702 research outputs found

    Once‐more scattered next event estimation for volume rendering

    Get PDF

    Artistic Path Space Editing of Physically Based Light Transport

    Get PDF
    Die Erzeugung realistischer Bilder ist ein wichtiges Ziel der Computergrafik, mit Anwendungen u.a. in der Spielfilmindustrie, Architektur und Medizin. Die physikalisch basierte Bildsynthese, welche in letzter Zeit anwendungsübergreifend weiten Anklang findet, bedient sich der numerischen Simulation des Lichttransports entlang durch die geometrische Optik vorgegebener Ausbreitungspfade; ein Modell, welches für übliche Szenen ausreicht, Photorealismus zu erzielen. Insgesamt gesehen ist heute das computergestützte Verfassen von Bildern und Animationen mit wohlgestalteter und theoretisch fundierter Schattierung stark vereinfacht. Allerdings ist bei der praktischen Umsetzung auch die Rücksichtnahme auf Details wie die Struktur des Ausgabegeräts wichtig und z.B. das Teilproblem der effizienten physikalisch basierten Bildsynthese in partizipierenden Medien ist noch weit davon entfernt, als gelöst zu gelten. Weiterhin ist die Bildsynthese als Teil eines weiteren Kontextes zu sehen: der effektiven Kommunikation von Ideen und Informationen. Seien es nun Form und Funktion eines Gebäudes, die medizinische Visualisierung einer Computertomografie oder aber die Stimmung einer Filmsequenz -- Botschaften in Form digitaler Bilder sind heutzutage omnipräsent. Leider hat die Verbreitung der -- auf Simulation ausgelegten -- Methodik der physikalisch basierten Bildsynthese generell zu einem Verlust intuitiver, feingestalteter und lokaler künstlerischer Kontrolle des finalen Bildinhalts geführt, welche in vorherigen, weniger strikten Paradigmen vorhanden war. Die Beiträge dieser Dissertation decken unterschiedliche Aspekte der Bildsynthese ab. Dies sind zunächst einmal die grundlegende Subpixel-Bildsynthese sowie effiziente Bildsyntheseverfahren für partizipierende Medien. Im Mittelpunkt der Arbeit stehen jedoch Ansätze zum effektiven visuellen Verständnis der Lichtausbreitung, die eine lokale künstlerische Einflussnahme ermöglichen und gleichzeitig auf globaler Ebene konsistente und glaubwürdige Ergebnisse erzielen. Hierbei ist die Kernidee, Visualisierung und Bearbeitung des Lichts direkt im alle möglichen Lichtpfade einschließenden "Pfadraum" durchzuführen. Dies steht im Gegensatz zu Verfahren nach Stand der Forschung, die entweder im Bildraum arbeiten oder auf bestimmte, isolierte Beleuchtungseffekte wie perfekte Spiegelungen, Schatten oder Kaustiken zugeschnitten sind. Die Erprobung der vorgestellten Verfahren hat gezeigt, dass mit ihnen real existierende Probleme der Bilderzeugung für Filmproduktionen gelöst werden können

    A custom designed density estimation method for light transport

    No full text
    We present a new Monte Carlo method for solving the global illumination problem in environments with general geometry descriptions and light emission and scattering properties. Current Monte Carlo global illumination algorithms are based on generic density estimation techniques that do not take into account any knowledge about the nature of the data points --- light and potential particle hit points --- from which a global illumination solution is to be reconstructed. We propose a novel estimator, especially designed for solving linear integral equations such as the rendering equation. The resulting single-pass global illumination algorithm promises to combine the flexibility and robustness of bi-directional path tracing with the efficiency of algorithms such as photon mapping

    Efficient Many-Light Rendering of Scenes with Participating Media

    Get PDF
    We present several approaches based on virtual lights that aim at capturing the light transport without compromising quality, and while preserving the elegance and efficiency of many-light rendering. By reformulating the integration scheme, we obtain two numerically efficient techniques; one tailored specifically for interactive, high-quality lighting on surfaces, and one for handling scenes with participating media

    Photo-Realistic Rendering of Fiber Assemblies

    Get PDF
    In this thesis we introduce a novel uniform formalism for light scattering from filaments, the Bidirectional Fiber Scattering Distribution Function (BFSDF). Similar to the role of the Bidirectional Surface Scattering Reflectance Distribution Function (BSSRDF) for surfaces, the BFSDF can be seen as a general approach for describing light scattering from filaments. Based on this theoretical foundation, approximations for various levels of abstraction are derived allowing for efficient and accurate rendering of fiber assemblies, such as hair or fur. In this context novel rendering techniques accounting for all prominent effects of local and global illumination are presented. Moreover, physically-based analytical BFSDF models for human hair and other kinds of fibers are derived. Finally, using the model for human hair we make a first step towards image-based BFSDF reconstruction, where optical properties of a single strand are estimated from "synthetic photographs" (renderings) a full hairstyle

    Capturing and Reconstructing the Appearance of Complex {3D} Scenes

    No full text
    In this thesis, we present our research on new acquisition methods for reflectance properties of real-world objects. Specifically, we first show a method for acquiring spatially varying densities in volumes of translucent, gaseous material with just a single image. This makes the method applicable to constantly changing phenomena like smoke without the use of high-speed camera equipment. Furthermore, we investigated how two well known techniques -- synthetic aperture confocal imaging and algorithmic descattering -- can be combined to help looking through a translucent medium like fog or murky water. We show that the depth at which we can still see an object embedded in the scattering medium is increased. In a related publication, we show how polarization and descattering based on phase-shifting can be combined for efficient 3D~scanning of translucent objects. Normally, subsurface scattering hinders the range estimation by offsetting the peak intensity beneath the surface away from the point of incidence. With our method, the subsurface scattering is reduced to a minimum and therefore reliable 3D~scanning is made possible. Finally, we present a system which recovers surface geometry, reflectance properties of opaque objects, and prevailing lighting conditions at the time of image capture from just a small number of input photographs. While there exist previous approaches to recover reflectance properties, our system is the first to work on images taken under almost arbitrary, changing lighting conditions. This enables us to use images we took from a community photo collection website

    Efficient Unbiased Rendering using Enlightened Local Path Sampling

    Get PDF

    Efficient Hardware Acceleration of Robust Volumetric Light Transport Simulation

    Get PDF
    Efficiently simulating the full range of light effects in arbitrary input scenes that contain participating media is a difficult task. Unified points, beams and paths (UPBP) is an algorithm capable of capturing a wide range of media effects, by combining bidirectional path tracing (BPT) and photon density estimation (PDE) with multiple importance sampling (MIS). A computationally expensive task of UPBP is the MIS weight computation, performed each time a light path is formed. We derive an efficient algorithm to compute the MIS weights for UPBP, which improves over previous work by eliminating the need to iterate over the path vertices. We achieve this by maintaining recursive quantities as subpaths are generated, from which the subpath weights can be computed. In this way, the full path weight can be computed by only using the data cached at the two vertices at the ends of the subpaths. Furthermore, a costly part of PDE is the search for nearby photon points and beams. Previous work has shown that a spatial data structure for photon mapping can be implemented using the hardware-accelerated bounding volume hierarchy of NVIDIA's RTX GPUs. We show that the same technique can be applied to different types of volumetric PDE and compare the performance of these data structures with the state of the art. Finally, using our new algorithm and data structures we fully implement UPBP on the GPU which we, to the best of our knowledge, are the first to do so
    corecore