTL problem includes additionally the repositioning of empty contain-
ers or trailers, then the most of the literature sources groups different tasks in
one multi-task unit. Two types of hinterland requests can be distinguished de-
pending on whether tasks accrue in pre- or end-haulage. Each type comprises
three tasks.

Definition 3.8 (Outbound Full Hinterland Request, Zhang et al. [2010]). The
term outbound full (OF) hinterland request refers to tasks taking place in
pre-haulage. The order of the tasks is given as follows:

1. Transportation of an empty container to the sender’s location (flexible
task, missing origin)

2. Loading the empty container at the sender’s location (container handling
operation)

3. Export of the fully loaded container from the sender’s location to the ter-
minal (well-defined task)

Definition 3.9 (Inbound Full Hinterland Request, Zhang et al. [2010]). The
term inbound full (IF) hinterland request refers to tasks taking place in end-
haulage. The order of the tasks is given as follows:

1. Import of a fully loaded container from the terminal to the receiver’s lo-
cation (well-defined task)

2. Unloading the fully loaded container at the receiver’s location (container
handling operation)

38 CHAPTER 3. LITERATURE OVERVIEW

3. Transportation of the empty container from the receiver’s location (flexi-
ble task, missing destination)

?
Depot

Terminal

Customer

Figure 3.2: Different possibilities for combining routes.

The introduction of flexible tasks adds a new optimization component to
the problem definition, since the missing locations are to be determined by
the solution making approach. As a result, these approaches often consist of
at least two phases: one phase assigns empty containers or trailers to flexible
tasks and thereby specifies the missing location, i.e. flexible tasks are grouped
to form well-defined tasks. The other phase constructs routes from the well-
defined tasks. An example is shown in Figure 3.2. An OF request is depicted
on the left and an IF request is depicted on the right. Fully loaded container
transportation between terminal and customer or vice versa is represented by
solid lines. In this example, empty containers can be obtained from/delivered
to the depot or between the customers (receiver and sender) shown by the
dashed lines.

Definition 3.10 (Street-turn, Jula et al. [2006]). A street-turn is the direct move-
ment of an empty container from a receiver to a sender or vice versa.

The second task of OF and IF hinterland requests is a container handling
operation that is allowed to take place either with (Section 3.3.1) or without the
presence of a truck (Section 3.3.2)1.

1(Un-)loading containers without the presence of a truck is a typical proceeding that is e.g.
applied in the port of Rotterdam (Veenstra [2005]). After decoupling the container at the customers’
location, the truck has the opportunity to pick empty containers up that have been delivered the
day before. Further advantages of (de-)coupling containers and trucks at customers’ locations can
be seen from Sterzik et al. [2015].

3.3. REPOSITIONING OF EMPTY CONTAINERS 39

3.3.1 No Separation

Ileri et al. [2006] optimize drayage operations taking place in intermodal trans-
portation between truck and rail on the same day. The research focuses on
the minimization of the total cost of the operating times of a heterogeneous
fleet of tractors; the tractors are given individual operating costs. Further-
more, tractors are given a point of origin and destination, and a minimum
and a maximum bound on the operating time. A set of hinterland requests
defines trailers to be collected and delivered to specific locations within spe-
cific time windows. Some of the hinterland requests are well-defined whereas
others demand/supply empty trailers and, therefore, are flexible. The prob-
lem is given an unlimited availability of empty trailers. However, the pickup
and the delivery of empty trailers takes additional time and distance. Ileri
et al. [2006] propose a Column Generation (CG) methodology in which tractors
that share the same attributes are grouped together. The CG comprises sev-
eral cycles. Each cycle optimally solves a SPP relaxation that includes only a
sub-set of all feasible routes. Dual values are used in order to identify columns
(routes) having negative reduced costs. The columns are separately chosen for
the different tractor groups; whenever the maximum number of routes for one
tractor group has been generated, the algorithm proceeds creating routes for
the next tractor group. Finally, the new routes are added to the SPP formula-
tion and the next cycle is initiated. The circulation process terminates, when no
more columns that have negative reduced costs can be identified. Afterwards,
branch and bound techniques are used to solve the integral formulation of the
SPP. The proposed algorithm is able to compute solutions to instances contain-
ing around 100 hinterland requests within three minutes. Since the obtained
solutions must not be the optimum solutions to the entire problem formula-
tion, Ileri et al. [2006] compare solutions to small-sized instances with solutions
that are computed by another exact approach. The other approach enumerates
all of the columns beforehand and solves the IP formulation afterwards. The
enumeration uses search trees (one for each tractor group), a feasibility matrix
and dominated routes. The exact approach is able to solve instances including
a small number of hinterland requests (5 to 28); both algorithms compute the
same solutions to the considered benchmark set.

In the problem formulation of Imai et al. [2007] a set of flexible OF and IF
hinterland requests defines the movement of empty and fully loaded contain-
ers among senders, receivers and one intermodal terminal by truck. Trucks
and containers are not allowed to separate:

40 CHAPTER 3. LITERATURE OVERVIEW

Definition 3.11 (Stay-with, Macharis and Bontekoning [2004]). A trailer/con-
tainer is (un-)loaded in a stay-with procedure, when the operation is accom-
panied by the tractor/truck.

As container handling operations are carried out in a stay-with procedure,
a truck has to visit at least three different locations (customer, terminal and
the container’s origin/destination) for the entire transportation of one specific
container. The set of trucks comprises two different homogeneous sub-sets
containing either owned or chartered trucks. While the maximum time for oper-
ating is shorter for owned trucks, the travel costs of chartered trucks are con-
versely more expensive. The problem’s objective is to minimize the total travel
distance of the trucks and thereby serve all of the hinterland requests. Imai
et al. [2007] propose a solution method based on Lagrangian Relaxation, in
which the subgradient method is used to compute the Lagrangian multipliers.
The solution method firstly assigns empty containers to flexible IF and OF re-
quests by solving an AP in polynomial running time (refer to Remark 2.15).
Afterwards, routes are constructed from the obtained well-defined requests by
an implementation of the NP-hard Generalized Assignment Problem (GAP). In
order to compute high-quality Lagrangian multipliers, the AP and the GAP have
to be solved several times; this step is especially time consuming for the GAP.
For this reason, Imai et al. [2007] replace the GAP by a formulation of the NP-
hard Bin Packing Problem (BPP), which yields an upper bound for the GAP. In
contrast to the GAP, the BPP can be efficiently solved by heuristics (like the first
fit decreasing algorithm) in short computation time. On the whole, however, the
solution methodology of Imai et al. [2007] profits from a problem definition, in
which trucks are restricted to start and end their routes at one terminal and no
additional time windows at the locations are given.

Caris and Janssens [2009] extend the problem definition of Imai et al. [2007]
by introducing time windows, in which the trucks have to arrive at the dif-
ferent locations; the authors propose a FTPDPTW formulation of the obtained
problem definition. In order to compute lower bounds on the solution qual-
ity, the feasibility of routes is relaxed by underestimating the total number of
trucks that are needed to serve the entire set of hinterland requests (Currie
and Salhi [2003]). Caris and Janssens [2009] construct an initial solution by a
two-phase insertion heuristic approach. In a first phase, OF and IF requests
get assigned the missing points of origin and destination. The objective in
this phase is an intermediate between a saving function, which considers wait-
ing and travel times that are obtained between two locations, and a cost func-
tion, which penalizes not selecting a specific assignment. In a second phase,
a heuristic insertion method inserts the well-defined hinterland requests that

3.3. REPOSITIONING OF EMPTY CONTAINERS 41

have been computed in the first phase into the cheapest (regarding waiting
times) feasible positions of the truck routes. Afterwards, a local search heuristic
algorithm is invoked; three different local search operators (changing of empty
container assignments, combining of two routes, removing and reinserting of
one request) are applied to improve the initial solution. This heuristic algo-
rithm of Caris and Janssens [2009] is improved by Caris and Janssens [2010]
two-fold. On the one hand, the constructive algorithm is replaced by a mul-
tistart approach. This means that the first phase is invoked multiple times;
each time the costs of the assignments of empty containers to OF and IF re-
quests are adapted. At the end, the best overall solution is improved by the
local search algorithm. On the other hand, the three local search operators of
the local search algorithm of Caris and Janssens [2009] are integrated in a deter-
ministic annealing framework. Deterministic annealing (also known as threshold
accepting, Dueck and Scheuer [1990]) is a local search algorithm that replaces
a solution by a neighborhood solution whenever the difference between the
objectives of the two solutions becomes smaller than a certain threshold.

As can be seen from Section 1.2.3, some regions are confronted with a lack
or an overrun of empty containers resulting from imbalances in trade. As a re-
sult, Zhang et al. [2009] distinguish between two more types of hinterland re-
quests in addition to OF and IF requests. Each of the newly introduced hinter-
land requests is flexible and comprises exactly one task. In order to overcome
a surplus of empty containers, empty containers are transported to terminals
for onward transportation:

Definition 3.12 (Outbound Empty Hinterland Request, Zhang et al. [2010]).
An outbound empty (OE) hinterland request specifies an empty container to
be delivered to a specific terminal (missing origin).

In order to balance occurrences of empty containers in regions that are con-
fronted with a lack of empty containers, empty containers arrive at terminals
for collection:

Definition 3.13 (Inbound Empty Hinterland Request, Zhang et al. [2010]). An
inbound empty (IE) hinterland request specifies an empty container to be col-
lected at a specific terminal (missing destination).

Depending on whether an export- or an import-oriented area is considered,
the problem definition includes either IE or OE hinterland requests only. There-
fore, the problem definition of Zhang et al. [2009] includes up to three differ-
ent types of hinterland requests, which define the transportation of containers
among several depots, customers’ locations and one terminal. The entire set of
hinterland requests has to be served by a homogeneous fleet of trucks. Each

42 CHAPTER 3. LITERATURE OVERVIEW

truck starts its route from one specific depot and has to end its route at any of
the depots within a given time horizon; the points of origin and destination
need not necessarily be the same. Furthermore, trucks have to arrive at the
different locations within specific time windows; containers are (un-)loaded in
a stay-with procedure. Each depot is a huge stowage of empty containers, i.e.
it is able to store every empty inbound container and it is able to provide ev-
ery empty outbound container. The problem’s objective is the minimization
of the total distance of unproductive movements, which can be prevented by
fulfilling street-turns instead of making detours via depots for empty container
stowage. Zhang et al. [2009] formulate the problem as an amTSPTW with mul-
tiple depots. In the underlying graph, hinterland requests are represented by
nodes and container storage operations at the depot are completely reflected by
arcs. This can be done since there is only way to perform a street-turn, namely
an outbound request has to be visited immediately after an inbound request
has been visited. Therefore, all other combinations of two requests require that
a container storage operation at the depot that causes the least detour has to
be performed in between. This means that arcs either represent travel opera-
tions between the locations of its incident nodes or, in the case of not connect-
ing inbound and outbound requests, arcs represent the detour via the depot
together with the appropriate container storage operation. The authors com-
pare two different heuristics computing solutions to problems of real-world
size. The first heuristic approach is a greedy cluster method that removes infeasi-
ble arcs from a constructed solution and reassigns cheapest feasible arcs to the
separated nodes afterwards. The second heuristic approach is a Reactive Tabu
Search (RTS), which randomly exchanges parts of the solution that has been
constructed by the greedy cluster method. Battiti and Tecchiolli [1994] extend
the well-known Tabu Search (TS) algorithm (Gendreau [2003], Glover [1986]) to
the RTS. In a nutshell, TS is a metaheuristic approach that uses the history of
the search to escape from non-optimum, local minimum solutions. A tabu list
keeps track of the most recently visited solutions and forbids moves toward
them. One step of TS is to move to the best neighborhood solution that is not
located in the tabu list and to store the corresponding neighborhood solution
in the tabu list afterwards. The tabu tenure denotes the length of the tabu list,
i.e. if more neighborhood solutions are located in the tabu list than allowed
by the tabu tenure, some solutions will be deleted from the tabu list (mostly
in a First In First Out (FIFO) technique). If the tabu tenure is allowed to vary
during the search, then the approach is called RTS. The RTS that is proposed
by Zhang et al. [2009] modifies the tabu tenure in accordance with the length of
the time period, in which solutions have been previously visited. Zhang et al.
[2011] apply a similar RTS to a problem definition that differs from the previ-

3.3. REPOSITIONING OF EMPTY CONTAINERS 43

ous problem by including only one depot that has stored a limited number of
empty containers. The complexity noticeably increases for problems including
a limited number of empty containers.

Zhang et al. [2010] extend the problem of Zhang et al. [2009] to the In-
land Container Transportation Problem (ICT). The ICT includes more than one
terminal and the objective is to minimize the total operating time of the trucks.
Zhang et al. [2010] propose a solution methodology for the ICT, which is a mod-
ification of the WPB method of Wang and Regan [2002]. In order to build over-
and under-constrained models, only one time window partitioning width is es-
timated. As a result, the two models are solved exactly once, i.e. in contrast to
the original WPB method, the algorithm of Zhang et al. [2010] is not iterative.
In the computational study, the modified WPB approach is compared with the
RTS method of Zhang et al. [2009]; while the objective values are nearly the
same, the computation time of the modified WPB approach is much shorter.

Nossack and Pesch [2013] propose two exact mathematical formulations
of the ICT: an amTSPTW formulation (Zhang et al. [2010]) and a FTPDPTW
formulation. The FTPDPTW formulation is based on an alternating graph rep-
resentation (Asbach et al. [2009]), i.e. a bipartite graph in which one side of the
partition only comprises pickup nodes, while the other side only comprises de-
livery nodes. Pickup nodes refer to flexible inbound requests (missing destina-
tion), and delivery nodes refer to flexible outbound requests (missing origin).
Furthermore, nodes representing depots, which serve as sources and sinks for
empty containers, are included in both sides of the partition. This is due to
the fact that container storage operations taking place at a depot might lead to
routes visiting the same location (depot) several times. In order to allow several
visits of the same location within one route, Nossack and Pesch [2013] dupli-
cate nodes representing the depot several times and add the duplicates to both
sides of the partition. The number of depot duplicates depends on the number
of trucks, depots and hinterland requests of the problem’s instance. Nossack
and Pesch [2013] present a 2-stage heuristic approach to compute solutions to
real-world sized ICT instances: the first stage constructs routes, the second the
stage improves routes. The route construction comprises four phases. The first
and second phase minimize the total travel time and the total waiting time of
trucks. The first phase optimally solves an AP, whereby the alternating graph
representation is used as instance for the AP, i.e. pickup nodes are assigned to
delivery nodes. The well-defined requests that have been paired by the AP are
assigned to feasible sequences regarding time windows in the second phase.
In the third phase, an AP is formulated for the assignment of starting depots
to the sequences, i.e. trucks represented by the depots are assigned to routes
represented by the sequences. The sequences get assigned these depots as an

44 CHAPTER 3. LITERATURE OVERVIEW

end that are located the nearest to the sequence’s final location. The starting
times and the ending times of the sequences are computed in the fourth phase;
this is done by solving either an exact LP formulation or a heuristic approach
that successively assigns starting times from the sequences’ sinks to sources. In
the second stage, an ejection chain heuristic approach (Pesch and Glover [1997])
improves the constructed solution by applying multiple local search operators
(relocating a single node, exchanging tails or depots of the routes) in one single it-
eration. In contrast to the approach of Zhang et al. [2010], the algorithm of
Nossack and Pesch [2013] is independent from the time windows’ width in
terms of solution quality as well as computation time.

A further study on the ICT is provided by Sterzik and Kopfer [2013]. Sterzik
and Kopfer [2013] formulate a MIP on the basis of a graph representation that
comprises two types (for trucks and containers) of binary three-index arc de-
cision variables. The decision variables state whether or not a truck/container
traverses an arc. The MIP includes synchronization constraints, which con-
nect the different types of decision variables. In order to compute solutions
to instances of real-world size, a modified version of the well-known savings
algorithm (Clarke and Wright [1964]) constructs an initial solution. The initial
solution is improved by a TS algorithm combining three different local search
operators (relocating of requests, exchanging of requests, inserting short routes
into other routes). The TS applies several times relocate and exchange opera-
tors in order to intensify the search; a restart of the tabu list is combined with a
diversification strategy of Taillard [1993].

Wang et al. [2016] investigate a variation of the ICT considering neither time
window constraints nor limitations on the number of trucks. The aim of the
study is to compute high-quality solutions to very large instances consisting
of around 300 hinterland requests (in general ICT instances comprise around
75 hinterland requests, for more details on the size of instances refer to Section
7.1). Wang et al. [2016] introduce an iterative matheuristic approach, which
repeats two steps until a certain stop criterion is met. In the first step, the set of
hinterland requests is partitioned into sub-sets. The savings algorithm is used
to identify sub-sets that have a great potential for improvement. A tabu list
prevents returns to recently considered sub-sets. In the second step, a MIP is
solved for each of the sub-sets. The MIP is inspired by the research of Sterzik
and Kopfer [2013] and constructs routes for trucks.

3.3.2 Separation

Francis et al. [2007], Smilowitz [2006] investigate a problem definition in which
a set of tractors has to carry loaded and empty trailers among senders, re-

3.3. REPOSITIONING OF EMPTY CONTAINERS 45

ceivers, equipment yards and intermodal yards. The considered multi-task
types are similar to OF and IF requests. Tractor routes start and end at one
central depot. The problem definition additionally includes time windows in
which the tractors have to arrive at the different locations. In order to finish
their routes, the tractors are given a time horizon in which they have to arrive
at the depot. The objective is multicriterial; the number of routes and the total
duration time of routes is minimized. In contrast to scientific works, which
are mentioned in Section 3.3.1, it is allowed to perform the second task (i.e. the
(un-)loading operation) of OF and IF requests without the presence of a tractor:

Definition 3.14 (Drop-and-pick, Macharis and Bontekoning [2004]). A trailer/-
container is (un-)loaded in a drop-and-pick procedure, when the tractor/truck
decouples the trailer/container at the customer’s location. During loading
and/or unloading the tractor/truck is able to carry out other activities.

Smilowitz [2006] builds an asymmetric Vehicle Routing Problem (asymmetric
VRP) model that is inspired by the formulation of Bodin et al. [2000]. The de-
pot, each well-defined task and each possible execution of a flexible task intro-
duces a node to the underlying graph representation. This means that a node
might represent two locations as well as the subsequent movement between
the locations (similar to the formulation presented in Section 3.2). Further-
more, not all of the nodes that represent possible executions of flexible tasks
must be visited, instead, it has to be ensured that exactly one possible execu-
tion of each flexible task is visited. In addition, Smilowitz [2006] proposes a
two-phase solution approach. First, a set of feasible solutions is constructed
by combining branch and bound, CG and Linear Relaxation (LR) techniques.
Second, a SPP that includes the routes of all feasible solutions that have been
constructed in the first step is optimally solved. New routes are generated by
solving the NP-hard version of the Shortest Path Problem (SP), which includes
time window constrains and social constraints. Francis et al. [2007] improve
the solution methodology of Smilowitz [2006] in two ways. On the one hand,
Francis et al. [2007] introduce a methodology that defines node-specific radii
for feasible executions. These radii limit the number of the feasible executions
of flexible tasks to only contain these nodes that are no more than the specific
radius apart. On the other hand, Francis et al. [2007] combine the approach of
Smilowitz [2006] with a heuristic greedy randomized procedure, which generates
a richer set of routes.

Reinhardt et al. [2012] present an exact approach, which computes solutions
to aNP-hard problem definition that includes several terminals, time window
restrictions and a set of flexible OF and IF requests. Furthermore, containers
are allowed to be (un-)loaded in either a stay-with or a drop-and-pick proce-

46 CHAPTER 3. LITERATURE OVERVIEW

dure. The exact approach is a column enumeration approach, which covers the
requests by paths, whereby a path refers to either a pair comprising an IF and
an OF request, or the separate service of an IF/OF request. The efficiency of the
exact approach is evaluated by a computational study that involves instances
that are based on real-world data. Due to the time window restrictions of the
instances, the number of feasible routes is small. Consequently, the complete
enumeration of all feasible paths is impossible. Reinhardt et al. [2012] pro-
pose different models and objectives, like the minimization of costs obtained
by paths, the minimization of the number of used trucks and the balance of the
number of empty containers, which are stored at the terminals.

Sterzik et al. [2012] extend the ICT in two different aspects, namely drop-
and-pick procedure and container sharing. In order to implement container hand-
ling operations taking place in a drop-and-pick procedure, Sterzik et al. [2012]
introduce two different time windows at the same location of a customer; a
truck has to decouple the container within the first time window, and either
the same or another truck has to couple the container within the second time
window after the container has been (un-)loaded. For the purpose of investi-
gating container sharing, Sterzik et al. [2012] add several cooperating trucking
companies to the original problem definition of the ICT. Each trucking com-
pany operates its own hinterland requests and depots. Depots have assigned
a homogeneous fleet of trucks and a sufficiently large set of empty containers.
The consideration of more than one trucking company adds a further synchro-
nization component to the problem formulation. Sterzik et al. [2012] adapt the
mathematical model and the heuristic solution procedure of Sterzik and Kopfer
[2013]2 to solve instances of the newly obtained problem definition. In the com-
putational study, Sterzik et al. [2012] compare two different scenarios. The first
scenario prohibits trucking companies to share empty containers among each
other, while the second scenario permits empty containers to be interchanged
among several trucking companies. Sterzik et al. [2012] recognize a huge cost
saving potential arising from container sharing in particular for tight time win-
dows at the different locations. However, putting a successful container shar-
ing cooperation into practice is difficult, due to the fear of individual truck-
ing companies to be not compensated themselves, while the coalition in total
above-average benefit from the agreement. This disadvantage is also reflected
by the approach of Sterzik et al. [2012] that does not include the possibility of a
fair mechanism for sharing empty containers among the different companies.

Braekers et al. [2013] investigate a problem definition differing in three as-
pects from the ICT. First, the problem definition includes the opportunity to
perform container handling operations in a drop-and-pick procedure. Second,

2The article has earlier been available as a working paper, Sterzik and Kopfer [2012].

3.3. REPOSITIONING OF EMPTY CONTAINERS 47

the problem definition includes a single depot, which only serves as the point
of start and end of truck routes, while empty containers are stored at container
terminals instead of the depot. Third, the objective is a lexicographic minimiza-
tion of the number of used trucks and the total travel distance of the trucks.
Braekers et al. [2013] formulate the problem as an amTSPTW and compare two
different heuristic solution strategies for the computation of solutions to large
instances: a sequential and an integrated approach. The sequential approach
consists of two steps. The first step solves a TP, which assigns empty containers
to flexible hinterland requests (due to Remark 2.20, it is possible to optimally
solve the TP in polynomial time, e.g. with the algorithm of Ford and Fulker-
son [1956]). The second step solves a FTPDPTW, which constructs truck routes
from the well-defined requests that have been computed in the first step. Once
more the techniques of Jula et al. [2005], Wang and Regan [2002] are applied
in order to transform the FTPDPTW formulation to an amTSPTW formula-
tion, i.e. introducing one node, which represents the entire transportation of a
container between two different locations. The integrated approach simultane-
ously solves the combined problem of empty container assignment and route
construction; Braekers et al. [2013] suggest two different formulations of the
entire problem. Each of the two formulations is harder to solve than the se-
quential approach. Similar to the formulation of Smilowitz [2006], in the first
formulation one node is introduced for each feasible empty container alloca-
tion (for more details see also Braekers et al. [2010]). The disadvantage of this
formulation is the large number of nodes in the network whenever real-world
sized instances are considered. Therefore, in the second formulation arcs re-
flect an intermediate stop (like container storage operations at the terminals)
taking place between certain types of nodes (like two outbound/inbound hin-
terland requests). This proceeding results in an amTSPTW formulation, which
is inspired by the models of Ileri et al. [2006], Zhang et al. [2009]. In both,
the second formulation of the integrated approach as well as the second step
of the sequential approach, an amTSPTW has to be solved. However, exactly
solving the amTSPTW for real-world sized problem instances is very hard (see
e.g. Jula et al. [2005]). Therefore, Braekers et al. [2013] propose a determinis-
tic annealing approach that is based on the algorithms of Bräysy et al. [2008],
Caris and Janssens [2010] to obtain heuristic solutions to the amTSPTW. All
in all, five local search operators are combined in the deterministic annealing
approach: three local search operators (relocate, 2-opt*, exchange) try to mini-
mize the total travel distance of the trucks and two local search operators (rein-
serting all nodes of respectively one or several (randomly selected or shortest)
routes into other routes) try to minimize the number of used trucks. The initial
solution of the deterministic algorithm is computed by an insertion heuristic

48 CHAPTER 3. LITERATURE OVERVIEW

method (Jula et al. [2005], see also Section 3.2). A single-phase algorithm is ob-
tained that simultaneously minimizes the number and the total travel distance
of trucks. However, since simultaneous approaches tend to neglect the mini-
mization of the number of trucks (Bent and Van Hentenryck [2006], Homberger
and Gehring [2005]), Braekers et al. [2013] introduce a two-phase algorithm in
which both phases use the same deterministic annealing approach, but, the
first phase minimizes the number of trucks, while the second phase minimizes
the total travel distance of the trucks. Lower bounds on the objective values
of both approaches are obtained by the WPB method (Wang and Regan [2002],
see also Section 3.2). The study of Braekers et al. [2013] examines that the inte-
grated approach clearly outperforms the sequential approach.

The problem definition of Xue et al. [2014] differs from the problem defini-
tion of Braekers et al. [2013] in two aspects. First, the locations are not given
time windows. Trucks only have to finish their routes within a specific time
horizon. Second, while the objective also defines the minimization of the num-
ber of used trucks and the total travel distance of the trucks, in contrast to the
previous problem definition, it is not lexicographic. Xue et al. [2014] present
lower bounds on both terms of the objective. The problem is modeled as a vari-
ant of the amTSP. In order to allow multiple visits of the same customer’s loca-
tion within a truck route caused by container handling operations taking place
in a drop-and-pick procedure, the underlying graph definition includes two
nodes, which both represent the same customer’s location. Similar to the pre-
vious approach and the graph representation of Zhang et al. [2009], container
stowage operations at the depot are reflected by arcs connecting certain nodes.
Xue et al. [2014] propose a metaheuristic for the computation of solutions. The
constructive method invokes an insertion heuristic approach (Solomon [1987]).
Afterwards, the initial solution is improved by a TS approach, which includes
three local search operators (relocate, exchange, reinserting of all nodes of one route
into other routes). After each step the observation of precedence times between
nodes representing the same customer’s location is checked.

The FTPDPTW proposed by Meisel and Kopfer [2014] is a transportation
problem of containerized cargo within the hinterland of seaports not only, but
also arises in several other applications. Therefore, a general distinction is
made between autonomous and non-autonomous resources (refer to the be-
ginning of this chapter), which are needed to serve the set of requests. Each
autonomous resource is able to carry one non-autonomous resource at the
most. Requests are given a pickup and a delivery location. The locations
define time windows for the visit and the completion of services. An empty
non-autonomous resource has to be moved by an autonomous resource to the
pickup location. At the pickup location the non-autonomous resource is filled

3.3. REPOSITIONING OF EMPTY CONTAINERS 49

with cargo. Afterwards, the autonomous resource carries the loaded non-
autonomous resource to the delivery location where the cargo is unloaded.
Each (un-)loading operation is allowed to be performed in both procedures
(stay-with or drop-and-pick). Therefore, it is part of the decision making pro-
cess to assign procedures to (un-)loading operations. Compatibility restric-
tions between non-autonomous resources and requests, as well as between au-
tonomous resources and non-autonomous resources are given. Autonomous
resources start and end their routes at one depot within a given time horizon.
Non-autonomous resources start and end their routes at individual not nec-
essarily equal locations. The objective minimizes three criteria: the weighted
sum of the total travel distance, the total duration of all routes, and the number
of unserved requests. By duplicating pickup and delivery nodes that might be
visited twice by the same autonomous resource, Meisel and Kopfer [2014] for-
mulate the considered problem as a generalization of the mTSPTW. Since the
problem is NP-hard, (optimum or small gap) solutions to real-world sized in-
stances cannot be computed by commercial MIP solvers. This fact holds true,
even when strengthening the mathematical formulation. As a result, Meisel
and Kopfer [2014] propose a LNS (see also Section 2.2.3). The constructive algo-
rithm generates an initial solution in three steps. First, each non-autonomous
resource gets assigned an empty route. Second, the requests are sorted by in-
creasing end times. Third, an insertion heuristic method assigns requests one
after another to these non-autonomous resources into whose routes the current
request can be feasibly inserted at the least cost. A solution of the third step
is feasible, if it is possible to generate routes for autonomous resources from
it. For this purpose, so-called carriages are constructed out of the assignment
of requests to non-autonomous resources. A carriage comprises the smallest
connected sub-tour of a non-autonomous resource. In other words, each car-
riage is a triple, which defines the pickup location, the delivery location and
the non-autonomous resource. An iterative process assigns the most urgent
carriages to autonomous resources, or decides that a request is not served by
any of the autonomous resources. Afterwards, a local search algorithm and a
LNS are alternately invoked in order to improve the constructed solution. Af-
ter each modification, the feasibility of the solution is checked using the same
method that is also applied in the third step of the constructive algorithm. The
local search algorithm is comprised of three local search operators for non-
autonomous resources (relocate, insert, exchange) and one local search operator
(relocate) for autonomous resources. The LNS consists of three different destroy
operators (worst, random, obstacle) and the same insertion heuristic method that
is also invoked in the third step of the constructive algorithm. Whereas the
first two destroy operators are an adaption from Ropke and Pisinger [2006]

50 CHAPTER 3. LITERATURE OVERVIEW

(see also Section 6.3.2 for more details), the third destroy operator is newly de-
veloped and aims in including unserved requests into the routes of a solution.
Meisel and Kopfer [2014] add two different mechanisms to the LNS that select
destroy and repair operators with respect to their performance within previous
iterations. In this way the LNS becomes adaptive(Ropke and Pisinger [2006]).

3.4 Multi-size Container Transportation

In recent years, more and more scientific articles investigate the combined
transportation of containers having different sizes, namely 20-foot and 40-foot
containers. Since 20-foot and 40-foot containers are used most widely almost
all over the world (Zhang et al. [2015]), it is hardly surprising that this topic
has been only recently investigated. In Europe (except Finland and Sweden)
and Asia, road vehicles are restricted to transport 20-foot and 40-foot contain-
ers (Popović et al. [2012], Vidović et al. [2011], see also Section 1.1 for more
details about the usage of ISO containers). The introduction of two different
commodities (containers) turns the original problem formulation from a FTL
to a LTL problem; combined trucks have a capacity of two TEU. As can be seen
from the reminder of this section, the introduction of two different commodi-
ties considerably increases the problem’s complexity. The problem definition
often has to be simplified in order to find an optimum solution.

Chung et al. [2007] are among the first authors considering a heteroge-
neous set of containers. In their work, Chung et al. [2007] propose variations
of mathematical models for the TSP and the VRP as well as heuristics for sev-
eral drayage problems, which have to be served by Korean trucking industries.
The authors define a basic FTPDP: a homogeneous fleet of trucks has to serve
a set of well defined requests within a given time horizon. Each request de-
scribes the transportation of a container from a pickup location to a delivery
location. The objective is to minimize the number of trucks, which are needed
to serve the entire set of requests. Chung et al. [2007] build an amTSP model of
the problem by introducing one node for each container’s pickup and delivery
pair (refer to Section 3.2). The basic problem definition is extended in several
ways, like implementing time window constraints. Finally, a new mathemati-
cal model is build for the introduction of 20-foot and 40-foot containers, which
have to be transported by a heterogeneous fleet comprising 20-foot, 40-foot
and combined trucks (refer to Definition 3.2). This new model is a variant of
the VRP in which container’s pickup and delivery pairs are implemented by
two different nodes that are connected by precedence constraints. The objec-
tive is two-fold: the minimization of the total travel distance of trucks or the
minimization of the total weighted travel distance in which the set of trucks is

3.4. MULTI-SIZE CONTAINER TRANSPORTATION 51

divided into company-owned and mandated trucks. Even though the amTSP
and the VRP are both NP-hard problems, there are fast solution methods for
the amTSP in practice (see also Section 3.1.1). Therefore, Chung et al. [2007]
propose a heuristic approach that only computes solutions to the problem def-
inition that includes multiple commodities. The proposed heuristic approach is
based on an insertion heuristic approach of Rosenkrantz et al. [1977] in which
requests are randomly selected and tried to be inserted into the best feasible
insertion position of all currently computed truck routes.

In the NP-hard Vehicle Routing Problem with backhauls (VRPB)(Mingozzi
et al. [1999], Toth and Vigo [1997]) that is investigated by Vidović et al. [2011]
an unlimited homogeneous fleet of combined trucks has to transport empty
and fully loaded 20-foot and 40-foot containers. The trucks start and end their
routes at one terminal. A hinterland request is either a well-defined import or a
well-defined export (refer to Definition 3.4). The maximum number of requests
that are served by one route of a truck is four, because of the problem defini-
tion prohibiting the separation of trucks and containers. Vidović et al. [2011]
build a multiple matching integer programming model in which the different
routing possibilities are enumerated by binary decision variables. This means
that each feasible truck route (sequence of one to four requests) introduces a
decision variable; the number of the indices of the variable equals the num-
ber of requests in the sequence, i.e. it ranges from one to four. In order to
solve large-sized problem instances, Vidović et al. [2011] propose a heuristic
approach. Based on a continually updated calculation, which estimates the ef-
fect of merging requests into one route, the requests are greedily assigned to
routes.

The work of Vidović et al. [2012] extends the problem definition of Vidović
et al. [2011] by limiting the size of the truck fleet to a finite number and by in-
troducing time windows in which trucks have to reach the different locations.
Afterwards, Vidović et al. [2012] compare the performances of two different
MIP formulations for the newly obtained problem definition. The first MIP
model is an extension of the mathematical model of Vidović et al. [2011], while
the second MIP model is a formulation that is inspired by the VRP with simul-
taneous pickups and deliveries (Mingyong and Erbao [2010]). The implemen-
tation of the formulation of Vidović et al. [2011] obtains very promising results
in the computational studies of Vidović et al. [2012].

Popović et al. [2012] develop a metaheuristic approach for the problem def-
inition of Vidović et al. [2012]; the initial solution is constructed by a modifica-
tion of the classical sweep method (Gillett and Miller [1974]) and improved by a
variable neighborhood search heuristic approach, which includes two local search
operators (relocate, exchange), after.

52 CHAPTER 3. LITERATURE OVERVIEW

Lai [2013], Lai et al. [2013] investigate the routing of a heterogeneous truck
fleet with single and double container loads, i.e. a finite number of combined
trucks and 20-foot trucks has to serve OF and IF hinterland requests defining
the transportation and the handling of 20-foot containers. In the problem defi-
nition one port provides containers for OF hinterland requests and stores con-
tainers obtained by IF hinterland requests. While the fulfillment of street-turns
between IF and OF hinterland requests is permitted, the separation of trucks
and containers is prohibited (only stay-with procedure is allowed). Time win-
dows are not given, but IF hinterland requests have to be served before OF
hinterland requests within a truck route. Due to the routes’ order of IF and OF
requests, this problem is also a VRPB in which routes include four requests the
most. The objective is two-fold: one the one hand, handling costs at the port
have to be minimized, i.e. street-turns are preferred, and, on the other hand,
routing costs have to be minimized, whereby a truck that transports two con-
tainers is more expensive than a truck that transports one container. Lai [2013],
Lai et al. [2013] introduce a mathematical model that contains synchronization
constraints. Afterwards, a metaheuristic approach is proposed in which two
different criteria are used for evaluation. One criteria minimizes the actual
objective and the other criteria minimizes the total travel distance. The meta-
heuristic approach comprises a constructive algorithm and a local search. The
constructive algorithm constructs a feasible solution by a variant of the savings
algorithm. The subsequent local search tries to improve the initial solution by
combining two different local search operators (relocate, exchange).

Lai [2013] extends the problem definition of Lai et al. [2013] by considering
a homogeneous fleet of trucks, which have a capacity of C containers (C ∈ N).
Since customers asks for a large number of containers, the problem definition
allows the split of loads. The obtained problem definition is a split delivery
VRPB in which routes comprise at most 2C requests (combining C IF hinter-
land requests with C OF hinterland requests). In contrast to the objective of
Lai et al. [2013], the objective of Lai [2013] minimizes the total travel distance
of the trucks. Lai [2013] propose a mathematical model, a heuristic approach
and a metaheuristic approach. The heuristic approach consists of two phases;
a TS algorithm constructs routes consisting of either OF or IF requests (split
VRP phase), afterwards the former constructed routes are merged by seven
different rules that are implemented in heuristics (merging phase). Finally, the
best solution regarding the objective is selected. The metaheuristic approach
sequentially repeats three phases until some stop criterion is met: a split VRP
phase, a merging phase and an adaptive guidance phase. In contrast to the heuristic
algorithm, the merging phase is solved by an implementation of an IP formu-
lation. The adaptive guidance phase analyzes the current solution and detects

3.4. MULTI-SIZE CONTAINER TRANSPORTATION 53

the areas of improvement. Afterwards, a new iteration is invoked in which the
split VRP phase receives adjusted input parameters.

As already mentioned in Section 1.2.3, the imbalances of empty containers
are caused by global and regional levels. Literature sources commonly investi-
gate container imbalances appearing in the entire hinterland region on global
level (Braekers et al. [2013], Imai et al. [2007], Zhang et al. [2010]). Conversely,
Schönberger et al. [2013] consider a regional problem in which customers’ lo-
cations are connected with the imbalances of empty containers. This different
consideration results in hinterland requests defining the transportation of con-
tainers only, i.e. container transportation requests and container handling op-
erations are no longer combined in one request. The set of hinterland requests
contains two types of transportation requests. On the one hand, well-defined
transportation requests define the movement of fully loaded 20-foot/40-foot
containers between customers’ locations and one terminal or vice versa. On
the other hand, flexible transportation requests define the provision/collection
of empty 20-foot/40-foot containers at/from customers’ locations. A homoge-
neous fleet of combined trucks has to depart from and return to a single depot
within a given time horizon. Furthermore, the depot is a sufficiently large stor-
age of empty containers. There are once again two possibilities to replace the
missing location of flexible requests: depot or street-turn. The objective mini-
mizes the total travel distance of trucks. Schönberger et al. [2013] extend a MIP
formulation of a LTL PDP model that implements the recursive arrival time
update for short cycle prevention in vehicle flows, which is presented by Sig-
urd et al. [2000]. The model of Schönberger et al. [2013] combines three differ-
ent sub-problems: the assignment of missing locations to flexible requests, the
construction of container flows and the generation of truck routes. The com-
putational studies of Schönberger et al. [2013] establish the high complexity of
the considered problem definition. Often, the solver failed even to identify a
feasible solution.

Nordsieck et al. [2016, 2017] adapt the problem definition of Schönberger
et al. [2013] in two points. First, time windows are added to locations. Second,
the objective minimizes the total operating time of trucks. A heuristic algo-
rithm is proposed that sequentially repeats three phases until some stop crite-
rion is met. The first phase solves an AP and thereby assigns missing locations
to flexible requests. The objective of the AP minimizes two criteria: the total
waiting time and the total travel distance of trucks. Since the problem decom-
poses for 20-foot and 40-foot containers (see also Chapter 6.1.3), it is possible
to separately solve two different AP’s without influencing the solution quality.
After this phase, the remaining problem is a PDP with Time Window Constraints
(PDPTW). In the second phase, an insertion heuristic approach constructs a

54 CHAPTER 3. LITERATURE OVERVIEW

sufficiently large number of feasible routes. These routes are the input for a
Set Covering Problem (SCP), which minimizes the total operating time of trucks
subject to covering all requests by routes. The solution is improved by a lo-
cal search that includes three different local search operators (rearrange, shift,
exchange). The third phase adapts the costs of assignments, which are needed
by the objective function of the first phase. The two problems for 20-foot and
40-foot containers are considered independently of one another in this step.

Zhang et al. [2015] investigate the cost of one trucking company that is lo-
cated in an export-oriented area. The trucking company has to serve a set of
IE, OF and IF hinterland requests for 20-foot and 40-foot containers. Each re-
quest defines the handling and the transportation of empty and fully loaded
containers among one terminal, one depot and several customers’ locations.
The locations do not have a defined time window. A finite, homogeneous fleet
of combined trucks has to start and end its routes at the depot within a specific
time horizon. Moreover, the depot is a sufficiently large storage of empty con-
tainers. The problem definition prohibits the separation of truck and container
((de-)coupling operations are performed in a stay-with procedure). Zhang et al.
[2015] introduce the full-twin assumption, which is a new constraint that restricts
trucks carrying two 20-foot containers to finish both containers’ requests before
starting a new request. The objective minimizes the total travel time of trucks.
Zhang et al. [2015] build a MIP that distinguishes the two states of a truck:
different locations and different filling levels. The MIP becomes an extension
of the amTSP with social constraints through the definition of the transition
between the different states. However, since the MIP involves sequence de-
pendent distances between locations in the objective and in some constraints,
even small-sized instances cannot be solved by commercial solvers. Therefore,
Zhang et al. [2015] propose a representation of the solution as a series of num-
bers; three different tree search strategies are applied to this representation: one
depth-first complete search, one search that cuts similarities and one parallel
search that starts with a certain drayage request. In order to compute solutions
to real-world sized instances, the RTS of Zhang et al. [2009] is adapted to the
multi commodity case. A pair-making algorithm generates an initial solution
of the RTS algorithm.

Caballini et al. [2015] investigate the transportation of 20-foot containers.
The study does not only include IF (import trips) and OF (export trips) hinter-
land requests, but also so-called inland trips that define the movement of emp-
ty/fully loaded containers between specific inland locations. Caballini et al.
[2015] minimize the unproductive movements of a set of combined trucks by
maximizing the trucks’ utilization. The considered problem definition assumes
that the routes are round trips, i.e. empty containers have to be returned to

3.4. MULTI-SIZE CONTAINER TRANSPORTATION 55

their origin at the end of a route. However, it is possible to reduce the travel
distance by performing a street-turn, in which trips have to be performed in a
given sequence (import – inland – export). Various types of time windows are
introduced for the trips, the terminals, the companies and the depots. More-
over, vessel departure times and the EU regulation of driving hours are con-
sidered. Caballini et al. [2015] propose a matching MIP, which is based on the
work of Vidović et al. [2012]. This means that the two types of binary decision
variables are introduced: variables using three indices represent routes com-
prising three trips and variables using one index represent routes comprising
individual trips. The values of the variables are set to one whenever the corre-
sponding route is included in the solution; the values are set to zero otherwise.
The objective is to minimize costs, which are comprised of the costs of com-
bining trips (considering costs for reusing containers, delay), the repositioning
costs of containers and the costs of individually serving trips.

In contrast to the problem definition of Caballini et al. [2015], the problem
definition of Daham et al. [2016] considers a heterogeneous truck fleet com-
prising 20-foot trucks and combined trucks. The trucks are given soft and hard
time horizons, as well as weight limitations for the transportation of 20-foot
containers. The trips define container movements among several customers’
locations and one port. Furthermore, a trip defines a container to be trans-
ported from an origin to either one or two nominated customers’ locations
within specified time windows. The full-twin assumption (Zhang et al. [2015])
has to hold true for trips that are given two customers’ locations. Some of the
containers have specified a point of destination, while other containers require
the assignment of a point of destination out of a set of possible destinations.
The costs are comprised of the total travel duration and the total over time of
the trucks’ soft time horizons. Daham et al. [2016] formulate a MIP based on the
formulation of Vidović et al. [2012] for a problem definition containing import
trips only. Afterwards, the MIP is extended to also include the combination of
import, inland and export trips.

Great emphasis is put on the minimization of the number of simplifications
that are made to the solution space, when defining the mICTP. The reason for
this is that methodical approaches should work closely to conditions given by
real-world applications. The mICTP is firstly defined by Funke and Kopfer
[2015]. Afterwards, Funke and Kopfer [2016]3 extend the definition to also
consider time windows at the different locations. A detailed definition of the
mICTP is given in Chapter 4. An exact approach (Funke and Kopfer [2016]) for
the mICTP is shown in Chapter 5. Chapter 6 presents a heuristic approach that
arises from the neighborhood search shown by Funke and Kopfer [2015]. Com-

3The article has been available in 2014 as a working paper Funke and Kopfer [2014].

56 CHAPTER 3. LITERATURE OVERVIEW

putation results are presented in Chapter 7. In addition, Chapters 4 to 8 discuss
similarities and differences between the definition and the chosen methods for
the mICTP and for the former mentioned problems that are presented by liter-
ature sources.

3.5 Challenges

Table 3.1 gives an overview of the different problem definitions that are dis-
cussed in this chapter. All but one paper (Vidović et al. [2011]) considers a fleet
consisting of a finite number of trucks.

Source TW
flexible sepa-

LTL
serve all heterogeneous

tasks ration requests autonom. fleet

Wang and Regan [2002] yes no no no no no
Jula et al. [2005] yes no no no yes no

Ileri et al. [2006] yes yes no no yes yes
Imai et al. [2007] no yes no no yes yes
Caris and Janssens [2009, 2010] yes yes no no yes yes
Zhang et al. [2009, 2010, 2011]

yes yes no no yes noNossack and Pesch [2013]
Sterzik and Kopfer [2013]
Wang et al. [2016] no yes no no yes no

Smilowitz [2006]
yes yes yes no yes no

Francis et al. [2007]
Reinhardt et al. [2012] yes yes yes no yes no
Sterzik et al. [2012] yes yes yes no yes yes
Braekers et al. [2013] yes yes yes no yes no
Xue et al. [2014] no yes yes no yes no
Meisel and Kopfer [2014] yes yes yes no no no

Chung et al. [2007] yes no no yes yes yes
Vidović et al. [2011] no no no yes yes no
Vidović et al. [2012]

yes no no yes yes no
Popović et al. [2012]
Lai [2013], Lai et al. [2013] no yes no yes yes yes
Schönberger et al. [2013] no yes yes yes yes no
Nordsieck et al. [2016, 2017] yes yes yes yes yes no
Zhang et al. [2015] no yes no yes yes no
Caballini et al. [2015] yes yes no yes yes no
Daham et al. [2016] yes yes no yes yes yes
Funke and Kopfer [2015] no yes yes yes yes no
Funke and Kopfer [2016] yes yes yes yes yes no

Table 3.1: Summary of problems defined by literature sources.

As can be seen from the table, the difficulty to formulate operations taking
place in the sector of drayage is reflected by a bunch of problem definitions,
whose complexity increases. Moreover, several different objectives are consid-
ered by literature sources. Whereas the research of Wang and Regan [2002]
minimizes unproductive movements, while maximizing the number of served

3.5. CHALLENGES 57

hinterland requests, Braekers et al. [2013], Vidović et al. [2011] minimize the
number of used trucks and the total travel distance. Other scientific sources,
like Nossack and Pesch [2013], Sterzik and Kopfer [2013], Sterzik et al. [2012],
Zhang et al. [2010], minimize the total operating time of trucks. The costs that
are composed of the total travel distance and the over times of the trucks’ time
horizons are investigated by Daham et al. [2016]. The objective that is inves-
tigated by Lai [2013], Lai et al. [2013] combines the minimization of truck de-
pendent travel costs with the minimization of port handling costs. Meisel and
Kopfer [2014] minimize the weighted sum of the total travel distance, the total
finish time of all truck routes and the number of unserved requests. The min-
imization of the costs of routes, the number of used trucks and the balance of
empty containers that are stored at terminals is considered by Reinhardt et al.
[2012]. Daham et al. [2016] minimize the total travel cost, the costs of reusing
containers and the lateness costs.

If the analysis additionally includes further real-world constraints, then
problem definition becomes even more complex. Namboothiri and Erera [2008]
consider a problem definition that is inspired by U.S. port terminals. U.S. port
terminals have mostly implemented appointment systems. Therefore, Nam-
boothiri and Erera [2008] add an appointment-based access control system to
a problem definition in which one drayage company serves import and export
requests. The drayage company is based at a single port and operates a homo-
geneous fleet of trucks. The extension by an appointment-based access control
system means that the time horizon is partitioned into distinct time intervals;
each time interval allows only a given amount of trucks to arrive at the port.
Similar to the problem definition of Wang and Regan [2002], not all of the re-
quests have to be served. Hence, the objective minimizes the number of used
trucks, on the one hand, and maximizes the number of unserved requests, on
the other hand. Namboothiri and Erera [2008] define a FTPDP model that in-
cludes social constraints; moreover, the authors develop a heuristic approach
that is based on CG.

Fur the purpose of implementing dynamic container transportation, Zhang
et al. [2014] extend the mathematical formulation and the graph representation
of Zhang et al. [2009] to a mixed-zero-one nonlinear programming model. Af-
terwards, the authors show different strategies, like the WPB-method (Wang
and Regan [2002]), for the handling of interruptions.

In order to formulate further restrictions that are given by real-world prob-
lems, Coslovich et al. [2006] introduce various constraint sets. The problem
definition includes a time horizon that comprises several days. The most of the
hinterland requests and their time windows are known to the trucking com-
pany during the day. Since the trucking company is only able to estimate

58 CHAPTER 3. LITERATURE OVERVIEW

the demand of the next day, the problem becomes stochastic as well as dy-
namic. Each day decisions must be taken on partially unknown information
(Crainic and Laporte [1997], Coslovich et al. [2006]). As a result, the proposed
solution approach dynamically solves the problem day by day. The objective
function combines several criteria. On the one hand, routing costs that are usu-
ally proportional to the time/length of a route have to be minimized. On the
other hand, the driver-tractor assignment states a conflicting cost driver; while
drivers wish to finish their routes closely to their domiciles, the most of the
times it is even more important that tractors finish their routes closely to the
terminals of the next-days’ requests (Taylor and Meinert [2000], Taylor et al.
[2001]). Finally, the repositioning costs of empty containers have to be con-
sidered; because of the heterogeneous set of containers, street-turns between
specific hinterland requests are prohibited. Coslovich et al. [2006] propose an
IP formulation and create a heuristic LR solution approach from three sub-
problems of the IP formulation.

Cheung et al. [2008] investigate the impact of regulatory policies in Hong
Kong port in cross-border drayage productivity. Two policies, which signifi-
cantly restrict the efficiency of drayage operations, are considered. The 4-up-
4-down policy forbids driver, tractor, chassis and container to separate, i.e. the
drop-and-pick procedure is prohibited. The 1-driver-1-tractor policy determines
that tractors are operated by specific drivers.

Chapter 4

The Multi-size Inland
Container Transportation
Problem

This chapter defines the mICTP, i.e. the drayage problem that is the key ele-
ment of the investigation of this thesis. In order to obtain an abstract represen-
tation by mathematical formulas of problems arising in practical applications,
there is a need for a precise mathematical definition of input, output and con-
straints. The mICTP is defined in such a way that only a few simplifications
are made to the solution space leading to methodical approaches working very
close to conditions given by real-world applications. As shown in Table 3.1, the
mICTP integrates all but one of the headings (the heterogeneous trucks’ fleet)
that are analyzed in more detail in the previous literature overview. Further-
more, the mICTP (Funke and Kopfer [2014], Funke et al. [2016]) is an extension
of the ICT (Zhang et al. [2010]). The simultaneous consideration of 20-foot
and 40-foot containers as well as the possibility to (de-)couple containers in a
stay-with or a drop-and-pick procedure (refer to Definitions 3.11 and 3.14) are
added to a widely studied definition (e.g. Nossack and Pesch [2013], Sterzik
and Kopfer [2013], Zhang et al. [2010]) of a container transportation problem
that takes place in the hinterland region of a seaport.

4.1 Problem Definition

The mICTP considers one trucking company that is responsible for the trans-
portation of containerized cargo among several customers (senders and re-
ceivers), terminals and one depot. Three different types of the tasks of the

59

60 CHAPTER 4. MULTI-SIZE CONTAINER INLAND TRANSPORTATION

trucking company can be distinguished; the trucking company primarily serves
transportation requests for containerized cargo. Because of the trucking com-
pany additionally providing empty containers for the transportation of cargo,
the trucking company has to transport and reposition empty containers. The
third type of task is stated by container handling operations like (un-)loading
containers with cargo. All tasks are known in advance. The objective is to min-
imize the total travel distance of the trucking company’s homogeneous fleet of
combined trucks (see Definition 3.2). For the transportation, cargo is grouped
into 20-foot and 40-foot containers, whereby the size of the container is spec-
ified by the corresponding transportation request. The depot is a sufficiently
large repository for empty containers; this stowage is capable of handling all
supply and demand for empty containers specified by the problem’s instance.
Empty containers that share the same size are interchangeable. The problem
formulation combines two sub-problems: a routing problem for trucks and
an assignment problem for empty containers to cargo transportation requests.
Empty containers can be assigned to cargo transportation requests in one of
two different ways (refer to Figure 3.2). First, it is always possible to obtain
as well as store empty containers in the depot. Second, empty containers that
have become available by inbound requests can be directly moved to outbound
requests (street-turn (Jula et al. [2006]), Definition 3.10). The trucking company
is responsible to serve the entire set of cargo transportation requests including
all of its sub-tasks (empty container provision and container handling opera-
tion). The different tasks have to be assigned to trucks and sequenced on truck
routes resulting in all tasks being served while meeting several restrictions like
time windows at the different locations and a time horizon limiting the dura-
tion of a route. Trucks have to start and end their routes at the depot.

4.1.1 Hinterland Requests

The different tasks (empty container transportation, container handling and
cargo transportation) of a trucking company are grouped in one hinterland re-
quest (refer to Definition 3.3). Zhang et al. [2010] distinguish between four
types of hinterland requests: OF/IF requests accrue in pre-/end-haulage (Def-
initions 3.8 and 3.9) and OE/IE requests improve the balance of empty con-
tainers in import-/export-oriented areas (Definitions 3.12 and 3.13). These def-
initions are adapted to the mICTP: the different sizes of containers have to be
included in the definitions of the requests and the possibility to serve container
(un-)loading operations in a drop-and-pick procedure has to be added; the lat-
ter might require additional time for (de-)coupling containers from trucks.

Definition 4.1. An OF hinterland request defines the order of three tasks:

4.1. PROBLEM DEFINITION 61

1. Transportation of an empty container of a specific size (20- or 40-foot) to
the sender’s location (flexible task, missing origin)

2. Decision whether the container and the truck separate (drop-and-pick
procedure) or not (stay-with procedure)

Decoupling of the container from the truck (only for drop-and-pick procedure)

Loading of the empty container at the sender’s location (container hand-
ling operation)

Coupling of the container by the same or another truck (only for drop-and-pick
procedure)

3. Export of the fully loaded container from the sender’s location to the ter-
minal (well-defined task), Decoupling of the container from the truck

An IF hinterland request defines the order of three tasks:

1. Coupling of a fully loaded container by a truck, Import of the fully loaded
container from the terminal to the receiver’s location (well-defined task)

2. Decision whether the container and the truck separate (drop-and-pick
procedure) or not (stay-with procedure)

Decoupling of the container from the truck (only for drop-and-pick procedure)

Unloading of the fully loaded container at the receiver’s location (con-
tainer handling operation)

Coupling of the container by the same or another truck (only for drop-and-pick
procedure)

3. Transportation of the empty container from the receiver’s location (flexi-
ble task, missing destination)

An OE hinterland request comprises one task:

1. Transportation of an empty container of a specific size (20- or 40-foot) to
the terminal (flexible task, missing origin), Decoupling of the container from
the truck

An IE hinterland request comprises one task:

1. Coupling of an empty container by a truck, Transportation of the empty con-
tainer from the terminal (flexible task, missing destination)

Apart from the construction of truck routes and the assignment of empty
containers to cargo transportation requests, a decision has to be made, whether

62 CHAPTER 4. MULTI-SIZE CONTAINER INLAND TRANSPORTATION

the second task of OF and IF requests is served in a stay-with or in a drop-and-
pick procedure. If the container is (un-)loaded in a drop-and-pick procedure,
then the container decouples from the truck; either the same or another truck
collects (and couples) the container after it has been (un-)loaded. Coupling and
decoupling operations need additional time. The mICTP assumes that each
customer has the opportunity to separate trucks and containers. Customers
and terminals are given container pickup and delivery times, i.e. the starting
time of the first task and the third task of OF and IF requests and the single task
of OE and IE requests has to lie within a particular interval (hard time window).
Furthermore, it is assumed that the second task of an OF/IF request is imme-
diately served after the truck has been arrived at the customer’s location. If the
second task of an OF/IF request is served in a stay-with procedure, the accom-
panying truck is allowed to leave the customer’s location after the container
handling operation has been completed. If the second task of an OF/IF request
is served in a drop-and-pick procedure, then the truck that picks the container
up is permitted to arrive at the customer’s location at any point in time after
the container handling operation has been completed, i.e. the customer’s time
interval must not be observed for the collection of the container.

4.1.2 Instance

The instance comprises primarily three sets: a homogeneous fleet of combined
trucks denoted by T , a set of containers denoted by C, and an ordered set of
hinterland requests denoted by R. For a container c ∈ C let teuc state the size
in TEU of c. The set of hinterland requestsR can further be subdivided:

Sub-set Description Location si Location ei

OF OF hinterland requests Sender Terminal
IF IF hinterland requests Terminal Receiver
OE OE hinterland requests Terminal Terminal
IE IE hinterland requests Terminal Terminal

OF40 / OF20 OF 40-/20-foot hinterland requests Sender Terminal
IF40 / IF20 IF 40-/20-foot hinterland requests Terminal Receiver

OE40 / OE20 OE 40-/20-foot hinterland requests Terminal Terminal
IE40 / IE20 IE 40-/20-foot hinterland requests Terminal Terminal

Table 4.1: Different sub-sets of hinterland requests.

Each request i ∈ R is given two locations si and ei together with two time
windows [startsi

, endsi
] and [startei

, endei
] in which trucks have to arrive at the

corresponding location for the first time. For two locations si, ei the function

4.2. SOLUTION 63

dist(si, ei) states the time/distance needed by a truck to move from si to ei;
the function dist is restricted to observe the triangle inequality. For a request
i ∈ OF, si is equal to the sender’s location and ei to the terminal, which are
specified by i. For a request i ∈ IF, si is equal to the terminal and ei to the
receiver’s location, which are specified by i. For a request i ∈ IE∪OE, si and
ei are both equal to the terminal that is specified by i. For a full hinterland
request i ∈ IF∪OF, the duration of (un-)loading a container is denoted by
loadi. The durations of (de-)coupling containers cpl / dcpl are assumed to be
the same at each location. Finally, the instance specifies a single depot that is
denoted by d together with a time horizon [0, H] in which trucks have to leave
and enter d.

4.2 Solution

A graph representation of the routes of a truck fleet T that comprises three
trucks (blue, black and yellow) is depicted by Figure 4.1. All in all, the truck-

Depot
r

(s)
1

r
(s)
2

r
(m)
2

r
(m)
1 r

(e)
1

r
(e)
2

r
(s)
3

r
(e)
4

r1 ∈ IF20

r2 ∈ OF20

r3 ∈ OE40

r4 ∈ IE20

empty

full
loading/
unloading

Figure 4.1: Example of a solution to an instance of the mICTP.

ing company has to serve four hinterland requests r1 ∈ IF20, r2 ∈ OF20, r3 ∈
OE40, r4 ∈ IE20. The empty hinterland requests r3, r4 introduce one node
r

(s)
3 , r

(e)
4 representing the corresponding terminal, whereas the full hinterland

64 CHAPTER 4. MULTI-SIZE CONTAINER INLAND TRANSPORTATION

requests r1, r2 introduce three nodes. The composition of nodes representing
tasks belonging to requests r1, r2 is as follows: the nodes r

(s)
1 , r

(e)
2 represent

the requests’ terminals, while the customers’ locations are duplicated, i.e. the
pairs (r(m)

1 , r
(e)
1) and (r(s)

2 , r
(m)
2) represent the same location of a customer. This

duplication has been made in order to depict (un-)loading operations that are
served in a drop-and-pick procedure. That is, dotted arcs between node pairs
of the same customer’s location represent (un-)loading operations. If a dotted
arc is traversed by a truck, then the container is (un-)loaded in a stay-with pro-
cedure; if the dotted arc is not traversed by a truck, then the corresponding
container is (un-)loaded in a drop-and-pick procedure. Furthermore, the depot
that is the point of origin and the destination of the trucks’ routes is depicted
by the square.

The blue truck couples an empty 20-foot container at the depot and moves
from the depot to the terminal of the first hinterland request (r(s)

1). Here,
the truck couples a fully loaded 20-foot container. The truck then carries the
two containers to the sender’s location of the second hinterland request (r(s)

2),
where the empty container is loaded in a stay-with procedure ((r(s)

2 , r
(m)
2)).

Afterwards, the truck carries the two containers to the receiver’s location of
the first hinterland request (r(m)

1). In order to unload the fully loaded 20-foot
container that has been collected at the terminal of the first hinterland request
(r(s)

1) in a drop-and-pick procedure, the truck decouples the container at the
receiver’s location (r(m)

1). The truck travels to the terminal of the second hin-
terland request (r(e)

2) and decouples the remaining 20-foot container. Finally,
the truck finishes its route at the depot.

The black truck travels from the depot to the receiver’s location of the first
hinterland request (r(e)

1). Here, the truck collects the 20-foot container that was
unloaded in a drop-and-pick procedure after it was delivered to the receiver’s
location (r(m)

1) by the blue truck. At the end, the truck carries the empty con-
tainer to the depot, where the container is stored and the truck finishes its route.

The yellow truck carries an empty 40-foot container from the depot to the
terminal of the third hinterland request (r(s)

3). Afterwards, the truck moves to
the terminal of the fourth hinterland request (r(e)

4), where the truck collects an
empty 20-foot container. The truck carries the empty container to the depot for
stowage and finishes its route.

Chapter 5

Exact Approach

As can be seen from Chapter 3 some standard concepts for formulating a math-
ematical model and an underlying graph representation of drayage problems
have been elaborated in literature sources over the past years. Among others
Braekers et al. [2013], Jula et al. [2005], Wang and Regan [2002], Zhang et al.
[2010] introduce one node that represents an entire FTL transportation request;
this technique results in a formulation of the problem as an asymmetric routing
problem. Nossack and Pesch [2013], Xue et al. [2014] duplicate nodes to allow
several visits of the same location within one truck route. Arcs reflect storage
operations in the formulations of Braekers et al. [2013], Xue et al. [2014], Zhang
et al. [2009], if it has been determined that a storage operation at the depot takes
place between the visits of certain nodes. Caballini et al. [2015], Daham et al.
[2016], Ileri et al. [2006], Reinhardt et al. [2012], Smilowitz [2006], Vidović et al.
[2011, 2012] show CG and matching models to cover the routes of trucks. Of-
ten (Braekers et al. [2013], Imai et al. [2007], Nordsieck et al. [2016, 2017], Nos-
sack and Pesch [2013]) the two sub-problems of assigning empty containers to
flexible tasks (AP/TP) and routing trucks (amTSP(TW)/FTPDP(TW)) are dis-
tinguished in order to take standard forms of network models. In this chapter
a mathematical model for the formulation of the mICTP is shown. Some of the
former mentioned proven methods from literature sources are combined with
newly developed techniques. The content of this chapter is based on the work
of Funke and Kopfer [2014, 2016]. Section 5.1 defines the underlying graph of
the mathematical model. The two sub-problems of assigning containers (Sec-
tion 5.2) and constructing truck routes (Section 5.3) are separately formulated
at first. In a second step, the two models are coupled (Section 5.4) in order to
obtain one model covering the entire problem. Section 5.5 shows two imple-
mentations of different objectives, namely the minimization of the total travel
distance and the minimization of the total operating time of trucks.

65

66 CHAPTER 5. EXACT APPROACH

5.1 Graph Definition

The MIP formulation follows the definition of the instances of the mICTP intro-
duced in Section 4.1.2. An underlying weighted directed graph G = (V, A) is
used to build the mathematical model. The chosen graph is inspired two-fold.
On the one hand, the representation of tasks by nodes and arcs is similar to the
graph definition of Zhang et al. [2009]. On the other hand, the chosen graph
definition assumes that nodes are allowed to be visited exactly once. Since stor-
age operations may require several visits of the depot, nodes representing the
depot are duplicated as also proposed by Nossack and Pesch [2013].

The node set V of the graph consists of the representatives of tasks together
with two locations that need not necessarily be different (refer to Jula et al.
[2005], Wang and Regan [2002]). The two locations are the point of start and
end of the represented task. A task is either a storage operation that takes place
at the depot or a sub-task of a hinterland request (one of the three tasks of an
OF/IF request or the unique task of an OE/IE request; refer to Definition 4.1).
Both types of tasks might be combined with a (de-)coupling operation. As a
result, a node v ∈ V is given a location pair (origv, destv) where the represented
task starts and ends, a time window [startv, endv] in which a truck has to visit
the node and a service time (servv) of the task during which the truck has to
stay at the node. Unless otherwise stated, if the pair (origv, destv) denotes the
same location l = origv = destv , then the time window [startv, endv] is equal to
the time window [startl, endl] that is defined by l.

r
(s)
i r

(e)
i r

(s)
i r

(e)
i

r
(s)
i r

(m)
i r

(e)
i

r
(s)
i

r
(s)
i r

(m)
i r

(e)
i

r
(e)
i

OF40: IF40:

OF20:

OE:

IF20:

IE:

Figure 5.1: Graph of the different request types (Funke and Kopfer [2016]).

An arc (v, w) ∈ A represents tasks that have to be served between nodes v

and w. The majority of arcs represents the movement from the ending location
destv of the arc’s tail to the starting location origw of the arc’s head, which might
be combined with a (de-)coupling operation that has to be executed between v

and w. A further possibility is that arcs are the representatives of (un-)loading
operations. If an (un-)loading operation is performed in a drop-and-pick pro-
cedure (see also Definition 3.14), then the corresponding customer’s location is

5.1. GRAPH DEFINITION 67

visited twice by either the same or different trucks. In order to enable several
visits of the same location that are required by the drop-and-pick procedure,
customers’ locations are duplicated. This means that an arc (v, w) ∈ A repre-
sents an (un-)loading operation, if v and w are the representatives of the same
OF/IF hinterland request with destv and origw being equal to the location of
the customer. In order to highlight the different arc types in the figures in this
chapter, arcs representing moving operations are depicted by consistent lines,
while arcs representing (un-)loading operations are depicted by dashed lines.

5.1.1 Hinterland Requests

The graph representation of a hinterland request i ∈ R is shown in Figure 5.1.
In the case i ∈ OE∪ IE is an empty hinterland request, it is sufficient to let the
entire request i be represented by one node v, whereby v = r

(e)
i for i ∈ IE and

v = r
(s)
i for i ∈ OE. This means that this node represents a decouple (i ∈ OE)

or couple (i ∈ IE) operation that takes place at the terminal specified by i in the
time window of the terminal. The representation for full container transporta-
tion i ∈ OF∪ IF is more complex. Hinterland requests defining the movement
and the handling of 20-foot and 40-foot containers are treated differently.

Two nodes represent the movement and the handling of 40-foot contain-
ers, i.e. i ∈ OF40 ∪ IF40. The idea for the representation of fully loaded 40-
foot container transportation steams from Jula et al. [2005], Wang and Regan
[2002] (see also Section 3.2), who introduce a single node v to model the direct
movement from the container’s origin origv = si to the container’s destination
destv = ei, whereby v = r

(e)
i for i ∈ OF40 and v = r

(s)
i for i ∈ IF40. This

representation is possible since the routes of fully loaded 40-foot containers
are well-defined FTL transportation tasks, and therefore, predetermined. Since
node v represents two locations, which are given different time windows, a sin-
gle time window of v that reflects both time windows has to be formulated in a
next step. The underlying assumption of the drop-and-pick procedure, which
restricts the first visit of a customer’s location to lie within a specified time win-
dow, while the second visit of a customer’s location is allowed to exceed this
time window, leads to a different formulation of the time windows for nodes
representing OF and IF requests. If i ∈ OF40 denotes an outbound request,
then the second visit of a customer is considered by node r

(e)
i that represents

the fully loaded container transportation. Therefore, the time window of r
(e)
i

can simply be obtained by decreasing the terminal’s time window by the cus-
tomer’s service time together with the travel time that is needed to move from
the customer’s location to the terminal. If i ∈ IF40 denotes an inbound request,
then the first visit of a customer is considered by node r

(s)
i that represents the

68 CHAPTER 5. EXACT APPROACH

fully loaded container transportation. As a result, the time windows of termi-
nal and customer have to be considered to formulate the time window and the
service time of node r

(s)
i . In order to implement the combined time window,

the formula of Zhang et al. [2010], who consider service times, travel times and
the offset between the two time windows in their calculation (see also Table
5.1), is used. The second node (r(s)

i for i ∈ OF40 and r
(e)
i for i ∈ IF40) repre-

sents the demand/supply for an empty container arising at the terminal. This
node is defined similar to the nodes representing OE/IE hinterland requests.

Fully loaded 20-foot containers do not have to be directly dispatched to
their specified destinations (see e.g. the route given by the blue, zigzag arcs
in Figure 5.2). In the present graph formulation, three nodes are introduced to
model a full 20-foot hinterland request i ∈ OF20 ∪ IF20. The implementation
of the node r

(s)
i for i ∈ OF20 and r

(e)
i for i ∈ IF20, which specifies the de-

mand/supply for an empty 20-foot container arising at the terminal, remains
the same as in the implementation of 40-foot containers. However, in order
to enable detours within the routes of fully loaded 20-foot containers, the pre-
viously defined nodes r

(e)
i for i ∈ OF40 and r

(s)
i for i ∈ IF40 decompose into

the point of origin (r(m)
i for i ∈ OF20 and r

(s)
i for i ∈ IF20) and the point of

destination (r(e)
i for i ∈ OF20 and r

(m)
i for i ∈ IF20) and now represent a single

(de-)couple operation, instead of an entire container transportation. The cor-
responding container transportation is represented by the arc that is incident
with the two nodes ((r(m)

i , r
(e)
i) for i ∈ OF20 and (r(s)

i , r
(m)
i) for i ∈ IF20).

5.1.2 (Un-)loading Operations

r
(e)
1

r
(s)
2 r

(m)
2 r

(e)
22 ∈ OF20:

1 ∈ IE20:

Figure 5.2: Different (de-)coupling possibilities (Funke and Kopfer [2016]).

Figure 5.2 depicts three different possibilities for performing the (de-)coup-
ling operations of two 20-foot container hinterland requests 1 ∈ IE20 and 2 ∈
OF20. The first possibility is shown by solid, green arcs (the parallel dashed
arc from r

(s)
2 to r

(m)
2 is only introduced to indicate that this arc represents a

5.1. GRAPH DEFINITION 69

loading operation). First of all, the truck performs a street-turn from termi-
nal e1 to customer s2 (arc (r(e)

1 , r
(s)
2)). Afterwards, the container is loaded at

the customer’s location in a stay-with procedure (arc (r(s)
2 , r

(m)
2)). At the end,

the truck carries the fully loaded container from the customer’s location to
terminal e2 ((r(m)

2 , r
(e)
2)). The second possibility is shown by the dotted, red

arc. In this case, the truck decouples an empty container at customer s2. Af-
terwards, the container is loaded in a drop-and-pick procedure. This means
that arc (r(s)

2 , r
(m)
2) is not used in the presented solution. While the container

is loaded, the truck travels to terminal e1 of the first hinterland request (arc
(r(s)

2 , r
(e)
1)) at where it collects an empty container. The third possibility applies

only to 20-foot container transportation, it is shown by zigzag, blue arcs. Here,
the truck does not directly travel from the sender’s location s2 to terminal e2,
which are the point of origin and destination of the same fully loaded container
(arc (r(m)

2 , r
(e)
2)); the truck detours (arcs (r(m)

2 , r
(e)
1) and (r(e)

1 , r
(e)
2)) to collect an

empty container obtained at terminal e1 instead.
Since the majority of locations specify whether or not to (de-)couple con-

tainers, the corresponding durations of (de-)coupling operations are included
in the service times of the locations’ representatives, i.e. the nodes. The only
exceptions are (de-)coupling operations, which are performed in the case that
a container is (un-)loaded in a drop-and-pick procedure, i.e. since the appli-
cation of stay-with or drop-and-pick procedure is not determined beforehand,
the corresponding (de-)coupling operations are uncertain as well. Within the
present model decoupling operations, which are necessary to (un-)load con-
tainers in a drop-and-pick procedure, are included in the durations of arcs,
while coupling operations, which are necessary to (un-)load containers in a
drop-and-pick procedure, are included in the service times of nodes. Table
5.1 reveals time windows, locations and service times that are stored at nodes
representing the tasks of hinterland requests. The balance values of nodes are
defined in Section 5.2.2.

Let denote by AL the set of arcs representing (un-)loading operations (the
dashed arcs, which are shown in Figure 5.1):

AL :={(r(s)
i , r

(e)
i)|i ∈ OF40 ∪ IF40}

∪ {(r(s)
i , r

(m)
i)|i ∈ OF20} ∪ {(r(m)

i , r
(e)
i)|i ∈ IF20}

(5.1)

An element of AL is called loading arc. Apparently, the container is (un-)loaded
in a stay-with procedure only when the truck traverses a loading arc. Other-
wise, the container is (un-)loaded in a drop-and-pick procedure. As a result,
the additional decoupling duration that is needed by the drop-and-pick proce-
dure is added to the duration of all arcs, which leave the tail of an arc in AL,
but do not enter its head.

70 CHAPTER 5. EXACT APPROACH

no
de

v
lo

ca
ti

on
s

(o
rig

v
,d

es
t v

)
se

rv
ic

e
ti

m
e

(s
er

v v
)

ba
la

nc
e

(b
v
)

ti
m

e
w

in
do

w
([

st
ar

t v
,e

nd
v
])

i
∈

O
F 4

0
:

r(s
)

i
or

ig
=

de
st

=
s i

0
b 2

=
−

1
[s

ta
rt

s
i
,e

nd
s

i
]

r(e
)

i
or

ig
=

s i
,d

es
t=

e i
cp

l+
di

st
(s

i
,e

i
)+

dc
pl

b
≡

0
[s

ta
rt

e
i

−
di

st
(s

i
,e

i
),

en
d e

i
−

di
st

(s
i
,e

i
)]

i
∈

IF
40

:
r(s

)
i

or
ig

=
s i

,d
es

t=
e i

m
ax

{s
ta

rt
e

i
−

en
d s

i
b

≡
0

[m
in

{m
ax

{s
ta

rt
s

i
,s

ta
rt

e
i

−
cp

l−
di

st
(s

i
,e

i
)}

,e
nd

s
i
}

,c
pl

+
di

st
(s

i
,e

i
)}

,m
in

{e
nd

s
i
,e

nd
e

i
−

cp
l−

di
st

(s
i
,e

i
)}

]
r(e

)
i

or
ig

=
de

st
=

e i
cp

l
b 2

=
1

[0
,H

]
i

∈
O

F 2
0

:
r(s

)
i

or
ig

=
de

st
=

s i
0

b 1
=

−
1

[s
ta

rt
s

i
,e

nd
s

i
]

r(m
)

i
or

ig
=

de
st

=
s i

cp
l

b i
+

2
=

1
[0

,H
]

r(e
)

i
or

ig
=

de
st

=
e i

dc
pl

b i
+

2
=

−
1

[s
ta

rt
e

i
,e

nd
e

i
]

i
∈

IF
20

:
r(s

)
i

or
ig

=
de

st
=

s i
cp

l
b i

+
2

=
1

[s
ta

rt
s

i
,e

nd
s

i
]

r(m
)

i
or

ig
=

de
st

=
e i

0
b i

+
2

=
−

1
[s

ta
rt

e
i
,e

nd
e

i
]

r(e
)

i
or

ig
=

de
st

=
e i

cp
l

b 1
=

1
[0

,H
]

i
∈

O
E

40
:

r(s
)

i
or

ig
=

de
st

=
s i

dc
pl

b 2
=

−
1

[s
ta

rt
s

i
,e

nd
s

i
]

i
∈

O
E

20
:

r(s
)

i
or

ig
=

de
st

=
s i

dc
pl

b 1
=

−
1

[s
ta

rt
s

i
,e

nd
s

i
]

i
∈

IE
40

:
r(e

)
i

or
ig

=
de

st
=

s i
cp

l
b 2

=
1

[s
ta

rt
s

i
,e

nd
s

i
]

i
∈

IE
20

:
r(e

)
i

or
ig

=
de

st
=

s i
cp

l
b 1

=
1

[s
ta

rt
s

i
,e

nd
s

i
]

Ta
bl

e
5.

1:
Im

pl
em

en
ta

ti
on

of
no

de
s

re
pr

es
en

ti
ng

re
qu

es
ts

.

5.1. GRAPH DEFINITION 71

5.1.3 Container Storage Operations

node duration (serv) balance (b) time window ([startv, endv]){
d+

t

⏐⏐ t ∈ T
}

0 b ≡ 0 [0, H]{
d−

t

⏐⏐ t ∈ T
}

0 b ≡ 0 [0, H]
d+40

i cpl b2 = 1 [0, H]
d+20

i cpl b1 = 1 [0, H]
d−40

i dcpl b2 = −1 [0− dcpl, H]
d−20

i dcpl b1 = −1 [0− dcpl, H]

Table 5.2: Implementation of depot duplicates.

As already mentioned, the present formulation uses the idea of Nossack
and Pesch [2013] to implement the several visits of the depot within a truck
route. Altogether |R| + 2|T | nodes are introduced for the representation of
the depot. This composition is explained in the following. Since the prob-
lem definition assumes that the depot is able to provide an empty container
for each outbound hinterland request and additionally is a sufficiently large
stowage for empty containers obtained by inbound hinterland requests, each
request introduces one depot duplicate to the node set; in more detail, for each
request i ∈ OF40 ∪OE40 a depot node d+40

i /i ∈ OF20 ∪OE20 a depot node
d+20

i / i ∈ IF40 ∪ IE40 a depot node d−40
i /i ∈ IF20 ∪ IE20 a depot node d−20

i is
introduced. Furthermore, each truck t ∈ T introduces two nodes d+

t and d−
t ,

which serve as the points of origin and destination of the truck’s route. A time
window that is equal to the time horizon [0, H] is specified for the majority of
the depot’s duplicates. However, an exemption applies to the time windows
of the depot duplicates d−40

i , d−20
i (i ∈ R) that represent container storage op-

erations taking place at the depot. The reason for the time windows’ modifi-
cation is that the number of depot duplicates representing storage operations
exceeds the number of storage operations, which are normally needed by a
solution to a problem’s instance. Therefore, a solution might contain a con-
tainer coupling operation immediately preceding a container decoupling op-
eration, which both take place at the depot ((d+k

i , d−k
j), k ∈ {20, 40}, i, j ∈ R).

Since such an operation pair is only included in a solution to the MIP in order
to balance the container storage operations, but will not be implemented in
a real-world application, these operation pairs should not consume any time.
For the simulation of zero duration, depots representing container storage op-
erations are allowed to start dcpl times before the start of the time horizon.
Because of (de-)coupling durations being stored at nodes, the duration of arcs

72 CHAPTER 5. EXACT APPROACH

((d+k
i , d−k

j), k ∈ {20, 40}, i, j ∈ R) is decremented by the sum of the duration
needed by (de-)couple operations. Table 5.2 summarizes the considerations for
nodes representing the duplicates of the depot.

5.1.4 Entire Graph Representation

arc duration (dur) cost (c)

i ∈ OF40, j ∈ IF40:
(d+40

i , d−40
j) − cpl − dcpl 0

i ∈ OF20, j ∈ IF20:
(d+20

i , d−20
j) − cpl − dcpl 0

Loading Arcs:
ei = (v, w) ∈ AL loadi 0
(v, w′), w′ /= w dcpl + dist(destv, origw′) dist(destv, origw′)
Remaining arcs
(v, w) dist(destv, origw) dist(destv, origw)

Table 5.3: Implementation of arcs.

An arc (v, w) ∈ A is given two values: a duration durvw and a cost cvw. Table
5.3 summarizes the different values of arcs. For the reason of truck capacity
some of the arcs are removed from the graph, since they cannot be included in
any feasible solution. For instance, a truck that carries a 40-foot container must
firstly decouple the container before it couples another container. As a result,
nodes including a coupling operation of an empty 40-foot container can only
be the tail of arcs, whose head is a node that includes a decoupling operation
of an empty 40-foot container, and vice versa. Furthermore, it is possible to
remove the reverse arcs (w, v) of loading arcs (v, w) ∈ AL from the graph.

Figure 5.3 depicts the graph of an instance, which consists of one truck T =
{t} and three hinterland requests R = (1, 2, 3), whereby {1, 2} ⊆ OE40 and
{3} ⊆ IF40. The route of truck t originates from d+

t and ends at d−
t . Node r

(s)
3

represents the transportation of a fully loaded container from the terminal to
the receiver’s location. It is possible to obtain empty containers from depot
nodes d+40

1 , d+40
2 or the receiver’s node r

(e)
3 . Empty containers are allowed to

be delivered to terminal nodes r
(s)
1 , r

(s)
2 or depot node d−40

3 .

5.2 Assigning Containers

The problem that asks for a construction of flows for containers is modeled as
a Multicommodity Flow Problem (MFP) (see also Definition 2.21). This problem

5.2. ASSIGNING CONTAINERS 73

r
(s)
1 r

(s)
2

r
(s)
3 r

(e)
3

d+40
1 d+40

2

d+
t

d−40
3

d−
t

Figure 5.3: Instance graph (Funke and Kopfer [2016]).

assigns empty containers to flexible hinterland requests not only, but also con-
structs the routes for empty and fully loaded containers. Since the routes for
fully loaded 40-foot containers are predetermined (refer to the former section),
fully loaded 40-foot containers can be excluded from the route construction
process. For a given digraph, the MFP asks for multiple flows, which are in-
dicated by nodes that supply specific commodities to nodes that demand the
corresponding commodities. The present formulation uses 2 + | IF20 ∪OF20 |
commodities. The meaning of the different commodities is described in more
detail in the following. Because of empty containers of the same size being
interchangeable (refer to Section 4.1), only one dimension is needed to repre-
sent all movements of empty containers sharing a specific size. In the present
formulation, the first two dimensions assign the flow for empty 20-foot (first
dimension) and empty 40-foot (second dimension) containers to arcs. The re-
maining | IF20 ∪OF20 | dimensions are introduced in order to observe that the
routes of fully loaded 20-foot containers start and end at their specified loca-
tions. A node v ∈ V is associated with a balance value b

(k)
v that expresses the

supply/demand of commodity (i.e. container) k. All in all, a node is associated
with 2 + | IF20 ∪OF20 | balance values. Since each node is visited exactly once
by a truck, an arc can be visited at most once by a truck. Consequently, the
arc’s capacity uvw limits the total amount of different commodities, which tra-
verse arc (v, w) ∈ A, to the capacity of a truck. For the ease of notation that is
used in this section, it is assumed that the set of hinterland requests is ordered
R := (1, 2, . . . , |R|) and hinterland requests IF20 ∪OF20 ofR come first among
others.

74 CHAPTER 5. EXACT APPROACH

5.2.1 Decision Variables

Overall, three different sets of integral decision variables x
(1)
vw, x

(2)
vw and yvwi

corresponding to the containers’ sizes and filling levels are defined. The set x
(1)
vw

describes the number of empty 20-foot and the set x
(2)
vw describes the number

of empty 40-foot containers traversing arc (v, w) ∈ A, i.e.:

∀k ∈ {1, 2},∀(v, w) ∈ A : x(k)
vw := |

{
c ∈ C

⏐⏐⏐ teu
c

= k, c traverses (v, w)
}
| (5.2)

Fully loaded 20-foot containers are not interchangeable. For each hinterland
request i ∈ IF20 ∪OF20 let by ci denote the unique fully loaded container that
is to be moved between customer’s location and terminal, or vice versa. The
decision variables defining the movement of fully loaded 20-foot containers
are binary:

∀i ∈ IF20 ∪OF20,∀(v, w) ∈ A : yvwi :=
{

1, if ci traverses (v, w),
0, otherwise.

(5.3)

5.2.2 Balance Values

For each node a multi-dimensional balance vector b defining the demand/ sup-
ply for empty/fully loaded 20-foot and 40-foot containers is introduced. All in
all, 2 + | IF20 ∪OF20 | dimensions are considered. The first two dimensions de-
fine the demand/supply for empty containers and the remaining dimensions
define the demand/supply for fully loaded 20-foot containers, i.e.:

∀v ∈ V,∀k ∈ {1, 2} : bk
v :=

⎧⎪⎨⎪⎩
1, v supplies c ∈ C with teuc = k,

−1, v demands c ∈ C with teuc = k,

0, otherwise.

(5.4)

∀v ∈ V,∀i ∈ IF20 ∪OF20 : bi+2
v :=

⎧⎪⎨⎪⎩
1, v supplies ci,

−1, v demands ci,

0, otherwise.

(5.5)

The distribution of the supply/demand of the different node types is as fol-
lows. Since |R| duplicates of the depot are introduced in order to overcome the
imbalances of empty containers caused by the different hinterland requests,
these nodes get assigned the complement to the corresponding hinterland re-
quest. This means that depot duplicates supply/demand a container, when
the associated hinterland request requires/provides a container. In more de-
tail, for k ∈ {20, 40} the depot duplicates d+k

i of outbound requests that are
elements of the set OFk ∪OEk provide empty k-foot containers, while the de-
pot duplicates d−k

i of inbound requests that are elements of the set IFk ∪ IEk

demand empty k-foot containers. The reverse balance value is assigned to the

5.2. ASSIGNING CONTAINERS 75

first node r
(s)
i of outbound requests i ∈ OF∪OE or rather the last node r

(e)
i

of inbound requests i ∈ IF∪ IE. For an outbound request i ∈ OF20, the fully
loaded 20-foot container ci is transported from node r

(m)
i that supplies ci to

node r
(e)
i that demands ci. Conversely, for an inbound request i ∈ IF20, the

fully loaded 20-foot container ci is transported from node r
(s)
i that supplies ci

to node r
(m)
i that demands ci. Table 5.1 shows a complete list of balance values.

Balance values that are not mentioned in this list are set to zero.

5.2.3 Capacities

An arc (v, w) ∈ A is traversed by at most one truck. Since each truck is able
to carry two TEU the most, the capacity uvw of each arc (v, w) is firstly set to
be equal to two. The assumption on the capacity value holds true for arcs that
represent moving operations. However, this does not apply to the capacity
value of a loading arc ei ∈ AL, which represents the (un-)loading operation
of container ci of request i ∈ OF∪ IF. This exemption has been made due to
container (un-)loading operations being implicitly implemented in the present
formulation. This means that there is not assigned any flow representing con-
tainer ci to loading arc ei ∈ AL. While for trucks it is a matter of optimization
whether or not to traverse loading arc ei, the container ci must traverse ei in
any case. Therefore, it is sufficient to decrement the capacity of ei by the size
teuci of container ci. Analogously, the transportation of a fully loaded 40-foot
container is only implicitly implemented by node r

(e)
i (if i ∈ OF40 is an out-

bound request) or by node r
(s)
i (if i ∈ IF40 is an inbound request). Because of

the capacity of a truck carrying a 40-foot container being fully exploited, only
empty trucks are allowed to enter a node representing the transportation of a
fully loaded 40-foot container. Overall, it holds:

∀(v, w) ∈ A : uvw :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2− teuci

, (v, w) = ei ∈ AL

0, w = r
(e)
i , i ∈ OF40

0, w = r
(s)
i , i ∈ IF40

2, otherwise

(5.6)

5.2.4 Entire Model

Figure 5.4 illustrates the balance values of nodes and the capacities of arcs of an
instance that comprises three full hinterland requestsR = (1, 2, 3). Hinterland
requests 1, 2 are 20-foot container hinterland requests (1 ∈ IF20, 2 ∈ OF20) and
hinterland request 3 is a 40-foot container hinterland request (3 ∈ OF40). Once
more, loading arcs are depicted by dashed arcs. The capacity of loading arcs
is decremented by the size of this container, whose (un-)loading operation is

76 CHAPTER 5. EXACT APPROACH

represented by the arc. Each of the two hinterland requests 1, 2 ∈ IF20 ∪OF20

adds an additional dimension to the balance vector in order to ensure that the
corresponding fully loaded container is transported between its specified lo-
cations leading to a total of four commodities. Moreover, each hinterland re-
quest introduces an additional depot. As a result, the depot is able to supply
empty containers to outbound requests 2, 3 and to store the empty container
that is provided by inbound request 1. A further possibility for the distribu-
tion of empty containers is to perform a street-turn between requests 1 and
2. In this case the solution requires that arc (r(e)

1 , r
(s)
2) gets assigned a flow

value greater than zero in the first dimension. Furthermore, if a street-turn
is performed, then the arc (d+20

2 , d−20
1) gets also assigned a flow value greater

than zero. However, this connection does not induce any additional cost or
duration, since the service time and the time windows have been adequately
decremented and shifted (refer to Tables 5.2 and 5.3). Because of the balance
vectors of nodes d+

t , d−
t , which serve as the point of origin and destination of a

truck t, being equal to zero, these nodes are not depicted in Figure 5.4.
Finally, the MFP can be stated as follows:∑
(v,w)∈A

x(k)
vw −

∑
(w,v)∈A

x(k)
wv = b(k)

v ∀v ∈ V,∀k ∈ {1, 2} (5.7)

∑
(v,w)∈A

yvwi −
∑

(w,v)∈A

ywvi = b(i+2)
v ∀v ∈ V,∀i ∈ IF20 ∪OF20 (5.8)

∑
k∈{1,2}

teu
c
·x(k)

vw +
∑

i∈IF20 ∪ OF20

yvwi ≤ uvw ∀(v, w) ∈ A (5.9)

x(k)
vw ∈ {0, 1, 2} ∀(v, w) ∈ A,∀k ∈ {1, 2} (5.10)

yvwi ∈ {0, 1} ∀(v, w) ∈ A,∀i ∈ IF20 ∪OF20 (5.11)

Constraints 5.7 define the supply/demand for empty containers and Con-
straints 5.8 define the supply/demand for fully loaded 20-foot containers. Con-
straints 5.9 ensure that that the total flow through an arc does not exceed the
arc’s capacity. The domains of the sets of decision variables are given by Con-
straints 5.10 and 5.11.

5.3 Building Routes

The mathematical model that constructs truck routes is build by extending the
MIP of an amTSPTW (refer to Sections 2.1.4 and 3.1.1). One of the reasons for
the problem being asymmetric is that the transportation of fully loaded 40-foot
containers is implemented by a single node v ∈ V , for which the locations origv

and destv differ from one another. Each truck t ∈ T adds two depot duplicates
d+

t and d−
t to the node set of the graph. Truck t has to start its route from d+

t

5.3. BUILDING ROUTES 77

r
(s)
3

⎛⎜⎝ 0
−1
0
0

⎞⎟⎠
r

(e)
3

⎛⎜⎝ 0
0
0
0

⎞⎟⎠
d+40

3

⎛⎜⎝ 0
1
0
0

⎞⎟⎠
d+20

2

⎛⎜⎝ 1
0
0
0

⎞⎟⎠
d−20

1

⎛⎜⎝ −1
0
0
0

⎞⎟⎠

r
(s)
2

⎛⎜⎝ −1
0
0
0

⎞⎟⎠
r

(m)
2

⎛⎜⎝ 0
0
0
1

⎞⎟⎠
r

(e)
2

⎛⎜⎝ 0
0
0

−1

⎞⎟⎠
r

(s)
1

⎛⎜⎝ 0
0
1
0

⎞⎟⎠
r

(m)
1

⎛⎜⎝ 0
0

−1
0

⎞⎟⎠
r

(e)
1

⎛⎜⎝ 1
0
0
0

⎞⎟⎠

1 2

2 1

0

OF40: Depot:

IF20: Depot:

OF20: Depot:

Figure 5.4: Balance values and capacities (Funke and Kopfer [2016]).

and end its route at d−
t within the time horizon. The remaining tasks have to be

assigned to truck routes. Afterwards, an order of the assigned tasks has to be
determined resulting in trucks arriving at the corresponding locations within
the time windows of the locations.

5.3.1 Decision Variables

Almost all of the nodes are exactly once entered and left by a truck. The only
exceptions are the depot duplicates d+

t , d−
t (t ∈ T), which represent the points

of origin and destination of the route of truck t. While node d+
t is left only but

not entered, the opposite applies to node d−
t . A continuous decision variable

tv is introduced for each node v. The variable tv obtains the value of the point
in time location origv is visited by a truck:

v ∈ V : tv = { a ∈ R |point in time a truck visits v } (5.12)

A further binary decision variable δvw is introduced for each arc (v, w) ∈ A in
order to determine whether or not a truck traverses arc (v, w):

δvw :=
{

1, if a truck traverses arc (v, w),
0, otherwise.

(5.13)

78 CHAPTER 5. EXACT APPROACH

5.3.2 Entire Model

The MIP for the construction of truck routes can be build as follows:∑
(v,w)∈A

δvw =
∑

(w,v)∈A

δwv = 1 ∀v ∈ V \
{

d+
t , d−

t

⏐⏐ t ∈ T
}

(5.14)

∑
(v,w)∈A

δvw = 1,
∑

(w,v)∈A

δwv = 0 ∀v ∈
{

d+
t

⏐⏐ t ∈ T
}

(5.15)

∑
(v,w)∈A

δvw = 0,
∑

(w,v)∈A

δwv = 1 ∀v ∈
{

d−
t

⏐⏐ t ∈ T
}

(5.16)

δvw = 1⇒ tv + dur
vw

+ serv
v
≤ tw ∀(v, w) ∈ A \AL (5.17)

start
v
≤ tv ≤ end

v
∀v ∈ V \

{
r

(e)
i

⏐⏐⏐ i ∈ OF40

}
(5.18)

tv ∈ R ∀v ∈ V (5.19)

δvw ∈ {0, 1} ∀(v, w) ∈ A (5.20)

Constraints 5.14 ensure that the flow conservation rule holds for all nodes
except the depot duplicates, which serve as the point of start and end of the
truck routes. Constraints 5.15 and 5.16 ensure that starting/ending depot nodes
are left/entered exactly once by a truck. Sub-tours are eliminated and time
windows are set by Constraints 5.17 and 5.18 (the reason for excluding nodes
r

(e)
i , i ∈ OF40 from Constraints 5.18 is stated in the next section). Finally, Con-

straints 5.19 and 5.20 set the domains of the sets of decision variables.

5.4 Coupling of the Models

For the purpose of combining the mathematical models of the two sub-problems
of the mICTP, two necessary conditions have to be considered. On the one
hand, containers constitute passive vehicles that must be carried by a truck to
move in space (Drexl [2012], see also Section 3.1.2). This means that all con-
tainer flows have to be covered by the truck routes. On the other hand, the
decision whether to apply stay-with or drop-and-pick procedure to the dif-
ferent (un-)loading operations has not yet been taken. Up to now, container
(un-)loading operations have been only implicitly modeled by decreasing the
capacity uei

of loading arc ei ∈ AL by the container’s size teuci
. The advan-

tage of this subtraction is that no extra flow representing ci has to be assigned
to arc ei. Since not any flow representing ci traverses arc ei, truck routes may,
but need not, cover arc ei. The decision making process determines, whether
trucks traverse arc ei (stay-with procedure) or not (drop-and-pick procedure).
The additional duration that is needed by (un-)loading and (de-)coupling op-

5.4. COUPLING OF THE MODELS 79

erations has to be integrated into the model as well.∑
k∈{1,2}

k · x(k)
vw +

∑
i∈IF20 ∪ OF20

yvwi ≤ 2 · δvw ∀(v, w) ∈ A (5.21)

δvw = 0⇒ tv + dcpl + serv
v

+ dur
vw
≤ tw ∀(v, w) ∈ AL (5.22)

δvw = 1⇒ tv + dur
vw

+ serv
v
− cpl ≤ tw ∀(v, w) ∈ AL (5.23)

start
r

(e)
i

−(1− δ
r

(s)
i

r
(e)
i

) · cpl ≤ t
r

(e)
i

∀i ∈ OF40 (5.24)

t
r

(e)
i

≤ end
r

(e)
i

−(1− δ
r

(s)
i

r
(e)
i

) · cpl ∀i ∈ OF40 (5.25)

Constraints 5.22 and 5.23 can be combined to form one constraint:

tv + (1− δvw) · dcpl + dur
vw

+ serv
v
−δvw · cpl ≤ tw ∀(v, w) ∈ AL (5.26)

Constraints 5.21 ensure that each container flow is covered by a part of a truck’s
route. The implementation of constraints representing the (un-)loading oper-
ations of containers is inspired by Goel and Meisel [2013], who provide a mT-
SPTW formulation of a maintenance problem of electricity networks (see also
Section 3.1.2). As already mentioned, if a loading arc ei = (v, w) ∈ AL of a
full hinterland request i ∈ OF∪ IF is not traversed by any truck (Constraints
5.22), then the fully loaded container ci is (un-)loaded in a drop-and-pick pro-
cedure. This means that some precedence time has to take place between the
starting times of nodes v and w. This precedence time ensures that the for-
mer task (i.e. decoupling and (un)-loading the container) has been completed
before the latter (i.e. collecting the container) is allowed to start. Conversely,
if a truck traverses loading arc ei ∈ AL, then ci is (un-)loaded in a stay-with
procedure. Constraints 5.23 are build almost in the same way as Constraints
5.17, apart from one minor exception: since the service time of node w includes
the duration that is needed to couple a container, the precedence time has to
be decreased by this coupling duration, if a container is (un-)loaded in a drop-
and-pick procedure. Because of the assumption that the second visit of a cus-
tomer is not restricted to any time window, this virtual shift by the container’s
coupling duration has no impact on nodes representing customers’ locations.
However, the node r

(e)
i of a 40-foot container OF request i ∈ OF40 represents a

customer’s location not only, but also implements the transportation of a fully
loaded container from the sender’s location to the terminal. Therefore, the ar-
rival time of a truck at node r

(e)
i , i ∈ OF40 has to depend on the terminal’s time

window as well. As a result, Constraints 5.24 and 5.25 set the different time
windows of nodes r

(e)
i , i ∈ OF40, in the case that stay-with or drop-and-pick

procedure is performed.

80 CHAPTER 5. EXACT APPROACH

5.5 Objectives

The computational study that is provided in Chapter 7 considers two different
objectives. The study focuses especially on the objective that minimizes the
total travel distance of the trucks:

min
∑
e∈A

ce · δe +
∑

i∈OF40

dist(orig
r

(e)
i

, dest
r

(e)
i

) +
∑

i∈IF40

dist(orig
r

(s)
i

, dest
r

(s)
i

) (5.27)

The first summand of Objective 5.27 represents the actual objective, while the
last two summands are constants, which represent the carriage of fully loaded
40-foot containers.

The second objective minimizes the total operating time of the trucks:

min
∑

v∈{ d−
t | t∈T }

tv −
∑

v∈{ d+
t | t∈T }

tv (5.28)

Objective 5.28 decrements the sum of the times trucks enter ending depots by
the sum of the times trucks leave starting depots.

Chapter 6

Heuristic Approach

In order to solve the mICTP, a matheuristic is developed; the basic idea of the
approach is that the two phases that assign empty containers to flexible tasks
and construct routes for trucks are combined in one Large Neighborhood Search
(LNS) (Ropke and Pisinger [2006]). Among others, Braekers et al. [2013] in-
vestigate heuristic approaches consisting of these two phases. In their study
Braekers et al. [2013] examine that the approach, which sequentially performs
the two phases, is clearly outperformed by an integrated approach. To over-
come these results, both phases are strongly interlinked in the present heuristic
approach. In addition, one single iteration of the heuristic approach is permit-
ted to take up much computation time. This strategy is inspired by Ropke
and Pisinger [2006] that allow large moves in one single iteration to obtain di-
versification in their approach. Altogether, linear and integer programming
models assign empty containers to flexible tasks and thereby compute well-
defined tasks. Afterwards, numerous different heuristics construct routes for
trucks out of the obtained well-defined tasks. The heuristic approach is based
on the neighborhood search of Funke and Kopfer [2015], who investigate a re-
striction of the mICTP that does not consider time windows. Compared to the
approach of Funke and Kopfer [2015], the presented heuristic approach can
not only be applied to a problem definition that considers time windows, but
also integrates several recent destroy and repair strategies as well as another
mechanism for the update of current solutions, i.e. the hill climbing strategy is
replaced by SA (refer to Section 2.2.3).

This chapter introduces names for each parameter that is contained in the
heuristic approach. The introduction of names leads to a simplified referencing
to parameters in Section 7.4.1, which addresses the choice of values for the
parameters. The remainder of this chapter is organized as follows: Section 6.1
introduces the models used to assign containers and Section 6.2 introduces the

81

82 CHAPTER 6. HEURISTIC APPROACH

basic structure of the heuristics used to build truck routes. The entire heuristic
approach approach is presented in Section 6.3 and implementation details to
speed up computation time are listed in Section 6.4.

6.1 Models for Containers

In order to construct routes comprising flexible tasks that have not specified the
point of origin or destination, empty containers are assigned to flexible tasks
before. The assignment of empty containers to flexible tasks indirectly assigns
the missing locations to flexible tasks, since the point of pickup and delivery is
known for empty containers. In this step, all pickup and delivery tasks of con-
tainers are combined to form compound container transportation requests. A
compound container transportation request constitutes a minimum connected
component of a truck’s route that is not separable because at least one container
is shared between the different pickup and delivery tasks. Meisel and Kopfer
[2014] take a similar approach by constructing carriages, i.e. sub-tours of non-
autonomous recourses (refer to Section 3.3.2). Altogether, three different linear
and integer programming models for the exact computation of connected com-
ponents are presented in the following.

6.1.1 Connected Components

The chosen representation of hinterland requests in this chapter differs from
the representation that is used in Chapter 5. Hinterland requests are divided
into container pickup ("⊕") and delivery ("⊖") tasks. Figure 6.1 depicts the dif-
ferent container pickup and delivery tasks of the different hinterland requests
that are contained in the mICTP. Similar to the representation that is used in
Chapter 5, OF and IF hinterland requests decompose into three different tasks,
while OE and IE hinterland requests consist of one single task. OF and IF
hinterland requests are subdivided into one well-defined task representing a
fully loaded container transportation (shown by solid lined rectangles) and one
flexible task representing a pickup or delivery request of an empty container
(shown by dashed lined rectangles). The composition of an OF hinterland re-
quest is described here as an example of both full hinterland requests. The
dashed lined rectangle at the beginning represents the sender’s demand for
an empty container, while the subsequent solid lined rectangle represents the
transportation of the fully loaded container from the sender’s location to the
terminal. The customers’ locations of OF and IF requests again are duplicated
in this representation: one duplicate refers to the empty container handling
operation and the other duplicate refers to the fully loaded container handling

6.1. MODELS FOR CONTAINERS 83

⊖ ⊕ ⊖

OF:

⊕ ⊖ ⊕

IF:

OE:

⊖

IE:

⊕

DEPOT: ⊕ ⊕ ⊖ ⊖

Figure 6.1: Pickup and delivery tasks (Funke and Kopfer [2015]).

operation (see also Chapter 5). For OE and IE hinterland requests, one dashed
lined rectangle is used to represent the flexible delivery or pickup task. Finally,
a set of individual flexible pickup and delivery tasks is introduced for the rep-
resentation of the stowage operations of empty containers taking place at the
depot. To achieve a mathematical definition of connected components, sets Ek,
Dk and Fk for k ∈ {20, 40} are defined as follows:

∀k ∈ {20, 40} : Ek :=
{
⊖r

⏐⏐⏐⏐ r ∈ OF
k
∪OE

k

}
∪

{
⊕r

⏐⏐⏐⏐ r ∈ IF
k
∪ IE

k

}
(6.1)

∀k ∈ {20, 40} : Dk :=
{
⊕r

⏐⏐⏐⏐ r ∈ OF
k
∪OE

k

}
∪

{
⊖r

⏐⏐⏐⏐ r ∈ IF
k
∪ IE

k

}
(6.2)

∀k ∈ {20, 40} : Fk :=
{
⊕r,⊖r

⏐⏐⏐⏐ r ∈ OF
k
∪ IF

k

}
(6.3)

The set Ek contains the flexible pickup and delivery tasks of empty k-foot con-
tainer hinterland requests, i.e. the dashed lined rectangles that are used in the
representation of hinterland requests in Figure 6.1. The set Dk represents the
pickup and delivery tasks of empty k-foot containers taking place at the depot
that are depicted at the bottom of Figure 6.1. The set Fk contains the well-
defined pickup and delivery tasks of fully loaded k-foot container hinterland
requests, i.e. the solid lined rectangles that are used in the representation of
hinterland requests in Figure 6.1. Given these definitions, a connected compo-
nent can be defined as follows:

Definition 6.1 (Connected Component). A sequence (l1, . . . , ln) ⊆ Ek∪Dk∪Fk,
k ∈ {20, 40}, is called connected component, when it holds

∀j ∈ {1, . . . , n− 1} : 0 <

j∑
i=1

cap(i) ≤ 2 and
n∑

i=1
cap(i) = 0,

84 CHAPTER 6. HEURISTIC APPROACH

where cap(i) denotes the size (measured in TEU) of the in li coupled or de-
coupled container, if li is a pickup task; cap(i) denotes minus the size of the
container, if li is a delivery task.

Let P state the problem that asks for a construction of connected compo-
nents. A truck’s capacity leads to three different possibilities for coupling con-
tainers at one point in time: nothing, 40-foot containers only or 20-foot contain-
ers only. Hence, P can be partitioned into P = P40

·
∪ P20 without influencing

the solution quality.

6.1.2 Graph

Since 40-foot and 20-foot containers can separately be assigned, two different
graph representations Gk = (Vk, Ak) are introduced for the different container
sizes k ∈ {20, 40}. Nodes are introduced for each pickup and delivery task
that is contained in the set Dk ∪ Ek. In contrast to the transportation of 40-
foot containers, trucks are able to simultaneously carry fully loaded and empty
20-foot containers. For this reason, the node set V20 additionally includes ele-
ments that are contained in the setF20. Arcs are introduced between two nodes
whenever it is possible for a truck to move between the different pickup and
delivery tasks represented by the nodes (i.e. the time windows of different
locations need to be considered as it is described in the next paragraph). For
a node vi ∈ Vk let the corresponding pickup or delivery task be denoted by
li ∈ Dk∪Ek∪Fk. We define mappings associated to nodes and arcs. Each node
vi is associated with the location loci where li takes place and the time interval
[starti, endi] in which li has to start; vi gets assigned a balance value bi := cap(i)
and a service time servi that states the duration of li, i.e. servi := cpl, if li

is a pickup task ⊕ and servi := dcpl, if li is a delivery task ⊖. For each arc
(vi, vj) ∈ A40 ∪ A20, the value disti,j is set to the time needed to travel from
loci to locj . Given these notations, the different sets of nodes and arcs can be
defined as follows:

V20 := { vi | li ∈ E20 ∪ D20 ∪ F20 } , V40 := { vi | li ∈ E40 ∪ D40 }

∀k ∈ {20, 40} : Ak :=
{

(vi, vj) ∈ Vk × Vk

⏐⏐⏐⏐ start
i

+ dist
i,j

+ serv
i
− end

j
≤ 0

}
(6.4)

If (starti + disti,j + servi− endj) > 0 holds true, then time windows between
two pickup/delivery tasks li and lj cannot be met. Therefore, the correspond-
ing arcs are excluded from graphs.

Similar to the container assignment problem that is solved by the exact ap-
proach (refer to Section 5.2), balance values become multidimensional, when

6.1. MODELS FOR CONTAINERS 85

the simultaneous transportation of empty and fully loaded 20-foot containers is
considered. Each transportation of a fully loaded container induces one dimen-
sion to the balance vector leading to a mapping b

(p)
i with p ∈ [dim], whereby

dim := |F20|
2 + 1 (refer to Definition 2.2). The additional dimensions are intro-

duced to observe the given points of origin and destination of a fully loaded
container. Table 6.1 shows a listing of the different balance values, not men-
tioned values are set to zero.

node vi E40 ∪ D40 E20 ∪ D20 F20

li ∈ ⊕ bi = 1 b
(1)
i = 1 b

(⌈ i
2 ⌉+1)

i = 1
li ∈ ⊖ bi = −1 b

(1)
i = −1 b

(⌈ i
2 ⌉+1)

i = −1

Table 6.1: Different balance values of pickup and delivery tasks.

6.1.3 Assignment of Empty Containers

We first consider the assignment of empty containers only, i.e. for the remain-
der of this section Fk := ∅ holds for k ∈ {20, 40}. In this case, the two sub-
problems P40 and P20 of assigning empty containers to flexible tasks can be
transformed to well-known combinatorial optimization problems.

Assignment of Empty 40-foot Containers

The assignment of empty 40-foot containers is already discussed in scientific
sources. Nossack and Pesch [2013] show that P40 reduces to a classical assign-
ment problem to which optimum solutions can be computed in polynomial
time (see also Remark 2.15). The node set V40 is divided into two partitions
V ⊕

40
·
∪ V ⊖

40 ; partition V ⊕
40 contains nodes representing pickup tasks and partition

V ⊖
40 contains nodes representing delivery tasks. It follows from the definitions

of the sets D40 and E40 that V ⊕
40 and V ⊖

40 are sets of the same cardinality. The
problem P40 can be stated as follows:

min
∑

(vi,vj)∈(A40∩(V ⊕
40×V ⊖

40))

(dist
i,j

+ max{start
j
− end

i
−dist

i,j
− serv

i
, 0}) · xij (6.5)

s.t.
∑

vj∈V ⊖
40 :(vi,vj)∈δ+

vi

xij = 1 ∀vi ∈ V ⊕
40 (6.6)

∑
vi∈V ⊕

40 :(vi,vj)∈δ−
vj

xij = 1 ∀vj ∈ V ⊖
40 (6.7)

xij ∈ {0, 1} ∀(vi, vj) ∈ (A40 ∩ (V ⊕
40 × V ⊖

40)) (6.8)

For each arc (vi, vj) ∈ (A40∩ (V ⊕
40 ×V ⊖

40)) a binary decision variable xij is intro-
duced. The decision variable specifies whether or not a container is assigned

86 CHAPTER 6. HEURISTIC APPROACH

between a pair of pickup and delivery tasks (Constraints 6.8). The Objective
function 6.5 minimizes the sum of the total travel time and total waiting time.
Constrains 6.6 - 6.7 ensure that each task is exactly once assigned.

Assignment of Empty 20-foot Containers

Empty 20-foot containers are assigned by a variation of the MCFP . However,
in contrast to solving the MCFP (refer to Remark 2.20), computing solutions to
P20 is NP-hard. The complexity of the variation is shown in the subsequent
section. For each arc (vi, vj) ∈ A20 an integral decision variable xij ∈ {0, 1, 2}
is introduced. The value of the decision variable specifies the container flow,
i.e. the number of empty 20-foot containers moving from loci to locj . The goal
of the MCFP is to minimize the total amount of container flow by routing all
amount of container flow obtained by nodes having positive assigned balance
value to nodes having negative assigned balance value. The classical MCFP
formulation is modified by the introduction of another decision variable zij .
The additional decision variable limits the number of the in-going and the out-
going flow arcs of each node to one:

min
∑

(vi,vj)∈A20

(dist
i,j

+ max{start
j
− end

i
−dist

i,j
− serv

i
, 0}) · zij (6.9)

s.t.
∑

(vi,vj)∈δ+
vi

xij −
∑

(vj ,vi)∈δ−
vi

xji = bi ∀vi ∈ V20 (6.10)

xij ≤ 2 · zij ∀(vi, vj) ∈ A20 (6.11)

zij ≤ xij ∀(vi, vj) ∈ A20 (6.12)∑
(vi,vj)∈δ+

vi

zij ≤ 1 ∀vi ∈ V20 (6.13)

∑
(vi,vj)∈δ−

vj

zij ≤ 1 ∀vj ∈ V20 (6.14)

xij ∈ {0, 1, 2} ∀(vi, vj) ∈ A20 (6.15)

zij ∈ {0, 1} ∀(vi, vj) ∈ A20 (6.16)

The Objective function 6.9 minimizes the sum of the total travel time and the
total waiting time. Constraints 6.10 set the flow balance conservation. Con-
straints 6.11 and 6.12 set the binary decision variable zij to one, if the value of
decision variable xij is greater than zero; the decision variable zij is set to zero,
otherwise. The maximum number of the out-going arcs and the in-going arcs
of a node are restricted by one by Constrains 6.13 and 6.14. Finally, Constraints
6.15 and 6.16 define the value domains of the decision variables x and z.

It is assumed that the costs of arcs are greater than zero in this section.
A variation of the MCFP has to be considered for the following reason. For

6.1. MODELS FOR CONTAINERS 87

(vi, vj) ∈ A20 let x∗
ij denote an optimum solution to an MCFP instance. We

consider the graph G∗
20 := (V20, A∗

20) with A∗
20 :=

{
(vi, vj) ∈ A20

⏐⏐ x∗
ij > 0

}
that contains arcs having assigned a positive flow value only. In a solution to
P20, the connected components in G∗

20 (see Definition 2.7) correspond to the
minimum connected components of a truck’s route (refer to Definition 6.1).
However, in order to construct unique truck routes, the connected components
of G∗

20 have to be paths. This property need not apply to every optimum MCFP
solution, as shown in Figure 6.2. At the left a solution, which contains one

a
ba = 1

b
bb = 1

c
bc = −1

d
bd = −1

x∗
ab = 1

x∗
bc = 1

x∗
bd = 1

(a) Positive Costs.

a
ba = −1

b
bb = 1

c
bc = 1

d
bd = −1

x∗
ab = 1

x∗
bc = 1

x∗
bd = 1

x∗
ca = 2

(b) Costs greater or equal to zero.

Figure 6.2: Characteristic of connected components.

connected component that is no path, is depicted. The sequence, in which the
locations corresponding to nodes c and d are visited, is not determined in this
example. Consequently, the number of the in-going and the out-going flow
arcs are limited to one in P20 leading to a variation of the MCFP.

Complexity of Assigning Empty 20-Foot Containers

By Remark 2.20, an optimum integral solution to the MCFP can be computed
in polynomial time. Nevertheless, the variation of the MCFP contains a deci-
sion problem that is proofed to be NP-hard; this means that in contrast to the
assignment problem of empty 40-foot containers the assignment problem of
empty 20-foot containers is NP-hard, regardless of whether or not time win-
dows are considered. The proof of the complexity of P20 follows from the com-
plexity of the Arc Partition Minimum Cost Flow Problem (APMCFP). Eiglsperger
[2003] defines the APMCFP that states a generalization of the MCFP. An in-
stance of the APMCFP differs from an instance of the MCFP in that arcs are
given no capacities. Instead, the arc set is partitioned into so-called devices
D := { d | d ⊆ A }, such that A :=

·
∪d∈D d. Each device is given a capacity

u : D → R+. Moreover, the Capacity Constraints 2.7 of the MCFP are replaced

88 CHAPTER 6. HEURISTIC APPROACH

by the device capacity constraints in the APMCFP:

∀d ∈ D :
∑
e∈d

f(e) ≤ ud (6.17)

Eiglsperger [2003] proofs that computing an optimum integral solution to an
APMCFP instance is NP-hard, even in the case that the maximum number of
arcs in a device is bounded by two and the maximum capacity of devices is
one. In other words, deciding which of two arcs is allowed to get assigned
a flow value greater than zero is NP-hard. Constraints 6.13 and 6.14 ask for
the assignments of flow values to devices { δ+

v | v ∈ V } and { δ−
v | v ∈ V } that

are given a capacity function equal to one. This decision problem includes the
decision problem, asking for the assignment of a flow value greater than zero
to one of two arcs. As a result, it follows that computing an optimum solution
to P20 is NP-hard.

6.1.4 Assignment of Empty and Fully Loaded 20-foot
Containers

If F20 /= ∅ holds true, then connected components that include the pickup and
the delivery tasks of empty and fully loaded 20-foot containers have to be con-
structed. The resulting problem can be formulated as MFP that is known to be
NP-hard (see also Remark 2.22). An integral decision variable x

(p)
ij ∈ {0, 1, 2}

is introduced for each arc (vi, vj) ∈ A20 and each commodity p ∈ [dim]. This
decision variable specifies the number of 20-foot containers moving from loci

to locj not only, but also determines, which type of container is transported,
i.e. x

(1)
ij /= 0 for empty container transportation or x

(p)
ij /= 0, 2 ≤ p ≤ dim

for the transportation of a specific fully loaded container. The goal is to mini-
mize the total amount of container flow by routing all amount of the container
flow of the different commodities obtained by nodes having assigned a posi-
tive balance value in the corresponding dimension to nodes that have assigned
a negative balance value in the corresponding dimension. Therefore, Objective
function 6.9, Constraints 6.13, 6.14 and 6.16 remain the same. Only Constraints
6.10,6.11, 6.12 and 6.15 have to adapted by the following constraint set to con-
sider more than one dimension:

6.1. MODELS FOR CONTAINERS 89

∑
(vi,vj)∈δ+

vi

x
(p)
ij −

∑
(vj ,vi)∈δ−

vi

x
(p)
ji = b

(p)
i ∀vi ∈ V20,∀p ∈ [dim] (6.18)

∑
p∈[dim]

x
(p)
ij ≤ 2 · zij ∀(vi, vj) ∈ A20 (6.19)

zij ≤
∑

p∈[dim]

x
(p)
ij ∀(vi, vj) ∈ A20 (6.20)

x
(p)
ij ∈ {0, 1, 2} ∀(vi, vj) ∈ A20,∀p ∈ [dim] (6.21)

By analogy with the Model 6.9 − 6.16, the connected components (Defi-
nition 6.1) of a truck’s route can be deduced from the connected components
(Definition 2.7) of the MFP graph, in which arcs having assigned a zero flow
value are removed.

Iterations and Diversification

The three different models that compute connected components are invoked
several times within one call of the heuristic approach. However, several calls
of deterministic algorithms do not lead to different solutions. For this reason,
two techniques that diversify the solution space are introduced. The heuristic
approach randomly decides whether or not to use one of the two techniques.

The first technique is particularly effective in contexts in which solutions
are computed to small-sized and middle-sized instances. A tabu list stores
recently visited arcs, i.e. arcs (vi, vj) ∈ A40 ∪ A20 with xij > 0/x

(p)
ij > 0 for

one p ∈ [dim]. Arcs that appear in the tabu list get assigned the length of the
horizon H as cost value in the Objective function 6.5/6.9 for the next executions
of the corresponding model. The penalization of recently visited arcs prevents
the heuristic algorithm from multiple visits of the same solution within the
solution space. If the tabu tenure extends a certain value ξ ∈ N, then arcs are
removed from the tabu list in a FIFO technique.

The second technique is particularly effective if solutions are computed to
large-sized instances. A very recent technique that is included in the ALNS of
Ropke and Pisinger [2006] is to modify the objective function for some itera-
tions; instead of considering actual costs, a random number noise is added to
the objective function. This means that the value disti,j , which denotes the cost
of arc (vi, vj) ∈ A40 ∪A20, changes to d̃isti,j = max{0, disti,j +no} in the Objec-
tive function 6.5/6.9, whereby no ∈ R (the noise) is a randomly chosen number
in the interval [−Nmax, Nmax] with Nmax is set to η ·max(vi,vj)∈A20 disti,j . In the
computation of Nmax, the parameter η controls the amount of noise. In order
to achieve the intensification of the local search in late steps of the heuristic al-
gorithm, the value of η decreases during the search process. The change from

90 CHAPTER 6. HEURISTIC APPROACH

function dist to function d̃ist may assign a zero cost value to some of the arcs.
Optimum solutions to MCFP as well as MFP instances, which contain arcs hav-
ing assigned a zero cost value, may include cycles (refer e.g. to the right of
Figure 6.2). Hence, integral decision variables m and the subtour elimination
constraints of Miller et al. [1960] are added to the Models 6.9 – 6.16 and 6.18 –
6.21 in order to exclude cycles from the solution space:

mi + |V20| · zij −mj ≤ |V20| − 1 ∀(vi, vj) ∈ A20 (6.22)

mi ∈ N ∀vi ∈ V20 (6.23)

6.2 Heuristics for Truck Routes

Up to now, models that combine different pickup and delivery tasks to create
connected components have been introduced; these models indirectly assign
empty containers to cargo transportation requests. In the following, we denote
byW the set of connected components that is computed by these models. The
aim of this section is to develop routing heuristics that assign the set of con-
nected componentsW to truck routes and determine a sequence in which the
connected components are visited during a truck’s route.

6.2.1 Preliminary Considerations

The first question to be addressed is how to define the problem that is to be
solved by the routing heuristics. For k ∈ {20, 40}, Figure 6.3 depicts a repre-
sentation of two connected components w = (l1, . . . , ln), w′ = (lm, . . . , lz) ∈ W
as sequences of pickup and delivery tasks l1, . . . , ln, lm, . . . , lz ∈ Ek ∪ Dk ∪ Fk.
Ideally, we would like to only consider such representations of connected com-

loadli

servw + distw,w′

w

l1 l2 . . . li . . . ln

w′

lm lm+1 . . . lj . . . lz

Figure 6.3: Representation of connected components as multi-task units.

6.2. HEURISTICS FOR TRUCK ROUTES 91

ponents and no longer be aware of different pickup and delivery tasks; this
representation would decrease the size of instances as well as the complexity
of the problem definition considerably. In the following, we explain why it is
not sufficient to only consider connected components.

At first glance, the problem seems to be an amTSPTW: the connected com-
ponents are well-defined and built in such a way that the capacity of trucks
is observed. The subsequent examples show why this is not the case. Figure
6.4 depicts two different connected components w, w′ ∈ W . Both connected

⊕IE

Terminal
→

⊖OF

Customer
⊕OF

Customer
→

⊖OF

Terminal

w w′

loadOF

Figure 6.4: Precedence constraints between transportation requests.

components include tasks of the same OF request: the connected component
w comprises a street-turn from an empty container pickup task of an IE re-
quest to the flexible empty container delivery task taking place at the cus-
tomer’s location of an OF request. The connected component w′ comprises
the subsequent well-defined task of the OF request, i.e. the transportation of
the same container from the customer’s location to the terminal. As the fully
loaded container transportation is allowed to start only after the container has
been loaded, the two connected components have to be synchronized when
constructing routes. The additional requirement of observing precedence con-
straints (i.e. (un-)loading operations) between connected components, which
share tasks of same OF/IF requests, results in a problem that is a generaliza-
tion of the mTSPTWP (see also Section 3.1.2). For the construction of the set of
precedence constraints an auxiliary set AL is defined according to Definition
5.1; the set AL contains ordered pairs (li, lj), such that li is a delivery and lj is
a pickup task of the same OF/IF request taking place at the same customer’s
location, i.e. loci = locj . With the help of set AL, a further set AW

L ⊂ W ×W
can be defined as follows:

AW
L := { (w, w′) ∈ W ×W | (l, l′) ∈ AL : l ∈ w, l′ ∈ w′, w /= w′ } (6.24)

Pairs of connected components (w, w′) ∈ AW
L share a precedence constraint,

i.e. connected component w has to be completed a given amount of time before
connected component w′ is allowed to start. The problem definition in this sec-
tion differs slightly from the definition of the mTSPTWP as we again (refer e.g.
to Constraints 5.26) have to deal with variable precedence times resulting from
the different possibilities for containers to be (un-)loaded; this is explained in
more detail in the following. If the connected components w, w′ ∈ W that are

92 CHAPTER 6. HEURISTIC APPROACH

shown in Figure 6.4 are assigned one after another to the same route of a truck,
then the container is loaded in a stay-with procedure. Since the container re-
mains on the truck while it is loaded in this case, the decoupling operation of
the container from the truck (the last task of w) as well as the coupling opera-
tion of the same container to the truck (the first task of w′) do not have to be
executed. If w and w′ are not assigned one after another to the same route of a
truck, then the corresponding (de-)coupling operations must take place as the
container is loaded in a drop-and-pick procedure. The construction of routes
can lead to omitting durations for (de-)coupling only in case the first and last
delivery and pickup tasks of connected components are contained as a pair in
the set AL. In this case, it is part of the routing heuristics to decide whether
containers are (un-)loaded in a stay-with or a drop-and-pick procedure.

Unfortunately, the consideration of precedence constraints means that we
cannot determine sizes of connected components before the entire set of truck
routes is established; this fact holds true even if no time windows are consid-
ered, which is explained in the following. Figure 6.5 depicts two rows that
represent routes of two different trucks. Six pickup and delivery tasks l1, . . . , l6

are shown by six rectangles, which are displayed in four different colors. These
different colors represent the underlying hinterland requests and depot con-
tainer stowage operations of the mICTP instance. That is, the pickup task l1

displays that one empty container is coupled by the first truck at the depot.
In addition to the container stowage operation, the mICTP instance contains
three different hinterland requests: two OE requests introduce two empty con-
tainer delivery tasks l2, l3; one IF request introduces two fully loaded container
pickup and delivery tasks l4, l5 and one empty container pickup task l6. The
tasks of the IF request are divided by precedence constraints, i.e. (l5, l6) ∈ AL.
Each pickup and delivery task is given a time window represented by the ap-
propriated colored brackets in the row below the rectangle1. The tasks are as-
sembled to connected components w1 = (l1, l2, l6, l3), w2 = (l4, l5) ∈ W that are
depicted by dashed lined rectangles; the route of each truck includes exactly
one connected component and it holds (w2, w1) ∈ AW

L . While the duration of
connected component w2 is as short as possible (tasks l4 and l5 are allowed to
start immediately one after another), this does not apply to the duration of w1,
which includes some waiting time between l2 and l6. The delayed duration is
achieved as l6 is not allowed to start earlier because of the precedence time that
has to be uphold between l5 and l6. Additionally, l2 is not allowed to start later

1Be aware that by assumption the second visit of a customer is allowed to start at any point
in time within the time horizon. This the reason for the time window of l6 being larger than the
time window of l5, even though both tasks take place at the same location. The time window of l1

represents the depot; this means that the time horizon reaches from zero to twelve.

6.2. HEURISTICS FOR TRUCK ROUTES 93

[][][][]

[] []

0 1253 7 10

0 2 3 6

Truck 1

Truck 2 []
Time Window

l1 l2 l6 l3

l4 l5

Figure 6.5: Varying durations of connected components.

because of its time window. This means that the duration of w1 is dependent
of the assignment of w2 to a truck’s route.

All in all, routing heuristics have to assign and sequence set W to the set
of trucks T . Each truck has to start and end its route at the depot d within the
time horizon H ; precedence constraints between the connected components,
time windows of the different tasks and variable durations of the connected
components have to be observed. The obtained problem belongs to the class of
VRPMS; the interdependence of routes (refer to Definition 3.6) requires a fast
method to check the feasibility of solutions.

6.2.2 Construction of Routes

Because of the considerations of the former section, the routing heuristics have
to deal with a hybrid instance consisting of connected components on the one
hand and pickup and delivery tasks on the other hand. Altogether, three dif-
ferent routing heuristics that are particularly introduced in Sections 6.3.1 and
6.3.2 are developed; all routing heuristics have a basic structure in common:

INSERTION HEURISTIC APPROACH

Input: A set of connected componentsW and a set of trucks T .
Output: A set of feasible routesR.

1. R ← ∅
2. whileW /= ∅ do
3. tbest ← ∅, cost←∞, w ← choose(W)
4. for all t ∈ T do

94 CHAPTER 6. HEURISTIC APPROACH

5. if gap(R, t) < estimated_duration(w) then
6. goto 4
7. for all position(R, t) ∈ t do
8. if not(feasible(position(R, t), w, T)) then
9. goto 7

10. if cost > cost(position(R, t), w,R, t) then
11. cost← cost(position(R, t), w,R, t)
12. tbest ← t

13. if tbest /= ∅ then
14. R ←insert_best_position(R, tbest, w)
15. W ←W \ {w}
16. else
17. . . . {proceed as explained in Sections 6.3.1 and 6.3.2}
18. return R

The different routing heuristics iteratively choose elements that are con-
tained inW (line 2) and try to insert the chosen element w in the best feasible
position for insertion in a truck’s route, whereby a set of evaluators that is in-
troduced in Section 6.2.5 determines the quality of insertion positions. In this
step, all positions (line 7) of all trucks (line 4) are considered. Lines 10 – 12
temporary store the best known insertion position and its cost. Lines 13 – 15
insert element w into the best known insertion position, in case a feasible in-
sertion is possible. For a faster computation of solutions, line 5 considers an
estimation of the duration of connected component w that is explained later by
Formula 6.28; the estimated duration is compared with the difference between
the time horizon H and the sum of durations of all connected components that
are assigned to the currently tested route, i.e. the gap of the truck’s route. If the
estimated duration is larger than this gap, then the current iteration (truck) can
be skipped for the search of an insertion position to w.

6.2.3 Feasibility Check

This section describes the feasibility check that is invoked in line 8 of the INSER-
TION HEURISTIC APPROACH. To check the feasibility of a currently made in-
sertion or even an entire solution, all different pickup and delivery tasks (those
tasks that are inserted into routes and those tasks that are not inserted into
routes yet) are considered. The points of start ti of the tasks li, the time horizon
start ts and the time horizon end te are used in order to match the different
tasks in temporal relation. A distance graph is built out of the currently known
constraints for the different points of start. Altogether four types of constraints
can be distinguished at this point:

6.2. HEURISTICS FOR TRUCK ROUTES 95

1. The earliest starting time of a pickup/delivery task li, i.e. the maximum
of the time window start of li and the sum of the time window start of
the depot d and the driving duration from d to li:

ts + max{start
i

, start
d

+ dist
d,i
} ≤ ti

2. The latest ending time of a pickup/delivery task li, i.e. the minimum
from the time window end of li and the difference between the time win-
dow end of d (the horizon H) and the duration of li and the driving du-
ration from li to d:

ti + min{end
i

, end
d
−(dist

i,d
+ serv

i
)} ≤ te

3. The precedence time2 that has to take place between two different pickup
and delivery tasks (li, lj) ∈ AL:

ti + load
i
≤ tj

4. The duration that has to take place between different pickup and delivery
tasks li, lj that are assigned one after another either to the same connected
component or to the same route of a truck:

ti + dist
i,j

+ serv
i
≤ tj

Each constraint is presented by an equation of type x + a ≤ y, with x, y ∈ R
are decision variables and a ∈ R is a constant. Dechter et al. [1991], Funke et al.
[2016], Goel and Meisel [2013], Moffitt and Pollack [2006], Shostak [1981] show
how these types of constraints can be easily transformed to a distance graph
G = (V, A). Each decision variable ti, ts, te introduces a node to the node set
V . This means that the starting times of the depot are duplicated as they serve
as the points of origin ts and destination te of a truck’s route; the remaining
nodes are the representatives of the starting times ti of the different pickup
and delivery tasks. Each constraint x + a ≤ y introduces an arc (vy, vx) with
cost −a to the arc set A, whereby vx, vy ∈ V denote the representative nodes of
decision variables x, y. This step reverses the original order of the constraint’s
variables and negates the constant. The resulting graph G can be used to check
the feasibility of a solution in polynomial time.

2For pickup and delivery tasks, which are assigned to truck routes or connected components, it
is clear, whether (un-)loading operations take place in a stay-with or a drop-and-pick procedure;
hence, this constraint can also consider the additional decoupling time that is needed by drop-and-
pick procedure.

96 CHAPTER 6. HEURISTIC APPROACH

t1

t4

t3

t2

te ts

− min{endd −(dist1,d + serv1), end1} − max{startd + distd,1, start1}

− load4

Figure 6.6: Distance graph (Funke and Kopfer [2015]).

By this definition, the absolute value of the length of a directed shortest
path from te to ts gives a lower bound on the operating time of a truck. If this
value exceeds the time horizon, then the feasibility check fails. If the graph
contains a negative directed cycle, then the feasibility check also fails since the
existence of a negative directed cycle implies that there are constraints con-
flicting each other (Shostak [1981]). The feasibility check can be computed in
polynomial time by solving the APSP in graph G (refer e.g. to Remark 2.26).
As all arcs have assigned negative costs, the feasibility check can be imple-
mented in O(|V |2) (refer e.g. to Funke et al. [2016] for a proof). However,
the present implementation of the feasibility check uses the algorithm of Floyd
[1962], Warshall [1962] and therefore solves the APSP inO(|V |3) time. The rea-
son for choosing the algorithm of Floyd [1962], Warshall [1962] is that this algo-
rithm constructs a distance matrix. Dechter et al. [1991] show how to extract a
schedule for the pickup and delivery tasks from the rows of a distance matrix.
Figure 6.6 depicts an example of a distance graph containing four pickup and
delivery tasks l1, l2, l3, l4 with (l4, l3) ∈ AL. For the sake of clarity, not all costs
are written to arcs.

6.2.4 Estimations of Time Windows and Durations

The estimations of the connected components’ time windows and durations
remain to be investigated. The estimations of the connected components’ du-
rations are for example needed by line 5 of the INSERTION HEURISTIC AP-
PROACH. The pairs of delivery and pickup tasks (li, lj) that are contained in
the set AL once again require a special treatment. On the one hand, the asso-
ciated (de-)coupling operations do not need to be implemented when li and
lj are allocated directly after each other in a connected component, since in

6.2. HEURISTICS FOR TRUCK ROUTES 97

this case the container is (un-)loaded in a stay-with procedure. On the other
hand, the duration of a connected component increases by the duration of the
(un-)loading operation that has to take place between the starting times of li

and lj , if both tasks are included in the same connected component - no matter
whether li and lj are proceeded immediately one after another (stay-with pro-
cedure) or other tasks are proceeded in between (drop-and-pick procedure).
However, the decision about what loading procedure is to be applied is made
by the functions that assign containers to flexible tasks in advance.

In the following, the formulas for time windows and durations that are
introduced by Zhang et al. [2010] are extended by the consideration of con-
nected components comprising of more than two tasks and the precedences
between the pairs of delivery and pickup tasks that are contained in the set
AL. For two delivery and pickup tasks li, lj with (li, lj) ∈ AL, let p(j) := li

denote the predecessor of lj and let s(i) := lj denote the successor of li. Let
p(i)/s(i) = ∅, if li has no predecessor/successor. In order to include the choice
of (un-)loading procedures that is taken by the routing heuristics in the display
of the formulas, for each pair (li, lj) ∈ AL a decision variable δli,lj

∈ {0, 1} is
introduced. The value of δli,lj

is set to one, if and only if li and lj are allocated
directly after each other in a truck’s route. We set s̃tart1 := start1, ẽnd1 :=
end1, s̃erv1 := (1− δp(l1),l1) · serv1 + dist1,2 and distn,n+1 := 0 and recursively
define for i ∈ {2, . . . , n}:

s̃tarti := min{max{s̃tarti−1, start
i
−s̃ervi−1}, ẽndi−1} (6.25)

ẽndi := min{ẽndi−1, end
i
−s̃ervi−1} (6.26)

p̃reci :=
{

loadj +s̃ervj−1 − distj,j+1, if (lj , li) ∈ AL, 1 ≤ j < i

0, otherwise
(6.27)

s̃ervi := max{start
i
−ẽndi−1, s̃ervi−1, p̃reci}

+ dist
i,i+1

+(1−max{δp(li),li
, δli,s(li)}) · serv

i

(6.28)

Having defined these formulas, then servw := s̃ervn is chosen for the estima-
tion of the duration and [startw, endw] := [s̃tartn, ẽndn] is chosen for the esti-
mation of the time window of connected component w. In addition, for two
elements w, w′ ∈ W ∪ {d} the function distw,w′ is needed by the subsequent
sections. Let the placeholder "-" represent an element of W ∪ {d}; if w is the
depot (w = d), then the function distw,− / dist−,w defines the distance from/to
the depot. If w is a connected component (w := (l1, . . . , ln) ∈ W), then the
function distw,− / dist−,w is equal to distn,− / dist−,1.

98 CHAPTER 6. HEURISTIC APPROACH

6.2.5 Evaluators

Lines 10 – 12 and 14 of the INSERTION HEURISTIC APPROACH relate to the
"best" feasible position for insertion of a connected component w into a route of
a truck t. All in all, four different evaluators for the measurement of the quality
of a solution are developed. Each call of the INSERTION HEURISTIC APPROACH

arbitrarily selects one of the different evaluators. Let w−/w+ ∈ W∪{d} denotes
the predecessor/successor of the currently considered position in the route of
truck t and let [startd, endd] := [0, H] and servd := 0. We define the evaluators
by considering the former introduced Formulas 6.25, 6.26 and 6.28:

• If the evaluator e1 is chosen, then:

cost(position(R, t), w,R, t) := wait
w−,w

+ wait
w,w+

− wait
w−,w+

whereby for two elements w, w′ ∈ W ∪ {d} the value waitw,w′ is defined
according to waitw,w′ := max{0, endw′ − startw − servw −distw,w′}.

• If the evaluator e2 is chosen, then:

cost(position(R, t), w,R, t) := dist
w−,w

+ dist
w,w+

− dist
w−,w+

Evaluator e3/e4 diversifies the solution space by considering the maximum of
zero and the sum of the objective of e1/e2 and the randomly chosen value noise
no ∈ R (Ropke and Pisinger [2006], refer to Section 6.1.4).

6.3 Large Neighborhood Search

We follow the notations of Pisinger and Ropke [2010] to describe the entire
heuristic approach. Functions including the term "containers" are based on the
considerations of Section 6.1, while functions including the term "route" are
based on the considerations of Section 6.2.

LARGE NEIGHBORHOOD SEARCH

Input: A problem instance I.
Output: A feasible solution S of I.

1. S ← assign_containers_only_empty(I,S)
2. S ← route_subset_less_trucks(I,S)
3. S∗ ← S, T ← T0

4. repeat
5. S ′ ← S
6. if S ′ uses more trucks than specified then

6.3. LARGE NEIGHBORHOOD SEARCH 99

7. S ′ ← improve_routes(S ′, T)
8. select destroy method δ ∈ {ω1, ω2, ω3},

φ ∈ {rand, time, truck, worst_travel, worst_wait}
9. S ′ ← remove_subset(I,S ′, φ)

10. if δ = ω2 then
11. S ′ ← undo_container_assignment_only_empty(I,S ′)
12. S ′ ← assign_containers_only_empty(I,S ′)
13. if δ = ω3 then
14. S ′ ← undo_container_assignment_full_and_empty(I,S ′)
15. S ′ ← assign_containers_full_and_empty(I,S ′)
16. select repair method ρ ∈ {best_insertion, greedy, regret}
17. if ρ = best_insertion then
18. S ′ ← route_subset_best_insertion(I,S ′)
19. if ρ = greedy then
20. S ′ ← route_subset_greedy(I,S ′)
21. if ρ = regret then
22. S ′ ← route_subset_regret(I,S ′)
23. Accept S ′ with probability p(T,S ′,S)
24. if cost(S) < cost(S∗) then
25. S∗ ← S
26. S ′ ← improve_routes(S, T)
27. T ← Tnew

28. until Stop criterion is met
29. return S∗.

An initial solution is built in lines 1 - 2 (refer to Section 6.3.1). Lines 4 - 28
try to improve the initial solution (refer to Section 6.3.2): three different destroy
neighborhoods ω1, ω2, ω3 are invoked together with five different parameters
rand, time, truck, worst_travel, worst_wait (lines 8 – 15) and three different re-
pair neighborhoods best_insertion, greedy, regret (16 – 22) add diversification
to the heuristic approach. The function IMPROVE_ROUTES in lines 7 and 26
tries to improve truck routes without changing the current container assign-
ment. The current solution is updated using SA in lines 3, 23 – 24 and 27 (refer
to Section 6.3.3).

6.3.1 Construction of the Initial Solution

Up to now, the basic framework of the heuristic approach has been presented.
This and the next section show how the constructive method and the subse-
quent local search operate in detail. The constructive method consists of two
steps: first step involves the methods that are described in Section 6.1, line

100 CHAPTER 6. HEURISTIC APPROACH

1 constructs connected components by combining pickup and delivery tasks,
second step involves the methods that are described in Section 6.2, line 2 as-
signs and sequences connected components onto truck routes by using a hier-
archical objective, in which minimizing the number of used trucks is preferred
to minimizing the total travel distance of trucks.

Assignment of Containers

In comparison to the local search algorithm, which only improves parts of an
already existing solution, the constructive algorithm has to find a solution to
an entire instance of the mICTP. Since exact approaches generate connected
components, for a faster computation of an initial solution the instance is sim-
plified. This means that the solution space of initial solutions is restricted to
only contain the pickup and delivery tasks of empty containers, i.e. Fk is set
equal to the empty set and the two Models 6.5 − 6.8 and 6.9 − 6.23 construct
assignments of empty containers only. That is, the pickup and delivery tasks of
fully loaded containers are excluded from the container assignment process of
the constructive method. This simplification can be made as the transportation
of fully loaded containers from their points of origin to their points of destina-
tion already constitutes a well-defined task. The constructive method’s output
W (the set of connected components) includes a set of connected components
comprising the pickup and delivery tasks of empty containers that is joined
with the set WF ; set WF denotes the set of connected components in which
each fully loaded container transportation represents its own connected com-
ponent (refer e.g. to the solid lined rectangles in Figure 6.1):

WF :=
⋃

r∈OFk ∪ IFk,k∈{20,40}

(⊕r,⊖r) (6.29)

As a consequence, the initial solution contains the direct movements of fully
loaded containers between terminals and customers’ locations or vice versa,
only. Since trucks are able to simultaneously transport fully loaded and empty
20-foot containers, this simplification constitutes a restriction for the trans-
portation of 20-foot containers, i.e. the blue, zigzag arcs in Figure 5.2 that form
a special characteristic of the mICTP are banned from the solution space of the
constructive method. As a result, it is a task of the local search algorithm to
add the full variety of the different combination possibilities for empty and
fully loaded 20-foot container transportation to the solution building process.

Insertion Heuristic Method

The function ROUTE_SUBSET_LESS_TRUCKS (line 2) is an adaption of an ap-
proach presented by Braekers et al. [2013], Jula et al. [2005]. At the beginning,

6.3. LARGE NEIGHBORHOOD SEARCH 101

the approach computes a lower bound on the number of trucks that is sufficient
to serve the setW of connected components (the construction of lower bounds
is the topic of the next section). For the lower bound on the number of trucks, a
routing heuristic approach is invoked χ ∈ N times leading to the computation
of χ different solutions. Afterwards, the number of trucks is incremented by
one and the routing heuristic approach is invoked χ times again. The entire
process is iterated until the number of trucks reaches the value |T |. At the end,
the initial solution is set to the best solution that has been computed by this
approach.

The outline of the routing heuristic approach is given in Section 6.2.2. Line
3 of the INSERTION HEURISTIC APPROACH is instructed to choose one of the k

best rated connected components w ∈ W . The rating of a connected component
is a lexicographic minimization of the following assets:

1. Connected components w sharing precedences with other connected com-
ponents are preferred to others whenever all connected components w′

with (w′, w) ∈ AW
L are served by trucks.

2. Connected components that are set to be critical are preferred to others.

3. Component w is preferred to w′ when servw > servw′ (Formula 6.28).

4. Component w is preferred to w′ when startw < startw′ (Formula 6.25).

5. Component w is preferred to w′ when endw < endw′ (Formula 6.26).

If connected component w cannot be inserted into any of the routes in line 17
of the INSERTION HEURISTIC APPROACH, then an additional truck is added
to T and w is tried to be inserted into the route of the new truck. If again w

cannot be inserted into the route of the new truck, then the currently computed
solution is rejected and w is set to be critical. Afterwards, the routing heuris-
tic approach starts from scratch again. If the routing heuristic approach fails
to compute routes containing all connected components for several iterations,
then the function ASSIGN_CONTAINERS_ONLY_EMPTY is invoked in a tabu or
noise-technique in order to compute a new set of connected components. A
consequence of adding new trucks to T is that the initial solution might contain
more than |T | routes. Consequently, the objective, i.e. the cost value cost(S) of
a solution S in line 24 of the LNS, is as long multi-critical as the number of
used trucks exceeds the number of specified trucks |T |; the lexicographic order
prefers minimizing the number of trucks to the actual objective that minimizes
the total travel distance of trucks.

102 CHAPTER 6. HEURISTIC APPROACH

Computation of Lower Bounds on the Number of Trucks

The lower bound on the number of trucks is set to the maximum of the values
lb1, lb2 that are constructed in dependency to the current container assignment
that is stored in setW . The value lb1 is the result of the division of the connected
components’ total estimated duration (Formula 6.28) by the time horizon:

serv
W

:=
∑

w∈W
(serv

w
+

minw′∈W∪{d}{distw′,w}+ minw′∈W∪{d}{distw,w′}
2) (6.30)

lb1 := servW

H
(6.31)

The lower bound lb1 is particularly effective for instances without time win-
dows. Mitrović-Minić and Krishnamurti [2006] show that computing the mini-
mum number of directed paths, which cover all nodes (in the following briefly
called Minimum Cover of Nodes by Directed Paths (MCNDP)) in an admissible
graph (i.e. a connected components’ starting time precedence graph), gives a
lower bound on the number of trucks of instances containing time windows.
Value lb2 is computed by this combinatoric approach. Therefore, an admissi-
ble graph G = (V, A) is defined: each connected component induces one node
in V ; an arc is introduced into A whenever two connected components can be
carried out one after another regarding the time windows:

V := { vw |w ∈ W } ,

A :=
{

(vw, vx) ∈ V × V

⏐⏐⏐⏐ ′
start

w
+ dist

w,x
+ serv

w
≤

′
end

x

} (6.32)

In this formula servw describes the estimated duration (Formula 6.28) of con-
nected components w, x ∈ W that are represented by nodes vw, vx ∈ V . The
values of start′

w, end′
x derive from the estimations of the starting and ending

time of w, x (Formulas 6.25, 6.26) by additional including the depot that serves
as the point of origin and destination of truck routes. This means that the start
start′

w of connected component w is set to max{startw, startd + distd,w} and the
end end′

x of connected component x is set to min{endx, endd−(distx,d + servx)}.
Mitrović-Minić and Krishnamurti [2006] obtain a polynomial time algo-

rithm for the construction of a lower bound from the proof of equivalence of
Dilworth’s theorem (refer to Theorem 2.31) and the theorem of König [1931]
(refer to Theorem 2.14). The theorem of Dilworth stems from the field of order
theory and considers posets (i.e. finite sets R together with a relation ≤ that
is reflexive, antisymmetric and transitive, see also Definition 2.30). If a graph
is acyclic and transitive, then a poset (R,≤) on a digraph G̃ = (Ṽ , Ã) can be
defined by associating the set R with the set of nodes Ṽ and applying the re-
lation v ≤ w to two elements v, w ∈ R when (v, w) ∈ Ã. The transitivity of G̃

6.3. LARGE NEIGHBORHOOD SEARCH 103

induces the transitivity of (R,≤) and since G̃ is acyclic, (R,≤) is antisymmet-
ric. In order to apply the theorem of Dilworth, it is necessary in a first step to
transform the admissible graph G into an acyclic transitive graph G̃ = (Ṽ , Ã)
(refer to Definitions 2.6 and 2.10). Mitrović-Minić and Krishnamurti [2006] con-
sider the transitive closure (refer to Definition 2.10) of the condensation (refer
to Definition 2.8) G̃ of G instead of G. By definition, the transitive closure of a
graph is a transitive graph and the condensation of a graph is an acyclic graph;
both graphs can be computed in polynomial time3 (refer to Remark 2.9 and
Observation 2.27).

We are now able to apply the theorem of Dilworth to G̃. That is, the min-
imum number of chains into which (R,≤) can be partitioned is equal to the
MCNDP in G̃, i.e. the minimum partition into chains gives a lower bound lb2

on the number of trucks. The deduction of the theorem of Dilworth from the
theorem of König shows a polynomial time transformation of G̃ into a bipar-
tite graph G̃′ (refer to Definition 2.11). The MCNDP in G̃ can be derived from a
maximum bipartite matching in G̃′ = (Ṽ ′, Ã′). By Remark 2.18, the maximum
bipartite matching problem can be solved in polynomial time. In order to pro-
vide the construction of G̃′ that is also used by the present implementation, the
deduction of Dilworth’s theorem from König’s theorem is stated:

Theorem 6.2 (Fulkerson [1956]). König’s theorem proves the theorem of Dilworth.

Proof. We follow the proof that is shown in the book of Jacobs and Jungnickel
[2004] and start with some notations that are needed to simplify the proof. For
a graph G, let ν(G) denote the maximum cardinality of a matching in G and let
τ(G) denote the minimum cardinality of a vertex cover in G (refer to Definition
2.12). For a poset (R,≤), let α(R,≤) denote the maximum size of an antichain
in (R,≤) and let ∆(R,≤) denote the minimum number of chains into which
(R,≤) can be partitioned.

Let (R,≤) be a poset and let n denote the cardinality of R. As an antichain
contains at most one element of a chain, it holds

α(R,≤) ≤ ∆(R,≤)

To proof the opposite direction, a partition of (R,≤) into n − ν(G) chains is
constructed at first. Therefore a bipartite graph G = (X

·
∪ Y, A) is defined.

Each element r ∈ R induces two copies xr, yr into the two bipartitions xr ∈ X

and yr ∈ Y . An arc is added to A when r < r′ holds for r, r′ ∈ R, i.e.:

A := { (xr, yr′) | r, r′ ∈ R, r < r′ }
3 Mitrović-Minić and Krishnamurti [2006] state that the transitive closure can be computed in

O(|V c| · |Ac|). However, as lower bounds are computed only once within the heuristic approach,
in the present implementation the transitive closure is computed by the algorithm of Floyd [1962],
Warshall [1962] that is also used by the feasibility check (refer to Section 6.2.3).

104 CHAPTER 6. HEURISTIC APPROACH

Let M =
{

(xi
r, yi

r′)
⏐⏐ i ∈ [ν(G)], r, r′ ∈ R

}
denote a maximum matching in G.

Matching M is used for the construction of a partition C into chains in (R,≤).
Since M is a matching, the elements xi

r, i ∈ [ν(G)], r ∈ R/the elements yi
r′ , i ∈

[ν(G)], r′ ∈ R are pairwise disjoint. However, it is possible that M contains
nodes corresponding to the copies of the same element r ∈ R on both sides of
the bipartition, i.e. xi

r, yj
r are both contained in M for some i, j ∈ [ν(G)], r ∈ R.

By uniting all pairs of chains xi
r < yi

r′ and xj
r′′ < yj

r with xi
r and yj

r are the
copies of the same element r ∈ R, a number p ≤ ν(G) of distinct chains is
obtained. Let ci denote the size of chain i ∈ [p]. It holds ν(G) =

∑p
i=1(ci −

1). The remaining n − (c1 + . . . + cp) elements of R are grouped into trivial
chains that consist of one element. The chains that are constructed from the
matching together with the trivial chains form a partition into chains of (R,≤)
that contains n− (c1 + . . . + cp) + p = n− ν(G)

König
= n− τ(G) elements. Let V C

denote a vertex cover in G. Vertex cover V C induces a set W ⊆ R (|W | ≤ τ(G))
that contains at least one element of each chain r < r′, with r, r′ ∈ R. This
means that the complement R \W forms an antichain in (R,≤), which proves
the opposite direction:

α(R,≤) ≥ n− |W | ≥ n− τ(G) ≥ ∆(R,≤)

The former proof states a construction of a transformation of G̃ into a bipar-
tite graph G̃′ = (Ṽ × Ṽ , Ẽ), with Ẽ :=

{
{vw, vx}

⏐⏐⏐ (vw, vx) ∈ Ã
}

that is also im-
plemented in the present heuristic approach. Afterwards, the Maximum Flow
algorithm of Ford and Fulkerson [1962] that computes inO(|Ṽ ′× Ṽ ′| · |Ẽ′|) op-
timum solutions is implemented to obtain a maximum matching in G̃′. Analo-
gous to the former proof, the MCNDP in G̃ can be deduced from a maximum
matching in G̃′ by uniting the pairs of the arcs of the matching that both corre-
spond to the copies of the same element in Ṽ and inserting trivial paths for the
elements of Ṽ that are not covered by any of the arcs of the matching.

6.3.2 Improvement of the Initial Solution

Up until now, an initial solution has been created. A local search algorithm
tries to improve this initial solution. The individual steps of the local search
algorithm proceed as follows. There are developed a variety of operators to
choose a set of connected components from the initial solution. The chosen
connected components are removed from the routes of the initial solution. Af-
terwards, one of many different operators inserts the connected components
into newly computed positions. In this steps, the destroy as well as the repair

6.3. LARGE NEIGHBORHOOD SEARCH 105

operators randomly choose one from the different evaluators that are defined
in Section 6.2.5 in order to evaluate costs for removal and insertion.

Removal Heuristics

Line 8 of the LNS selects one of three different destroy methods ω1, ω2, ω3; each
local search operator obtains one of five parameters rand, worst_travel, truck,

worst_wait, time leading to twelve different strategies for the removal of con-
nected components.

Let denote by U ⊆ W the set of connected components that is being re-
moved from truck routes. Five different parameters determine the choice of U .
Within the LNS, the parameters are randomly selected in line 8.

• If the parameter rand is chosen, then the connected components of the
setW are randomly chosen and added to U . The parameter rand tries to
explore different areas of the solution space, while the other parameters
try to identify and remove mistakes that were made by former iterations.

• If the parameter worst_travel (Ropke and Pisinger [2006]) is chosen, then
the connected components that result in the largest savings are inserted
into U . In this context, the saving of a connected component is defined as
the difference between the total travel distance of trucks with and with-
out the connected component being inserted into its current position. The
parameter worst_travel directly influences the actual objective.

• If the parameter worst_wait is chosen, then the connected components
that cause the largest waiting times are inserted into U , whereby the wait-
ing time between two connected components is defined analogously to
the saving, but taking finishing time and starting time instead of travel
distances into account. The parameter worst_wait tries to shrink the num-
ber of used trucks by reducing the trucks’ operating times.

• If the parameter truck is chosen, then a set of least occupied (i.e. the
smallest number of served connected components) trucks is selected; con-
nected components that are served by the selected trucks are inserted into
U . The parameter truck tries to reduce the number of used trucks.

• The parameter time is invoked together with a reference time (i.e. the
current starting time of a randomly chosen connected component). The
connected components with minimum deviation between their starting
times and the reference time are inserted into U . The parameter time se-
lects components having assigned similar starting times within the cur-
rent solution; the aim of this parameter is to compute a set of connected

106 CHAPTER 6. HEURISTIC APPROACH

components U that can easily exchange insertion positions, even though
it is connected by a lot of constraints resulting from precedences.

After the set U has been formed, one of three neighborhoods ω1, ω2, ω3 is
randomly selected in order to specify the degree of removal. Each neighbor-
hood removes the set U from the routes of the current solution. The neighbor-
hood ω2 additionally invokes the function UNDO_CONTAINER_ASSIGNMENT-
ONLY_EMPTY in line 11 of the LNS; this function defines that all connected
components w = (l1, . . . , ln) ∈ U that comprise only pickup and delivery tasks
of empty containers, i.e. l1, . . . , ln ∈ Dk∪Ek, k ∈ {20, 40}, disperse. If the neigh-
borhood ω3 is selected, then the function UNDO_CONTAINER_ASSIGNMENT-
FULL_AND_EMPTY in line 14 is invoked instead; this function defines all con-
nected components breaking up in their individual pickup and delivery tasks.

Insertion Heuristics

Line 16 of the LNS selects one of three insertion heuristics best_insertion, greedy,

regret in order to reinsert U into truck routes again. However, in case one of
the neighborhoods ω2 and ω3 has been invoked by the previous step, a new set
of connected components has to be computed for all pickup and delivery tasks
that are no longer contained in any connected component. The linear and inte-
gral programming techniques that are introduced in Section 6.1 are applied to
construct connected components. In contrast to the constructive method that
generates connected components comprising the entire set of the mICTP in-
stance’s pickup and delivery tasks, this step only affects the unassigned pickup
and delivery tasks contained in U . After the execution of neighborhood ω2,
the function ASSIGN_CONTAINERS_ONLY_EMPTY in line 12 of the LNS solves
Model 6.5−6.8 for empty 40-foot container assignment and Model 6.9−6.23 for
empty 20-foot container assignment, thereby it randomly choses, if the models
are invoked normally or in a noise or a tabu technique (refer to Section 6.1.4).
After the execution of neighborhood ω2, the function ASSIGN_CONTAINERS-
FULL_AND_EMPTY solves Model 6.5 − 6.8 for empty 40-foot container assign-
ment and Model 6.9 – 6.16 together with the adapted Constraints 6.18 – 6.21
for empty and fully loaded 20-foot container assignment. This step for the
first time computes connected components comprising the pickup and deliv-
ery tasks of empty and fully loaded 20-foot containers (fully loaded container
transportation is not considered by the constructive method)4. After the con-
struction of new connected components, the feasibility is tested (Section 6.2.3).

4 In the case of 40-foot containers (FTL problem) pickup and delivery tasks are still separately
assigned, as this proceeding causes no restriction of the solution quality (Section 3.2).

6.3. LARGE NEIGHBORHOOD SEARCH 107

If the feasibility check fails, then the current removal is reverted and a new
iteration is initiated, i.e. the LNS proceeds from line 4.

If the feasibility check succeeds (neighborhoods ω2, ω3) or neighborhood ω1

is invoked, then a set of connected components has to be inserted into the truck
routes of the current solution. One of three different neighborhoods (routing
heuristics) best_insertion, greedy, regret is randomly selected. While the neigh-
borhood best_insertion is an adaptation of the best insertion method (Braekers
et al. [2013], Jula et al. [2005]) that is also used by the constructive algorithm
(refer to Section 6.3.1), the neighborhoods greedy and regret are also included
in the ALNS of Ropke and Pisinger [2006]. Again, the outline of the routing
heuristics is given in Section 6.2.2; the different routing heuristics differ pri-
marily in the order, in which the connected components are chosen in line 3 of
the INSERTION HEURISTIC APPROACH:

• The neighborhood best_insertion randomly choses one of the k best rated
connected components regarding the rating that is shown in Section 6.3.1.

• The neighborhood greedy choses the connected component that causes
the least cost for insertion, i.e. the costs of all feasible insertion positions
of all unassigned connected components have to be computed and com-
pared.

• The neighborhood regret (also known as Vogel’s Approximation Method,
Reinfeld and Vogel [1958]) choses the connected component that obtains
the maximum value of the difference between the costs of its best and its
second best feasible insertion position, i.e. again the costs of all feasible
insertion positions of all unassigned connected components have to be
computed and compared. This neighborhood incorporates a look-ahead
information into the heuristic approach.

If in any iteration a connected component is identified for which no feasible
insertion position exists, then the current solution is rejected and a new itera-
tion is initiated using the last known feasible solution, i.e. the LNS proceeds
from line 4.

Improvement of Routes

The function IMPROVE_ROUTES (lines 7 and 26 of the LNS) uses a technique
that is already known from the constructive algorithm (refer to Section 6.3.1).
The routes are tried to be improved for a maximum of χ ∈ N iterations without
changing the current container assignment, i.e. a large number of connected
components is removed by destroy method ω1 that obtains one of five param-
eters rand, time, truck, worst_travel, worst_wait. In each iteration, one of three

108 CHAPTER 6. HEURISTIC APPROACH

routing heuristics best_insertion, greedy, regret is randomly chosen for the in-
sertion of removed connected components. This process leads to the computa-
tion of χ different solutions; the solutions are updated in a SA technique that
is explained in Section 6.3.3. The routes are tried to be improved at the begin-
ning and the end of every iteration of the heuristic approach for the following
reasons. Whenever the current solution contains more trucks than specified by
the instance (|T |), the function IMPROVE_ROUTES is invoked at the beginning
of an iteration in line 7 of the LNS; the number of trucks is tried to be mini-
mized by only allowing the parameter truck and evaluators e1, e3. Calling the
function IMPROVE_ROUTES at the end of an iteration in line 26 of the LNS offers
the possibility to diversify the solution space; different routing heuristics con-
struct routes out of the high-quality container assignments that are computed
by exact approaches.

Phases

The local search algorithm is divided into different phases that are controlled
by four parameters θ1, θ2, θ3, θ4 ∈ N. The parameter θ1 determines the number
of different phases. Let σ ∈ N denote the maximum number of iterations, i.e. if
the local search algorithm reaches σ iterations, then the stop criterion (line 28 of
the LNS) is met. One phase of the local search algorithm is defined to contain
⌊ σ

θ1
⌋ iterations (remaining iterations are contained in the last phase). The value

of the parameter η that controls the amount of noise, the number of connected
components that are removed by removal heuristics and the number of trucks
that are removed by parameter truck are decreased whenever a new phase is
reached. Moreover, the tabu list that stores the arcs of the AP, MCFP and MFP
graphs G20, G40 is emptied. The different phases are introduced in order to
intensify the search process. The parameters are changed according to the just
mentioned proceeding for all but the last θ2 phases. In the last θ2 phases the
algorithm is adjusted to search globally for solutions in the solution space, i.e.
compared to the former phases, the number of connected components that are
removed by removal heuristics and the number of trucks that are removed by
parameter truck are increased in the last θ2 phases.

Parameters θ3 and θ4 define a further stop criterion (line 28 of the LNS). If
the local search algorithm has not been able to compute a better solution within
the previous θ3 iterations, then the number of connected components that are
removed by removal heuristics and the number of trucks that are removed by
parameter truck are increased. If the local search algorithm has not been able
to compute a better solution within the previous θ3 iterations for θ4 times, then

6.4. IMPLEMENTATION DETAILS 109

it is aborted independently from the maximum number of iterations σ and the
best known solution is returned.

6.3.3 Simulated Annealing

Within the local search algorithm current solutions are updated in a SA tech-
nique (refer to Section 2.2.3). In line 3 of the LNS some starting temperature
T ∈ R is initialized. Let S denote the current solution and let S ′ denote the
solution that has been recently computed by an iteration of the local search al-
gorithm. For a solution S the value cost(S) is set to the total travel distance of
trucks. If the term exp(− cost(S′)−cost(S)

T) obtains a larger value than a randomly
chosen number r ∈]0, 1[, then solution S ′ replaces solution S. In each iteration
of the local search algorithm the value of T is decreased by some factor that is
determined in Section 7.4.1.

6.4 Implementation Details

The implementation of the heuristic approach invokes a commercial MIP solver
for solving the Linear and Integer Programs 6.5 – 6.8, 6.9 – 6.16 and the adapted
Constraints 6.18 – 6.21. Since these steps may demand a very large computa-
tion time, a fast implementation of the remaining algorithm is important. This
section mentions some of the implementation details that are introduced in or-
der to accelerate the computation time of the heuristic algorithm.

6.4.1 Partitioning of Large Instances

The constructive algorithm is a hybrid approach. The step of exactly assigning
the entire set E20 ∪ E40 of empty containers’ pickup and delivery tasks (Section
6.3.1, Formula 6.1) might consume a significant amount of computation time
for large-sized instances. Therefore, the constructive algorithm partitions the
instance into smaller subsets whenever the number of the instance’s hinterland
requests |R| exceeds a certain value cr ∈ N according to:

|R| > 2 · cr or |OF |+ | IF | > cr (6.33)

In order to partition the instance, the elements li ∈ E20 ∪ E40 are sorted in as-
cending order of their time windows’ beginning starti. The set E20 ∪ E40 is
processed in the obtained order; mathematical models, i.e. the AP 6.5 – 6.8
and the MCFP 6.9 – 6.23, are separately invoked for sub-sets containing up to
cr pickup and delivery tasks. Pickup and delivery tasks are stored in an addi-
tional list whenever the subsequent feasibility check proofs that the assignment

110 CHAPTER 6. HEURISTIC APPROACH

of these pickup and delivery tasks is infeasible. After the entire set E20∪E40 has
been processed, the mathematical models are invoked for the additional list in
a noise or tabu technique (Section 6.1.4).

The partitioning approach affects the assignment of empty containers only,
the subsequent construction of routes (Section 6.3.1) as well as the local search
algorithm (Section 6.3.2) consider the entire instance again.

6.4.2 Implementation of the Feasibility Check

The feasibility check (Section 6.2.3) is invoked after each change (container as-
signment and route construction) of the solution. As a result, the major part of
the total computation time of the heuristic approach is spend in the several ex-
ecutions of the feasibility check. In order to accelerate the computation time of
the implementation of the feasibility check, an approach to decrease the num-
ber of pickup and delivery tasks, which serve as input for the feasibility check,
is presented in the following. It follows from the solution’s destruction taking
place after its feasibility has been successfully checked that:

Observation 6.3. Since the function dist(−,−) satisfies the triangle inequality
(refer to Section 4.1.2), the remaining routes of a solution remain feasible after
the solution has been destroyed in lines 8 – 15 of the LNS.

Observation 6.3 implies that it is not necessary to introduce a representa-
tive node of every pickup and delivery task of the problem’s instance to the
distance graph that is build to check the feasibility of a repaired solution in
lines 16 – 22 of the LNS. However, since the problem definition has to deal
with the interdependence problem (refer to Definition 3.6), it is not sufficient
to insert nodes representing the removed pickup and delivery tasks of set U
only. Consequently, a set of affected components Ũ is recursively defined; set Ũ
contains set U and all connected components that are assigned to routes, which
might be affected by changes made by repair methods. For a truck t ∈ T let
denote by t := (w1, w2, . . . , wn) the route of t, i.e. the set of connected com-
ponents (w1, w2, . . . , wn) ⊆ W that are assigned to t. The definition of set Ũ is
given by:

1. Ũ ← U ∪ { t ∈ T |w ∈ (U ∩ t) }
2. while ∃(w, w′) ∈ AW

L or ∃(w′, w) ∈ AW
L : w /∈ Ũ and w′ ∈ Ũ do

3. Ũ ← Ũ ∪ { t ∈ T |w ∈ t }

Because of set Ũ being the minimum set of connected components to which the
interdependence problem might apply, a feasibility check of the assignments
of Ũ is sufficient to check the feasibility of the entire solution. The heuristic

6.4. IMPLEMENTATION DETAILS 111

approach’s total computation time is enormously decreased be reducing the
distance graphs’ sizes in the feasibility check.

6.4.3 Route Assignment

The INSERTION HEURISTIC APPROACH, i.e. the three different insertion heuris-
tics best_insertion, greedy and regret (Section 6.3.2), considers all insertion po-
sitions (line 7) of all truck routes (line 4) for the entire set of connected compo-
nents U . Each insertion position requires a feasibility check and a cost compu-
tation. Consequently, the computation time strongly increases with the size of
the mICTP instance. For this reason, a further parameter ζ ≤ |T |, ζ ∈ N that
restricts the number of truck routes for insertion is introduced. This means that
if the size of a mICTP instance becomes too large, then the computation time
of the heuristic algorithm is decreased by considering only the ζ less occupied
trucks in line 4 of the INSERTION HEURISTIC APPROACH. Furthermore, for
reasons of symmetry (homogeneous trucks’ fleet) only one empty truck has to
be considered for the insertion of a single connected component.

6.4.4 Computation Time of the Exact Approach

In order to avoid long computation times for solving an AP, MCFP or MFP in-
stance (Models 6.5 – 6.8, 6.9 – 6.16 and 6.18 – 6.21) in the local search algorithm,
the time limit of the commercial solver is set to ten seconds. If the commercial
solver is not able to compute the optimum solution within ten seconds, then it
returns the best available solution that has been computed within ten seconds.
If the commercial solver is not able to compute any feasible solution, then the
current step of the local search is aborted.

Chapter 7

Computational Study

The efficiency of the exact approach (Chapter 5) and the heuristic approach
(Chapter 6) is evaluated by a computational study that involves randomly
generated instances and benchmark instances known from literature sources.
Section 7.1 introduces the different benchmark instances and some necessary
adjustments that were made to implement the newly considered problem defi-
nition, i.e. the mICTP. Section 7.2 gives an overview of the subsequent compu-
tational study. Section 7.3 analyses the computational results of the exact algo-
rithm. Section 7.4 primarily analyses the computational results of the heuris-
tic algorithm, but also compares the computational results of both algorithms.
Section 7.5 sums up the findings.

7.1 Test Instances

The computational study involves three different benchmark sets in total. The
first two benchmark sets contain small-sized instances. These benchmark sets
are generated by literature sources in order to demonstrate the complexity of
the problem definition; each benchmark set is used by the corresponding lit-
erature source for the evaluation of their proposed mathematical model’s effi-
ciency. Funke and Kopfer [2016] randomly generate instances for the mICTP
including six hinterland requests the most; Sterzik and Kopfer [2013] generate
instances for the ICT including exactly eleven hinterland requests. In compar-
ison to instances that can be optimally solved, a fleet of 30 trucks is able to
handle up to 75 containers within one day in real-world applications (Srour
et al. [2010], Wang and Regan [2002], Zhang et al. [2015]). Zhang et al. [2010]
propose large-sized instances for the ICT that include 75 hinterland requests.
The instances of Zhang et al. [2010] are also used by the computational stud-
ies of Nossack and Pesch [2013], Sterzik et al. [2012]. The ICT benchmark set

113

114 CHAPTER 7. COMPUTATIONAL STUDY

of Zhang et al. [2010] is adjusted to the mICTP in Section 7.1.2. Other sizes
of instances used by literature sources reach from 100 (Jula et al. [2005]), 200
(Braekers et al. [2013], Caris and Janssens [2009], Imai et al. [2007]), 275 – 329
(Reinhardt et al. [2012]), 300 (Daham et al. [2016]), up to 500 hinterland requests
(Chung et al. [2007], Zhang et al. [2015]).

7.1.1 Randomly Generated Instances

Funke and Kopfer [2016] randomly generate four benchmark sets in which the
instances differ in the combination of hinterland request types, as shown in
Table 7.1. Afterwards, the four sets of benchmark instances are duplicated; the
time for (de-)coupling a container is set to five minutes in one duplication and
to 20 minutes in the other duplication leading to eight different benchmark sets
in total.

Set | OF ∪ IF | | OE ∪ IE |

(0, 6) 0 6
(1, 2) 1 2
(1, 3) 1 3
(2, 2) 2 2

Table 7.1: Layout of instances with up to six hinterland requests.

The locations of depots, terminals and customers are randomly located in
the plane [0, 10] × [0, 10]. The distance between two locations is set to the eu-
clidean distance, which is multiplied by 1000 and cut before the first decimal
in order to satisfy the triangle inequality; two locations are not more than four
hours away from each other. The duration of (un-)loading a container is set
to a random number varying between 20 minutes and two hours. Container
sizes are randomly assigned to hinterland requests. In contrast to hinterland
request types, container sizes, (un-)loading durations and locations, which do
not change within a benchmark set, time windows (none, three different in-
stance types with realistic time windows, three different instance types with
randomly chosen time windows) and the number of trucks (1, 2, 3) vary. Con-
sequently, a single benchmark set contains 21 different instances resulting in
a total of 168 benchmark instances. The time horizon reaches from 0 a.m. to
24 p.m.; senders and receivers have limited opening hours with peak times
between 6.00 a.m. to 9.00 a.m. and 5.00 p.m. to 8.00 p.m. for instance types
having assigned realistic time windows (Van Der Horst and De Langen [2008]).

7.1. TEST INSTANCES 115

7.1.2 Instances of Literature Sources

Some adjustments are necessary in order to transform the ICT benchmark sets
(Sterzik and Kopfer [2013], Zhang et al. [2010]) to instances for the mICTP.

ICT Instances of Sterzik and Kopfer [2013]

Sterzik and Kopfer [2013] generate a benchmark set for the ICT that contains
ten instances (DS1, . . ., DS10) on the basis of the geographical data and the
time windows of customers, terminals and depots from the RC1-VRPTW-data
sets of Solomon [1987]. Each instance includes eleven hinterland requests (five
OF, five IF and one IE hinterland request), two depots, one terminal and five
trucks. The following describes how to adapt the instances to obtain an ad-
justed instance set for the mICTP. Since the mICTP defines a single depot, the
two depots are removed from the instances of Sterzik and Kopfer [2013] and a
new depot is introduced and located at the position that is originally defined by
Solomon [1987]. In order to obtain integral values, Sterzik and Kopfer [2013]
round the euclidean distances; this procedure leads to distances that do not
satisfy the triangle inequality in some cases. Distances that do not satisfy the
triangle inequality are modified so that they satisfy the triangle inequality. The
initial durations of (de-)coupling and (un-)loading containers are zero (Sterzik
and Kopfer [2013]). The durations of (de-)coupling are set to two minutes and
the durations of (un-)loading are set to ten minutes in the adjusted instance set.
As a result, the time windows of the terminals of OF and IF hinterland requests
are not only shifted by the driving durations between customers and terminals
(this is the case for the instances of Sterzik and Kopfer [2013]), but also by the
times that are needed to handle containers. The number of trucks is enlarged
to ten in each instance1.

Set | OF40 ∪ IF40 | | OF20 ∪ IF20 ∪ IE20 |

(0, 11) 0 11
(3, 8) 3 8
(5, 6) 5 6
(6, 5) 6 5
(8, 3) 8 3

(11, 0) 11 0

Table 7.2: Layout of instances with eleven hinterland requests.

1A similar benchmark set containing five to six trucks is considered by Funke and Kopfer [2016].
In order to analyze the solution quality of the heuristic algorithm, the number of trucks is increased
to ten in the benchmark set of this thesis resulting in a larger solution space and more degrees of
freedom.

116 CHAPTER 7. COMPUTATIONAL STUDY

The numbers of OF40 / OF20 and IF40 / IF20 requests vary in the instances,
while geographical data, (un-)loading and (de-)coupling durations remain the
same. Six different benchmark sets that are shown in Table 7.2 are obtained;
each benchmark set comprises the ten instances of Sterzik and Kopfer [2013]
leading to 60 instances in total.

ICT Instances of Zhang et al. [2010]

The benchmark set of Zhang et al. [2010] is comprised of 20 instances (In-
stance04, . . ., Instance23). Each instance includes five depots, three termi-
nals and 75 hinterland requests (40 IF, 30 OF and five IE hinterland requests).
The initial times of the first time windows of hinterland requests are selected
uniformly in the range [0 min, 240 min]; the initial times of second time win-
dows are generated in dependency to the corresponding first time window
and the point of start of the time horizon. The time windows’ widths are ran-
domly chosen in the interval [1 h, 4 h]. The (de-)couple durations of containers
are set to five minutes and (un-)loading durations last between five and 60
minutes. Depots, terminals and customers are randomly located in the plane
[0 min, 180 min] × [0 min, 180 min]. Euclidean distances between locations are
rounded in a way that complies with the triangle inequality in the adjusted
benchmark set. Figure 7.1 depicts "Instance04". Again the original depots are
removed from the instances and a single depot is newly introduced and lo-
cated in the arithmetic mean of the locations of the five original depots. As a
result, the time windows of the different locations have to be adapted. Let
denote by d the new depot and let denote by D the set of original depots;
for a hinterland request t denotes the corresponding terminal and c the corre-
sponding customer. The first and second time windows of IF/IE hinterland re-
quests are shifted by the value disttd−mindi∈D{disttdi

}; the two time windows
of OF hinterland requests are shifted by the value disttd−mindi∈D{disttdi

} +
distcd−mindi∈D{distcdi

}. While in the benchmark of Zhang et al. [2010] the
number of trucks ranges from 50 to 56, each instance of the adjusted bench-
mark set contains exactly 56 trucks.

Once more, seven different benchmark sets are obtained by varying the
numbers of OF40 / OF20, IF40 / IF20 and IE40 / IE20 hinterland requests, while
the geographical data, the (un-)loading and the (de-)coupling durations of the
instance sets remain the same. The different benchmark sets are shown in Table
7.3. Each benchmark set contains the twenty instances of Zhang et al. [2010]
leading to 140 instances in total.

Sections 7.4.1 and 7.4.2 consider a further benchmark set, which contains
the twenty adjusted (geographical data, (un-)loading and (de-)coupling dura-

7.1. TEST INSTANCES 117

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

140

160

180

Depots: Zhang et al. 2010
Customers: Zhang et al. 2010
Terminals: Zhang et al. 2010

Depot: Funke 2016

Figure 7.1: Instance 04, Zhang et al. [2010].

Set | OF40 ∪ IF40 ∪ IE40 | | OF20 ∪ IF20 ∪ IE20 |

(0, 75) 0 75
(12, 63) 12 63
(25, 50) 25 50
(37, 38) 37 38
(50, 25) 50 25
(63, 12) 63 12
(75, 0) 75 0

Table 7.3: Layout of instances with 75 hinterland requests.

118 CHAPTER 7. COMPUTATIONAL STUDY

tions) instances of Zhang et al. [2010] in which container sizes are randomly
assigned to the different requests. As a result, the numbers of 20-foot and 40-
foot hinterland requests differ from each other in this benchmark set. The term
"mixed" refers to this benchmark set.

7.2 Structure of the Analysis

The exact algorithm and the heuristic algorithm are implemented in C++; math-
ematical models are implemented in C++ using the commercial solver IBM
ILOG CPLEX Studio version 12.5.1. The following sections provide an analysis
of the computational results of these implementations, which are produced on
an Intel Core i5-3230, 2.6 GHz machine. The computational study is two-fold:
on the one hand, Section 7.3 analyzes the solutions of the exact algorithm to
small-sized instances that are defined in Section 7.1.1. On the other hand, the
results of the heuristic algorithm are evaluated in Section 7.4; the instances con-
taining up to eleven hinterland requests (Section 7.1.2) are used to compare the
results of both algorithms, the instances containing up to 75 hinterland requests
(Section 7.1.2) are used to show the applicability of the heuristic algorithm to
real-world scenarios. The results are presented in the form of various tables
in each of the following sections. As the tables have the same structure, the
classification of columns is defined here as follows.

Each column contains either absolute values (marked by "Σ") or average
values (marked by "ø"). Absolute Values ("Σ") refer to all benchmark instances
that are listed in a row, whereby

• "Opt" is the number of instances that are solved to optimality,

• "Feas" is the number of instances that are solved without a proof of opti-
mality, i.e. only an optimality gap is known for these instances,

• "Inf" is the number of instances for which the considered algorithm is
unable to find a solution, when meeting its stop criterion,

• "Time" is the total computation time in seconds that the considered algo-
rithm requires to solve all instances of the benchmark set.

Average Values ("ø") refer to those instances to which a feasible solution
was computed, i.e. the instances that are listed in the columns "Opt" and "Feas",
while instances contained in the column "Inf" are excluded. In these columns

• "Km" is the average value of the total travel distance of trucks,

• "Serv" is the average value of the total operating time of trucks,

7.3. EXACT APPROACH 119

• "|T |" is the average value of the total number of trucks needed to serve
the entire set of hinterland requests.

The column "Gap" contains an average value in percentage. The meaning of
the column "Gap" differs depending on the considered algorithm. If the re-
sults of the exact algorithm are evaluated, then the column "Gap" refers to the
average value on the maximum gap between the optimum solutions and the
computed solutions. If the results of the heuristic algorithm are evaluated, then
the column "Gap" refers to the gap between the objective values computed by
the exact algorithm, which need not be optimum solutions, and the objective
values computed by the heuristic algorithm.

If the content of a column is obvious, then the column is omitted.

7.3 Exact Approach

This section contains a study on the computational results of the exact algo-
rithm, i.e. the implementation of the mathematical model. The results are
based on an evaluation that is presented by Funke and Kopfer [2016]. The
implementation of the mathematical model is able to solve instances regarding
two different objectives. Objective 5.27 minimizes the total travel distance and
Objective 5.28 minimizes the total operating time of trucks. The computation
time of the exact algorithm to solve one single instance is limited to one hour.

Set
Exact, Objective 5.27 Exact, Objective 5.28

Opt Inf ø Km Σ Time Opt Feas Inf ø Serv ø Km ø Gap Σ Time

5min, all 80 4 21716 16 77 3 4 29651 23201 19 21493
5min, (0, 6) 19 2 28714 6 16 3 2 38414 30053 79 16547
5min, (1, 2) 21 0 8484 2 21 0 0 13440 9292 0 23
5min, (1, 3) 21 0 24104 2 21 0 0 30982 24912 0 80
5min, (2, 2) 19 2 26705 5 19 0 2 37332 29829 0 4843

20min, all 76 8 21293 15 73 3 8 34812 22982 16 19397
20min, (0, 6) 18 3 28423 4 15 3 3 46438 30373 68 14538
20min, (1, 2) 21 0 8484 2 21 0 0 16954 9696 0 19
20min, (1, 3) 19 2 24104 2 19 0 2 36432 25591 0 78
20min, (2, 2) 18 3 26139 6 18 0 3 42309 28338 0 4762

Table 7.4: Solutions to instances with up to six hinterland requests, exact approach
(Funke and Kopfer [2016]).

Table 7.4 summarizes2 the results of the exact algorithm for the benchmark
set containing up to six hinterland requests, which is defined in Section 7.1.1.
The rows of the table are subdivided into two sections regarding the differ-
ent durations for (de-)coupling containers (five and 20 minutes). Each section

2For a more detailed analysis of the computational study presented in this section see also
Tables A.1 and A.2 in the Appendix A.

120 CHAPTER 7. COMPUTATIONAL STUDY

comprises five rows; the first row contains results for the entire benchmark
set, the subsequent rows contain results for the four sub-sets, which differ in
the combination of hinterland request types (refer to Table 7.1). The columns
of the table are also subdivided into two sections. The first section comprises
four columns containing the results for minimizing the total travel distance of
trucks, while the second section comprises seven columns containing the re-
sults for minimizing the total operating time of trucks. Minimizing the total
operating time indirectly influences the total travel time. Therefore, the col-
umn "Km" is stated for both objectives. However, minimizing the total travel
distance has no impact on the operating time, i.e. optimum travel distance so-
lutions might contain routes ranging from the time horizon start to the time
horizon end even though the truck finishes its last service earlier. As a result,
the column "Serv" is omitted in the first section.

The overall conclusion is that minimizing the total travel distance is much
easier than minimizing the total operating time; whereas computing optimum
solutions to 84 test instances takes about sixteen seconds regarding the objec-
tive that minimizes the total travel distance, minimizing the total operating
time takes between five to six hours and at least the proof of optimality is miss-
ing for three instances (see also columns "Time" and "Feas"). In the first set of
rows, i.e. instances having (de-)coupling durations of five minutes, four in-
stances are infeasible. This value increases to eight in the second set of rows.
This increase is due to the second set of rows arising from the first set by only
enlarging (de-)coupling durations but not changing time horizon and time
windows. The varying number of infeasible instances is also the reason for the
fact that the objective value minimizing the total travel distance decreases for
the benchmark set in which the (de-)coupling duration is set to 20 minutes: the
objective value is an average value in which infeasible instances are excluded.

7.4 Heuristic Approach

The following provides a comprehensive study on the efficiency of the heuris-
tic algorithm, i.e. the implementation of the LNS. Section 7.4.1 starts with a
selection of appropriate parameter settings of the heuristic approach in order
to find high-quality solutions within reasonable computation time. Two differ-
ent parameter settings are recommended for the different sizes of the bench-
mark instances, which vary between eleven (small-size) to 75 (large-size) hin-
terland requests. Since the heuristic algorithm includes a large number of local
search operators, Section 7.4.2 analyzes the operators’ influence on the solution
quality. Section 7.4.3 contrasts the exact approach and the heuristic approach
regarding solutions to small-sized benchmark instances. The entire study is

7.4. HEURISTIC APPROACH 121

rounded up with the heuristic algorithm solving instances arising in real-world
applications in Section 7.4.4.

7.4.1 Parameter Adjustments

Parameter Description Value

Mathematical Models, Section 6.1.4

η Disruptive factor, noise 0.75

η divisor Divisor of the disruptive factor, noise 1.5

ξ Tabu tenure 30

Constructive Method, Sections 6.3.2 and 6.4.1

cr No. requests using hybrid approach 11

χ No. iterations IMPROVE_ROUTES 5

Insertion and Removal Heuristics, Sections 6.3.1, 6.3.2 and 6.4.3

|U|, first phases Max. no. components for removal 6

|U|, last phases Max. no. components for removal 15

Rem. trucks Max. no. trucks for removal (Parameter truck) 3

k No. best rated components (ROUTE_SUBSET_LESS_TRUCKS) 15

ζ Max. no. trucks for insertion 15

Simulated Annealing, Section 6.3.3

T0 Initial temperature 0.8

Cooling rate Divisor of the temperature 0.2

Stop criterion for the LNS, Section 6.3.2

σ No. iterations 40

θ1 No. phases 10

θ2 No. last large phases 2

θ3 No. iterations no improvement 3

θ4 Max. no. times no improvement 6

Table 7.5: Default parameter setting of the heuristic approach.

The selection of the values for the different parameters of the heuristic algo-
rithm is still pending. Table 7.5 summarizes the parameters that can be modi-
fied. The column "Value" refers to the initial value of the corresponding param-
eter that is listed in the column "Parameter", i.e. the value that was used before
making the subsequent study. The study focuses on the highlighted cells, since
it is assumed that these cells contain the parameters that have the highest im-
pact on both the computation time and the solution quality. In the following
we denote an ordered vector of parameters by

(a, b, c, d, e, f, g, h) ∈ N× N× R× R× R× N× N× N

whereby a/b is the number of connected components |U| that are removed
in the first/last phases, c is the initial value for the grade of noise η, d is the
divisor of η, e is the divisor representing the cooling schedule of the SA, f is the

122 CHAPTER 7. COMPUTATIONAL STUDY

tabu tenure, g is the number of best rated connected components the function
ROUTE_SUBSET_LESS_TRUCKS randomly selects from and h is the number of
trucks that are included into the search for the best insertion position.

The structure of the subsequent study is as follows. First of all, several
different parameter settings are tested for the benchmark set containing the
adjusted instances of Sterzik and Kopfer [2013] (see also Section 7.1.2). After-
wards, the number of iterations is analyzed. Finally, a parameter setting for
large-sized instances (adjusted instances of Zhang et al. [2010], Section 7.1.2) is
determined on the basis of the results of small-sized instances.

Parameter Adjustments to Small-sized Instances

Set Opt Feas Inf
ø ø Objective Σ Time

|T | Km Gap Sec Gap

exact 4 55 1 6.63 626.458 7.66 80658.10 –
exact and best known 4 56 0 6.60 625.133 – 77085.10 –

(6, 15, 0.75, 1.5, 0.2, 30, 15, 15) 1 59 0 6.03 664.567 6.31 1879.92 -97.56

(3, 15, 0.75, 1.5, 0.2, 30, 15, 15) 1 59 0 5.95 661.000 5.74 1601.99 -97.92
(12, 15, 0.75, 1.5, 0.2, 30, 15, 15) 1 59 0 5.95 662.700 6.01 1465.01 -98.10

(6, 7, 0.75, 1.5, 0.2, 30, 15, 15) 1 59 0 6.03 667.667 6.80 1022.36 -98.67
(6, 30, 0.75, 1.5, 0.2, 30, 15, 15) 1 59 0 6.02 664.050 6.23 2349.68 -96.95

(6, 15, 0.375, 1.5, 0.2, 30, 15, 15) 1 59 0 6.03 664.600 6.31 1362.63 -98.23
(6, 15, 1.5, 1.5, 0.2, 30, 15, 15) 1 59 0 5.98 664.033 6.22 1940.86 -97.48

(6, 15, 0.75, 0.75, 0.2, 30, 15, 15) 1 59 0 5.98 660.550 5.67 1231.58 -98.40
(6, 15, 0.75, 3.0, 0.2, 30, 15, 15) 1 59 0 6.02 662.700 6.01 1641.45 -97.87

(6, 15, 0.75, 1.5, 0.1, 30, 15, 15) 1 59 0 6.02 666.750 6.66 1875.83 -97.57
(6, 15, 0.75, 1.5, 0.4, 30, 15, 15) 1 59 0 6.03 664.567 6.31 1874.13 -97.57

(6, 15, 0.75, 1.5, 0.2, 15, 15, 15) 1 59 0 6.03 664.567 6.31 1867.76 -97.58
(6, 15, 0.75, 1.5, 0.2, 60, 15, 15) 1 59 0 6.03 664.567 6.31 1842.13 -97.61

(6, 15, 0.75, 1.5, 0.2, 30, 7, 15) 1 59 0 5.92 665.750 6.50 1505.69 -98.05
(6, 15, 0.75, 1.5, 0.2, 30, 30, 15) 1 59 0 5.95 659.717 5.53 1539.89 -98.00

(6, 15, 0.75, 1.5, 0.2, 30, 15, 7) 2 58 0 6.00 665.767 6.56 1387.89 -98.20
(6, 15, 0.75, 1.5, 0.2, 30, 15, 30) 1 59 0 6.00 665.300 6.43 1441.51 -98.13

Table 7.6: Solutions to instances with eleven hinterland requests, different param-
eter settings of the heuristic approach.

The solutions to the adjusted instances of Sterzik and Kopfer [2013] are
listed in Table 7.6; the results of the exact approach (first and second row) are
compared with the results of the heuristic approach (subsequent rows), which
receives different parameter vectors. Starting with the initial parameter vec-
tor "(6, 15, 0.75, 1.5, 0.2, 30, 15, 15)" in the third row, the parameter vectors of
the subsequent rows are generated by halving and doubling exactly one entry.
Since the instances in the newly considered benchmark set are almost twice as
large as the instances in the benchmark set that is considered in Section 7.3, a

7.4. HEURISTIC APPROACH 123

further stop criterion is added to the exact approach: the exact algorithm stops,
if it proofs the currently best known solution to be at most 5% far away from
the optimum solution. These settings allow the exact approach to compute so-
lutions to all but one instance (refer to the column "Inf") within one hour. The
instance DS8 (0, 11) is not solved by the exact approach. In comparison, the
heuristic approach computes solutions to all instances. For this reason, the sec-
ond row "exact and best known" is added to the table. The row "exact and best
known" contains the 59 solutions that are computed by the exact approach to-
gether with the best known solution3 to the instance DS8 (0, 11) that is found by
the heuristic approach. Consequently, the columns "ø Objective – Gap" and "Σ
Time – Gap" of the heuristic approach relate to the row "exact and best known"
(bearing in mind that the computation time of the exact approach additionally
includes the time to proof the solution’s optimality, e.g. compliance with the
5% gap to optimality). The exact approach computes optimum solutions to the
four instances DS10 (8, 3), DS4 (11, 0), DS5 (11, 0) and DS6 (11, 0) in a mat-
ter of seconds. These results indicate that it is easier for the exact approach to
compute solutions to instances including more hinterland requests for 40-foot
containers than hinterland requests for 20-foot containers. Within a few sec-
onds the heuristic approach computes solutions to the entire benchmark set.
The gap between the total objective value computed by the heuristic approach
and the total best known objective value ranges from 5.53% to 6.80%.

The following analysis investigates the maximum number σ of the local
search iterations of the heuristic approach. The analysis is based on compu-
tations in which the heuristic algorithm receives the parameter vector "(6, 15,
0.75, 1.5, 0.2, 30, 30, 15)" (the highlighted row in Table 7.6). Figure 7.2 shows
the development of the objective value of the three instance sets DS2, DS3 and
DS6 over 40 local search iterations4. Each instance set contains six instances in
which geographical data and container handling durations are fixed; only the
numbers of OF40 / OF20 and IF40 / IF20 requests vary within an instance set.
Since a street-turn can only take place between outbound and inbound requests
when the requests define the transportation and handling of containers shar-
ing the same size, the varying numbers of request types in an instance set lead
to instances (3, 8), (5, 6), (6, 5) and (8, 3) being not comparable to each other:
although these instances are contained in the same instance set, the combina-
tion possibilities of hinterland requests by street-turns may differ. However,

3The calculated objective value of the best known solution to instance DS8 (0, 11) is 547. This
value is computed in 25.94 seconds by the heuristic approach that receives the parameter vector
"(6, 15, 0.75, 1.5, 0.2, 30, 7, 15)".

4 If no improvement is found within a specific number of iterations, the algorithm terminates
before reaching 40 iterations (see also Section 6.3.2 for an explanation of the different stop criteria).

124 CHAPTER 7. COMPUTATIONAL STUDY

solutions to the instances of the same instance set are at least as good as the so-
lution quality of instance (0, 11). This is because the requests of instance (0, 11)
consider 20-foot containers only and, therefore, this instance includes all com-
bination possibilities of the other instances, i.e. the solution spaces of the other
instances are contained in the solution space of instance (0, 11). The fact that the
objective value of instance (0, 11) (red curve in Figure 7.2) does not always lie
below the other curves demonstrates once more the complexity of computing
solutions to instances considering many 20-foot container hinterland requests.

Figure 7.2: Development of the objective of instances with eleven hinterland re-
quests.

The results of the different computations shown in this section are used to
recommend a maximum number of local search iterations for the computa-
tion of solutions to large-sized instances. Since the computation of solutions
to large-sized instances requires substantially more computation time than the
computations in this section, the aim is to find high-quality solutions within
a reasonable amount of time in case that larger instances are considered. In-
stance sets DS3 and DS6 are not improved by the last iterations; in contrast, for

7.4. HEURISTIC APPROACH 125

instance DS10 (0, 11) the last iterations lead to great improvements. Altogether,
most of the instances are mainly improved within 25 iterations. Therefore, the
value of σ is set to 25 in the subsequent analysis.

Parameter Adjustments to Instances Inspired by the Real World

Figure 7.3: Development of the objective of instances with 75 hinterland requests.

The following analysis concerns a recommendation for the parameter set to
be applied to large-sized instances. The subsequent study is based on the ad-
justed instances of Zhang et al. [2010]. Due to the long computation times, the
study does not include all the container combinations that are listed in Table
7.3. Instead, the study covers 60 instances that are comprised of 20 instance
sets, which arise from the 20 instances of Zhang et al. [2010] by tripling the
original instance. The first and second instances of each instance set contain
only 40-foot ("(75, 0)") or 20-foot containers ("(0, 75)") respectively, while the
third instance contains a randomly chosen combination of both types of con-
tainers ("mixed") (see also Section 7.1.2). Because of the significant reduction
of the value of σ to 25 iterations, some parameters need to be adapted before-

126 CHAPTER 7. COMPUTATIONAL STUDY

hand in order to balance the restricted number of iterations. This is explained
in more detail in the following. Computations that comprise a large number
of iterations are able to diversify the solution space. Therefore, these compu-
tations are allowed to comprise a great random factor as well, leading for in-
stance to larger values for the penalization η that disturbs the objective value,
and the number of best rated connected components k among which the func-
tion ROUTE_SUBSET_LESS_TRUCKS randomly chooses (see also Section 6.3.1).
In contrast, if the value of σ decreases, the approach needs to be intensified,
which results in higher computation times of one single iteration. The follow-
ing study is based on computations in which the number of iterations χ that im-
prove routes (see also Section 6.3.2) and the number of trucks that are removed
by the parameter truck are doubled. The value of ζ is decreased in order to re-
duce the computation time of the search for solutions to large-sized instances,
meaning that the search for the best insertion position no longer investigates
all trucks. A more detailed definition of the different parameter values is stated
in Table 7.8.

Two conclusions follow from the previous section. On the one hand, the
values for kilometers only differ by around 1.2% between the worst and best
parameter setting (667.667 to 659.717, refer to Table 7.6). On the other hand,
solutions to instances containing many 40-foot containers are generally much
better than solutions to instances containing many 20-foot containers (see Fig-
ure 7.2). Therefore, the choice of parameters for this analysis focuses on a dif-
ferent treatment for 40-foot and 20-foot containers. Let an ordered vector of
parameters be denoted by

(a, b, c, d, e, f, g) ∈ N× N× R× N× N× N× N

whereby a is the tabu tenure, b is the number of trucks that are included in
the search for the best insertion position, c is the initial value for the grade of
noise η, d/e is the number of connected components |U| containing 20-foot/40-
foot containers only that are removed in the first phases, f/g is the number of
connected components |U| containing 20-foot/40-foot containers only that are
removed in the last phases. The different values (60, 7)/(30, 15) for the tuple
(a, b) are combined with all combinations of the values: 0.1875, 0.375 for c, 6
and 12 for d and e, and 15 and 30 for f and g.

Table 7.7 shows the solutions to the adjusted instances of Zhang et al. [2010],
which are computed by the heuristic approach that receives different parame-
ter vectors. The best known average solutions are marked in green. Regarding
the computation time, it is much better to set (a, b) to (60, 7) than to set (a, b) to
(30, 15). For this reason, the heuristic approach receives the highlighted param-
eter vector "(60, 7, 0.375, 6, 6, 15, 30)" for the computation of solutions to large-

7.4. HEURISTIC APPROACH 127

Set, (0, 75) ø Km Σ Time

(30, 15, 0.1875, 12, 12, 15, 15) 15898.7 10063.30
(30, 15, 0.1875, 12, 12, 30, 30) 15882.5 9739.36
(30, 15, 0.1875, 6, 6, 15, 15) 15902.7 10568.40
(30, 15, 0.1875, 6, 6, 30, 30) 15881.0 10444.10
(30, 15, 0.375, 12, 12, 15, 15) 15930.2 9596.43
(30, 15, 0.375, 12, 12, 30, 30) 15908.9 10171.70
(30, 15, 0.375, 6, 6, 15, 15) 15859.4 8916.85
(30, 15, 0.375, 6, 6, 30, 30) 15834.0 9837.36

(60, 7, 0.1875, 12, 12, 15, 15) 15904.2 2656.05
(60, 7, 0.1875, 12, 12, 30, 30) 15930.3 2922.20
(60, 7, 0.1875, 6, 6, 15, 15) 15945.1 2675.90
(60, 7, 0.1875, 6, 6, 30, 30) 15904.5 2870.70
(60, 7, 0.375, 12, 12, 15, 15) 15937.3 2647.64
(60, 7, 0.375, 12, 12, 30, 30) 15949.0 2610.85
(60, 7, 0.375, 6, 6, 15, 15) 15781.4 3048.43
(60, 7, 0.375, 6, 6, 30, 30) 15741.9 3142.07

Set, (75, 0) ø Km Σ Time

(30, 15, 0.1875, 12, 12, 15, 15) 15619.1 14699.90
(30, 15, 0.1875, 12, 12, 30, 30) 15577.5 15077.60
(30, 15, 0.1875, 6, 6, 15, 15) 15683.7 14957.60
(30, 15, 0.1875, 6, 6, 30, 30) 15661.6 15359.30
(30, 15, 0.375, 12, 12, 15, 15) 15561.6 14861.90
(30, 15, 0.375, 12, 12, 30, 30) 15570.0 14954.20
(30, 15, 0.375, 6, 6, 15, 15) 15620.4 14127.10
(30, 15, 0.375, 6, 6, 30, 30) 15618.4 14263.80

(60, 7, 0.1875, 12, 12, 15, 15) 15800.5 3430.33
(60, 7, 0.1875, 12, 12, 30, 30) 15821.6 3398.13
(60, 7, 0.1875, 6, 6, 15, 15) 15800.4 3218.04
(60, 7, 0.1875, 6, 6, 30, 30) 15786.2 3223.12
(60, 7, 0.375, 12, 12, 15, 15) 15725.4 3656.72
(60, 7, 0.375, 12, 12, 30, 30) 15702.0 3618.88
(60, 7, 0.375, 6, 6, 15, 15) 15730.0 3578.35
(60, 7, 0.375, 6, 6, 30, 30) 15753.1 3515.19

Set, mixed ø Km Σ Time

(30, 15, 0.1875, 12, 12, 15, 15) 15775.1 6041.57
(30, 15, 0.1875, 12, 12, 15, 30) 15774.0 6610.94
(30, 15, 0.1875, 12, 12, 30, 15) 15765.0 6120.66
(30, 15, 0.1875, 12, 12, 30, 30) 15755.8 6608.52
(30, 15, 0.1875, 12, 6, 15, 15) 15784.5 5753.77
(30, 15, 0.1875, 12, 6, 15, 30) 15760.5 5897.21
(30, 15, 0.1875, 12, 6, 30, 15) 15767.8 6033.52
(30, 15, 0.1875, 12, 6, 30, 30) 15773.8 5879.51
(30, 15, 0.1875, 6, 12, 15, 15) 15677.6 6632.09
(30, 15, 0.1875, 6, 12, 15, 30) 15706.4 6554.83
(30, 15, 0.1875, 6, 12, 30, 15) 15658.7 7013.55
(30, 15, 0.1875, 6, 12, 30, 30) 15672.9 7076.34
(30, 15, 0.1875, 6, 6, 15, 15) 15686.6 6846.04
(30, 15, 0.1875, 6, 6, 15, 30) 15677.9 6181.30
(30, 15, 0.1875, 6, 6, 30, 15) 15693.6 6623.44
(30, 15, 0.1875, 6, 6, 30, 30) 15665.5 6619.11

(30, 15, 0.375, 12, 12, 15, 15) 15820.9 5322.85
(30, 15, 0.375, 12, 12, 15, 30) 15826.6 5828.98
(30, 15, 0.375, 12, 12, 30, 15) 15810.9 5545.16
(30, 15, 0.375, 12, 12, 30, 30) 15805.3 5929.61
(30, 15, 0.375, 12, 6, 15, 15) 15783.9 5508.27
(30, 15, 0.375, 12, 6, 15, 30) 15774.3 5546.06
(30, 15, 0.375, 12, 6, 30, 15) 15766.0 5983.15
(30, 15, 0.375, 12, 6, 30, 30) 15784.2 5706.12
(30, 15, 0.375, 6, 12, 15, 15) 15674.5 6921.13
(30, 15, 0.375, 6, 12, 15, 30) 15708.1 6750.88
(30, 15, 0.375, 6, 12, 30, 15) 15677.4 6919.19
(30, 15, 0.375, 6, 12, 30, 30) 15677.5 6813.45
(30, 15, 0.375, 6, 6, 15, 15) 15672.0 6867.42
(30, 15, 0.375, 6, 6, 15, 30) 15686.2 6104.42
(30, 15, 0.375, 6, 6, 30, 15) 15665.2 6857.81
(30, 15, 0.375, 6, 6, 30, 30) 15650.2 6494.81

Set, mixed ø Km Σ Time

(60, 7, 0.1875, 12, 12, 15, 15) 15798.8 2018.28
(60, 7, 0.1875, 12, 12, 15, 30) 15813.3 1950.34
(60, 7, 0.1875, 12, 12, 30, 15) 15818.1 2229.06
(60, 7, 0.1875, 12, 12, 30, 30) 15813.9 2134.81
(60, 7, 0.1875, 12, 6, 15, 15) 15835.7 1760.75
(60, 7, 0.1875, 12, 6, 15, 30) 15805.1 1760.23
(60, 7, 0.1875, 12, 6, 30, 15) 15848.4 1845.76
(60, 7, 0.1875, 12, 6, 30, 30) 15807.5 1876.37
(60, 7, 0.1875, 6, 12, 15, 15) 15794.5 1992.29
(60, 7, 0.1875, 6, 12, 15, 30) 15794.5 1876.91
(60, 7, 0.1875, 6, 12, 30, 15) 15765.0 2227.75
(60, 7, 0.1875, 6, 12, 30, 30) 15748.0 2044.24
(60, 7, 0.1875, 6, 6, 15, 15) 15783.6 1824.35
(60, 7, 0.1875, 6, 6, 15, 30) 15749.5 1800.28
(60, 7, 0.1875, 6, 6, 30, 15) 15775.4 2102.78
(60, 7, 0.1875, 6, 6, 30, 30) 15757.0 1962.62

(60, 7, 0.375, 12, 12, 15, 15) 15827.1 1954.26
(60, 7, 0.375, 12, 12, 15, 30) 15825.0 1928.96
(60, 7, 0.375, 12, 12, 30, 15) 15839.5 2179.01
(60, 7, 0.375, 12, 12, 30, 30) 15811.8 2171.84
(60, 7, 0.375, 12, 6, 15, 15) 15871.8 1826.90
(60, 7, 0.375, 12, 6, 15, 30) 15854.0 1827.43
(60, 7, 0.375, 12, 6, 30, 15) 15866.6 1869.19
(60, 7, 0.375, 12, 6, 30, 30) 15868.4 1891.06
(60, 7, 0.375, 6, 12, 15, 15) 15834.9 1920.04
(60, 7, 0.375, 6, 12, 15, 30) 15834.8 1861.88
(60, 7, 0.375, 6, 12, 30, 15) 15852.3 1980.05
(60, 7, 0.375, 6, 12, 30, 30) 15847.2 2024.12
(60, 7, 0.375, 6, 6, 15, 15) 15829.8 1905.82
(60, 7, 0.375, 6, 6, 15, 30) 15810.8 1795.05
(60, 7, 0.375, 6, 6, 30, 15) 15836.9 2035.82
(60, 7, 0.375, 6, 6, 30, 30) 15817.4 2005.76

Table 7.7: Solutions to instances with 75 hinterland requests, different parameter
settings of the heuristic approach.

128 CHAPTER 7. COMPUTATIONAL STUDY

sized instances in the remainder of this chapter. Figure 7.3 shows the devel-
opment of the objective value for the instance sets Instance05, Instance08 and
Instance21 over 25 local search iterations. This time, the development of the
objective values of Instance05 and Instance08 behaves as expected; that is, 20-
foot container transportation receives the best total travel distance. However,
Instance21 shows that these promising results do not apply to all instances.
Moreover, the best known solution to Instance05 (mixed) is computed by the
constructive method.

Final Parameter Settings

Parameter Description
Value

≤ 11 ≈ 75
Mathematical Models, Section 6.1.4

η Disruptive factor, noise 0.75 0.375

η divisor Divisor of the disruptive factor, noise 1.5 1.5

ξ Tabu tenure 30 60

Constructive Method, Sections 6.3.2 and 6.4.1

cr No. requests using hybrid approach 11 11

χ No. iterations IMPROVE_ROUTES 5 10

Insertion and Removal Heuristics, Sections 6.3.1, 6.3.2 and 6.4.3

|U|, first phases Max. no. components for removal 20 ft 6 6

|U|, first phases Max. no. components for removal 40 ft 6 6

|U|, last phases Max. no. components for removal 20 ft 15 15

|U|, last phases Max. no. components for removal 40 ft 15 30

Rem. trucks Max. no. trucks for removal (Parameter truck) 3 6

k No. best rated components (ROUTE_SUBSET_LESS_TRUCKS) 30 15

ζ Max. no. trucks for insertion 10 7

Simulated Annealing, Section 6.3.3

T0 Initial temperature 0.8 0.8

Cooling rate Divisor of the temperature 0.2 0.2

Stop criterion for the LNS, Section 6.3.2

σ No. iterations 40 25

θ1 No. phases 10 10

θ2 No. last large phases 2 2

θ3 No. iterations no improvement 3 3

θ4 Max. no. times no improvement 6 6

Table 7.8: Final parameter setting of the heuristic approach.

Table 7.8 summarizes the recommended parameter values for the different
numbers of hinterland requests. We recommend the parameter vector (6, 15,
0.75, 1.5, 0.2, 30, 30, 15) for instances containing less than or equal to eleven
hinterland requests and we recommend the parameter vector (60, 7, 0.375, 6, 6,
15, 30) for instances containing around 75 hinterland requests.

7.4. HEURISTIC APPROACH 129

7.4.2 Analysis of the Implemented Operators

The last test is carried out to analyze the influence on the solution quality and
the computation time of the different variations of operators that are imple-
mented in the heuristic approach. The computational study in this section uses
the 60 adjusted instances of Zhang et al. [2010] that comprise the sets (0, 75),
(75, 0) and mixed (see also Section 7.4.1 for further details regarding these in-
stances).

Set Feas ø |T | ø Km Σ Time

Original 60 43.57 15777.9 8403.83

Evaluators, Section 6.2.5

Only e2 60 43.52 15798.5 11647.10

Without e3, e4 60 43.38 15781.4 7961.33

Insertion Heuristics, Section 6.3.2

Without best_insertion 60 43.53 15888.5 8796.85
Without greedy 60 43.50 15773.7 7875.14
Without regret 60 43.50 15796.5 7867.13

Removal Heuristics, Section 6.3.2

Without rand 60 43.32 15795.2 8700.26
Without worst_travel 60 42.92 15813.6 9238.68
Without worst_wait 60 43.30 15731.4 9470.67
Without truck 60 43.78 15831.7 9104.16
Without time 60 43.35 15819.5 7808.31

Update Strategy, Section 6.3.3

Hill climbing 60 43.57 15783.5 8569.50

Table 7.9: Results of the implemented operators for 75 hinterland requests.

Table 7.9 shows the results of the different implementations of the heuris-
tic approach in which some of the operators are omitted. The first row con-
tains the results of the implementation comprising the entire set of operators,
which are introduced in Chapter 6, i.e. this is the implementation that is in-
vestigated before and after this section. The next two rows show the impact of
the different evaluators measuring the quality of an insertion. The row "only
e2" contains the results of the heuristic approach, when only evaluator e2 is
used. This evaluator implements the actual objective and, therefore, the di-
versification of the solution space is severely restricted. The following row
"Without e3, e4" contains results, which are obtained by omitting evaluators e3

and e4, i.e. diversification remains limited as no noise is investigated. Both
rows have in common that the solution quality deteriorates, but the compu-
tation time improves for not implementing the noise technique. The follow-
ing eight rows include results that are computed by omitting exactly one of
the eight different insertion and removal operators. The overall results of the
operators are positive as most of the times the objective value and the com-

130 CHAPTER 7. COMPUTATIONAL STUDY

putation time increase. However, the objective value improves when ignoring
the operators greedy and worst_wait. Since the differences are marginal for the
operator greedy, while the computation time significantly increases for the op-
erator worst_wait, these operators remain implemented in the further analysis.
Furthermore, the results of the operators best_insertion and truck seem to be
very promising. The final row considers the influence of the update strategy;
the SA technique is replaced by the hill climbing technique. The differences
between the results of the two techniques are surprisingly small.

The noise and the tabu technique that are used to diversify the solution
space of the container assignments (refer also to Section 6.1.4) are not consid-
ered in this section. This analysis is left out for two reasons. On the one hand,
the influence of the parameters η, ξ that control the amount of noise and tabu
penalization has already been investigated when adjusting these parameters
in the former sections. On the other hand, omitting tabu or noise technique
for larger instances may result in the constructive method not even finding an
initial solution to larger instances.

7.4.3 Solution Quality

Table 7.10 compares the results of the heuristic approach that receives the pa-
rameter vector (6, 15, 0.75, 1.5, 0.2, 30, 30, 15) with the results of the exact
approach for the adjusted benchmark set of Sterzik and Kopfer [2013] (see also
Section 7.1.2). The exact approach minimizes the total travel distance; its com-
putation time for solving one single instance is limited to one hour. Further-
more, the exact algorithm is again allowed to terminate, if it computes a solu-
tion that is at most 5% far away from the optimum solution.

Set
Exact LNS

Opt Feas Inf ø Km ø Gap Σ Time ø Km ø Gap Σ Time

all 4 55 1 626.458 7.66 80658.10 659.717 – 1539.89

DS1 0 6 0 485.000 3.88 2457.70 512.000 5.57 172.35
DS2 0 6 0 639.333 8.88 10983.40 690.333 7.98 64.32
DS3 0 6 0 719.500 8.41 8682.15 748.000 3.96 145.81
DS4 1 5 0 620.500 9.86 7327.59 664.833 7.14 163.57
DS5 1 5 0 616.833 5.44 7205.89 645.500 4.65 186.25
DS6 1 5 0 606.500 8.95 7236.40 653.500 7.74 182.56
DS7 0 6 0 650.833 10.07 10874.50 664.333 2.07 47.78
DS8 0 5 1 606.800 7.40 10811.40 615.500 – 137.05
DS9 0 6 0 574.000 5.72 7216.89 614.667 7.08 342.27
DS10 1 5 0 742.000 7.97 7862.42 788.500 6.27 97.95

Table 7.10: Summary of solutions to instances with eleven hinterland requests.

As already mentioned, there is a difference between the column "ø Gap"
of the exact approach and the heuristic approach. The column "ø Gap" of the

7.4. HEURISTIC APPROACH 131

Set
Exact LNS

ø Km ø Gap Σ Time ø Km ø Gap Σ Time

DS2, all 639.333 8.88 10983.40 690.333 7.98 64.32

DS2, (0, 11) 559 26.74 3598.75 648 15.92 6.93
DS2, (3, 8) 560 7.80 3599.82 642 14.64 20.89
DS2, (5, 6) 674 6.05 3599.86 674 0.00 21.28
DS2, (6, 5) 727 5.00 184.29 826 13.62 8.95
DS2, (8, 3) 658 4.64 0.57 694 5.47 4.65
DS2, (11, 0) 658 3.04 0.03 658 0.00 1.61

DS7, all 650.833 10.07 10874.5 664.333 2.07 47.78

DS7, (0, 11) 570 25.47 3598.65 607 6.49 22.63
DS7, (3, 8) 668 15.22 3599.92 685 2.54 7.34
DS7, (5, 6) 712 7.05 3599.96 724 1.69 6.50
DS7, (6, 5) 710 5.00 75.57 712 0.28 3.85
DS7, (8, 3) 655 4.27 0.35 668 1.98 5.86
DS7, (11, 0) 590 3.39 0.02 590 0.00 1.60

DS8, all 606.800 7.40 10811.40 615.5 – 137.05

DS8, (0, 11) – – 3598.80 558 – 65.01
DS8, (3, 8) 621 17.60 3599.81 686 10.47 22.39
DS8, (5, 6) 579 6.34 3599.88 606 4.66 35.85
DS8, (6, 5) 603 5.00 12.56 606 0.50 6.84
DS8, (8, 3) 681 4.43 0.32 687 0.88 5.44
DS8, (11, 0) 550 3.64 0.01 550 0.00 1.51

Table 7.11: Detailed solutions to instance sets DS2, DS7 and DS8.

exact approach contains the average value of the maximum gaps between the
solutions that are computed by the exact approach and the optimum solutions,
while the column "ø Gap" of the heuristic approach contains the average value
of the deviations between the solutions computed by the heuristic approach
and the solutions computed by the exact approach. The deviations between
the results of the heuristic approach and the results of the exact approach range
from 2.07% to 7.98%. In contrast to the exact approach, the heuristic approach
computes solutions to all instances. Within one hour, the exact algorithm is not
able to compute a solution to instance DS8 (0, 11).

Table 7.11 shows detailed results for the three5 instance sets DS2, DS7 and
DS8. Regarding the objective values, the heuristic approach performs best for
benchmark set DS2, while it performs worst for benchmark set DS7. Bench-
mark set DS8 contains the instance to which the exact approach does not com-
pute any solution within one hour. A proof of optimality is not given to any
solution that is mentioned in the table. The rows of the table are subdivided
into three sections regarding the different benchmark sets DS2, DS7 and DS8.
Each section is comprised of six rows; the first row ("DS2, all", "DS7, all" and
"DS8, all") contains average values for the different benchmark sets, while the

5Further results for the single instances are listed in Table A.3 in the Appendix A.

132 CHAPTER 7. COMPUTATIONAL STUDY

subsequent rows contain results of the single instances. Once more it becomes
obvious from the columns "ø Gap" and "Σ Time" that both algorithms perform
much better when fewer 20-foot container hinterland requests are included in
the input instances. In particular, the heuristic approach and the exact ap-
proach compute the same solutions to all instances in Table 7.11 that include
40-foot container hinterland requests only.

7.4.4 Application to Real-world Instances

A real-world application of the heuristic algorithm that receives parameter vec-
tor (60, 7, 0.375, 6, 6, 15, 30) is stated in the following. The study includes the
adjusted benchmark set of Zhang et al. [2010] together with all combinations of
hinterland requests that are shown in Table 7.3. Table 7.12 gives an overview of

Set Feas ø |T | ø Km Σ Time

all 140 42.91 15802.3 17505.300

Instance04 7 46.00 15519.3 686.179
Instance05 7 46.14 16233.7 795.646
Instance06 7 47.43 14150.9 791.200
Instance07 7 49.86 15206.6 6326.000
Instance08 7 43.14 13688.6 703.669
Instance09 7 45.71 18509.6 623.056
Instance10 7 47.43 15437.9 765.485
Instance11 7 48.29 16725.3 682.326
Instance12 7 41.43 13636.3 705.419
Instance13 7 52.71 19626.3 595.452
Instance14 7 40.14 15595.6 1179.810
Instance15 7 43.57 16298.6 599.465
Instance16 7 45.14 15366.1 654.727
Instance17 7 43.57 16370.0 509.057
Instance18 7 44.00 14866.6 831.756
Instance19 7 39.29 17554.9 532.980
Instance20 7 29.57 14087.6 1673.370
Instance21 7 34.43 14638.6 1458.240
Instance22 7 36.14 17426.1 911.985
Instance23 7 34.14 15108.3 2173.470

Table 7.12: Summary of solutions to instances with 75 hinterland requests.

the computational results. The heuristic approach computes solutions to all in-
stances. The average computation time to solve a single instance is 125.038 sec-
onds. Since a commercial solver computes the solutions to the sub-problems,
the computation time for instances of this size is very short. Table 7.13 provides
further details of the computational results of benchmark sets Instance04, In-
stance07, Instance10, Instance13, Instance16 and Instance21. In the case of al-
most all instances, the best objective value (marked in green) is computed for
either instances containing many 40-foot container hinterland requests or for
instances containing many 20-foot container hinterland requests. This result

7.4. HEURISTIC APPROACH 133

is not surprising, since rising the number of different combinations of 20-foot
and 40-foot container hinterland requests in one single instance results in a
prevention of street-turns between specific hinterland requests.

Once more, the best result within one instance set can be used as a lower
bound on the minimum improvement of the instances "(0, 75)" that contain
20-foot container hinterland requests only. Deviations from this minimum
improvement vary between 0% (Instance07, Instance16), 0.31% (Instance21),
1.97% (Instance13) and 2.15% (Instance04) up to 3.10% (Instance10). Further
deviations that arise from Table A.4 in the Appendix A are 0% (Instance22),
0.79% (Instance08), 2.48% (Instance05), 2.58% (Instance17), 2.84% (Instance09),
3.46% (Instance15), 3.71% (Instance18), 4.16% (Instance06), 4.69% (Instance19)
and 5.40% (Instance11), with a total of four outliers, 8.18% (Instance14), 13.04%
(Instance20), 16.82% (Instance12) and 18.65% (Instance23).

Figure 7.4 shows the development of the objective value for instance sets6

Instance05, Instance07, Instance10, Instance13, Instance16 and Instance21 over
25 iterations. Determining the number of iterations to 25 seems to be a reason-
able choice. Benchmark sets Instance10, Instance13 and Instance21 yield very
good solution qualities for instances containing 40-foot container hinterland
requests only. However, sometimes the heuristic approach computes good so-
lutions to instances containing many 20-foot containers, like instance sets In-
stance07 and Instance16.

6Further results that are not mentioned in this section are shown in Figures A.1 and A.2 in the
Appendix A.

134 CHAPTER 7. COMPUTATIONAL STUDY

Set ø |T | ø Km Σ Time

Instance04, all 46.00 15519.3 686.179

Instance04, (0, 75) 47 15535 87.616
Instance04, (12, 63) 46 15856 84.307
Instance04, (25, 50) 46 15562 54.910
Instance04, (37, 38) 46 15238 77.188
Instance04, (50, 25) 47 15732 77.492
Instance04, (63, 12) 45 15504 149.613
Instance04, (75, 0) 45 15208 155.053

Instance07, all 49.86 15206.6 6326.000

Instance07, (0, 75) 49 14866 112.617
Instance07, (12, 63) 50 15474 104.718
Instance07, (25, 50) 51 15650 81.655
Instance07, (37, 38) 51 15021 83.051
Instance07, (50, 25) 51 15261 46.752
Instance07, (63, 12) 49 15236 88.081
Instance07, (75, 0) 48 14938 115.132

Instance10, all 47.43 15437.9 765.485

Instance10, (0, 75) 48 15108 126.937
Instance10, (12, 63) 48 15811 105.832
Instance10, (25, 50) 48 16005 84.803
Instance10, (37, 38) 47 15769 115.263
Instance10, (50, 25) 48 15328 101.739
Instance10, (63, 12) 48 15390 85.606
Instance10, (75, 0) 45 14654 145.305

Set ø |T | ø Km Σ Time

Instance13, all 52.71 19626.3 595.452

Instance13, (0, 75) 54 19660 102.110
Instance13, (12, 63) 52 19798 51.011
Instance13, (25, 50) 54 19738 76.628
Instance13, (37, 38) 54 19651 63.236
Instance13, (50, 25) 54 19369 84.369
Instance13, (63, 12) 50 19887 108.882
Instance13, (75, 0) 51 19281 109.216

Instance16, all 45.14 15366.1 654.727

Instance16, (0, 75) 44 14607 220.637
Instance16, (12, 63) 43 14997 73.652
Instance16, (25, 50) 44 15256 69.478
Instance16, (37, 38) 44 15311 145.329
Instance16, (50, 25) 43 14972 79.782
Instance16, (63, 12) 43 15619 21.573
Instance16, (75, 0) 55 16801 44.277

Instance21, all 34.43 14638.6 1458.240

Instance21, (0, 75) 34 14432 333.614
Instance21, (12, 63) 34 14858 109.234
Instance21, (25, 50) 35 14387 230.740
Instance21, (37, 38) 33 14704 181.730
Instance21, (50, 25) 34 14934 172.876
Instance21, (63, 12) 36 14756 219.642
Instance21, (75, 0) 35 14399 210.402

Table 7.13: Detailed solutions to instance sets Instance04, -07, -10, -13, -16 and -21.

Fi
gu

re
7.

4:
D

ev
el

op
m

en
to

ft
he

ob
je

ct
iv

e
of

in
st

an
ce

s
w

it
h

75
hi

nt
er

la
nd

re
qu

es
ts

.

136 CHAPTER 7. COMPUTATIONAL STUDY

7.5 Summary of Findings

The computational results of the exact algorithm and the heuristic algorithm
(Chapters 5 and 6) are evaluated by means of three different benchmark sets
that strongly vary in size.

To the best of our knowledge, the implementation of the exact approach
presented in Chapter 5 (Funke et al. [2016]) is the first implementation of a
mathematical model that is able to solve instances of a multi-size container
hinterland transportation problem with the option of (de-)coupling contain-
ers at customers’ locations. The implementation of the mathematical model is
able to solve instances regarding two different objectives: minimizing the total
travel distance of trucks and minimizing the total operating time of trucks.

On the one hand, the computational results of both algorithms verify the
high complexity of computing solutions to instances containing many 20-foot
container hinterland requests. This is demonstrated by the fact that the exact
approach is able to compute solutions to all but one instance within one hour;
the omitted instance contains 20-foot container hinterland requests only (Ta-
bles 7.10 and 7.11). Furthermore, sometimes the heuristic approach computes
better objective values for instances containing more 40-foot than 20-foot con-
tainer hinterland requests (Tables 7.10 and 7.11, 7.12 and 7.13). On the other
hand, both algorithms need short computation times to compute high-quality
solutions to instances containing many 40-foot container hinterland requests.
These findings are documented in the columns "ø Gap" and "Σ Time" in Tables
7.11 and A.3. In particular, the tables show that the heuristic approach is often
able to compute optimum solutions to those instances. All in all, the results for
the different benchmark sets of the heuristic approach deviate from the results
of the exact approach by an average of between 2.07% to 7.98%.

The heuristic algorithm is able to compute solutions, whose objective val-
ues are close together (Tables 7.12, 7.13 and A.4), to 16 instances out of a total
of 20 instances that are inspired by practice. The average computation time of
the heuristic approach for an instance inspired by practice is two minutes. The
results on the computation time are especially promising as they state that the
heuristic approach can be used in practice7.

7As trucking companies are confronted with delays (e.g. traffic, congested terminals) through-
out the whole time, a solution methodology might be initiated several times during one workday
(refer to Section 1.2.2). Hence, trucking companies typically ask for heuristics computing high-
quality solutions within computation times that should not exceed a certain value.

Chapter 8

Conclusion and Future
Research

The present thesis investigates a container transportation problem of a truck-
ing company operating in a hinterland region of a seaport. Trucking companies
have to transport containerized cargo in a cost-effective manner; the majority
of transportation requests are known to trucking companies in advance. Apart
from this, trucking companies are responsible for the provision of empty con-
tainers to transport cargo; empty containers that share the same attributes (like
size) are interchangeable. Hence, the underlying scientific problem comprises
two sub-problems: the assignment of empty containers to transportation re-
quests and the construction of routes for trucks. Due to the enormous poten-
tial for saving costs, these types of problems have become the subject of many
academic investigations. The present thesis analyzes the definition of a widely
studied scientific problem definition, in which the definition is extended by
two characteristics for which comparatively little literature is available. On the
one hand, trucks are permitted to decouple containers at customers’ locations
for container handling operations (loading and unloading containers). When
trucks and containers are allowed to separate, trucks are then free to carry out
other tasks while containers are being (un-)loaded. On the other hand, two
types of containers are available for transportation, namely 20-foot and 40-
foot containers. Although especially 20-foot and 40-foot containers are used
in many parts of the world, scientific literature considering the simultaneous
transportation of 20-foot and 40-foot containers is rare.

137

138 CHAPTER 8. CONCLUSION AND FUTURE RESEARCH

8.1 Conclusion

The key element of the investigation of this thesis is the multi-size Inland Con-
tainer Transportation Problem (mICTP) that is described in detail in Chapter 4.
One trucking company owning a homogeneous fleet of trucks has to serve a set
of requests for the transportation of containerized cargo and empty containers
in a hinterland region of a seaport. The objective is to optimize the costs of the
trucking company. In this thesis the costs of the trucking company are mea-
sured by the total travel distance of trucks, which should be minimized. The
optimization problem includes several decisions that have to be made such as
assigning empty containers to transportation requests and constructing routes
for trucks that transport the containers. Additionally, containers can be (un-)
loaded at customers’ locations in a drop-and-pick procedure, i.e. without the
presence of a truck. Further decisions have to be taken regarding the separa-
tion of the truck and container, and, in cases of separation, regarding the truck
that collects the container after it has been (un-)loaded. In this way, the trans-
portation volume and the expense of repositioning empty containers should
be decreased. Literature sources commonly discuss modifications on trans-
portation problems only for 40-foot containers (e.g., Braekers et al. [2013], Jula
et al. [2005], Nossack and Pesch [2013], Sterzik and Kopfer [2013], Wang and
Regan [2002], Zhang et al. [2010]). These problem definitions are representa-
tives of full truckload (FTL) problems with trucks being able to transport one
40-foot container at the most. The present thesis enhances the scientific defi-
nition of the Inland Container Transportation Problem (ICT) (Zhang et al. [2010]),
which is widely studied by academic sources (refer to Table 3.1), to the mICTP
by considering the simultaneous transportation of containers of different sizes,
namely 20-foot and 40-foot containers. The introduction of two different kinds
of commodities increases the complexity of the problem considerably: a truck
can either transport up to two 20-foot containers or one 40-foot container at a
point in time. That is why the problem changes from a FTL problem to a less-
than truckload (LTL) problem. The mICTP can be classified as a Vehicle Routing
Problem with multiple synchronization constraints (VRPMS, Drexl [2012], Section
3.1.2). The considered enlargement of the problem definition is much closer
to reality than most previous models that are discussed by literature sources
(Schönberger et al. [2013]). Up to now, this modification has rarely been stud-
ied in literature sources. Problem definitions for the transportation of 20-foot
and 40-foot containers can be found in scientific literature, but mostly these
models either prohibit trucks and containers to separate (Chung et al. [2007],
Lai et al. [2013], Vidović et al. [2012], Zhang et al. [2015]) leading to routes for
trucks containing no more than four hinterland requests, or these models try

8.1. CONCLUSION 139

to combine special types of hinterland requests (Caballini et al. [2015], Daham
et al. [2016]) leading to routes for trucks containing no more than three hinter-
land requests. The aim of the present thesis is to make a contribution to fill
this scientific gap. Models and approaches for the simultaneous transportation
of two kinds of commodities are presented for a problem definition allowing
trucks and containers to separate during their routes. In this way, it is possible
to construct routes for trucks that contain more than four hinterland requests
(Schönberger et al. [2013])1.

Chapter 3 contains comprehensive literature research on container hinter-
land transportation; the complexity of the mICTP is classified and method-
ologies are presented to improve the efficiency of drayage including the trans-
portation of containerized cargo and the reduction of unproductive movements
caused by empty container repositioning. Mathematical and methodical ap-
proaches to the transportation of 40-foot containers are especially at the focus
of this literature research (refer to Sections 3.2 and 3.3). This focus is chosen due
to the fact that the common problem definition is restricted to the FTL problem
for the transportation of a homogeneous set of containers. The aim of the liter-
ature research is to enable a better understanding on the complex issue of the
thesis. As a result, fast and efficient approaches are combined in order to create
a high-level procedure computing solutions to the simultaneous transportation
problem of a heterogeneous set of containers in real world applications.

In Chapter 5 the two sub-problems of the mICTP, i.e. assigning empty con-
tainers and building routes for trucks, are combined in one single mathematical
model simultaneously solving the entire problem definition. Due to the prob-
lem’s complexity, the simultaneous combination of both sub-problems within
one single mathematical model was neglected for many years (Sterzik [2013]).
A recent graph representation is developed and combined with successful tech-
niques for modeling hinterland transportation problems (Jula et al. [2005], Nos-
sack and Pesch [2013], Zhang et al. [2010]) and for modeling problems arising
in distinct applications (Goel and Meisel [2013]). A Multicommodity Flow Prob-
lem (MFP) creates flows for containers. For the construction of routes for trucks,
we follow the ideas of Jula et al. [2005], Wang and Regan [2002] and transform
the Full Truckload Pickup and Delivery Problem (FTPDPTW) to the Asymmetric
Multiple Traveling Salesman Problem with Time Window Constraints (amTSPTW).
Finally, the models for the MFP and the amTSPTW are connected by synchro-
nization constraints. The mathematical model is implemented with the help

1Although the model of Schönberger et al. [2013] allow larger routes for trucks. The hinterland
requests of the problem definition of Schönberger et al. [2013] are distinct from the hinterland
requests contained in the mICTP. Moreover, the implementation of the mathematical model of
Schönberger et al. [2013] often fails to even identify a feasible solution.

140 CHAPTER 8. CONCLUSION AND FUTURE RESEARCH

of a commercial solver. The implementation is capable of computing optimum
solutions to small-sized test instances, containing up to eleven hinterland re-
quests and five trucks (Chapter 7). To the best of our knowledge, this is the
first implementation of a mathematical model that is able to compute optimum
solutions to this complex problem definition containing such a magnitude of
different degrees of freedom.

Chapter 6 extends the theoretical considerations that were made so far. As
the implementation of the mathematical model takes a considerable amount of
time to compute solutions to larger instances, a modern heuristic approach is
developed to solve instances arising in real-world applications. Several liter-
ature sources (Drexl [2012], Drexl et al. [2011], Meisel and Kopfer [2014]) suc-
cessfully apply Large Neighborhood Search (LNS, Ropke and Pisinger [2006]) to
VRPMS. Therefore, we combine LNS with mathematical programming tech-
niques. In this manner, we construct a matheuristic approach. Matheuristics
are newly developed approaches, in which mathematical programming mod-
els are used in heuristic frameworks (see e.g. Archetti and Speranza [2014], Ball
[2011] for surveys on matheuristics). The presented heuristic approach com-
bines two phases (Braekers et al. [2013], Caris and Janssens [2009], Imai et al.
[2007], Nossack and Pesch [2013]); mathematical models assign empty con-
tainers to transportation requests and heuristics build routes for trucks. The
potential of the heuristic approach is analyzed two-fold. On the one hand, the
solution quality is investigated by comparing solutions to instances taken from
literature sources with optimum solutions computed by the implementation of
the mathematical model (Tables 7.10 and 7.11); depending on the instances, de-
viations to optimum solutions vary from approximately two to eight percent.
On the other hand, the applicability of the heuristic approach is examined on
instances inspired by real-world problems (Chapter 7); these instances contain
75 hinterland requests and 56 trucks and can be solved by the heuristic algo-
rithm within an average computation time of two minutes.

8.2 Future Research

The present thesis introduces a very recent definition of a drayage problem to
the reader. Up to now, both the simultaneous transportation problem of 20-foot
and 40-foot containers as well as the possibility to separate trucks and contain-
ers at customers’ locations has been rarely investigated in literature sources. As
a result, this topic remains interesting for future research. Furthermore, some
of the results of this thesis might give rise to further scientific issues. In the
following some interesting aspects are mentioned that might be suitable for

8.2. FUTURE RESEARCH 141

deeper analysis. Possible extensions accrue in one of two ways: algorithmic
and problem-specific.

On the algorithmic side, the mathematical approach can be extended by lin-
ear and mathematical programming techniques (like decomposition) in order
to solve instances of larger sizes. By comparison, the heuristic approach can
be made adaptive by including different mechanisms considering the perfor-
mances of former iterations of the selection of destroy and repair operators,
the use of noise and tabu techniques, as well as the choice of parts of the so-
lution for re-optimization. The computational study indicates that instances
including the same number of hinterland requests are harder to solve for both
approaches when the set of hinterland requests contains more hinterland re-
quests for 20-foot containers than hinterland requests for 40-foot containers.
As the solution space enlarges when the number of 20-foot container hinter-
land requests grows, the computation time of the implementation of the math-
ematical model increases. Another reason for the complexity of solving these
instances is the insufficient progress in the research area on problems contain-
ing double loads to date. The solution quality of the heuristic approach may
improve, if for example recent local search operators are developed that are
specifically designed for the handling of 20-foot container hinterland requests.
Finally, a further approach has to be developed for the computation of lower
bounds on instances that, due to their size, could not be solved by the im-
plementation of the mathematical model. Up until now, there has only been
one way to evaluate solutions to large size instances that are computed by the
heuristic approach; solutions to these instances have to be compared with other
solutions to similar instances that are also obtained by the heuristic approach
(refer e.g. to Section 7.4.4, in which we compare solutions to instances that
differ in the number of 40-foot and 20-foot container hinterland requests).

As can be seen from Section 3.5 various interesting challenges arise in the
research area on container hinterland transportation. Consequently, a lot of dif-
ferent restrictions and extensions can be added to the mICTP in order to make
the problem definition become even more complex and realistic. As shown in
Table 3.1, the mICTP integrates all but one of the headings that are analyzed
in more depth in the literature overview in Chapter 3. The inclusion of a het-
erogeneous fleet of trucks is left out in the definition of the mICTP, i.e. there
is no distinction made between different costs of trucks (company-owned and
mandated trucks), or between the trucks’ capacities (combined, 20-foot and 40-
foot trucks). Moreover, the set of containers can be further distinguished into
dry and special containers; dependencies and exclusions between truck types
and container types can be investigated (refer to Section 1.1). The costs for de-
tention of containers (Caballini et al. [2015]) might be added to the problem

142 CHAPTER 8. CONCLUSION AND FUTURE RESEARCH

definition, as well as vessel departure times and the additional consideration
of soft time windows, instead of hard time windows at the different locations.
Within our extensive literature review, we found only two literature sources
(Reinhardt et al. [2012], Zhang et al. [2009]) considering a limitation/approach
to balancing the number of empty containers that can be stored at container
depots. Thus, a further challenging issue is to analyze problems, in which only
a limited number of empty containers can be stored at depots. In this context it
is interesting to allow the substitution of containers, i.e. serving hinterland re-
quests for 20-foot containers by either 20-foot or 40-foot containers, or allowing
some hinterland requests for 40-foot containers to also be served by two 20-foot
containers, instead of one 40-foot container. This issue is investigated by En-
gels and Schrader [2015], who optimize the transportation costs of a railway
company that is responsible for the transportation of goods between different
customers’ locations. In more detail, Engels and Schrader [2015] establish the
enormous complexity that is achieved when integrating the possibility of sub-
stitution of freight cars into a problem definition asking for a minimum cost
assignment of freight cars to customers’ transportation requests. In addition,
the two special characteristics of the mICTP can be further extended. Regard-
ing the possibility to decouple containers at customers’ locations, it might be
useful to distinguish between two types of customers: those customers, who
have the opportunity to lift containers from trucks and those customers, who
do not have this opportunity. Up until now, the mICTP has not considered the
order, in which 20-foot containers are coupled by trucks. The problem defini-
tion might become more realistic when routes for 20-foot containers are con-
structed in a Last In Last Out (LIFO) technique, i.e. the last container coupled by
a truck is restricted to be the first container to be decoupled from the truck. To
overcome this issue, Zhang et al. [2015] introduce the full-twin assumption, in
which trucks carrying two 20-foot containers have to complete both requests
before a new request is initiated. The full-twin assumption, however, restricts
two hinterland requests to be served without any interruption. This restriction
is much stricter than allowing requests to be served within a truck’s route at
any point of time that observes the request’s time windows, as the case is in
this research project.

Appendix A

Further Computational
Results

This chapter provides the remaining results that are not listed in Chapter 7.
The structure of the appendices is as follows:

• Tables A.1 and A.2 contain detailed solutions of the exact approach to the
randomly generated instance set containing up to six hinterland requests.
These results extend Section 7.3.

• Table A.3 contains results that are not mentioned in detail in Section 7.4.3.
The results refer to the adjusted benchmark set of the instances of Sterzik
and Kopfer [2013].

• Further results of the instance set, which is an adjustment of the instance
set of Zhang et al. [2010], are summarized in Table A.4 and Figures A.1
and A.2. These results are excluded in Section 7.4.4.

143

144 APPENDIX A. FURTHER COMPUTATIONAL RESULTS

Set, 5min
Exact, Objective 5.27 Exact, Objective 5.28

Opt Inf Km Time Opt Feas Inf Serv Km Gap Time

(0, 6) 19 2 28713.5 6.38 16 3 2 38414.1 30053.1 79 16547.00

(0, 6), 1_truck 5 2 28156.2 5.81 5 0 2 33694.4 28156.2 0 809.37
(0, 6), 2_truck 7 0 28912.6 0.27 7 0 0 42585.9 30124.6 0 4187.22
(0, 6), 3_truck 7 0 28912.6 0.30 4 3 0 37613.6 31336.6 213 11550.40

(0, 6), no_tw 3 0 26438.0 0.23 3 0 0 28838.0 26438.0 0 876.64
(0, 6), rand_tw 9 0 26488.3 0.42 6 3 0 28888.3 26488.3 166 15298.70
(0, 6), real_tw 7 2 32549.7 5.73 7 0 2 54765.6 36185.7 0 371.75

(2, 2) 19 2 26705.2 5.30 19 0 2 37331.9 29829.4 0 4843.08

(2, 2), 1_truck 5 2 26927.2 2.34 5 0 2 37150.8 30316.2 0 267.84
(2, 2), 2_truck 7 0 26625.9 1.52 7 0 0 39982.7 29857.1 0 873.00
(2, 2), 3_truck 7 0 26625.9 1.44 7 0 0 34810.6 29453.9 0 3702.24

(2, 2), no_tw 3 0 24433.0 2.48 3 0 0 30384.0 24433.0 0 913.24
(2, 2), rand_tw 9 0 24433.0 0.77 9 0 0 30384.0 24433.0 0 3737.82
(2, 2), real_tw 7 2 30600.3 2.05 7 0 2 49242.7 39080.3 0 192.02

(1, 2) 21 0 8484.0 2.11 21 0 0 13440.2 9292.0 0 22.95

(1, 2), 1_truck 7 0 8484.0 0.67 7 0 0 15048.6 8484.0 0 5.50
(1, 2), 2_truck 7 0 8484.0 0.78 7 0 0 12635.7 9696.0 0 6.58
(1, 2), 3_truck 7 0 8484.0 0.66 7 0 0 12636.3 9696.0 0 10.87

(1, 2), no_tw 3 0 8484.0 1.45 3 0 0 11424.0 8484.0 0 10.25
(1, 2), rand_tw 9 0 8484.0 0.40 9 0 0 11423.8 8484.0 0 7.50
(1, 2), real_tw 9 0 8484.0 0.26 9 0 0 16128.7 10369.3 0 5.20

(1, 3) 21 0 24104.0 2.03 21 0 0 30982.0 24912.0 0 80.24

(1, 3), 1_truck 7 0 24104.0 0.69 7 0 0 35699.3 24912.0 0 12.96
(1, 3), 2_truck 7 0 24104.0 0.61 7 0 0 28623.6 24912.0 0 32.23
(1, 3), 3_truck 7 0 24104.0 0.73 7 0 0 28623.0 24912.0 0 35.05

(1, 3), no_tw 3 0 24104.0 1.32 3 0 0 27644.0 24104.0 0 32.00
(1, 3), rand_tw 9 0 24104.0 0.43 9 0 0 27643.7 24104.0 0 42.03
(1, 3), real_tw 9 0 24104.0 0.28 9 0 0 35432.9 25989.3 0 6.21

Table A.1: Detailed solutions to instances with up to six hinterland requests and a
(de-)couple duration of five minutes, exact approach (Funke and Kopfer [2016]).

145

Set, 20min
Exact, Objective 5.27 Exact, Objective 5.28

Opt Inf Km Time Opt Feas Inf Serv Km Gap Time

(0, 6) 18 3 28422.8 4.22 15 3 3 46437.9 30372.8 68 14537.70

(0, 6), 1_truck 4 3 26551.5 3.53 4 0 3 36751.8 26551.5 0 639.69
(0, 6), 2_truck 7 0 28957.4 0.30 7 0 0 52286.3 30169.4 0 2340.86
(0, 6), 3_truck 7 0 28957.4 0.39 4 3 0 46124.4 32759.7 174 11557.10

(0, 6), no_tw 3 0 26438.0 0.19 3 0 0 36038.0 26438.0 0 1318.43
(0, 6), rand_tw 9 0 26589.3 0.54 6 3 0 36989.6 26589.3 135 13022.90
(0, 6), real_tw 6 3 32165.3 3.49 6 0 3 65810.3 38015.3 0 196.34

(2, 2) 18 3 26138.6 5.79 18 0 3 42308.6 28338.1 0 4762.19

(2, 2), 1_truck 4 3 24433.0 2.91 4 0 3 35784.0 24433.0 0 207.49
(2, 2), 2_truck 7 0 26625.9 1.62 7 0 0 47106.6 29453.9 0 915.72
(2, 2), 3_truck 7 0 26625.9 1.26 7 0 0 41238.9 29453.9 0 3638.98

(2, 2), no_tw 3 0 24433.0 2.47 3 0 0 35784.0 24433.0 0 914.25
(2, 2), rand_tw 9 0 24433.0 0.76 9 0 0 35784.2 24433.0 0 3744.17
(2, 2), real_tw 6 3 29549.7 2.56 6 0 3 55357.3 36148.3 0 103.77

(1, 2) 21 0 8484.0 2.36 21 0 0 16954.3 9696.0 0 18.89

(1, 2), 1_truck 7 0 8484.0 0.73 7 0 0 18391.3 9696.0 0 5.33
(1, 2), 2_truck 7 0 8484.0 0.75 7 0 0 16235.9 9696.0 0 6.81
(1, 2), 3_truck 7 0 8484.0 0.88 7 0 0 16235.7 9696.0 0 6.75

(1, 2), no_tw 3 0 8484.0 1.57 3 0 0 15023.7 8484.0 0 7.18
(1, 2), rand_tw 9 0 8484.0 0.42 9 0 0 15023.9 8484.0 0 7.74
(1, 2), real_tw 9 0 8484.0 0.37 9 0 0 19528.2 11312.0 0 3.97

(1, 3) 19 2 24104.0 2.34 19 0 2 36432.3 25591.3 0 77.71

(1, 3), 1_truck 5 2 24104.0 0.92 5 0 2 36479.2 24104.0 0 13.95
(1, 3), 2_truck 7 0 24104.0 0.54 7 0 0 38294.4 27332.9 0 24.25
(1, 3), 3_truck 7 0 24104.0 0.88 7 0 0 34536.7 24912.0 0 39.51

(1, 3), no_tw 3 0 24104.0 1.34 3 0 0 33044.0 24104.0 0 33.46
(1, 3), rand_tw 9 0 24104.0 0.41 9 0 0 33043.8 24104.0 0 39.01
(1, 3), real_tw 7 2 24104.0 0.59 7 0 2 42241.1 28140.9 0 5.24

Table A.2: Detailed solutions to instances with up to six hinterland requests and
a (de-)couple duration of twenty minutes, exact approach (Funke and Kopfer
[2016]).

146 APPENDIX A. FURTHER COMPUTATIONAL RESULTS

Set
Exact LNS

Opt Feas Inf ø Km ø Gap Σ Time ø Km ø Gap Σ Time

DS1, all 0 6 0 485.000 3.88 2457.70 512.000 5.57 172.35

DS1, (0, 11) 0 1 0 408 5.00 2451.29 503 23.28 79.33
DS1, (3, 8) 0 1 0 458 4.27 5.31 525 14.63 4.46
DS1, (5, 6) 0 1 0 473 4.23 0.50 473 0.00 58.41
DS1, (6, 5) 0 1 0 543 4.86 0.40 543 0.00 19.23
DS1, (8, 3) 0 1 0 525 0.94 0.18 525 0.00 9.71
DS1, (11, 0) 0 1 0 503 3.98 0.02 503 0.00 1.21

DS3, all 0 6 0 719.500 8.41 8682.15 748.000 3.96 145.81

DS3, (0, 11) 0 1 0 638 23.11 3599.21 659 3.29 28.48
DS3, (3, 8) 0 1 0 767 11.83 3599.80 773 0.78 24.27
DS3, (5, 6) 0 1 0 741 5.00 1480.23 783 5.67 3.93
DS3, (6, 5) 0 1 0 741 4.99 2.67 745 0.54 81.50
DS3, (8, 3) 0 1 0 771 2.59 0.21 771 0.00 6.50
DS3, (11, 0) 0 1 0 659 2.92 0.03 757 14.87 1.13

DS4, all 1 5 0 620.500 9.86 7327.59 664.833 7.14 163.57

DS4, (0, 11) 0 1 0 614 36.50 3598.83 625 1.79 131.35
DS4, (3, 8) 0 1 0 582 9.51 3599.81 625 7.39 3.35
DS4, (5, 6) 0 1 0 616 4.94 25.39 702 13.96 7.01
DS4, (6, 5) 0 1 0 659 5.00 103.29 777 17.91 3.58
DS4, (8, 3) 0 1 0 627 3.19 0.23 630 0.48 16.92
DS4, (11, 0) 1 0 0 625 0.00 0.04 630 0.80 1.37

DS5, all 1 5 0 616.833 5.44 7205.89 645.500 4.65 186.25

DS5, (0, 11) 0 1 0 573 10.59 3598.82 586 2.27 7.37
DS5, (3, 8) 0 1 0 651 8.71 3599.95 731 12.29 37.01
DS5, (5, 6) 0 1 0 618 4.26 0.81 631 2.10 66.66
DS5, (6, 5) 0 1 0 631 4.98 6.20 631 0.00 65.55
DS5, (8, 3) 0 1 0 655 4.12 0.10 721 10.08 8.07
DS5, (11, 0) 1 0 0 573 0.00 0.01 573 0.00 1.59

DS6, all 1 5 0 606.500 8.95 7236.40 653.500 7.75 182.56

DS6, (0, 11) 0 1 0 587 23.51 3598.62 710 20.95 3.99
DS6, (3, 8) 0 1 0 632 15.51 3600.00 647 2.37 70.63
DS6, (5, 6) 0 1 0 587 5.00 34.94 594 1.19 34.87
DS6, (6, 5) 0 1 0 593 4.72 2.34 602 1.52 65.61
DS6, (8, 3) 0 1 0 647 4.94 0.47 647 0.00 6.52
DS6, (11, 0) 1 0 0 593 0.00 0.03 721 21.59 0.94

DS9, all 0 6 0 574.000 5.72 7216.89 614.667 7.08 342.27

DS9, (0, 11) 0 1 0 530 12.33 3598.00 541 2.08 47.16
DS9, (3, 8) 0 1 0 594 5.22 3599.80 607 2.19 92.45
DS9, (5, 6) 0 1 0 605 4.98 4.15 671 10.91 189.88
DS9, (6, 5) 0 1 0 548 5.00 14.69 610 11.31 6.82
DS9, (8, 3) 0 1 0 575 3.44 0.22 606 5.39 4.65
DS9, (11, 0) 0 1 0 592 3.38 0.03 653 10.30 1.31

DS10, all 1 5 0 742.000 7.97 7862.42 788.500 6.27 97.95

DS10, (0, 11) 0 1 0 680 26.11 3598.85 773 13.68 23.92
DS10, (3, 8) 0 1 0 790 11.27 3599.89 790 0.00 25.13
DS10, (5, 6) 0 1 0 756 5.00 655.89 773 2.25 26.98
DS10, (6, 5) 0 1 0 756 5.00 7.56 832 10.05 17.76
DS10, (8, 3) 1 0 0 790 0.00 0.21 807 2.15 2.74
DS10, (11, 0) 0 1 0 680 0.44 0.02 756 11.18 1.43

Table A.3: Detailed solutions to instance sets DS1, DS3, . . . DS6, DS9 and DS10.

147

Set ø |T | ø Km Σ Time

Instance05, all 46.14 16233.7 795.646

Instance05, (0, 75) 46 16185 89.205
Instance05, (12, 63) 46 16346 114.381
Instance05, (25, 50) 47 16028 85.138
Instance05, (37, 38) 46 16298 112.018
Instance05, (50, 25) 46 15794 112.797
Instance05, (63, 12) 46 16568 89.372
Instance05, (75, 0) 46 16417 192.735

Instance06, all 47.43 14150.9 791.200

Instance06, (0, 75) 48 14472 151.761
Instance06, (12, 63) 48 13932 144.015
Instance06, (25, 50) 47 14373 67.256
Instance06, (37, 38) 50 13961 57.795
Instance06, (50, 25) 47 14304 75.921
Instance06, (63, 12) 47 14120 102.727
Instance06, (75, 0) 45 13894 191.725

Instance08, all 43.14 13688.6 703.669

Instance08, (0, 75) 42 13482 94.645
Instance08, (12, 63) 45 13376 1472.000
Instance08, (25, 50) 43 13760 94.271
Instance08, (37, 38) 43 13400 82.454
Instance08, (50, 25) 43 14123 25.574
Instance08, (63, 12) 44 14032 124.315
Instance08, (75, 0) 42 13647 135.408

Instance09, all 45.71 18509.6 623.056

Instance09, (0, 75) 47 18164 108.997
Instance09, (12, 63) 45 18861 65.037
Instance09, (25, 50) 45 18743 50.199
Instance09, (37, 38) 47 18861 28.865
Instance09, (50, 25) 46 18365 79.758
Instance09, (63, 12) 46 18910 167.674
Instance09, (75, 0) 44 17663 122.526

Instance11, all 48.29 16725.3 682.326

Instance11, (0, 75) 49 16896 41.153
Instance11, (12, 63) 48 16552 61.237
Instance11, (25, 50) 49 16893 59.253
Instance11, (37, 38) 50 17135 135.604
Instance11, (50, 25) 46 16586 119.107
Instance11, (63, 12) 48 16984 106.740
Instance11, (75, 0) 48 16031 159.232

Instance12, all 41.43 13636.3 705.419

Instance12, (0, 75) 42 14500 79.716
Instance12, (12, 63) 43 13881 66.792
Instance12, (25, 50) 42 13687 72.359
Instance12, (37, 38) 41 13118 69.672
Instance12, (50, 25) 42 14019 83.063
Instance12, (63, 12) 41 13837 103.133
Instance12, (75, 0) 39 12412 230.686

Instance14, all 40.14 15595.6 1179.810

Instance14, (0, 75) 37 15893 264.451
Instance14, (12, 63) 38 15726 238.256
Instance14, (25, 50) 36 15195 107.121
Instance14, (37, 38) 39 15264 194.811
Instance14, (50, 25) 38 15866 96.653
Instance14, (63, 12) 39 14691 190.475
Instance14, (75, 0) 54 16534 88.041

Set ø |T | ø Km Σ Time

Instance15, all 43.57 16298.6 599.465

Instance15, (0, 75) 42 16069 155.929
Instance15, (12, 63) 43 15531 113.043
Instance15, (25, 50) 41 16294 35.248
Instance15, (37, 38) 42 15956 103.026
Instance15, (50, 25) 42 16250 67.518
Instance15, (63, 12) 42 16343 80.122
Instance15, (75, 0) 53 17647 44.580

Instance17, all 43.57 16370 509.057

Instance17, (0, 75) 43 16303 137.857
Instance17, (12, 63) 41 16211 94.279
Instance17, (25, 50) 43 16356 31.228
Instance17, (37, 38) 45 16139 102.417
Instance17, (50, 25) 42 15893 19.104
Instance17, (63, 12) 41 16416 33.882
Instance17, (75, 0) 50 17272 90.290

Instance18, all 44.00 14866.6 831.756

Instance18, (0, 75) 45 14960 97.576
Instance18, (12, 63) 43 14511 90.272
Instance18, (25, 50) 44 14706 82.007
Instance18, (37, 38) 43 14425 75.476
Instance18, (50, 25) 45 15196 134.175
Instance18, (63, 12) 40 14814 280.901
Instance18, (75, 0) 48 15454 71.350

Instance19, all 39.29 17554.9 532.980

Instance19, (0, 75) 37 17379 111.530
Instance19, (12, 63) 38 17111 40.515
Instance19, (25, 50) 37 17182 102.599
Instance19, (37, 38) 35 17585 81.155
Instance19, (50, 25) 37 18099 71.709
Instance19, (63, 12) 36 16600 84.193
Instance19, (75, 0) 55 18928 41.279

Instance20, all 29.57 14087.6 1673.370

Instance20, (0, 75) 30 14456 238.735
Instance20, (12, 63) 29 14139 295.695
Instance20, (25, 50) 30 13872 198.944
Instance20, (37, 38) 30 13733 165.533
Instance20, (50, 25) 31 14838 169.697
Instance20, (63, 12) 30 14787 120.800
Instance20, (75, 0) 27 12788 483.962

Instance22, all 36.14 17426.1 911.985

Instance22, (0, 75) 34 16751 338.959
Instance22, (12, 63) 35 17725 57.071
Instance22, (25, 50) 34 17481 119.598
Instance22, (37, 38) 35 17650 44.828
Instance22, (50, 25) 36 17125 201.490
Instance22, (63, 12) 35 17565 75.545
Instance22, (75, 0) 44 17686 74.494

Instance23, all 34.14 15108.3 2173.470

Instance23, (0, 75) 35 15910 154.375
Instance23, (12, 63) 35 14478 190.211
Instance23, (25, 50) 34 15844 136.639
Instance23, (37, 38) 34 15898 115.995
Instance23, (50, 25) 35 15395 296.564
Instance23, (63, 12) 35 14824 470.185
Instance23, (75, 0) 31 13409 809.500

Table A.4: Detailed solutions to further instances with 75 hinterland requests.

Fi
gu

re
A

.1
:D

ev
el

op
m

en
to

ft
he

ob
je

ct
iv

e
of

in
st

an
ce

s
w

it
h

75
hi

nt
er

la
nd

re
qu

es
ts

.

149

Figure A.2: Development of the objective of instances with 75 hinterland requests.

Bibliography

K. Alisch, E. Winter, and U. Arentzen. Gabler Wirtschaftslexikon. Springer-
Verlag, 2013.

D. Applegate, R. E. Bixby, V. Chvátal, and W. Cook. Finding cuts in the TSP (A
preliminary report), volume 95-05. Citeseer, 1995.

D. Applegate, R. E. Bixby, V. Chvátal, and W. Cook. The Traveling Salesman
Problem: A Computational Study. Princeton university press, 2011.

C. Archetti and M. G. Speranza. A survey on matheuristics for routing prob-
lems. EURO Journal on Computational Optimization, 2(4):223–246, 2014.

L. Asbach, U. Dorndorf, and E. Pesch. Analysis, modeling and solution of
the concrete delivery problem. European journal of operational research, 193(3):
820–835, 2009.

M. O. Ball. Heuristics based on mathematical programming. Surveys in Opera-
tions Research and Management Science, 16(1):21 – 38, 2011.

R. Battiti and G. Tecchiolli. The reactive tabu search. ORSA journal on comput-
ing, 6(2):126–140, 1994.

T. Bektas. The multiple traveling salesman problem: an overview of formula-
tions and solution procedures. Omega, 34(3):209–219, 2006.

R. Bellman. On a routing problem. Quarterly of applied mathematics, pages 87–90,
1958.

R. Bent and P. Van Hentenryck. A two-phase hybrid algorithm for pickup and
delivery vehicle routing problems with time windows. Comput Oper Res, 33
(4):875–893, 2006.

G. Berbeglia, J.-F. Cordeau, I. Gribkovskaia, and G. Laporte. Static pickup and
delivery problems: a classification scheme and survey. TOP, 15(1):1–31, 2007.
ISSN 1134-5764.

151

152 BIBLIOGRAPHY

C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview
and conceptual comparison. ACM Computing Surveys (CSUR), 35(3):268–308,
2003.

L. Bodin, A. Mingozzi, R. Baldacci, and M. Ball. The rollon–rolloff vehicle
routing problem. Transportation Science, 34(3):271–288, 2000.

M. Boile, N. Mittal, M. Golias, and S. Theofanis. Empty marine container
management: addressing a global problem locally. In Transportation Research
Board 85th Annual Meeting, volume 06-2147, 2006.

K. Braekers, A. Caris, and G. Janssens. A deterministic annealing algorithm
for simultaneous routing of loaded and empty containers. In G. Lencse and
Muka L., editors, Proceedings of the ISC’2010 (Industrial Simulation Conference),
pages 172–178, Budapest, Hungary, 2010.

K. Braekers, G. K. Janssens, and A. Caris. Challenges in managing empty con-
tainer movements at multiple planning levels. Transport Reviews, 31(6):681–
708, 2011.

K. Braekers, A. Caris, and G. K. Janssens. Integrated planning of loaded and
empty container movements. OR Spectrum, 35(2):457–478, 2013.

A. E. Branch. Export Practice and Management. (London: Thomson Learning),
2006.

O. Bräysy, W. Dullaert, G. Hasle, D. Mester, and M. Gendreau. An effective
multirestart deterministic annealing metaheuristic for the fleet size and mix
vehicle-routing problem with time windows. Transportation Science, 42(3):
371–386, 2008.

C. Caballini, I. Rebecchi, and S. Sacone. Combining multiple trips in a port
environment for empty movements minimization. Transportation Research
Procedia, 10:694–703, 2015.

A. Caris and G. K. Janssens. A local search heuristic for the pre-and end-
haulage of intermodal container terminals. Computers & Operations Research,
36(10):2763–2772, 2009.

A. Caris and G. K. Janssens. A deterministic annealing algorithm for the pre-
and end-haulage of intermodal container terminals. International Journal of
Computer Aided Engineering and Technology, 2(4):340–355, 2010.

V. Černỳ. Thermodynamical approach to the traveling salesman problem: An
efficient simulation algorithm. Journal of optimization theory and applications,
45(1):41–51, 1985.

BIBLIOGRAPHY 153

R. K. Cheung, N. Shi, W. B. Powell, and H. P. Simao. An attribute–decision
model for cross-border drayage problem. Transportation Research Part E: Lo-
gistics and Transportation Review, 44(2):217–234, 2008.

K. H. Chung, C.S. Ko, J.Y. Shin, H. Hwang, and K.H. Kim. Development of
mathematical models for the container road transportation in korean truck-
ing industries. Computers & Industrial Engineering, 53(2):252 – 262, 2007.

G. Clarke and J. W. Wright. Scheduling of vehicles from a central depot to a
number of delivery points. Operations research, 12(4):568–581, 1964.

L. Coslovich, R. Pesenti, and W. Ukovich. Minimizing fleet operating costs for
a container transportation company. European Journal of Operational Research,
171(3):776–786, 2006.

T. G. Crainic and G. Laporte. Planning models for freight transportation. Eu-
ropean journal of operational research, 97(3):409–438, 1997.

T. G. Crainic, M. Gendreau, and P. Dejax. Dynamic and stochastic models for
the allocation of empty containers. Operations research, 41(1):102–126, 1993.

R. H. Currie and S. Salhi. Exact and heuristic methods for a full-load, multi-
terminal, vehicle scheduling problem with backhauling and time windows.
Journal of the Operational Research Society, 54(4):390–400, 2003.

H. A. Daham, X. Yang, and M. K. Warnes. An efficient mixed integer pro-
gramming model for pairing containers in inland transportation based on
the assignment of orders. Journal of the Operational Research Society, pages
1–17, 2016.

G. Dantzig and D. R. Fulkerson. On the max flow min cut theorem of networks.
In H. W. Kuhn and A. W. Tucker, editors, Linear inequalities and related systems,
pages 215–221, Princeton, 1956. University Press.

R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial intel-
ligence, 49(1):61–95, 1991.

M. Desroches, J. K. Lenstra, , M. W. P. Savelsbergh, and F. Soumis. Vehicle rout-
ing with time windows: optimization and approximation. Vehicle routing:
Methods and studies, pages 65–84, 1988.

E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959. ISSN 0029-599X. doi: 10.1007/BF01386390.

R. P. Dilworth. A decomposition theorem for partially ordered sets. Annals of
Mathematics, pages 161–166, 1950.

154 BIBLIOGRAPHY

K. F. Doerner and V. Schmid. Survey: matheuristics for rich vehicle routing
problems. In International Workshop on Hybrid Metaheuristics, pages 206–221.
Springer, 2010.

M. Drexl. Synchronization in vehicle routing—a survey of vrps with multi-
ple synchronization constraints. Technical Report 1103, Gutenberg School of
Management and Economics, Johannes Gutenberg University Mainz, 2011.

M. Drexl. Synchronization in vehicle routing-a survey of vrps with multiple
synchronization constraints. Transportation Science, 46(3):297–316, 2012.

M. Drexl, J. Rieck, T. Sigl, and B. Berning. Simultaneous vehicle and crew
routing and scheduling for partial and full load long-distance road transport.
Technical Report 1112, Gutenberg School of Management and Economics,
Johannes Gutenberg University Mainz, 2011.

G. Dueck and T. Scheuer. Threshold accepting: a general purpose optimization
algorithm appearing superior to simulated annealing. Journal of computa-
tional physics, 90(1):161–175, 1990.

U. Duken and Gesamtverband der Deutschen Versicherungswirtschaft.
Containerhandbuch:[fachinformation der deutschen transportversicherer].
http://www.containerhandbuch.de/, 2002-2016. Accessed on 1st
March 2016.

M. Eiglsperger. Automatic layout of UML class diagrams: a topology-shape-metrics
approach. PhD thesis, Universität Tübingen, 2003.

B. Engels and R. Schrader. Freight car dispatching with generalized flows.
Networks, 66(1):33–39, 2015.

A. L. Erera and K. R. Smilowitz. Intermodal drayage routing and schedul-
ing. Intelligent Freight Transportation, automation and control engineering series,
pages 171–188, 2008.

S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicom-
modity flow problems. SIAM Journal on Computing, 5:691–703, 1976.

R. W. Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345,
1962.

L. R. Ford. Network flow theory. Technical report, DTIC Document, 1956.

L. R. Ford and D. R. Fulkerson. Solving the transportation problem. Manage-
ment Science, 3(1):24–32, 1956.

http://www.containerhandbuch.de/

BIBLIOGRAPHY 155

L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press,
Princeton, 1962.

P. Francis, G. Zhang, and K. Smilowitz. Improved modeling and solution meth-
ods for the multi-resource routing problem. European Journal of Operational
Research, 180(3):1045–1059, 2007.

M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM (JACM), 34(3):596–615,
1987.

D. R. Fulkerson. Note on dilworth’s decomposition theorem for partially or-
dered sets. In Proc. Amer. Math. Soc, volume 7, pages 701–702, 1956.

J. Funke and H. Kopfer. A model for an inland multi-size container transporta-
tion problem. Chair of Logistics Working Paper No. 7, University of Bremen,
2014.

J. Funke and H. Kopfer. A neighborhood search for a multi-size container trans-
portation problem. 15th IFAC Symposium on Information Control Problems in
Manufacturing INCOM 2015, IFAC-PapersOnLine, 48(3):2041–2046, 2015.

J. Funke and H. Kopfer. A model for a multi-size inland container transporta-
tion problem. Transportation Research Part E: Logistics and Transportation Re-
view, 89:70–85, 2016.

J. Funke, S. Hougardy, and J. Schneider. An exact algorithm for wirelength
optimal placements in VLSI design. Integration, the VLSI Journal, 52:355–366,
2016.

B. Gavish and K. Srikanth. An optimal solution method for large-scale multiple
traveling salesmen problems. Operations Research, 34(5):698–717, 1986.

M. Gendreau. An introduction to tabu search. In Handbook of metaheuristics,
pages 37–54. Springer, 2003.

B. E. Gillett and L. R. Miller. A heuristic algorithm for the vehicle-dispatch
problem. Operations research, 22(2):340–349, 1974.

F. Glover. Future paths for integer programming and links to artificial intelli-
gence. Computers & Operations Research, 13(5):533–549, 1986.

A. Goel and F. Meisel. Workforce routing and scheduling for electricity net-
work maintenance with downtime minimization. European Journal of Opera-
tional Research, 231(1):210–228, 2013.

156 BIBLIOGRAPHY

M. Grötschel. Schnelle Rundreisen: Das Travelling-Salesman-Problem. In
Diskrete Mathematik erleben, pages 95–129. Springer, 2015.

H. O. Günther and K. H. Kim. Container terminals and terminal operations.
OR Spectrum, 28(4):437–445, 2006. ISSN 0171-6468.

K. Helsgaun. An effective implementation of the lin–kernighan traveling sales-
man heuristic. European Journal of Operational Research, 126(1):106–130, 2000.

W. C. Hildebrand. Management von Transportnetzwerken im containerisierten
Seehafenhinterlandverkehr: [ein Gestaltungsmodell zur Effizienzsteigerung von
Transportprozessen in der Verkehrslogistik]. PhD thesis, Technische Universität
Berlin, Berlin, 2008.

F. L. Hitchcock. The distribution of a product from several sources to numerous
localities. Journal of mathematics and physics, 20(1):224–230, 1941.

K. L. Hoffman, M. Padberg, and G. Rinaldi. Traveling salesman problem. In
Encyclopedia of Operations Research and Management Science, pages 1573–1578.
Springer, 2013.

J. Homberger and H. Gehring. A two-phase hybrid metaheuristic for the ve-
hicle routing problem with time windows. European Journal of Operational
Research, 162(1):220–238, 2005.

Y. Ileri, M. Bazaraa, T. Gifford, G. Nemhauser, J. Sokol, and E. Wikum. An opti-
mization approach for planning daily drayage operations. Central European
Journal of Operations Research, 14(2):141–156, 2006.

A. Imai, E. Nishimura, and J. Current. A lagrangian relaxation-based heuristic
for the vehicle routing with full container load. European Journal of Opera-
tional Research, 176(1):87–105, 2007.

K. Jacobs and D. Jungnickel. Einführung in die Kombinatorik. Walter de Gruyter,
2004.

J. J. Jaw, A. R. Odoni, H. N. Psaraftis, and N. H. M. Wilson. A heuristic algo-
rithm for the multi-vehicle advance request dial-a-ride problem with time
windows. Transportation Research Part B: Methodological, 20(3):243–257, 1986.

D. S. Johnson, G. Gutin, L. A. McGeoch, A. Yeo, W. Zhang, and A. Zverovitch.
Experimental analysis of heuristics for the atsp. In The traveling salesman
problem and its variations, pages 445–487. Springer, 2007.

H. Jula, M. Dessouky, P. Ioannou, and A. Chassiakos. Container movement by
trucks in metropolitan networks: modeling and optimization. Transportation
Research Part E: Logistics and Transportation Review, 41(3):235–259, 2005.

BIBLIOGRAPHY 157

H. Jula, A. Chassiakos, and P. Ioannou. Port dynamic empty container reuse.
Transportation Research Part E: Logistics and Transportation Review, 42(1):43–60,
2006.

R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller, J .W.
Thatcher, and J .D. Bohlinger, editors, Complexity of Computer Computations,
The IBM Research Symposia Series, pages 85–103. Springer US, 1972.

V. King, S. Rao, and R. Tarjan. A faster deterministic maximum flow algorithm.
In Proceedings of the third annual ACM-SIAM symposium on Discrete algorithms,
pages 157–164. Society for Industrial and Applied Mathematics, 1992.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated an-
nealing. science, 220(4598):671–680, 1983.

D. König. Graphs and matrices. Matematikaiés Fizikai Lapok, 38:116–119, 1931.

D. König. Theorie der endlichen und unendlichen Graphen. Chelsea Publishing
Co., Leipzig, 1936.

R. Konings. Foldable containers to reduce the costs of empty transport? a cost–
benefit analysis from a chain and multi-actor perspective. Maritime Economics
& Logistics, 7(3):223–249, 2005.

R. Konings and R. Thijs. Foldable containers: a new perspective on reducing
container-repositioning costs. European journal of transport and infrastructure
research EJTIR, 1 (4), 2001.

B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms (Algo-
rithms and Combinatorics). Springer, Berlin, 4 edition, 10 2008.

H. W. Kuhn. The hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1-2):83–97, 1955.

M. Lai. Models and algorithms for the empty container repositioning and its integra-
tion with routing problems. PhD thesis, University of Cagliari, 2013.

M. Lai, T. G. Crainic, M. Di Francesco, and P. Zuddas. An heuristic search for
the routing of heterogeneous trucks with single and double container loads.
Transportation Research Part E: Logistics and Transportation Review, 56:108–118,
2013.

A. Langevin, F. Soumis, and J. Desrosiers. Classification of travelling salesman
problem formulations. Operations Research Letters, 9(2):127–132, 1990.

158 BIBLIOGRAPHY

G. Laporte. The traveling salesman problem: An overview of exact and ap-
proximate algorithms. European Journal of Operational Research, 59(2):231–247,
1992.

S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-
salesman problem. Operations research, 21(2):498–516, 1973.

C. Macharis and Y. M. Bontekoning. Opportunities for OR in intermodal freight
transport research: A review. European Journal of Operational Research, 153:400
– 416, 2004.

F. Meisel and H. Kopfer. Synchronized routing of active and passive means of
transport. OR spectrum, 36(2):297–322, 2014.

O. Merk, B. Busquet, and R. Aronietis. The impact of Mega-Ships. Case-Specific
Policy Analysis. In OECD International Transport Forum, 2015.

C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer programming formulation
of traveling salesman problems. Journal of the ACM (JACM), 7(4):326–329,
1960.

A. Mingozzi, S. Giorgi, and R. Baldacci. An exact method for the vehicle rout-
ing problem with backhauls. Transportation Science, 33(3):315–329, 1999.

L. Mingyong and C. Erbao. An improved differential evolution algorithm
for vehicle routing problem with simultaneous pickups and deliveries and
time windows. Engineering Applications of Artificial Intelligence, 23(2):188–195,
2010.

S. Mitrović-Minić and R. Krishnamurti. The multiple TSP with time windows:
vehicle bounds based on precedence graphs. Operations Research Letters, 34
(1):111–120, 2006.

M. D. Moffitt and M. E. Pollack. Optimal rectangle packing: A meta-csp ap-
proach. In ICAPS, pages 93–102, 2006.

E. F. Moore. The shortest path through a maze. In Proceedings of the Interna-
tional Symposium on the Theory of Switching, volume Part II, page 285âĂŞ292.
Harvard University Press, 1959.

R. Namboothiri and A. L. Erera. Planning local container drayage operations
given a port access appointment system. Transportation Research Part E: Lo-
gistics and Transportation Review, 44(2):185–202, 2008.

BIBLIOGRAPHY 159

N. Nordsieck, T. Buer, and J. Schönberger. A three-phase heuristic for a multi-
size container transport problem with partially specified requests. Bremen
Computational Logistics Group Working Papers, No. 5, University of Bre-
men, 2016.

N. Nordsieck, T. Buer, and J. Schönberger. Potential of improving truck-based
drayage operations of marine terminals through street turns. In M. Freitag,
H. Kotzab, and J. Pannek, editors, Proceedings of LDIC 2016 (5th International
Conference on Dynamics in Logistics), pages 433–443. Springer International
Publishing, 2017.

J. Nossack and E. Pesch. A truck scheduling problem arising in intermodal
container transportation. European Journal of Operational Research, 230:666–
680, 2013.

T. E. Notteboom. Container shipping and ports: an overview. Review of network
economics, 3(2), 2004.

T. E. Notteboom and J.-P. Rodrigue. Port regionalization: towards a new phase
in port development. Maritime Policy & Management, 32(3):297–313, 2005.

J. Orlin. A faster strongly polynomial minimum cost flow algorithm. In STOC
’88: Proceedings of the twentieth annual ACM symposium on Theory of computing,
pages 377–387, New York, NY, USA, 1988. ACM. ISBN 0-89791-264-0.

S. N. Parragh, K. F. Doerner, and R. F. Hartl. A survey on pickup and delivery
problems. part i: Transportation between customers and depot. Journal für
Betriebswirtschaft, 58(1):21–51, 2008a.

S. N. Parragh, K. F. Doerner, and R. F. Hartl. A survey on pickup and deliv-
ery problems. part ii: Transportation between pickup and delivery locations.
Journal für Betriebswirtschaft, 58(2):81–117, 2008b.

E. Pesch and F. Glover. Tsp ejection chains. Discrete Applied Mathematics, 76(1):
165–181, 1997.

S. Pettie. A new approach to all-pairs shortest paths on real-weighted graphs.
Theoretical Computer Science, 312(1):47–74, 2004.

D. Pisinger and S. Ropke. Large neighborhood search. In Handbook of meta-
heuristics, pages 399–419. Springer, 2010.

D. Popović, M. Vidović, and M. Nikolić. The variable neighborhood search
heuristic for the containers drayage problem with time windows. 2012 online
conference on soft computing in industrial applications, pages 1 – 10, 2012.

160 BIBLIOGRAPHY

G. Reinelt. Tsplib-a traveling salesman problem library. ORSA journal on com-
puting, 3(4):376–384, 1991.

N. V. Reinfeld and W. R. Vogel. Mathematical programming. Englewood Cliffs,
N.J., Prentice-Hall, 1958.

L. B. Reinhardt, S. Spoorendonk, and D. Pisinger. Solving vehicle routing with
full container load and time windows. In Computational Logistics, pages 120–
128. Springer, 2012.

S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for
the pickup and delivery problem with time windows. Transportation science,
40(4):455–472, 2006.

D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, II. An analysis of several
heuristics for the traveling salesman problem. SIAM journal on computing, 6
(3):563–581, 1977.

M. W. P. Savelsbergh and M. Sol. The general pickup and delivery problem.
Transportation Science, 29(1):17–29, 1995.

J. Schönberger, T. Buer, and H. Kopfer. A Model for the Coordination of 20-foot
and 40-foot Container Movements in the Hinterland of a Container Terminal.
In D. Pacino, S. Voß, and R.M. Jensen, editors, ICCL 2013, LNCS 8197, pages
113–127, Berlin Heidelberg, 2013. Springer-Verlag.

G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, and G. Dueck. Record break-
ing optimization results using the ruin and recreate principle. Journal of Com-
putational Physics, 159(2):139 – 171, 2000.

P. Shaw. A new local search algorithm providing high quality solutions to
vehicle routing problems. APES Group, Dept of Computer Science, University
of Strathclyde, Glasgow, Scotland, UK, 1997.

R. Shostak. Deciding linear inequalities by computing loop residues. J. ACM,
28(4):769–779, 1981.

M. Sigurd, D. Pisinger, and M. Sig. The pickup and delivery problem with time
windows and precedences. Datalogisk Institut, Københavns Universitet, 2000.

K. Smilowitz. Multi-resource routing with flexible tasks: an application in
drayage operations. Iie Transactions, 38(7):577–590, 2006.

M. M. Solomon. Algorithms for the vehicle routing and scheduling problems
with time window constraints. Operations research, 35(2):254–265, 1987.

BIBLIOGRAPHY 161

M. M. Solomon and J. Desrosiers. Survey paper-time window constrained rout-
ing and scheduling problems. Transportation science, 22(1):1–13, 1988.

F. J. Srour, T. Máhr, M. M. De Weerdt, and R. A. Zuidwijk. MIPLIB truckload
PDPTW instances derived from a real-world drayage case. Technical report,
Erasmus Research Institute of Management (ERIM), 2010.

R. Stahlbock and S. Voß. Operations research at container terminals: a literature
update. Or Spectrum, 30(1):1–52, 2008.

D. Steenken, S. Voß, and R. Stahlbock. Container terminal operation and op-
erations research-a classification and literature review. OR spectrum, 26(1):
3–49, 2004.

S. Sterzik. Concepts, Mechanisms, and Algorithms to Measure the Potential of Con-
tainer Sharing in Seaport Hinterland Transportation. PhD thesis, University of
Bremen, 2013.

S. Sterzik and H. Kopfer. A tabu search heuristic for the inland container trans-
portation problem. Chair of Logistics Working Paper No. 3, University of
Bremen, 2012.

S. Sterzik and H. Kopfer. A tabu search heuristic for the inland container trans-
portation problem. Computers & Operations Research, 40:953–962, 2013.

S. Sterzik, H. Kopfer, and W. Y. Yun. Reducing hinterland transportation costs
through container sharing. Flexible Services and Manufacturing Journal, 27(2-
3):382–402, 2012.

S. Sterzik, H. Kopfer, and J. Funke. Advantages of decoupling containers and
vehicles at customers’ locations. In J. Dethloff, H.-D. Haasis, H. Kopfer,
H. Kotzab, and J. Schönberger, editors, Logistics Management - Products, Ac-
tors, Technology, LM 13 - Proceedings of the German Academic Association for
Business Research, pages 301–312. Springer Verlag, 2015.

É. Taillard. Parallel iterative search methods for vehicle routing problems. Net-
works, 23(8):661–673, 1993.

G. D. Taylor and T. S. Meinert. Improving the quality of operations in truckload
trucking. Iie Transactions, 32(6):551–562, 2000.

G. D. Taylor, G. L. Whicker, and J. S. Usher. Multi-zone dispatching in truckload
trucking. Transportation Research Part E: Logistics and Transportation Review, 37
(5):375–390, 2001.

162 BIBLIOGRAPHY

P. Toth and D. Vigo. An exact algorithm for the vehicle routing problem with
backhauls. Transportation science, 31(4):372–385, 1997.

P. Toth and D. Vigo. The Vehicle Routing Problem. Monographs on Discrete Math-
ematics and Applications. Society for Industrial and Applied Mathematics,
2002. ISBN 9780898715798.

M. R. Van Der Horst and P. W. De Langen. Coordination in hinterland transport
chains: a major challenge for the seaport community. Maritime Economics &
Logistics, 10(1):108–129, 2008.

A. W. Veenstra. Empty container reposition: the port of rotterdam case. In
Managing closed-loop supply chains, pages 65–76. Springer, 2005.

M. Vidović, G. Radivojević, and B. Raković. Vehicle routing in containers
pickup up and delivery processes. Procedia - Social and Behavioral Sciences,
20:335–343, 2011.

M. Vidović, M. Nikolić, and D. Popović. Two mathematical formulations for
the containers drayage problem with time windows. In 2nd International
Conference on Supply Chains ICSC, 2012.

I. F. A. Vis and R. De Koster. Transshipment of containers at a container termi-
nal: An overview. European Journal of operational research, 147(1):1–16, 2003.

M. Wang, B. Liu, J. Quan, and J. Funke. A two-stage iterative solution ap-
proach for solving a container transportation problem. In Logistics Manage-
ment, pages 259–271. Springer, 2016.

X. Wang and A. C. Regan. Local truckload pickup and delivery with hard time
window constraints. Transportation Research Part B, 36:97–112, 2002.

S. Warshall. A theorem on boolean matrices. Journal of the ACM (JACM), 9(1):
11–12, 1962.

H. P. Williams. Model building in mathematical programming. John Wiley & Sons,
2013.

World-TSP-Pictures. World tsp pictures. http://www.math.uwaterloo.

ca/tsp/world/pictures.html, 2004. accessed on 8th October 2015.

Z. Xue, C. Zhang, W.-H. Lin, L. Miao, and P. Yang. A tabu search heuristic for
the local container drayage problem under a new operation mode. Trans-
portation Research Part E: Logistics and Transportation Review, 62:136–150, 2014.

http://www.math.uwaterloo.ca/tsp/world/pictures.html
http://www.math.uwaterloo.ca/tsp/world/pictures.html

BIBLIOGRAPHY 163

R. Zhang, W. Y. Yun, and I. Moon. A reactive tabu search algorithm for the
multi-depot container truck transportation problem. Transportation Research
Part E: Logistics and Transportation Review, 45(6):904–914, 2009.

R. Zhang, W. Y. Yun, and H. Kopfer. Heuristic-based truck scheduling for in-
land container transportation. OR Spectrum, 32:787–808, 2010.

R. Zhang, W. Y. Yun, and I. K. Moon. Modeling and optimization of a container
drayage problem with resource constraints. International Journal of Production
Economics, 133(1):351–359, 2011.

R. Zhang, J. C. Lu, and D. Wang. Container drayage problem with flexible
orders and its near real-time solution strategies. Transportation Research Part
E: Logistics and Transportation Review, 61:235 – 251, 2014.

R. Zhang, W.Y. Yun, and H. Kopfer. Multi-size container transportation by
truck: modeling and optimization. Flexible Services and Manufacturing Journal,
27(2-3):403–430, 2015.

Index

20-foot Truck, 30
40-foot Truck, 30

Adjacent, 15
Admissible Graph, 102
All Pairs Shortest Path Problem, 22
Antichain, 24
Approximate Algorithm, 25
Arc, 15
Arc Capacity, 15
Arc Cost, 15
Assignment Problem, 17, 85
Asymmetric Distance Matrix, 21
Asymmetric Traveling Salesman Prob-

lem, 23
asymmetric Traveling Salesman Prob-

lem, 32
Autonomous Resource, 30

b-flow, 19
Bipartite Graph, 16, 103
Boltzman Distribution, 26
Branch and Bound, 39
Breadth-First Search, 16

Capacity Constraints, 18
Carrier, 7
Carrier Haulage, 7
Chain, 24
Chassis, 30
Combinatorial Optimization, 13
Combined Truck, 30

Complete Algorithm, 25
Complete Graph, 15
Concorde, 32
Condensation, 16, 103
Connected Component, 15, 83
Connected Graph, 15
Conservative Cost, 21
Constructive Algorithm, 25
Container Leasing Company, 8
Containerization, 2
Cooling Schedule, 26
Cycle, 15

Decision Variable, 14
Depot-direct, 10
Depth-First Search, 16
Deterministic Annealing, 41
Directed Graph, 15
Distance Graph, 95
Distance Matrix, 21
Diversification, 26
Door-to-door Service, 6
Drayage, 1
Drop-and-pick Procedure, 45
Dual Value, 39

End-haulage, 5
Exact Algorithm, 25
Export Container, 31

Feasibility Check, 94, 110
Feasible Solution, 14

164

INDEX 165

Flexible Task, 31
Flow Balance Conservation Constraints,

19
Flow Conservation Constraints, 18
FTPDP structure, 24
Full Truckload, 30, 32, 138
Full Truckload Pickup & Delivery Prob-

lem, 24
Full-Twin Assumption, 54, 142

Graph, 15
Greedy Algorithm, 42

Hamiltonian Circuit, 22
Head, 15
Heuristics, 25
Hill Climbing, 26, 81, 130
Hinterland, 1

Import Container, 31
Inbound Container, 31
Incident, 15
Infeasible Problem, 14
Inland Container Transportation Prob-

lem, 43
Insertion Heuristic Approach, 93
Integer Programming, 14
Intensification, 26
Interdependence Problem, 33
Intermodal Container Transportation,

1

Jumbo Container, 3

Lagrangian Multipliers, 40
Large Neighborhood Search, 26, 98
Less-than Truckload, 30, 33, 138
Linear Programming, 14
Linear Relaxation, 45
Local Search Algorithm, 25

Main-haulage, 5

Matching, 16
Matheuristics, 27
Maximal Matching, 16
Maximum Flow Problem, 18
Merchant Haulage, 7
Metaheuristics, 26
Minimum Cost Flow Problem, 19, 86
Mixed Integer Programming, 14
Modular Concept Vehicles, 3
Multi-size Inland Container Transporta-

tion Problem, 10, 59
Multicommodity Flow Problem, 20, 72
Multiple Traveling Salesman Problem,

23, 76
Multiple Traveling Salesman Problem

with Time Windows and Prece-
dences, 34

Negative Reduced Cost, 39
Neighborhood Solution, 25
Neighborhood Structure, 25
Node, 15
Node Balance, 15
Noise, 89
Non-autonomous Resource, 30

Open Routing Problem, 34
Optimum Solution, 14
Outbound Container, 31

Partially Ordered Set, 24
Partition, 14
Path, 15
Perfect Matching, 16
Poset, 24, 102
Pre-haulage, 5
Precedence Constraint, 34, 91

Receiver, 5
Relaxation, 39
Resource, 30

166 INDEX

s-t-flow, 18
Sender, 5
Service Time, 35
Set Covering Problem, 25
Set Partitioning Problem, 25, 36, 45
Shipping Company, 7
Shortest Path Problem, 21
Simulated Annealing, 26, 81, 109
Social Constraint, 36
Stay-with Procedure, 39
Street-turn, 10, 38, 60
Strongly Connected Component, 16
Strongly Connected Digraph, 16
Sub-graph, 15
Sub-tour, 23
Symmetric Distance Matrix, 21
Symmetric Traveling Salesman Prob-

lem, 23

Tabu List, 42
Tabu Tenure, 42
Tail, 15
Theorem of Dilworth, 24
Theorem of König, 17
Threshold Accepting, 41
Time Horizon, 34
Time Window, 32
Tour, 22
Tractor, 30
Trailer, 30
Transitive Closure, 16, 103
Transitive Digraph, 16
Transport Operator, 7
Transportation Mode, 5
Transportation Problem, 20
Traveling Salesman Problem, 22
Truck, 30
Trucking Company, 7
TSPLIB, 32

Unbounded Problem, 14

Undirected Graph, 15
Unproductive Movement, 1, 9, 29

Vehicle Routing Problem, 23, 45
Vertex Cover, 16

Weighted Graph, 15
Well-defined Task, 31

INDEX 167

,

	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Containerization
	1.1.1 History
	1.1.2 Maritime Container Transportation

	1.2 Intermodal Freight Transportation
	1.2.1 Container Hinterland Drayage
	1.2.2 Actors
	1.2.3 Empty Container Repositioning

	1.3 Objectives and Structure of the Thesis

	2 Basic Definitions
	2.1 Combinatorial Optimization Problems
	2.1.1 Linear, Integer and Mixed Integer Programming
	2.1.2 Graphs
	2.1.3 Flow Problems
	2.1.4 Routing and Scheduling Problems
	2.1.5 More Mathematics

	2.2 Algorithms
	2.2.1 Complete Algorithms/Exact Algorithms
	2.2.2 Approximate Algorithms/Heuristics
	2.2.3 Metaheuristics

	3 Literature Overview
	3.1 Classification of Drayage Problems
	3.1.1 (Multiple) Traveling Salesman Problem
	3.1.2 Vehicle Routing Problems with Synchronization

	3.2 Full Truckload Problem
	3.3 Repositioning of Empty Containers
	3.3.1 No Separation
	3.3.2 Separation

	3.4 Multi-size Container Transportation
	3.5 Challenges

	4 Multi-size Container Inland Transportation
	4.1 Problem Definition
	4.1.1 Hinterland Requests
	4.1.2 Instance

	4.2 Solution

	5 Exact Approach
	5.1 Graph Definition
	5.1.1 Hinterland Requests
	5.1.2 (Un-)loading Operations
	5.1.3 Container Storage Operations
	5.1.4 Entire Graph Representation

	5.2 Assigning Containers
	5.2.1 Decision Variables
	5.2.2 Balance Values
	5.2.3 Capacities
	5.2.4 Entire Model

	5.3 Building Routes
	5.3.1 Decision Variables
	5.3.2 Entire Model

	5.4 Coupling of the Models
	5.5 Objectives

	6 Heuristic Approach
	6.1 Models for Containers
	6.1.1 Connected Components
	6.1.2 Graph
	6.1.3 Assignment of Empty Containers
	6.1.4 Assignment of Empty and Fully Loaded Containers

	6.2 Heuristics for Truck Routes
	6.2.1 Preliminary Considerations
	6.2.2 Construction of Routes
	6.2.3 Feasibility Check
	6.2.4 Estimations of Time Windows and Durations
	6.2.5 Evaluators

	6.3 Large Neighborhood Search
	6.3.1 Construction of the Initial Solution
	6.3.2 Improvement of the Initial Solution
	6.3.3 Simulated Annealing

	6.4 Implementation Details
	6.4.1 Partitioning of Large Instances
	6.4.2 Implementation of the Feasibility Check
	6.4.3 Route Assignment
	6.4.4 Computation Time of the Exact Approach

	7 Computational Study
	7.1 Test Instances
	7.1.1 Randomly Generated Instances
	7.1.2 Instances of Literature Sources

	7.2 Structure of the Analysis
	7.3 Exact Approach
	7.4 Heuristic Approach
	7.4.1 Parameter Adjustments
	7.4.2 Analysis of the Implemented Operators
	7.4.3 Solution Quality
	7.4.4 Application to Real-world Instances

	7.5 Summary of Findings

	8 Conclusion and Future Research
	8.1 Conclusion
	8.2 Future Research

	Appendix A Further Computational Results
	Bibliography
	Index

