1,172 research outputs found

    Multiple coverings with closed polygons

    Get PDF
    A planar set PP is said to be cover-decomposable if there is a constant k=k(P)k=k(P) such that every kk-fold covering of the plane with translates of PP can be decomposed into two coverings. It is known that open convex polygons are cover-decomposable. Here we show that closed, centrally symmetric convex polygons are also cover-decomposable. We also show that an infinite-fold covering of the plane with translates of PP can be decomposed into two infinite-fold coverings. Both results hold for coverings of any subset of the plane.Comment: arXiv admin note: text overlap with arXiv:1009.4641 by other author

    Unsplittable coverings in the plane

    Get PDF
    A system of sets forms an {\em mm-fold covering} of a set XX if every point of XX belongs to at least mm of its members. A 11-fold covering is called a {\em covering}. The problem of splitting multiple coverings into several coverings was motivated by classical density estimates for {\em sphere packings} as well as by the {\em planar sensor cover problem}. It has been the prevailing conjecture for 35 years (settled in many special cases) that for every plane convex body CC, there exists a constant m=m(C)m=m(C) such that every mm-fold covering of the plane with translates of CC splits into 22 coverings. In the present paper, it is proved that this conjecture is false for the unit disk. The proof can be generalized to construct, for every mm, an unsplittable mm-fold covering of the plane with translates of any open convex body CC which has a smooth boundary with everywhere {\em positive curvature}. Somewhat surprisingly, {\em unbounded} open convex sets CC do not misbehave, they satisfy the conjecture: every 33-fold covering of any region of the plane by translates of such a set CC splits into two coverings. To establish this result, we prove a general coloring theorem for hypergraphs of a special type: {\em shift-chains}. We also show that there is a constant c>0c>0 such that, for any positive integer mm, every mm-fold covering of a region with unit disks splits into two coverings, provided that every point is covered by {\em at most} c2m/2c2^{m/2} sets

    Two-sided bounds for the complexity of cyclic branched coverings of two-bridge links

    Get PDF
    We consider closed orientable 3-dimensional hyperbolic manifolds which are cyclic branched coverings of the 3-sphere, with branching set being a two-bridge knot (or link). We establish two-sided linear bounds depending on the order of the covering for the Matveev complexity of the covering manifold. The lower estimate uses the hyperbolic volume and results of Cao-Meyerhoff and Gueritaud-Futer (who recently improved previous work of Lackenby), while the upper estimate is based on an explicit triangulation, which also allows us to give a bound on the Delzant T-invariant of the fundamental group of the manifold.Comment: Estimates improved using recent results of Gueritaud-Futer and Kim-Ki

    Convex Polygons are Self-Coverable

    Get PDF
    We introduce a new notion for geometric families called self-coverability and show that homothets of convex polygons are self-coverable. As a corollary, we obtain several results about coloring point sets such that any member of the family with many points contains all colors. This is dual (and in some cases equivalent) to the much investigated cover-decomposability problem

    On the Multiple Packing Densities of Triangles

    Full text link
    Given a convex disk KK and a positive integer kk, let δTk(K)\delta_T^k(K) and δLk(K)\delta_L^k(K) denote the kk-fold translative packing density and the kk-fold lattice packing density of KK, respectively. Let TT be a triangle. In a very recent paper, K. Sriamorn proved that δLk(T)=2k22k+1\delta_L^k(T)=\frac{2k^2}{2k+1}. In this paper, I will show that δTk(T)=δLk(T)\delta_T^k(T)=\delta_L^k(T).Comment: arXiv admin note: text overlap with arXiv:1412.539

    Indecomposable Coverings with Concave Polygons

    Get PDF
    We show that for any concave polygon that has no parallel sides and for any k, there is a k-fold covering of some point set by the translates of this polygon that cannot be decomposed into two coverings. Moreover, we give a complete classification of open polygons with this property. We also construct for any polytope (having dimension at least three) and for any k, a k-fold covering of the space by its translates that cannot be decomposed into two covering

    Survey on Decomposition of Multiple Coverings

    Get PDF
    The study of multiple coverings was initiated by Davenport and L. Fejes Tóth more than 50 years ago. In 1980 and 1986, the rst named author published the rst papers about decompos-ability of multiple coverings. It was discovered much later that, besides its theoretical interest, this area has practical applications to sensor networks. Now there is a lot of activity in this eld with several breakthrough results, although, many basic questions are still unsolved. In this survey, we outline the most important results, methods, and questions. 1 Cover-decomposability and the sensor cover problem Let P = { Pi | i ∈ I} be a collection of sets in Rd. We say that P is an m-fold covering if every point of Rd is contained in at least m members of P. The largest such m is called the thickness of the covering. A 1-fold covering is simply called a covering. To formulate the central question of this survey succinctly, we need a denition. Denition 1.1. A planar set P is said to be cover-decomposable if there exists a (minimal) constant m = m(P) such that every m-fold covering of the plane with translates of P can be decomposed into two coverings. Note that the above term is slightly misleading: we decompose (partition) not the set P, but a collection P of its translates. Such a partition is sometimes regarded a coloring of the members of P

    A characterization of shortest geodesics on surfaces

    Full text link
    Any finite configuration of curves with minimal intersections on a surface is a configuration of shortest geodesics for some Riemannian metric on the surface. The metric can be chosen to make the lengths of these geodesics equal to the number of intersections along them.Comment: Published by Algebraic and Geometric Topology at http://www.maths.warwick.ac.uk/agt/AGTVol1/agt-1-17.abs.htm
    • …
    corecore