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a b s t r a c t 

This paper introduces the pickup and delivery traveling salesman problem with handling costs (PDTSPH). 

In the PDTSPH, a single vehicle has to transport loads from origins to destinations. Loading and unloading 

of the vehicle is operated in a last-in-first-out (LIFO) fashion. However, if a load must be unloaded that 

was not loaded last, additional handling operations are allowed to unload and reload other loads that 

block access. Since the additional handling operations take time and effort, penalty costs are associated 

with them. The aim of the PDTSPH is to find a feasible route such that the total costs, consisting of 

travel costs and penalty costs, are minimized. We show that the PDTSPH is a generalization of the pickup 

and delivery traveling salesman problem (PDTSP) and the pickup and delivery traveling salesman problem 

with LIFO loading (PDTSPL). We propose a large neighborhood search (LNS) heuristic to solve the problem. 

We compare our LNS heuristic against best known solutions on 163 benchmark instances for the PDTSP 

and 42 benchmark instances for the PDTSPL. We provide new best known solutions on 52 instances for 

the PDTSP and on 15 instances for the PDTSPL, besides finding the optimal or best known solution on 

102 instances for the PDTSP and on 23 instances for the PDTSPL. The LNS finds optimal or near-optimal 

solutions on instances for the PDTSPH. Results show that PDTSPH solutions provide large reductions in 

handling compared to PDTSP solutions, while increasing the travel distance by only a small percentage. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

In this paper, we introduce, model and solve the pickup and

delivery traveling salesman problem with handling costs (PDTSPH).

In the PDTSPH, a single vehicle based at a central depot must

fulfill a set of requests. Each request determines the transportation

of items from a specific pickup location, where the items are

loaded into the vehicle, to a specific delivery location, where the

items are unloaded from the vehicle. We consider a rear-loaded

vehicle with a single (horizontal) stack that is operated in a last-

in-first-out (LIFO) fashion. At a pickup location, items are placed

on top of the stack. At a delivery location, if an item is not on

top of the stack, there are items on top blocking the access, and

handling operations are required to unload and reload the items

that blocked the access. Since the additional handling operations

of unloading and reloading items take time and effort, penalty

costs are associated with them. Fig. 1 shows two feasible routes,

in which route ( Fig. 1 a) requires no additional handling, whereas
∗ Corresponding author. 
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n route ( Fig. 1 b) an additional handling operation is needed to

ove item 3 upon delivery of item 2. The aim of the PDTSPH is to

nd a feasible route such that the total costs, consisting of travel

osts and penalty costs, are minimized. 

The PDTSPH as presented here arises in the transportation

f less-than-truckload items, and is especially faced by freight

ransportation companies responsible for transporting large items

hat are easy to load and unload, such as cars. A typical challenge

or these companies is to define a route along all customers by

nding a trade-off between travel costs and additional handling

perations. Minimizing travel costs can result in routes with a

arge number of additional handling operations, whereas minimiz-

ng the additional handling operations may result in sub-optimal

outes with respect to the travel distance. Therefore, it is relevant

or these companies to simultaneously take both aspects into

ccount when generating a vehicle route. 

To our knowledge, the PDTSPH has not yet been studied in

iterature. Related is the research of Battarra, Erdo ̌gan, Laporte, and

igo (2010) and Erdo ̌gan, Battarra, Laporte, and Vigo (2012) . They

ropose exact and heuristic methods for a problem that considers

equests that either originate from or destinate to the depot. This

mplies that all loads destined to customers are already in the

http://dx.doi.org/10.1016/j.ejor.2016.07.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
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Fig. 1. Two feasible routes, in which route (a) does not require any additional handling operations and route (b) requires an additional handling operation. In the figure, i + 

and i − correspond to the pickup and delivery location of request i , respectively. 
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ehicle at the start of the route, and all loads originating from

ustomers are in the vehicle at the end of the route. 

The PDTSPH is a generalization of two problems, as we will

rove in Section 3 , namely the pickup and delivery traveling sales-

an problem (PDTSP), and the pickup and delivery traveling sales-

an problem with LIFO loading (PDTSPL). The aim of the PDTSP is

o find a vehicle route that fulfills all requests and minimizes trans-

ortation costs. Additional handling operations are not considered

n the PDTSP. Exact and heuristic methods have been proposed for

he PDTSP. Savelsbergh (1990) describes different local search algo-

ithms, Healy and Moll (1995) propose an extension of traditional

mprovement algorithms, and Renaud, Boctor, and Ouenniche

20 0 0) develop a two-stage heuristic consisting of a construction

hase and a deletion and reinsertion phase. Different perturbation

euristics are proposed by Renaud, Boctor, and Laporte (2002) and

umitrescu, Ropke, Cordeau, and Laporte (2010) present a branch-

nd-cut algorithm. For the pickup and delivery vehicle routing

roblem, a variant of the PDTSP that considers multiple vehicles,

e refer to Bent and Hentenryck (2006) , and Ropke and Pisinger

2006) . The aim of the PDTSPL is to find a vehicle route that com-

letes all requests and minimizes transportation costs, while pro-

ibiting additional handling operations. This implies that a vehi-

le can only visit a delivery location if the corresponding item

s on top of the stack. Exact and heuristic methods have been

roposed for the PDTSPL. Cassani and Righini (2004) propose a

ariable neighborhood descent heuristic, Carrabs, Cordeau, and La-

orte (2007b) introduce a variable neighborhood search (VNS)

euristic, Carrabs, Cerulli, and Cordeau (2007a) propose a branch-

nd-bound algorithm, Cordeau, Iori, Laporte, and Salazar González

2010) develop a branch-and-cut algorithm, Li, Lim, Oon, Qin, and

u (2011) present a VNS heuristic based on a tree representation,

ôté, Gendreau, and Potvin (2012) describe a large neighborhood

earch heuristic, and Wei, Qin, Zhu, and Wan (2015) propose a

NS with a different perturbation operator. We refer to Cherkesly,

esaulniers, and Laporte (2015) and Benavent, Landete, Mota, and

irado (2015) for the pickup and delivery problem with LIFO load-

ng, a variant of the PDTSPL that considers multiple vehicles. 

The contribution of our paper is fourfold: (1) we formally de-

cribe and formulate the PDTSPH, (2) we prove that the problem

s a generalization of the PDTSP and of the PDTSPL, and (3) we

erive a heuristic solution method to efficiently solve the problem

nd its special cases. Namely, we propose a large neighborhood

earch (LNS) metaheuristic, that includes new removal operators,

nd is shown to provide good quality solutions. (4) As a part of

xtensive computational results on benchmark instances for the

DTSP, the PDTSPL, and for the newly defined PDTSP, we provide

ew best known solutions on 52 instances for the PDTSP and on

5 instances for the PDTSPL. 

The remainder of this paper is structured as follows. In

ection 2 , we develop a binary integer programming formulation

or the PDTSPH. In Section 3 , we prove that the PDTSPH is a gener-

lization of the PDTSP and the PDTSPL. Section 4 describes the pro-

osed LNS heuristic. Section 5 reports the experimental setting and

he results of extensive computational experiments performed on

he three classes of problems, followed by conclusions in Section 6 .
. Mathematical formulation 

The PDTSPH is defined on a directed graph G = (V, A ) , where

 is the set of nodes and A is the set of arcs. Let n be the number

f requests. The set of nodes is given by V = { 0 , 1 , . . . , 2 n } , where

 corresponds to the depot, P = { 1 , . . . , n } is the set of pickup

odes, and D = { n + 1 , . . . , 2 n } is the set of delivery nodes. Let

 

′ = V \{ 0 } be the set of nodes excluding the depot, and let A 

′ be

he subset of arcs having both endpoints in V 

′ . Each request i is

ssociated to a pickup node i ∈ P and a delivery node (n + i ) ∈ D,

raphically denoted by i + and i −, respectively. For convenience,

e also refer to the set P as the set of requests. Each request

orresponds to the transportation of one item. The travel cost of

rc ( i , j ) ∈ A corresponds to the travel distance and is given by c ij .

e assume that c ij satisfies the triangle inequality. An additional

andling operation consists of unloading and reloading an item at

 location. We only allow an item to be unloaded and reloaded

hen it is blocking the delivery operation, i.e., if an item is on

op of the item to be delivered. We assume that the reloading

equence is the inverse of the unloading sequence, i.e., the relative

ositions of the items remain the same. This limitation will be

ifted at a later point in the paper. The penalty cost associated

o an additional handling operation is fixed and given by h . The

umber of handling operations corresponding to loading the items

t their pickup locations and unloading them at their delivery lo-

ations is constant and cannot be avoided. Therefore, without loss

f generality, in our formulation no penalty costs are associated to

hem. 

The flow based formulation of the binary integer program

or the PDTSPH is based on the model of Erdo ̌gan, Cordeau, and

aporte (2009) for the PDTSP. Let x ij be a binary variable equal to

ne if and only if arc ( i , j ) ∈ A is traveled by the vehicle. Let y 1 
i jk 

,

 

2 
i jk 

and y 3 
i jk 

be three binary flow variables. Variable y 1 
i jk 

is equal

o one if and only if arc ( i , j ) ∈ A is on the partial path from node

 to node k ; variable y 2 
i jk 

is equal to one if and only if arc ( i , j ) ∈
 is on the partial path from node k to node n + k ; variable y 3 

i jk 
is

qual to one if and only if arc ( i , j ) ∈ A is on the partial path from

ode n + k to node 0. We introduce binary variables r kl , ∀ k ∈ P , l

 D , equal to one if and only if item k is unloaded and reloaded

t delivery node l . The total number of handling operations at

elivery node l ∈ D is equal to �k ∈ P r kl , which is equal to the

umber of items that block access, i.e., all items on top of item

 − n in the stack. Then, the PDTSPH is formulated as: 

in 

∑ 

(i, j) ∈ A 
c i j x i j + h 

∑ 

k ∈ P 

∑ 

l∈ D 
r kl (1) 

.t. 
∑ 

j :(i, j ) ∈ A 
x i j = 1 ∀ i ∈ V (2) 

∑ 

 :(i, j) ∈ A 
x i j = 1 ∀ j ∈ V (3) 
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Table 1 

The number of feasible solutions for n requests. 

n PDTSPH PDTSP PDTSPL 

1 1 1 1 

2 6 6 4 

3 90 90 30 

4 2520 2520 336 

5 113,400 113,400 5040 

6 7,484,400 7,484,400 95,040 

7 681,080,400 681,080,400 2,162,160 

8 81,729,648,0 0 0 81,729,648,0 0 0 57,657,600 
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i  
∑ 

j :(i, j ) ∈ A 
y 1 i jk −

∑ 

j:( j,i ) ∈ A 
y 1 jik = 

{ 

1 if i = 0 

−1 if i = k 
0 otherwise 

∀ i ∈ V, k ∈ P (4)

∑ 

j :(i, j ) ∈ A 
y 2 i jk −

∑ 

j:( j,i ) ∈ A 
y 2 jik = 

{ 

1 if i = k 
−1 if i = n + k 
0 otherwise 

∀ i ∈ V, k ∈ P (5)

∑ 

j :(i, j ) ∈ A 
y 3 i jk −

∑ 

j:( j,i ) ∈ A 
y 3 jik = 

{ 

1 if i = n + k 
−1 if i = 0 

0 otherwise 
∀ i ∈ V 

′ , k ∈ P (6)

y 1 i jk + y 3 i jk = x i j ∀ (i, j) ∈ A \ A 

′ , k ∈ P (7)

y 1 i jk + y 2 i jk + y 3 i jk = x i j ∀ (i, j) ∈ A 

′ , k ∈ P (8)

r kl ≥
∑ 

i :(i,l−n ) ∈ A ′ 
y 2 i,l−n,k −

∑ 

i :(l,i ) ∈ A ′ 
y 2 lik ∀ k ∈ P, l ∈ D (9)

r kl ∈ { 0 , 1 } ∀ k ∈ P, l ∈ D (10)

x i j ∈ { 0 , 1 } ∀ (i, j) ∈ A (11)

y 1 i jk , y 3 i jk ∈ { 0 , 1 } ∀ (i, j) ∈ A, k ∈ P (12)

y 2 i jk ∈ { 0 , 1 } ∀ (i, j) ∈ A 

′ , k ∈ P (13)

The objective function (1) minimizes the total costs, consisting

of the travel costs and penalty costs associated to the additional

handling operations. Constraints (2) and (3) are standard degree

constraints. Constraint (4) ensure that there is a path from the

depot to each pickup node. Due to constraint (5) , the pickup node

of a request is visited before its corresponding delivery node.

Constraint (6) ensure that there is a path from each delivery node

to the depot. Moreover, constraints (4) –(6) eliminate subtours.

Constraints (7) and (8) couple the overall routing variables with

the flow variables. Constraint (9) are introduced for this specific

problem and ensure that variables r kl are equal to one if item k

∈ P is on top of item l − n when arriving at delivery node l ∈
D . When minimizing the objective function (1) , variable r kl will

be equal to one if and only if an additional handling operation

is associated to item k at delivery node l . Constraints (10) –(13)

define the domain and nature of the variables. 

3. Special cases of the PDTSPH 

In this section, we prove that the PDTSPH is a generalization

of both the PDTSP, where handling operations are not considered,

and the PDTSPL, where handling operations are not allowed. First,

we prove that the PDTSP and the PDTSPH with penalty cost h = 0

are equivalent. Then, we show that the PDTSPL and the PDTSPH

with h > 2 max k ∈ P c k,n + k are equivalent. At the end, we compare

the size of the feasible solution space of the PDTSPH, the PDTSP

and the PDTSPL. 

Theorem 1. The PDTSP is equivalent to the PDTSPH with h = 0 . 

Proof. Let a problem instance be given. Then, if we set h = 0 for

the PDTSPH, the objective of the PDTSPH and the objective of the

PDTSP are to minimize travel costs and constraint (9) becomes re-

dundant. Hence, it can easily be seen that the PDTSP is equivalent

to the PDTSPH with h = 0 . �
heorem 2. The PDTSPL is equivalent to the PDTSPH with h >

 max k ∈ P c k,n + k . 

roof. Let a problem instance be given. By contradiction, as-

ume there exists an optimal solution to the PDTSPH with h > 2

ax k ∈ P c k,n + k and k ′ ∈ P , l ∈ D such that r k ′ l > 0 . Let this solu-

ion be represented by s ∗ = (0 , . . . , k ′ , . . . , n + k ′ , . . . , 2 n + 1) . Let s ′
e the route derived from route s ∗, where node n + k ′ is visited di-

ectly after node k ′ , that is s ′ = (0 , . . . , k ′ , n + k ′ , . . . , 2 n + 1) . Since

he triangle inequality holds, the objective value f of solution s ′ can

e expressed by f (s ′ ) ≤ f (s ∗) + 2 c k ′ ,n + k ′ − h < f (s ∗) + 2 c k ′ ,n + k ′ −
 max 

k ∈ P 
c k,n + k ≤ f (s ∗) . This contradicts the assumption that s ∗ is op-

imal. Hence, there does not exist k ′ ∈ P , l ∈ D such that r k ′ l > 0 .

ence, an optimal solution to the PDTSPH with h > 2 max k ∈ P c k,n + k 
oes not contain any additional handling operations. Therefore, it

an easily be seen that the PDTSPL is equivalent to the PDTSPH

ith h > 2 max k ∈ P c k,n + k . �

The feasible solution space of the PDTSP has the same size as

hat of the PDTSPH, whereas the feasible solution space of the

DTSPL is only a small subset of the solution space of the PDTSPH.

he number of feasible solutions with n requests for the three

roblem classes are given in Table 1 , which is based on Table 1

iven in Cordeau et al. (2010) . The incorporation of the handling

osts in the PDTSP increases its difficulty. This is due to an extra

et of constraints required to keep track of the handling operations.

. Large neighborhood search heuristic 

In this section, we present our large neighborhood search (LNS)

euristic for the PDTSPH. The concept of LNS was introduced by

haw (1998) for the vehicle routing problem with time windows. It

as been extended and successfully applied to many different rout-

ng problems, see, e.g., Azi, Gendreau, and Potvin (2014) , Côté et al.

2012) , and Masson, Lehuédé, and Péton (2013) . The general struc-

ure of the LNS heuristic is to iteratively destroy and repair a solu-

ion in order to improve it, as depicted in Algorithm 1 . The pro-

edure starts with an initial solution (line 1). Several operators are

sed to iteratively destroy and repair the current solution (lines 5

nd 6). The acceptance of a solution is determined by a simulated

nnealing-based acceptance criterion (line 9) ( Kirkpatrick, Gelatt, &

ecchi, 1983 ). The procedure continues until a stopping criterion is

et (line 3). 

Details about the initial solution are provided in Section 4.1 ,

he list of removal operators is presented in Section 4.2 , the rein-

ertion procedure is described in Section 4.3 , and the acceptance

nd stopping criterion are detailed in Section 4.4 . Section 4.5 dis-

usses the applicability of the LNS on the PDTSPH under different

eloading policies. 

.1. Initial solution 

The route corresponding to the initial solution is constructed

ncrementally, starting from a route consisting of only the depot.
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Algorithm 1: Structure of the LNS heuristic. 

1 Construct initial solution S; 

2 S BEST = S; 

3 while stopping criterion is not met do 

4 S ′ = S; 

5 Remove q requests from S ′ ; 
6 Reinsert removed requests in S ′ ; 
7 if f (S ′ ) < f (S BEST ) then 

8 S BEST = S ′ ; 
end 

9 if Accept (S ′ , S) then 

10 S = S ′ ; 
end 

end 

11 Result : S BEST ; 
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or each request, the costs for inserting the pickup and delivery

ode at their best positions are calculated. The pickup and delivery

odes corresponding to the request with the smallest cost increase

re inserted in their best positions. The procedure continues until

ll pickup and delivery nodes are inserted in the route. This

rocedure corresponds to the basic greedy heuristic proposed by

opke and Pisinger (2006) . 

.2. Removal operators 

At each iteration, the current solution is modified by removing

nd later reinserting the pickup and delivery nodes corresponding

o a set of requests. The number of requests to be removed is set

qual to q , which is a random number dependent on the instance

ize. One of several removal operators is randomly selected and

t determines the specific set of requests to be removed from

he solution. We propose five different operators. Two of them,

he random removal operator and the worst removal operator, are

escribed by Ropke and Pisinger (2006) . The three other operators

re newly introduced: the worst distance removal and the worst

andling removal operators, which are based on the worst removal

perator mentioned before; and the block removal operator, which

s inspired by the relocate-block operator introduced by Cassani

nd Righini (2004) . These five operators are now described. 

.2.1. Random removal 

The random removal operator randomly selects q requests and

emoves the pickup and delivery nodes corresponding to them. 

.2.2. Worst removal 

In the worst removal operator, introduced by Ropke and

isinger (2006) , the cost of a request k ∈ P in route s is given by

 k (s ) = f (s ) − f −k (s ) , i.e., the objective value of the route minus

he objective value of the route after removing nodes k and n + k .

he selection of q requests is done randomly, and the probability

f selecting a request increases with the costs. This is done as

ollows. Let L be the array of all requests sorted by descending

ost. Let y be randomly drawn from the interval [0, 1). Request

 = L [ � y p | L |	 ] is selected, where p is a parameter defined in the

xperimental setting. Request r is removed from array L . The pro-

edure continues until q requests are selected. After the selection

f q requests, the pickup and delivery nodes corresponding to

hese requests are removed from the route. 

.2.3. Worst distance removal 

The worst distance removal operator is based on the worst

emoval operator. The cost of a request k ∈ P is given by
˜  k (s ) = f d (s ) − f d −k 
(s ) , where f d ( s ) corresponds to the distance

osts of route s . The selection of q requests is done at random, and

he probability of selecting a request increases with the costs, as

reviously explained. The pickup and delivery nodes corresponding

o the selected requests are removed from the solution. 

.2.4. Worst handling removal 

The worst handling removal operator works similar to the

orst distance removal operator, but with the costs based on

enalty costs for additional handling operations instead of routing

istances. 

.2.5. Block removal 

The block removal operator randomly selects one request k ∈
 . The requests for which the pickup and/or delivery nodes are

etween nodes k and n + k are also selected. The pickup and

elivery nodes corresponding to the selected requests are removed

rom the solution. If the number of involved requests exceeds q ,

e limit the number of removed requests to the first q requests,

ince we do not want to destroy too much of the route. 

.3. Insertion operator 

The insertion operator reinserts requests in the route that were

reviously removed by the removal operators. The insertion of

ickup and delivery nodes is computationally intensive, because

t not only requires the computation of the difference in routing

osts, but also the calculation of the difference in additional han-

ling operations. In our LNS heuristic, we only apply the greedy

nsertion operator. Preliminary experiments have shown that incor-

orating other operators such as the basic greedy heuristic and the

egret heuristic proposed in Ropke and Pisinger (2006) do not lead

o significant improvements, while increasing the computation

ime significantly. 

The greedy insertion operator randomly determines the se-

uence of the requests to be inserted. Then, based on this

equence, the pickup and delivery nodes corresponding to the

urrent request are each inserted at their best position. 

.4. Acceptance and stopping criterion 

In a given iteration, a new solution is accepted if it is better

han the current solution. If the new solution is worse than the

urrent solution, the acceptance of the new solution is determined

y a simulated annealing criterion ( Kirkpatrick et al., 1983 ). Given

he current solution s , a new solution s ′ is accepted with prob-

bility e −( f (s ′ ) − f (s )) /T , where f ( s ) denotes the objective value of

olution s , and T > 0 is the temperature at the given iteration. At

he start of the solution procedure the temperature is set to T start ,

fter which the temperature decreases each iteration by T = c · T ,

here 0 < c < 1 is the cooling rate. The stopping criterion is

ased on the number of iterations performed. The maximum

umber of iterations, and the values for the parameters T start and

 , are determined by the experiments reported in Section 5 . 

.5. Reloading policies 

At a delivery location, the items that need additional handling

perations are unloaded from the vehicle and reloaded afterwards.

he sequence in which the items are reloaded is determined by

he reloading policy. The LNS heuristic as described in this section

an be applied to the PDTSPH under different reloading policies

y computing the number of additional handling operations ac-

ordingly. We consider the PDTSPH under two different reloading

olicies. For reloading policy 1, which we described as the base
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Table 2 

Average gap with respect to the best found solutions when excluding different removal operators. 

Excluded removal operator 

h None (percent) Random removal 

(percent) 

Worst removal 

(percent) 

Worst distance removal 

(percent) 

Worst handling 

removal (percent) 

Block removal (percent) 

0 0.33 0.33 0.33 0.31 0.30 0.57 

10 0.46 0.51 0.46 0.45 0.57 0.55 

100 0.44 0.45 0.46 0.39 0.44 0.45 

10 0,0 0 0 0.41 0.47 0.44 0.43 0.44 0.45 

Table 3 

Results for the small PDTSPH instances. 

Instance Nodes h ILP: LNS: average results LNS: best results Time (seconds) 

Cost Time (seconds) Cost Gap (percent) Cost Gap (percent) 

att532 19 10 3911 .0 37 .3 3911 .0 0 .00 3911 .0 0 .00 0 .5 

19 50 4122 .0 151 .1 4122 .0 0 .00 4122 .0 0 .00 0 .3 

brd14051 19 10 4389 .0 181 .0 4389 .0 0 .00 4389 .0 0 .00 0 .3 

19 50 4528 .0 525 .7 4528 .3 0 .01 4528 .0 0 .00 0 .3 

d15112 19 500 74452 .0 89 .8 74452 .0 0 .00 74452 .0 0 .00 0 .4 

19 10 0 0 76040 .0 127 .4 76040 .0 0 .00 76040 .0 0 .00 0 .3 

d18512 19 1 4245 .0 5 .7 4245 .0 0 .00 4245 .0 0 .00 0 .3 

19 10 4288 .0 33 .2 4288 .0 0 .00 4288 .0 0 .00 0 .3 

fnl4461 19 1 1804 .0 2 .0 1804 .0 0 .00 1804 .0 0 .00 0 .3 

19 10 1847 .0 3 .0 1847 .0 0 .00 1847 .0 0 .00 0 .3 

nrw1379 19 10 2553 .0 25 .6 2553 .0 0 .00 2553 .0 0 .00 0 .3 

19 50 2622 .0 51 .8 2622 .0 0 .00 2622 .0 0 .00 0 .3 

pr1002 19 50 12749 .0 3 .9 12749 .0 0 .00 12749 .0 0 .00 0 .3 

19 100 12947 .0 4 .0 12947 .0 0 .00 12947 .0 0 .00 0 .3 

ts225 19 500 190 0 0 .0 3 .5 190 0 0 .0 0 .00 190 0 0 .0 0 .00 0 .3 

19 10 0 0 20 0 0 0 .0 4 .7 20 0 0 0 .0 0 .00 20 0 0 0 .0 0 .00 0 .3 

att532 23 50 4553 .0 410 .6 4553 .0 0 .00 4553 .0 0 .00 0 .6 

23 100 4748 .0 2560 .6 4748 .0 0 .00 4748 .0 0 .00 0 .5 

brd14051 23 10 4467 .0 1091 .7 4467 .0 0 .00 4467 .0 0 .00 0 .6 

23 50 4644 .0 4462 .7 4644 .0 0 .00 4644 .0 0 .00 0 .6 

d15112 23 500 81587 .0 1624 .9 81587 .0 0 .00 81587 .0 0 .00 0 .6 

23 10 0 0 84929 .0 27918 .1 84929 .0 0 .00 84929 .0 0 .00 0 .6 

d18512 23 1 4286 .0 25 .1 4286 .0 0 .00 4286 .0 0 .00 0 .6 

23 10 4329 .0 210 .8 4329 .0 0 .00 4329 .0 0 .00 0 .6 

fnl4461 23 1 1887 .0 7 .2 1887 .0 0 .00 1887 .0 0 .00 0 .6 

23 10 1926 .0 8 .3 1926 .0 0 .00 1926 .0 0 .00 0 .6 

nrw1379 23 10 2755 .0 582 .4 2755 .0 0 .00 2755 .0 0 .00 0 .6 

23 50 2919 .0 6030 .7 2939 .0 0 .69 2939 .0 0 .69 0 .6 

pr1002 23 50 13674 .0 7 .4 13674 .0 0 .00 13674 .0 0 .00 0 .7 

23 100 13872 .0 10 .4 13872 .0 0 .00 13872 .0 0 .00 0 .6 

ts225 23 500 230 0 0 .0 15 .0 230 0 0 .0 0 .00 230 0 0 .0 0 .00 0 .5 

23 10 0 0 240 0 0 .0 14 .7 240 0 0 .0 0 .00 240 0 0 .0 0 .00 0 .5 

Average 16471 .0 14 4 4 .7 16471 .7 0 .02 16471 .7 0 .02 0 .4 
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case for the PDTSPH in Section 2 , we assume that the reloading se-

quence is the inverse of the unloading sequence. This implies that

the relative position of the items that need additional handling op-

erations remains the same before and after the additional handling

operations. For reloading policy 2 we assume that the reloaded

items are positioned in the vehicle in the sequence in which they

will be delivered, i.e., if items i 1 and i 2 have to be reloaded and

delivery location i −
1 

is visited before delivery location i −
2 
, item i 1 

is positioned on top of item i 2 in the stack. In Section 5.5 , we

investigate the effect of the reloading policies on the total costs. 

5. Computational experiments 

The LNS heuristic was coded in Java and the experiments

were performed on a computer with an Intel(R) Core(TM) i3-

2120 processor running at 3.3 GHz. The mathematical model in

Section 2 was implemented in AIMMS 4.9 and solved using CPLEX

12.6.2. We describe the parameter setting for the LNS heuristic in

Section 5.1 . In Section 5.2 we evaluate the effect of the removal
perators. In Section 5.3 we compare the results obtained by the

NS heuristic with the results of a branch-and-bound algorithm

pplied to the binary integer program from Section 2 on small

nstances of the general PDTSPH. An evaluation of the trade-off

etween the routing costs and penalty costs corresponding to

he additional handling operations is presented in Section 5.4 .

he effect of the reloading policies is given in Section 5.5 . In

ection 5.6 we compare the results obtained by the LNS heuristic

ith the results reported in the literature on special cases of the

roblem, namely the PDTSP and the PDTSPL. 

.1. LNS parameter settings 

For the purpose of tuning the parameters of our heuristic,

e created a test set of PDTSPH problems. This test set contains

6 instances with up to 101 nodes, which are derived from 24

nstances of the set of Carrabs et al. (2007b) . These were in turn

erived from the six instances fnl 4461, brd 14051, d 15112, d 18512,

rw 1379 , and pr 1002 of TSPLIB ( Reinelt, 1991 ). For each of the
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Table 4 

Comparative results for the two reloading policies. 

Instance Nodes h Objective value Gap (percent) 

Reloading policy 1 Reloading policy 2 

prob35a 71 5 8697 .0 8220 .0 −5 .48 

50 11735 .0 10564 .0 −9 .98 

prob35b 71 5 8642 .0 8316 .0 −3 .77 

50 11045 .0 10257 .0 −7 .13 

prob35c 71 5 8761 .0 8447 .0 −3 .58 

50 11984 .0 10906 .0 −9 .00 

prob35d 71 5 8931 .0 8394 .0 −6 .01 

50 11378 .0 10736 .0 −5 .64 

prob35e 71 5 9193 .0 8889 .0 −3 .31 

50 12202 .0 11236 .0 −7 .92 

KROA99A 99 10 25672 .0 25451 .0 −0 .86 

50 27680 .0 26805 .0 −3 .16 

KROA99B 99 10 28313 .0 27677 .0 −2 .25 

50 32237 .0 30826 .0 −4 .38 

KROA99C 99 10 29275 .0 27386 .0 −6 .45 

50 35685 .0 31606 .0 −11 .43 

KROB99A 99 10 26218 .0 26100 .0 −0 .45 

50 27597 .0 27320 .0 −1 .00 

KROB99B 99 10 26914 .0 26200 .0 −2 .65 

50 29799 .0 28769 .0 −3 .46 

KROB99C 99 10 29157 .0 27366 .0 −6 .14 

50 37311 .0 32655 .0 −12 .48 

KROC99A 99 10 26703 .0 26543 .0 −0 .60 

50 28326 .0 27914 .0 −1 .45 

KROC99B 99 10 26905 .0 26415 .0 −1 .82 

50 30116 .0 28487 .0 −5 .41 

KROC99C 99 10 28884 .0 27525 .0 −4 .71 

50 35917 .0 31107 .0 −13 .39 

KROD99A 99 10 25869 .0 25811 .0 −0 .22 

50 27169 .0 27028 .0 −0 .52 

KROD99B 99 10 27482 .0 27080 .0 −1 .46 

50 30611 .0 29445 .0 −3 .81 

KROD99C 99 10 28983 .0 27677 .0 −4 .51 

50 35824 .0 32353 .0 −9 .69 

KROE99A 99 10 26452 .0 26313 .0 −0 .53 

50 27889 .0 27614 .0 −0 .99 

KROE99B 99 10 27834 .0 27471 .0 −1 .30 

100 33231 .0 31642 .0 −4 .78 

KROE99C 99 10 29834 .0 27675 .0 −7 .24 

50 36777 .0 31853 .0 −13 .39 

N101P1 101 1 1095 .0 920 .0 −15 .98 

5 1339 .0 1169 .0 −12 .70 

N101P2 101 0 .5 926 .0 810 .5 −12 .47 

1 1070 .0 886 .0 −17 .20 

N101P3 101 0 .5 946 .5 844 .5 −10 .78 

1 1100 .0 927 .0 −15 .73 

N101P4 101 0 .5 981 .5 900 .5 −8 .25 

1 1088 .0 958 .0 −11 .95 

N101P5 101 1 1085 .0 945 .0 −12 .90 

5 1395 .0 1224 .0 −12 .26 

brd14051 75 1 5454 .0 5386 .0 −1 .25 

10 6210 .0 5883 .0 −5 .27 

pr1002 75 10 32738 .0 31638 .0 −3 .36 

50 37551 .0 35128 .0 −6 .45 

fnl4461 75 5 4347 .0 4132 .0 −4 .95 

10 4794 .0 4459 .0 −6 .99 

d18512 75 1 6926 .0 6795 .0 −1 .89 

10 7613 .0 7350 .0 −3 .45 

d15112 75 100 145387 .0 140028 .0 −3 .69 

500 170419 .0 161395 .0 −5 .30 

nrw1379 75 1 4653 .0 4575 .0 −1 .68 

10 5543 .0 5188 .0 −6 .40 

brd14051 101 1 7354 .0 7159 .0 −2 .65 

10 8427 .0 7731 .0 −8 .26 

pr1002 101 10 41469 .0 39511 .0 −4 .72 

50 49157 .0 44248 .0 −9 .99 

fnl4461 101 5 6053 .0 5324 .0 −12 .04 

10 6749 .0 5685 .0 −15 .77 

d18512 101 1 7365 .0 7193 .0 −2 .34 

10 8920 .0 8029 .0 −9 .99 

d15112 101 100 180911 .0 169697 .0 −6 .20 

500 226152 .0 203957 .0 −9 .81 

nrw1379 101 1 5647 .0 5416 .0 −4 .09 

10 7376 .0 6209 .0 −15 .82 

Average 26911 .80 25348 .37 −6 .42 
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Fig. 2. Illustrative examples showing the trade-off between the distance costs and the number of handling operations. 
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24 instances, we have created four new instances by setting the

penalty cost of an additional handling operation to 0, 10, 100 and

10 0 , 0 0 0 . This makes sure that we have instances for the PDTSP, if

the penalty cost is set to 0, for the PDTSPL, if the penalty cost is

set to 10 0 , 0 0 0 , and something in between. We have modified the

instances by interchanging the delivery locations corresponding

to the requests as follows. The delivery location corresponding to

item i ∈ P , i 
 = n , is matched with the pickup location of item i + 1 ,

and the delivery location corresponding to item i = n is matched

with the pickup location of item i = 1 . 

We start our parameter tuning by setting the parameters

based on settings from literature. Based on Ropke and Pisinger

(2006) , the start temperature is set such that the probability of

accepting a solution that is 5 percent worse than the current

solution is equal to 0.5 and the cooling rate c at 0.999875716

such that the temperature at the last iteration is 0 . 2 percent of

the start temperature. The parameter p is set to 3. The number

of removed requests in one iteration q is a random value in the

interval [min {30, 0.20 n }, min {50, 0.55 n }], which is based on the

experiments in Côté et al. (2012) . Based on preliminary analysis,

we set the number of iterations to 50 , 0 0 0 , which results in a

good balance between solution quality and computation time. 

We have validated these parameter setting by changing each

of the parameter values individually to smaller and larger values,

while keeping the remaining parameters fixed. We did not find
ignificant improvements for one of the alternative parameter

ettings. Therefore, we have decided to keep the values as spec-

fied above. The ALNS heuristic described by Ropke and Pisinger

2006) incorporates an adaptive mechanism that updates the

robabilities of the operators based on their performance. We ob-

erved that incorporating the adaptive mechanism in our heuristic

id not yield significant improvements. 

.2. Impact of the removal operators on the results 

In this section, we evaluate the impact of the removal operators

escribed in Section 4.2 on the results. Since smaller instances

end to be solved to optimality regardless the operators used, we

dapted the test set described in Section 5.1 by excluding the

4 smallest instances and including 24 larger instances with 251

odes. We run the instances with the LNS heuristic for different

ombinations of removal operators. First, we run the heuristics

ith all removal operators, then we run the heuristic with all but

ne removal operator at a time. For each instance, we computed

he gap between the average objective value over 10 runs and the

est found objective value over all runs over the five combinations

f removal operators. Table 2 reports the average gap (in percent)

ver the instances for the different values of the penalty cost h

or each of the combinations of removal operators. In the table,

he first column indicates the value of h , column 2 corresponds
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o the results of the LNS including all removal operators, and

olumns 3–7 correspond to the results of the LNS where one of

he removal operators, indicated by the name of the column, is

xcluded. 

To quantify the contribution of each operator, we analyze

he difference between the percentage reported for the excluded

emoval operator and the reported percentage when no operator

s excluded. For example, for h = 0 the impact of the block removal

perator is equal to 0 . 57 percent − 0 . 33 percent = 0 . 24 percent.

he impact of the removal operators differs between the values of

 . The newly introduced block removal operator is the most effec-

ive, since excluding it leads to worse solutions for all values of h .

oreover, for this operator under each value of h , the gap is larger

ompared to the other operators, which emphasizes its importance

nd justifies its use. The value of the other operators is present,

ut less pronounced. Excluding the random removal operator also

esults in worse solutions for all values of h . Excluding the worst

emoval , worst distance removal , or worst handling removal operator

esults in worse results for at least one of the values of h . Since

ach operator has added value for certain values of h and because

he operators perform well together, we include all five removal

perators in the LNS. 

.3. Evaluation on small instances of the PDTSPH 

We now compare the results obtained by the LNS heuristic

ith optimal solutions obtained by branch-and-bound applied to

he binary integer program described in Section 2 . We compare

ur results on a set of 32 small instances derived from a subset

f instances proposed by Carrabs et al. (2007a) for the PDTSPL.

e derived our instance set from the instances att 532, brd 14051,

 15112, d 18512, fnl 4461, nrw 1379 , pr 1002, and ts 225 by consid-

ring 19 and 23 nodes. For each of these 16 instances, we have

reated two new instances by considering two different values for

he penalty cost h . These values are instance dependent and are

hosen such that the problems do not correspond to the PDTSP or

he PDTSPL. For 31 out of 32 instances our LNS found an optimal

olution. For the remaining instance, the gap to the optimal solu-

ion is 0 . 69 percent. These results are presented in Table 3 . We also

bserve that the average running time for the branch-and-bound

lgorithm was 14 4 4.7 seconds, while that of our heuristic was

.4 seconds. 

.4. Evaluation of the handling costs 

We have generated a data set which is a subset of the in-

tances from the benchmark instance sets of the PDTSP and the

DTSPL mentioned before. The instance set consist of 37 instances

ach one containing between 71 and 101 nodes. For each of the

nstances, we set 44 different penalty values. The data set is

vailable upon request. 

For each instance and for each penalty value, we have run the

NS heuristic ten times and we have used the results with the

mallest objective for the evaluation. On average the number of

dditional handling operations can be decreased by 52 . 0 percent

y only increasing the travel distance by 6 . 0 percent, compared

o the solutions obtained by setting the penalty costs equal to

ero. On average, a decrease in additional handling operations

f 76 . 9 percent and 84 . 5 percent results in an increase in travel

istance of 16 . 9 percent and 24 . 7 percent, respectively. Eliminating

ll additional handling operations does come at a large increase in

istance, namely of 57 . 7 percent. 

For six instances, the generated results are depicted in Fig. 2 ,

here the number of additional handling operations is plotted

gainst the travel distance for each of the penalty values. The

raph shows the trade-off between the distance and the number
f additional handling operations. For each instance, we labeled

ve points and show the value of h that generated the solution

ith the corresponding distance and number of additional han-

ling operations. For a given value of h the position on the curve

s instance dependent. For each instance, at h = 0 the solution

orresponds to the solution of the PDTSP. Therefore the number

f additional handling operations is highest and the distance is

owest for h = 0 over the whole range of h -values. With an in-

reasing value of h , the number of additional handling operations

s decreasing and the distance is increasing. At a given value of h ,

hich is instance dependent, the number of additional handling

perations is equal to zero and the travel distance is highest. This

olution corresponds to a solution of the PDTSPL. In Fig. 2 , the

ighest value of h noted for each instance generates a solution

hat corresponds to the PDTSPL. 

We can see, both from the average results and from the graphs

n Fig. 2 , that a large number of additional handling operations can

e eliminated without significantly increasing the travel distance,

ompared to the solutions obtained by only considering the travel

istance. Eliminating all additional handling operations requires a

ignificant increase in travel distance. 

.5. Effect of the reloading policies 

The previous sections presented the results for the PDTSPH

nder reloading policy 1, for which the reloading sequence is

he inverse of the unloading sequence. In this section, we com-

are the results for the PDTSPH under reloading policy 1 and

eloading policy 2. Under reloading policy 2, the reloaded items

re positioned in the sequence in which they will be delivered.

his reloading policy reduces the number of additional handling

perations by preventively sorting the reloaded items. We run

he same instances as in Section 5.4 , where we set the value

f the penalty cost h instance dependent such that they do not

orrespond to either the PDTSP or the PDTSPL. In Table 4 , the

verage objective value over ten runs is given for each instance

or both reloading policies. Under reloading policy 2, a maximum

ain of 17 . 20 percent in objective value can be achieved, where

he average improvement is equal to 6 . 42 percent. 

.6. Assessment of the heuristic on related problems 

We now investigate the results obtained by our LNS heuristic

or the PDTSPH on benchmark instances for the PDTSP and the

DTSPL. We compare the results for four different instance sets. 

.6.1. Performance on the PDTSP 

The first instance set is proposed by Dumitrescu et al. (2010) .

he data set contains 35 randomly generated instances with up

o 71 nodes. The authors solved the problem by branch-and-cut,

hich yielded optimal solutions for 28 instances. For the other

nstances, the authors propose an upper bound, which is the best

olution over a large number of runs of an LNS heuristic. Con-

istent with literature (e.g., Carrabs et al., 2007b, Li et al., 2011 ),

e have run our LNS heuristic ten times. We have compared

he average results and the best results with those obtained by

umitrescu et al. (2010) . Comparing the average results, we see

hat our LNS heuristic finds identical results for 28 instances,

nd on average performs 0 . 04 percent worse. Comparing the best

esults over the ten runs, we find the same results as Dumitrescu

t al. (2010) for all but one instance, and for the remaining in-

tance we improve the best known solution by 0 . 11 percent. These

esults are presented in the Appendix in Table 5 . 

The second data set is proposed by Renaud et al. (20 0 0) and

onsists of 108 instances containing between 51 and 493 nodes,

nd is derived from TSP instances from the TSPLIB ( Reinelt, 1991 ).
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The data set is used to report results for the heuristics proposed

in Renaud et al. (20 0 0) and Renaud et al. (2002) . Moreover,

Dumitrescu et al. (2010) report the results of either their branch-

and-cut algorithm or a heuristic upper bound on a subset of 33 of

these instances. We have run our LNS heuristic ten times and have

compared the average and the best results of our LNS heuristic

with the best results obtained by Renaud et al. (20 0 0) , Renaud

et al. (2002) , and Dumitrescu et al. (2010) . We have received the

results of Renaud et al. (20 0 0) and Renaud et al. (2002) from

the authors upon request. In the Appendix in Table 6 we report

our new best known solutions for 51 instances, where the largest

improvement is 4 . 84 percent. Over the 108 instances, the average

results and the best results over 10 runs are 0 . 34 percent and

0 . 75 percent better than the previously best known solutions,

respectively. 

The third data set is proposed by Renaud et al. (2002) and

contains 20 instances that are generated from an optimal TSP tour.

Ten instances contain 101 nodes, the other ten contain 201 nodes.

The branch-and-cut algorithm of Dumitrescu et al. (2010) finds op-

timal solutions for all these instances. As shown in the Appendix

in Table 7 , when running our heuristic ten times, our heuristic

always finds the optimal solution, whereas the heuristic of Renaud

et al. (2002) does not find an optimal solution for all instances. 

5.6.2. Performance on the PDTSPL 

The fourth data set used to evaluate our heuristic is proposed

by Carrabs et al. (2007b) for the PDTSPL. The set is created from

instances of the TSPLIB ( Reinelt, 1991 ) and contains 42 instances

with up to 751 nodes. Results for this set of benchmark instances

are provided in Carrabs et al. (2007b) , Li et al. (2011) , Côté et al.

(2012) and Wei et al. (2015) . For comparison, we provide average

results over ten runs as in Carrabs et al. (2007b) , Li et al. (2011) ,

Côté et al. (2012) and Wei et al. (2015) . Our results are presented

in the Appendix in Table 9 . On average, the gap between the

results obtained by our LNS heuristic and the results of Carrabs

et al. (2007b) , Li et al. (2011) , Côté et al. (2012) and Wei et al.

(2015) are −2 . 44 percent, −0 . 09 percent −0 . 43 percent and 0 . 09

percent, respectively. Comparing the best results obtained by

our LNS heuristic with the best known results in literature, we
mprove the best known solutions for 15 instances and obtain the

ame best known solutions for 23 other instances. These results

re presented in the Appendix in Table 8 . 

. Conclusions 

In this paper we have introduced the pickup and delivery

raveling salesman problem with handling costs. We have defined

he problem and showed that it is a generalization of the pickup

nd delivery problem and the pickup and delivery problem with

IFO loading. A large neighborhood search heuristic is proposed

or the problem, for which existing and new removal operators

re introduced. The heuristic is evaluated on benchmark instances

or the PDTSP and the PDTSPL, which are special cases of the

roblem. The results obtained with the LNS heuristic are often

etter than the results obtained in literature having improved 52

est known solutions for the PDTSP and 15 best known solutions

or the PDTSPL. Moreover, we have shown that for small instances

f the PDTSPH, the heuristic yields optimal or near-optimal so-

utions for all instances. We have studied two different reloading

olicies, namely reloading policy 1, where the reloading sequence

s the inverse of the unloading sequence, and reloading policy

, where the reloaded items are positioned in the sequence in

hich they will be delivered. We have shown that the number

f additional handling operations is reduced under reloading

olicy 2, compared to reloading policy 1. For the instances we

ave studied, incorporating the penalty costs for the additional

andling operations leads to routes that have a large reduction in

he number of additional handling operations while increasing the

ravel distance by only a small percentage compared to the routes

btained by only taking into account the travel distance. 

cknowledgments 

This project was funded by the Dutch Institute for Ad-

anced Logistics (Dinalog) and partly funded by the Canadian

atural Science and Engineering Council (NSERC) under grant

014-05764 . This support is greatly acknowledged. We thank the

ditor and the anonymous referees for their valuable comments. 

http://dx.doi.org/10.13039/501100000038


M. Veenstra et al. / European Journal of Operational Research 257 (2017) 118–132 127 

A

rage 

Gap

0 .0

0 .0

0 .0

0 .0

0 .0

0 .0

0 .0

0 .0

0 .0

0 .0

0 .0

0 .0

0 .0

0 .0

0 .0

0 .0

0 .0

0 .0

0 .0

0 .0

0 .0

0 .0

0 .0

0 .6

0 .0

0 .0

0 .0

0 .0

0 .18

0 .0

0 .0

0 .0

0 .0

0 .4

0 .11

0 .0
ppendix 

Table 5 

Results for the PDTSP instances of Dumitrescu et al. (2010) . 

Instance Nodes Best cost LNS: ave

( Dumitrescu et al., 2010 ) Cost 

prob5a 11 3585 .0 ∗ 3585 .0 

prob5b 11 2565 .0 ∗ 2565 .0 

prob5c 11 3787 .0 ∗ 3787 .0 

prob5d 11 3128 .0 ∗ 3128 .0 

prob5e 11 3123 .0 ∗ 3123 .0 

prob10a 21 4896 .0 ∗ 4896 .0 

prob10b 21 4490 .0 ∗ 4490 .0 

prob10c 21 4070 .0 ∗ 4070 .0 

prob10d 21 4551 .0 ∗ 4551 .0 

prob10e 21 4874 .0 ∗ 4874 .0 

prob15a 31 5150 .0 ∗ 5150 .0 

prob15b 31 5391 .0 ∗ 5391 .0 

prob15c 31 5008 .0 ∗ 5008 .0 

prob15d 31 5566 .0 ∗ 5566 .0 

prob15e 31 5229 .0 ∗ 5229 .0 

prob20a 41 5698 .0 ∗ 5698 .0 

prob20b 41 6213 .0 ∗ 6213 .0 

prob20c 41 6200 .0 ∗ 6200 .0 

prob20d 41 6106 .0 ∗ 6106 .0 

prob20e 41 6465 .0 ∗ 6465 .0 

prob25a 51 7332 .0 7332 .0 

prob25b 51 6665 .0 ∗ 6665 .9 

prob25c 51 7095 .0 ∗ 7100 .1 

prob25d 51 7069 .0 ∗ 7117 .3 

prob25e 51 6754 .0 ∗ 6754 .0 

prob30a 61 7309 .0 7309 .0 

prob30b 61 6857 .0 ∗ 6857 .0 

prob30c 61 7723 .0 ∗ 7723 .0 

prob30d 61 7310 .0 ∗ 7323 .4 

prob30e 61 7213 .0 7213 .0 

prob35a 71 7746 .0 ∗ 7746 .0 

prob35b 71 7904 .0 7904 .0 

prob35c 71 7949 .0 7953 .0 

prob35d 71 7905 .0 7938 .2 

prob35e 71 8530 .0 8539 .8 

Average 5927 .3 5930 .6 

∗ Indicates proven optimal. 
Table 6 

Results for the PDTSP instances of Renaud et al. (20 0 0) . 

Instance Nodes Best cost ( Dumitrescu et al., 2010; LNS: averag

Renaud et al., 20 0 0, 20 02 ) Cost 

EIL51A 51 464 .0 464 .0 

EIL51B 51 469 .0 469 .0 

EIL51C 51 488 .0 488 .0 

ST69A 69 764 .0 764 .0 

ST69B 69 771 .0 771 .0 

ST69C 69 793 .0 793 .0 

EIL75A 75 583 .0 589 .3 

EIL75B 75 601 .0 601 .3 

EIL75C 75 590 .0 590 .1 

PR75A 75 130531 .0 130531 .0 

PR75B 75 128397 .0 128399 .0 

PR75C 75 124509 .0 124509 .0 
results LNS: best results Time (seconds) 

 (percent) Cost Gap (percent) 

0 3585 .0 0 .00 0 .3 

0 2565 .0 0 .00 0 .1 

0 3787 .0 0 .00 0 .1 

0 3128 .0 0 .00 0 .1 

0 3123 .0 0 .00 0 .1 

0 4896 .0 0 .00 0 .5 

0 4490 .0 0 .00 0 .5 

0 4070 .0 0 .00 0 .5 

0 4551 .0 0 .00 0 .5 

0 4874 .0 0 .00 0 .5 

0 5150 .0 0 .00 1 .4 

0 5391 .0 0 .00 1 .4 

0 5008 .0 0 .00 1 .4 

0 5566 .0 0 .00 1 .4 

0 5229 .0 0 .00 1 .5 

0 5698 .0 0 .00 3 .2 

0 6213 .0 0 .00 3 .5 

0 6200 .0 0 .00 3 .1 

0 6106 .0 0 .00 3 .1 

0 6465 .0 0 .00 3 .2 

0 7332 .0 0 .00 5 .5 

1 6665 .0 0 .00 5 .6 

7 7095 .0 0 .00 5 .6 

8 7069 .0 0 .00 5 .6 

0 6754 .0 0 .00 5 .6 

0 7309 .0 0 .00 9 .3 

0 6857 .0 0 .00 9 .1 

0 7723 .0 0 .00 9 .4 

 7310 .0 0 .00 9 .3 

0 7213 .0 0 .00 9 .4 

0 7746 .0 0 .00 14 .4 

0 7904 .0 0 .00 14 .1 

5 7949 .0 0 .00 14 .4 

2 7905 .0 0 .00 14 .2 

 8521 .0 –0 .11 14 .3 

4 5927 .1 0 .00 4 .9 
e results LNS: best results Time (seconds) 

Gap (percent) Cost Gap (percent) 

0 .00 464 .0 0 .00 5 .1 

0 .00 469 .0 0 .00 5 .4 

0 .00 488 .0 0 .00 5 .5 

0 .00 764 .0 0 .00 11 .5 

0 .00 771 .0 0 .00 11 .4 

0 .00 793 .0 0 .00 12 .8 

1 .08 583 .0 0 .00 14 .8 

0 .05 601 .0 0 .00 15 .9 

0 .02 590 .0 0 .00 16 .4 

0 .00 130531 .0 0 .00 15 .3 

0 .00 128397 .0 0 .00 15 .7 

0 .00 124509 .0 0 .00 16 .8 

( continued on next page ) 
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Table 6 ( continued ) 

Instance Nodes Best cost ( Dumitrescu et al., 2010; LNS: average results LNS: best results Time (seconds) 

Renaud et al., 20 0 0, 20 02 ) Cost Gap (percent) Cost Gap (percent) 

KROA99A 99 24980 .0 25047 .2 0 .27 24980 .0 0 .00 31 .9 

KROA99B 99 26552 .0 26561 .3 0 .04 26552 .0 0 .00 34 .7 

KROA99C 99 25769 .0 25769 .0 0 .00 25769 .0 0 .00 36 .5 

KROB99A 99 25631 .0 25687 .8 0 .22 25631 .0 0 .00 31 .7 

KROB99B 99 25384 .0 25384 .0 0 .00 25384 .0 0 .00 34 .4 

KROB99C 99 25795 .0 25795 .0 0 .00 25795 .0 0 .00 36 .8 

KROC99A 99 26113 .0 26215 .5 0 .39 26113 .0 0 .00 32 .7 

KROC99B 99 25602 .0 25640 .4 0 .15 25602 .0 0 .00 33 .9 

KROC99C 99 26065 .0 26065 .0 0 .00 26065 .0 0 .00 36 .0 

KROD99A 99 25392 .0 25423 .5 0 .12 25392 .0 0 .00 31 .4 

KROD99B 99 26179 .0 26212 .7 0 .13 26179 .0 0 .00 33 .8 

KROD99C 99 26021 .0 26171 .3 0 .58 26041 .0 0 .08 36 .1 

KROE99A 99 25879 .0 25881 .5 0 .01 25879 .0 0 .00 32 .1 

KROE99B 99 26584 .0 26642 .8 0 .22 26591 .0 0 .03 33 .9 

KROE99C 99 26021 .0 26027 .7 0 .03 26021 .0 0 .00 36 .6 

RAT99A 99 1401 .0 1403 .3 0 .16 1401 .0 0 .00 31 .6 

RAT99B 99 1460 .0 1472 .0 0 .82 1464 .0 0 .27 34 .2 

RAT99C 99 1370 .0 1370 .4 0 .03 1370 .0 0 .00 36 .3 

RD99A 99 9522 .0 9523 .5 0 .02 9506 .0 −0 .17 31 .4 

RD99B 99 9464 .0 9464 .0 0 .00 9464 .0 0 .00 34 .3 

RD99C 99 9185 .0 9186 .1 0 .01 9185 .0 0 .00 36 .2 

EIL101A 101 695 .0 695 .8 0 .12 695 .0 0 .00 35 .3 

EIL101B 101 705 .0 712 .0 0 .99 705 .0 0 .00 36 .9 

EIL101C 101 690 .0 690 .0 0 .00 690 .0 0 .00 39 .0 

LIN105A 105 17791 .0 17836 .0 0 .25 17824 .0 0 .19 38 .1 

LIN105B 105 17482 .0 17486 .0 0 .02 17483 .0 0 .01 41 .1 

LIN105C 105 17813 .0 17813 .0 0 .00 17813 .0 0 .00 44 .2 

PR107A 107 51537 .0 51596 .9 0 .12 51537 .0 0 .00 40 .2 

PR107B 107 51675 .0 51686 .0 0 .02 51686 .0 0 .02 43 .3 

PR107C 107 52657 .0 52657 .0 0 .00 52657 .0 0 .00 45 .9 

PR123A 123 75542 .0 75603 .3 0 .08 75575 .0 0 .04 60 .5 

PR123B 123 75389 .0 75493 .9 0 .14 75389 .0 0 .00 64 .4 

PR123C 123 82341 .0 82379 .3 0 .05 82341 .0 0 .00 71 .1 

BIER127A 127 133653 .0 133470 .4 −0 .14 132100 .0 −1 .16 68 .4 

BIER127B 127 134670 .0 133793 .6 −0 .65 133503 .0 −0 .87 72 .7 

BIER127C 127 132972 .0 132307 .5 −0 .50 132199 .0 −0 .58 76 .4 

PR135A 135 111475 .0 111519 .6 0 .04 110939 .0 −0 .48 78 .7 

PR135B 135 110763 .0 110779 .1 0 .01 110763 .0 0 .00 85 .7 

PR135C 135 114232 .0 114353 .6 0 .11 114232 .0 0 .00 93 .1 

PR143A 143 80274 .0 80274 .0 0 .00 80274 .0 0 .00 95 .5 

PR143B 143 90484 .0 89898 .0 −0 .65 89472 .0 −1 .12 101 .2 

PR143C 143 91979 .0 92085 .6 0 .12 91979 .0 0 .00 110 .6 

KROA149A 149 31467 .0 30864 .1 −1 .92 30833 .0 −2 .01 106 .3 

KROA149B 149 31733 .0 31808 .9 0 .24 31733 .0 0 .00 114 .8 

KROA149C 149 32351 .0 32492 .7 0 .44 32235 .0 −0 .36 122 .9 

KROB149A 149 31360 .0 31366 .9 0 .02 31147 .0 −0 .68 111 .4 

KROB149B 149 31995 .0 31745 .9 −0 .78 31696 .0 −0 .93 115 .4 

KROB149C 149 31771 .0 31929 .7 0 .50 31735 .0 −0 .11 125 .7 

PR151A 151 90494 .0 90494 .0 0 .00 90494 .0 0 .00 132 .6 

PR151B 151 94937 .0 95256 .6 0 .34 94937 .0 0 .00 127 .3 

PR151C 151 97288 .0 97288 .0 0 .00 97288 .0 0 .00 130 .5 

U159A 159 51710 .0 51941 .0 0 .45 51710 .0 0 .00 133 .7 

U159B 159 50494 .0 50560 .9 0 .13 50494 .0 0 .00 139 .5 

U159C 159 53189 .0 53322 .9 0 .25 52479 .0 −1 .33 152 .2 

D197A 197 16032 .0 15967 .6 −0 .40 15886 .0 −0 .91 232 .2 

D197B 197 16435 .0 16084 .8 −2 .13 16060 .0 −2 .28 235 .5 

D197C 197 16724 .0 16673 .0 −0 .30 16673 .0 −0 .30 252 .7 

KROA199A 199 34484 .0 34569 .0 0 .25 34451 .0 −0 .10 258 .8 

KROA199B 199 35259 .0 35079 .6 −0 .51 34890 .0 −1 .05 269 .4 

KROA199C 199 36251 .0 36331 .7 0 .22 35982 .0 −0 .74 292 .2 

KROB199A 199 34774 .0 34947 .4 0 .50 34703 .0 −0 .20 258 .4 

KROB199B 199 34806 .0 34700 .3 −0 .30 34634 .0 −0 .49 271 .2 

KROB199C 199 36784 .0 35888 .4 −2 .43 35613 .0 −3 .18 292 .6 

( continued on next page ) 
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Table 6 ( continued ) 

Instance Nodes Best cost ( Dumitrescu et al., 2010; LNS: average results LNS: best results Time (seconds) 

Renaud et al., 20 0 0, 20 02 ) Cost Gap (percent) Cost Gap (percent) 

PR225A 225 105321 .0 103711 .7 −1 .53 103652 .0 −1 .58 330 .1 

PR225B 225 109502 .0 109759 .8 0 .24 109402 .0 −0 .09 353 .9 

PR225C 225 113116 .0 114198 .5 0 .96 112240 .0 −0 .77 378 .9 

TS225A 225 156646 .0 158742 .3 1 .34 157457 .0 0 .52 354 .1 

TS225B 225 161353 .0 161529 .5 0 .11 160404 .0 −0 .59 371 .7 

TS225C 225 165073 .0 163254 .7 −1 .10 162437 .0 −1 .60 391 .5 

GIL261A 261 2808 .0 2775 .5 −1 .16 2758 .0 −1 .78 553 .0 

GIL261B 261 2887 .0 2876 .3 −0 .37 2839 .0 −1 .66 579 .1 

GIL261C 261 2885 .0 2839 .2 −1 .59 2812 .0 −2 .53 615 .4 

PR263A 263 61805 .0 61221 .5 −0 .94 60858 .0 −1 .53 540 .8 

PR263B 263 60489 .0 60568 .1 0 .13 60360 .0 −0 .21 554 .8 

PR263C 263 65514 .0 64171 .8 −2 .05 64158 .0 −2 .07 635 .9 

PR299A 299 57532 .0 57526 .4 −0 .01 56681 .0 −1 .48 790 .2 

PR299B 299 59342 .0 57916 .0 −2 .40 57613 .0 −2 .91 831 .7 

PR299C 299 59436 .0 58989 .1 −0 .75 58860 .0 −0 .97 899 .3 

LIN317A 317 51303 .0 50361 .1 −1 .84 49853 .0 −2 .83 776 .6 

LIN317B 317 514 4 4 .0 51319 .8 −0 .24 50754 .0 −1 .34 804 .4 

LIN317C 317 51257 .0 51147 .6 −0 .21 50815 .0 −0 .86 890 .1 

RD399A 399 18101 .0 17685 .7 −2 .29 17359 .0 −4 .10 1395 .8 

RD399B 399 18451 .0 18272 .6 −0 .97 18014 .0 −2 .37 1418 .1 

RD399C 399 18839 .0 18438 .0 −2 .13 18227 .0 −3 .25 1557 .3 

FL417A 417 13874 .0 13804 .6 −0 .50 13792 .0 −0 .59 1306 .2 

FL417B 417 14089 .0 13818 .3 −1 .92 13815 .0 −1 .94 1312 .4 

FL417C 417 15618 .0 15626 .0 0 .05 15618 .0 0 .00 1391 .4 

PR439A 439 109424 .0 106470 .3 −2 .70 105960 .0 −3 .17 1497 .8 

PR439B 439 115580 .0 110866 .9 −4 .08 110241 .0 −4 .62 1486 .5 

PR439C 439 113514 .0 115747 .5 1 .97 113681 .0 0 .15 1640 .9 

PCB441A 441 61289 .0 60709 .8 −0 .95 60259 .0 −1 .68 1664 .2 

PCB441B 441 61691 .0 60386 .8 −2 .11 59465 .0 −3 .61 1679 .8 

PCB441C 441 61984 .0 61023 .1 −1 .55 59838 .0 −3 .46 1900 .2 

D493A 493 37725 .0 36217 .7 −4 .00 35899 .0 −4 .84 1950 .2 

D493B 493 37806 .0 37129 .7 −1 .79 36951 .0 −2 .26 1992 .4 

D493C 493 38794 .0 38328 .8 −1 .20 37895 .0 −2 .32 2153 .4 

Average 48323 .9 48146 .2 −0 .34 47924 .4 −0 .75 380 .4 

Table 7 

Results for the PDTSP instances of Renaud et al. (2002) . 

Instance Nodes Best cost LNS: average results LNS: best results Time (seconds) 

( Dumitrescu et al., 2010 ) Cost Gap (percent) Cost Gap (percent) 

N101P1 101 799 .0 ∗ 799 .0 0 .00 799 .0 0 .00 37 .2 

N101P2 101 729 .0 ∗ 729 .0 0 .00 729 .0 0 .00 38 .0 

N101P3 101 748 .0 ∗ 748 .0 0 .00 748 .0 0 .00 37 .9 

N101P4 101 807 .0 ∗ 807 .0 0 .00 807 .0 0 .00 37 .9 

N101P5 101 783 .0 ∗ 783 .0 0 .00 783 .0 0 .00 37 .9 

N101P6 101 755 .0 ∗ 755 .0 0 .00 755 .0 0 .00 38 .0 

N101P7 101 767 .0 ∗ 767 .0 0 .00 767 .0 0 .00 38 .2 

N101P8 101 762 .0 ∗ 762 .0 0 .00 762 .0 0 .00 37 .9 

N101P9 101 766 .0 ∗ 766 .0 0 .00 766 .0 0 .00 37 .8 

N101P10 101 754 .0 ∗ 754 .0 0 .00 754 .0 0 .00 38 .1 

N201P1 201 1039 .0 ∗ 1039 .0 0 .00 1039 .0 0 .00 259 .4 

N201P2 201 1086 .0 ∗ 1086 .0 0 .00 1086 .0 0 .00 258 .4 

N201P3 201 1070 .0 ∗ 1072 .0 0 .19 1070 .0 0 .00 262 .5 

N201P4 201 1050 .0 ∗ 1050 .0 0 .00 1050 .0 0 .00 259 .4 

N201P5 201 1052 .0 ∗ 1052 .0 0 .00 1052 .0 0 .00 260 .2 

N201P6 201 1059 .0 ∗ 1059 .0 0 .00 1059 .0 0 .00 262 .0 

N201P7 201 1036 .0 ∗ 1036 .0 0 .00 1036 .0 0 .00 261 .0 

N201P8 201 1079 .0 ∗ 1079 .0 0 .00 1079 .0 0 .00 260 .5 

N201P9 201 1050 .0 ∗ 1050 .0 0 .00 1050 .0 0 .00 259 .2 

N201P10 201 1085 .0 ∗ 1085 .0 0 .00 1085 .0 0 .00 260 .1 

Average 913 .8 913 .9 0 .01 913 .8 0 .00 149 .1 

∗ Indicates proven optimal. 
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Table 8 

Results for the PDTSPL instances of Carrabs et al. (2007b) ; results over 10 runs compared with best 

known solutions. 

Instance Nodes Best known results LNS: average results LNS: best results 

Cost Cost Gap (percent) Cost Gap (percent) 

brd14051 25 4672 .0 4672 .0 0 .00 4672 .0 0 .00 

51 7740 .0 7740 .0 0 .00 7740 .0 0 .00 

75 7232 .0 7232 .0 0 .00 7232 .0 0 .00 

101 9731 .0 9734 .7 0 .04 9731 .0 0 .00 

251 22243 .0 22550 .8 1 .38 22244 .0 0 .00 

501 50027 .0 50267 .0 0 .48 49823 .0 −0 .41 

751 82223 .6 82521 .2 0 .36 81959 .0 −0 .32 

pr1002 25 16221 .0 16221 .0 0 .00 16221 .0 0 .00 

51 30936 .0 30936 .0 0 .00 30936 .0 0 .00 

75 46600 .0 46681 .0 0 .17 46600 .0 0 .00 

101 61433 .0 61510 .1 0 .13 61433 .0 0 .00 

251 188960 .0 190928 .1 1 .04 189569 .0 0 .32 

501 465868 .0 467433 .8 0 .34 464 4 41 .0 −0 .31 

751 788885 .5 787082 .4 −0 .23 782600 .0 −0 .80 

fnl4461 25 2168 .0 2168 .0 0 .00 2168 .0 0 .00 

51 4020 .0 4020 .0 0 .00 4020 .0 0 .00 

75 5739 .0 5739 .0 0 .00 5739 .0 0 .00 

101 8530 .0 8560 .9 0 .36 8530 .0 0 .00 

251 28561 .0 28717 .2 0 .55 28508 .0 −0 .19 

501 68502 .0 68717 .6 0 .31 67953 .0 −0 .80 

751 112902 .0 114049 .9 1 .02 112599 .0 −0 .27 

d18512 25 4672 .0 4672 .0 0 .00 4672 .0 0 .00 

51 7502 .0 7502 .0 0 .00 7502 .0 0 .00 

75 8629 .0 8629 .0 0 .00 8629 .0 0 .00 

101 10242 .0 10253 .3 0 .11 10242 .0 0 .00 

251 23243 .0 23422 .8 0 .77 23208 .0 −0 .15 

501 48377 .9 49449 .7 2 .22 49155 .0 1 .61 

751 80734 .1 80777 .9 0 .05 79676 .0 −1 .31 

d15112 25 93981 .0 93981 .0 0 .00 93981 .0 0 .00 

51 142113 .0 142113 .0 0 .00 142113 .0 0 .00 

75 199001 .0 199001 .0 0 .00 199001 .0 0 .00 

101 265191 .0 266354 .3 0 .44 265191 .0 0 .00 

251 562072 .0 562387 .1 0 .06 556923 .0 −0 .92 

501 920286 .1 922457 .1 0 .24 910793 .0 −1 .03 

751 1310555 .0 1315355 .8 0 .37 1303184 .0 −0 .56 

nrw1379 25 3192 .0 3192 .0 0 .00 3192 .0 0 .00 

51 5055 .0 5055 .0 0 .00 5055 .0 0 .00 

75 6831 .0 6831 .0 0 .00 6831 .0 0 .00 

101 9817 .0 9816 .9 0 .00 9803 .0 −0 .14 

251 26470 .0 26532 .3 0 .24 26370 .0 −0 .38 

501 58441 .8 58487 .8 0 .08 57500 .0 −1 .61 

751 101499 .8 102206 .5 0 .70 101583 .0 0 .08 

Average 140769 .6 140856 .2 0 .27 139745 .8 −0 .17 
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Table 9 

Results for the PDTSPL instances of Carrabs et al. (2007b) ; average results over 10 runs. 

Gap with Gap with Gap with Gap with 

Instance Nodes Cost ( Carrabs et al., 2007b ) Cost ( Li et al., 2011 ) Cost ( Côté et al., 2012 ) Cost ( Wei et al., 2015 ) Cost LNS Carrabs et al. 

(2007b) (percent) 

Li et al. (2011) 

(percent) 

Côté et al. (2012) 

(percent) 

Wei et al. (2015) 

(percent) 

Time 

(seconds) 

brd14051 25 4682 .2 4672 .0 4672 .0 4672 .0 4672 .0 −0 .22 0 .00 0 .00 0 .00 0 .7 

51 7763 .2 7740 .0 7740 .0 7740 .0 7740 .0 −0 .30 0 .00 0 .00 0 .00 2 .0 

75 7309 .1 7232 .4 7232 .0 7232 .4 7232 .0 −1 .05 −0 .01 0 .00 −0 .01 5 .1 

101 10 0 05 .2 9735 .0 9731 .8 9733 .2 9734 .7 −2 .70 0 .00 0 .03 0 .02 10 .2 

251 24119 .3 22566 .0 22650 .8 22729 .0 22550 .8 −6 .50 −0 .07 −0 .44 −0 .78 106 .5 

501 52806 .8 50369 .9 50865 .8 50076 .3 50267 .0 −4 .81 −0 .20 −1 .18 0 .38 553 .8 

751 86230 .1 82983 .1 83500 .3 82223 .6 82521 .2 −4 .30 −0 .56 −1 .17 0 .36 1324 .3 

pr1002 25 16221 .0 16221 .0 16221 .0 16221 .0 16221 .0 0 .00 0 .00 0 .00 0 .00 0 .4 

51 31186 .7 30936 .0 30936 .0 30936 .0 30936 .0 −0 .80 0 .00 0 .00 0 .00 1 .9 

75 46911 .0 46673 .0 46701 .4 46673 .0 46681 .0 −0 .49 0 .02 −0 .04 0 .02 5 .0 

101 63611 .1 61433 .0 61611 .1 61495 .0 61510 .1 −3 .30 0 .13 −0 .16 0 .02 10 .5 

251 20 0 028 .5 190665 .4 192502 .0 191413 .4 190928 .1 −4 .55 0 .14 −0 .82 −0 .25 102 .3 

501 485042 .3 470294 .5 474161 .0 465868 .0 467433 .8 −3 .63 −0 .61 −1 .42 0 .34 546 .9 

751 819197 .7 788885 .5 800790 .1 790395 .2 787082 .4 −3 .92 −0 .23 −1 .71 −0 .42 1316 .7 

fnl4461 25 2168 .0 2168 .0 2168 .0 2168 .0 2168 .0 0 .00 0 .00 0 .00 0 .00 0 .4 

51 4020 .0 4020 .0 4020 .0 4020 .0 4020 .0 0 .00 0 .00 0 .00 0 .00 2 .0 

75 5865 .0 5739 .0 5739 .0 5739 .0 5739 .0 −2 .15 0 .00 0 .00 0 .00 4 .9 

101 8852 .8 8562 .0 8557 .3 8563 .1 8560 .9 −3 .30 −0 .01 0 .04 −0 .03 10 .7 

251 29330 .6 28797 .9 28802 .7 28561 .0 28717 .2 −2 .09 −0 .28 −0 .30 0 .55 99 .9 

501 71208 .5 68876 .6 69384 .5 68911 .0 68717 .6 −3 .50 −0 .23 −0 .96 −0 .28 558 .1 

751 118383 .1 114030 .0 114993 .8 112902 .0 114049 .9 −3 .66 0 .02 −0 .82 1 .02 1310 .5 

d18512 25 4683 .4 4672 .0 4672 .0 4672 .0 4672 .0 −0 .24 0 .00 0 .00 0 .00 0 .4 

51 7565 .6 7502 .0 7502 .0 7502 .0 7502 .0 −0 .84 0 .00 0 .00 0 .00 2 .0 

75 8781 .5 8629 .0 8629 .0 8629 .0 8629 .0 −1 .74 0 .00 0 .00 0 .00 4 .8 

101 10332 .4 10256 .4 10242 .0 10280 .6 10253 .3 −0 .77 −0 .03 0 .11 −0 .27 10 .4 

251 24855 .4 23466 .8 23472 .6 23435 .2 23422 .8 −5 .76 −0 .19 −0 .21 −0 .05 106 .4 

501 52295 .6 49544 .7 49849 .1 48377 .9 49449 .7 −5 .44 −0 .19 −0 .80 2 .22 580 .2 

751 83763 .3 80734 .1 81568 .2 80756 .9 80777 .9 −3 .56 0 .05 −0 .97 0 .03 1304 .4 

d15112 25 93981 .0 93981 .0 93981 .0 93981 .0 93981 .0 0 .00 0 .00 0 .00 0 .00 0 .4 

51 143575 .2 142113 .0 142113 .0 142113 .0 142113 .0 −1 .02 0 .00 0 .00 0 .00 1 .9 

75 201385 .4 199047 .8 199001 .0 199047 .8 199001 .0 −1 .18 −0 .02 0 .00 −0 .02 4 .9 

101 276876 .8 266925 .3 266135 .3 265894 .5 266354 .3 −3 .80 −0 .21 0 .08 0 .17 10 .1 

251 589066 .9 564182 .2 567356 .1 564356 .4 562387 .1 −4 .53 −0 .32 −0 .88 −0 .35 100 .5 

501 953764 .5 926331 .2 935452 .4 920286 .1 922457 .1 −3 .28 −0 .42 −1 .39 0 .24 579 .0 

751 1352866 .6 1311002 .1 1334500 .2 1310555 .0 1315355 .8 −2 .77 0 .33 −1 .43 0 .37 1312 .1 

nrw1379 25 3194 .8 3192 .0 3192 .0 3192 .0 3192 .0 −0 .09 0 .00 0 .00 0 .00 0 .4 

51 5095 .0 5055 .0 5055 .0 5055 .0 5055 .0 −0 .79 0 .00 0 .00 0 .00 2 .0 

75 6865 .1 6831 .0 6831 .0 6831 .0 6831 .0 −0 .50 0 .00 0 .00 0 .00 4 .8 

101 10197 .5 9889 .4 9850 .4 9829 .1 9816 .9 −3 .73 −0 .73 −0 .34 −0 .12 10 .4 

251 27936 .2 26735 .6 26705 .9 26521 .5 26532 .3 −5 .03 −0 .76 −0 .65 0 .04 102 .6 

501 60584 .5 58441 .8 59181 .9 58493 .7 58487 .8 −3 .46 0 .08 −1 .17 −0 .01 561 .2 

751 105136 .1 101737 .7 103606 .2 101499 .8 102206 .5 −2 .79 0 .46 −1 .35 0 .70 1338 .1 

Average 145660 .6 141020 .7 142425 .6 141020 .7 140856 .2 −2 .44 −0 .09 −0 .43 0 .09 286 .0 
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