1,211 research outputs found

    Cooperation with an Untrusted Relay: A Secrecy Perspective

    Full text link
    We consider the communication scenario where a source-destination pair wishes to keep the information secret from a relay node despite wanting to enlist its help. For this scenario, an interesting question is whether the relay node should be deployed at all. That is, whether cooperation with an untrusted relay node can ever be beneficial. We first provide an achievable secrecy rate for the general untrusted relay channel, and proceed to investigate this question for two types of relay networks with orthogonal components. For the first model, there is an orthogonal link from the source to the relay. For the second model, there is an orthogonal link from the relay to the destination. For the first model, we find the equivocation capacity region and show that answer is negative. In contrast, for the second model, we find that the answer is positive. Specifically, we show by means of the achievable secrecy rate based on compress-and-forward, that, by asking the untrusted relay node to relay information, we can achieve a higher secrecy rate than just treating the relay as an eavesdropper. For a special class of the second model, where the relay is not interfering itself, we derive an upper bound for the secrecy rate using an argument whose net effect is to separate the eavesdropper from the relay. The merit of the new upper bound is demonstrated on two channels that belong to this special class. The Gaussian case of the second model mentioned above benefits from this approach in that the new upper bound improves the previously known bounds. For the Cover-Kim deterministic relay channel, the new upper bound finds the secrecy capacity when the source-destination link is not worse than the source-relay link, by matching with the achievable rate we present.Comment: IEEE Transactions on Information Theory, submitted October 2008, revised October 2009. This is the revised versio

    Relays for Interference Mitigation in Wireless Networks

    Get PDF
    Wireless links play an important role in the last mile network connectivity. In contrast to the strictly centralized approach of today's wireless systems, the future promises decentralization of network management. Nodes potentially engage in localized grouping and organization based on their neighborhood to carry out complex goals such as end-to-end communication. The quadratic energy dissipation of the wireless medium necessitates the presence of certain relay nodes in the network. Conventionally, the role of such relays is limited to passing messages in a chain in a point-point hopping architecture. With the decentralization, multiple nodes could potentially interfere with each other. This work proposes a technique to exploit the presence of relays in a way that mitigates interference between the network nodes. Optimal spatial locations and transmission schemes which enhance this gain are identified

    Achievable Rate Regions for Two-Way Relay Channel using Nested Lattice Coding

    Get PDF
    This paper studies Gaussian Two-Way Relay Channel where two communication nodes exchange messages with each other via a relay. It is assumed that all nodes operate in half duplex mode without any direct link between the communication nodes. A compress-and-forward relaying strategy using nested lattice codes is first proposed. Then, the proposed scheme is improved by performing a layered coding : a common layer is decoded by both receivers and a refinement layer is recovered only by the receiver which has the best channel conditions. The achievable rates of the new scheme are characterized and are shown to be higher than those provided by the decode-and-forward strategy in some regions.Comment: 27 pages, 13 figures, Submitted to IEEE Transactions on Wireless Communications (October 2013

    A Unified Approach for Network Information Theory

    Full text link
    In this paper, we take a unified approach for network information theory and prove a coding theorem, which can recover most of the achievability results in network information theory that are based on random coding. The final single-letter expression has a very simple form, which was made possible by many novel elements such as a unified framework that represents various network problems in a simple and unified way, a unified coding strategy that consists of a few basic ingredients but can emulate many known coding techniques if needed, and new proof techniques beyond the use of standard covering and packing lemmas. For example, in our framework, sources, channels, states and side information are treated in a unified way and various constraints such as cost and distortion constraints are unified as a single joint-typicality constraint. Our theorem can be useful in proving many new achievability results easily and in some cases gives simpler rate expressions than those obtained using conventional approaches. Furthermore, our unified coding can strictly outperform existing schemes. For example, we obtain a generalized decode-compress-amplify-and-forward bound as a simple corollary of our main theorem and show it strictly outperforms previously known coding schemes. Using our unified framework, we formally define and characterize three types of network duality based on channel input-output reversal and network flow reversal combined with packing-covering duality.Comment: 52 pages, 7 figures, submitted to IEEE Transactions on Information theory, a shorter version will appear in Proc. IEEE ISIT 201

    Capacity Gain from Two-Transmitter and Two-Receiver Cooperation

    Full text link
    Capacity improvement from transmitter and receiver cooperation is investigated in a two-transmitter, two-receiver network with phase fading and full channel state information available at all terminals. The transmitters cooperate by first exchanging messages over an orthogonal transmitter cooperation channel, then encoding jointly with dirty paper coding. The receivers cooperate by using Wyner-Ziv compress-and-forward over an analogous orthogonal receiver cooperation channel. To account for the cost of cooperation, the allocation of network power and bandwidth among the data and cooperation channels is studied. It is shown that transmitter cooperation outperforms receiver cooperation and improves capacity over non-cooperative transmission under most operating conditions when the cooperation channel is strong. However, a weak cooperation channel limits the transmitter cooperation rate; in this case receiver cooperation is more advantageous. Transmitter-and-receiver cooperation offers sizable additional capacity gain over transmitter-only cooperation at low SNR, whereas at high SNR transmitter cooperation alone captures most of the cooperative capacity improvement.Comment: Accepted for publication in IEEE Transactions on Information Theor

    Lecture Notes on Network Information Theory

    Full text link
    These lecture notes have been converted to a book titled Network Information Theory published recently by Cambridge University Press. This book provides a significantly expanded exposition of the material in the lecture notes as well as problems and bibliographic notes at the end of each chapter. The authors are currently preparing a set of slides based on the book that will be posted in the second half of 2012. More information about the book can be found at http://www.cambridge.org/9781107008731/. The previous (and obsolete) version of the lecture notes can be found at http://arxiv.org/abs/1001.3404v4/

    Cooperative Strategies for Simultaneous and Broadcast Relay Channels

    Full text link
    Consider the \emph{simultaneous relay channel} (SRC) which consists of a set of relay channels where the source wishes to transmit common and private information to each of the destinations. This problem is recognized as being equivalent to that of sending common and private information to several destinations in presence of helper relays where each channel outcome becomes a branch of the \emph{broadcast relay channel} (BRC). Cooperative schemes and capacity region for a set with two memoryless relay channels are investigated. The proposed coding schemes, based on \emph{Decode-and-Forward} (DF) and \emph{Compress-and-Forward} (CF) must be capable of transmitting information simultaneously to all destinations in such set. Depending on the quality of source-to-relay and relay-to-destination channels, inner bounds on the capacity of the general BRC are derived. Three cases of particular interest are considered: cooperation is based on DF strategy for both users --referred to as DF-DF region--, cooperation is based on CF strategy for both users --referred to as CF-CF region--, and cooperation is based on DF strategy for one destination and CF for the other --referred to as DF-CF region--. These results can be seen as a generalization and hence unification of previous works. An outer-bound on the capacity of the general BRC is also derived. Capacity results are obtained for the specific cases of semi-degraded and degraded Gaussian simultaneous relay channels. Rates are evaluated for Gaussian models where the source must guarantee a minimum amount of information to both users while additional information is sent to each of them.Comment: 32 pages, 7 figures, To appear in IEEE Trans. on Information Theor
    corecore