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Summary

Most global illumination algorithms today solve the light transport problem
using Monte Carlo ray tracing. These algorithms are capable of producing
photo-realistic imagery and in addition have few limitations with respect to the
kind of input (geometry, reflection models, etc.) they support. The downside to
using these algorithms is that they can be slow to converge. Due to the nature of
Monte Carlo methods, the results are random variables subject to variance. This
manifests itself as noise in the images, which can only be reduced by generating
more samples.

The reason these methods are slow is because of a lack of effective methods of
importance sampling. Most global illumination algorithms are based on local
path sampling, which is essentially a recipe for constructing random walks.
Using this procedure paths are built based on information given explicitly as
part of scene description, such as the location of the light sources or cameras,
or the reflection models at each point.

In this work we explore new methods of importance sampling paths. Our idea is
to analyze the scene before rendering and compute various statistics that we use
to improve importance sampling. The first of these are adjoint measurements,
which are the solution to the adjoint light transport problem. The second is a
representation of the distribution of radiance and importance in the scene. We
also derive a new method of particle sampling, which is advantageous compared
to existing methods. Together we call the resulting algorithm englightened local
path sampling and demonstrate how the algorithm improves efficiency in some
hard scenes.
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Resumé

I dag løser de fleste global illuminations algoritmer lystransportproblemet ved
hjælp Monte Carlo ray tracing. Disse algoritmer er i stand til at levere fo-
torealistiske billeder og har desuden kun f̊a begrænsninger i forhold til hvilke
typer input de understøtter (geometri, refleksionsmodeller, osv.). Ulempen ved
disse algoritmer er at de kan være langsomme til at konvergere. Grundet Monte
Carlo metodernes natur er resultaterne behæftet med varians, hvilket viser sig
som støj i billedet, som kun kan reduces ved at tage flere samples.

Grunden til at metoderne er langsomme skyldes manglen p̊a effektiv importance
sampling. De fleste global illuminations algoritmer er baseret p̊a local path sam-
pling, hvilket er en metode til at foretage random walks. Denne metode benytter
som udgangspunkt kun information givet eksplicit som del af scene beskrivelsen,
som f.eks. positionen af lyskilder eller kameraer, eller refleksionsmodellen i et
givet punkt.

I dette projekt udforsker vi nye importance sampling metoder. Vores idé er at
analysere scenen før den egentlige rendering finder sted og beregne forskellige
statistikker som vi benytter til at forbedre importance sampling. Den første af
disse kalder vi “adjoint measurements,” da disse er løsningen til det adjunkte
lystransportproblem. Det andet er en repræsentation af af radiance og impor-
tance i scenen. Vi præsenterer ogs̊a en nye metode til partikel sampling som
har færre ulemper end eksisterende metoder. Samlet set kalder vi metoden “en-
lightened local path sampling,” og demonstrerer at metoden øger effektiviteten
i nogle svære scener.
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Preface

This thesis was prepared at the Image Analysis and Computer Graphics group
at DTU Informatics and submitted to the Technical University of Denmark in
partial fulfillment of the requirements for acquiring the Ph.D. degree in infor-
matics and mathematical modeling.

The topic of this thesis is physically based rendering, which is the art and science
of creating photo-realistic synthetic images of three-dimensional scenes using a
computer. Choosing this topic was not hard, since I have long had a fascination
with realistic image synthesis. This fascination stems from a desire to do applied
scene, especially applied mathematics and physics. Physically based rendering
is a great example of both of these fields in action, together with other fields,
such as computer science.

There is something satisfying about writing rendering software that solves the
equations that govern the behavior of light, because you can literally see that
the science works: the resulting images are similar to the well known visual
sensations that come from observing the world. Sometimes the images even
predict effects that you were not aware of and that you can confirm exist in the
real world. All of this makes rendering a fun and interesting activity.

In fact, writing rendering software can even be a bit addictive. As you sit during
long nights of coding and debugging, struggling to implement some rendering
algorithm, you suddenly find (what you think is) the last bug. After fixing
the error, you rerun the algorithm and suddenly a beautiful image will begin to
appear through the Monte Carlo noise. This can be a very rewarding experience.

The downside to rendering is that it requires a great deal of patience. Despite
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great improvements in the speed of processors, the time it takes to render scenes
with realistic lighting effects is still measured in hours, days, or even longer in
some cases. This is a serious problem, since it hinders wider adaption of these
techniques. So, in this thesis we will try to investigate new ways of improving
the speed of these methods.

Kgs. Lyngby, September 2010

Anders Wang Kristensen
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Symbols and Notation

Mathematical notation

PDF Probability density function
CDF Cumulative density function
MSE Mean square error
RMSE Root mean square error
X A random variable

E[X] The expected value of a random variable
Var[X] The variance of a random variable
σ/σ2 The standard deviation / the variance

Rn The n-dimensional space of real numbers
V The subset of R3 defined as the scene
∂V The surfaces that form the boundaries in the scene
V0 The interior points of the scene (V0 = V \ ∂V)
x A position in R3

n(x)/ng(x) The geometric normal at a point x ∈ ∂V
ns(x) The shading normal at a point x ∈ ∂V
S2 The sphere of directions (the unit sphere in R3)
H2

+ The positive hemisphere with respect to a given normal
H2
− The negative hemisphere with respect to a given normal

ω A direction in S2 (a unit vector in R3)

A(D2) The area measure of D2 ⊂ ∂V
V (D3) The volume measure of D3 ⊂ V0

σ(D) The solid angle measure of D ⊂ S2

dA(x) Differential area around x ∈ ∂V
dV (x) Differential volume around x ∈ V0

dσ(ω) Differential solid angle around central direction ω ∈ S2
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Physics notation

r A ray (x,ω)
x̄ A path x0x1 . . .xn with n+ 1 vertices (length n)
Ωk The space of paths of length k
Ω The space of paths of any length
f(x̄) The measurement contribution function
µ(D) The path space measure of D ⊂ Ω
dµ(x̄) Differential path space measure of x̄ ∈ Ω

ξ A random number in [0; 1)
U(0, 1) A uniformly distributed random number in [0; 1)

t Time
λ Wavelength of electromagnetic radiation

n(λ) The index of refraction
η(λ) The real part of the index of refraction
κ(λ) The imaginary part of the index of refraction

σs(x) Scattering coefficient
σa(x) Absorption coefficient
σt(x) Extinction coefficient

τ(x↔x′) The optical depth along the ray segment from x to x′

T (x↔x′) Transmittance between x and x′

G(x↔x′) The generalized geometry term

Ij A measurement
I∗j An adjoint measurement

Li(x,ω) Incident radiance
Lo(x,ω) Outgoing (exitant) radiance
Le(x,ω) Emitted radiance (volume/surface emission, Le,V0 +Le,∂V)
Lje(x,ω) The jth importance responsivity function

Wi(x,ω) Incident importance
Wo(x,ω) Outgoing (exitant) importance
We(x,ω) Total emitted importance
W j

e (x,ω) The jth flux responsivity function

fr(x,ω
′,ω) Bidirectional reflection-distribution function (BRDF)

ft(x,ω
′,ω) Bidirectional transmittance-distribution function (BTDF)

fs(x,ω
′,ω) Bidirectional scattering-distribution function (BSDF)

f∗s (x,ω′,ω) The adjoint BSDF

fp(x,ω′,ω) The phase function
fk(x,ω′,ω) The scattering kernel
f∗k (x,ω′,ω) The adjoint scattering kernel
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Chapter 1

Introduction

A central topic in computer graphics is rendering, which can be defined as
the process of creating synthetic images from a model using a computer. The
term rendering has a long history in computer graphics and has been used to
describe tasks as diverse as anything from creating simple wireframe illustrations
to drawing complex user interfaces.

Physically based rendering is a form of rendering where the goal is to create phys-
ically accurate, or photo-realistic, images of three-dimensional scenes. What
differentiates physically based rendering from other types of rendering is that
the models used are based on the laws of physics, rather than some ad hoc laws
developed specifically for computer graphics.

Physically based rendering can be seen as being one part of the larger task of
realistic image synthesis, which is the entire process of creating photo-realistic
imagery from creating the model to the final result. Realistic image synthesis can
be seen as consisting of four distinct parts: The first is a modeling step, where
the scene is specified. In the second step the scene is rendered by simulating the
behavior of light using the laws of physics. The third step is image reproduction,
where the result of the rendering step is mapped to the desired display device.
Finally, the last step is a user evaluation of the results.
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Modeling of the scene A scene is created by specifying the relative positions
and orientations of the objects that comprise the scene. This is usually
done using a modeling program or by directly measuring a real scene
using a 3D scanner. The shapes of the objects in the scene can be de-
scribed mathematically using a variety of methods, such as implicit sur-
faces, polygonal meshes, or higher order surfaces. The objects must be
assigned materials, which describe their optical properties, such as how
they absorb and scatter light. Some objects also emit light themselves
and thereby act as the light sources of the scene. It is also necessary to
include a specification of the sensors in the scene. Sensors, the most com-
mon kind of which is a camera, define where in the scene we are interested
in measuring the light.

Physically based rendering Physically based rendering is the task of com-
puting how light emitted from light sources is scattered by the objects
in the scene and impinge on the sensors. The goal is to compute a set
of measurements, which are simply numerical values which describe the
response of the sensors to incoming light energy. Most often the sensors
model a camera, and in this case the measurements correspond directly to
the pixel values of the resulting image. To perform the measurements it
is necessary to solve the mathematical equations that govern the physics
of light.

Image reproduction The result of the rendering step is a set of measure-
ments. In some cases the numerical values of the measurements are the
end result and no further action is needed. More often the result is in-
tended for human viewers to be seen on display device, such as a computer
monitor or on a hard copy from a printer. In this case, the goal of the re-
production step is to map the measurements to the display device in such
a way that observing the synthetic image on the display device evokes the
same response that the viewer would have gotten from watching a realiza-
tion of the virtual scene. This is obviously a very lofty goal, which can be
very challenging to reach due to the limited technology of current display
devices, such as restricted dynamic range and limited color gamut. It is
further complicated by the nonlinearities of the human visual system.

Evaluation The last step is evaluation of the results of the image reproduction
step. Here it is determined whether the results are satisfactory or if any
adjustments to the process are required.

Based on the above description, it should be clear that realistic image synthesis
is more than just physics. Instead, as illustrated in Figure 1.1, it is an iterative
process. First the user models and renders an image of the scene, which is then
reproduced. The resulting image is evaluated, which may cause the user to go
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back and fine-tune the parameters that control the image reproduction step,
adjust how rendering is performed, or even go back and make adjustment to the
scene. This process is then repeated until the desired result is achieved.

Figure 1.1: Realistic image synthesis is the entire process of creating photo-realistic
synthetic images. This includes creating the model of the three-dimen-
sional scene, rendering an image of the scene, and reproducing that image
on a display device. It is an iterative process, where the parameters that
control different stages are tweaked until the desired result is achieved.

The quality of the end result will be limited by the weakest link in this process.
For instance, if the scene is poorly modeled, then no matter how accurately the
physics of light is simulated, the results will always end up appearing unreal-
istic. Similarly, even if the model of the scene is precise and light is simulated
accurately, the results can still be disappointing if the image reproduction step
is poorly executed or if the display device is too limited to faithfully reproduce
the scene.

There are several application areas for realistic image synthesis. The best known
of these is the entertainment industry, where realistic image synthesis is used
for creating special effects in movies and also in computer games. Realistic im-
age synthesis is also used increasingly for predictive rendering (see e.g. Wilkie,
Weidlich, Magnor, and Chalmers [2009]). Predictive rendering is the process of
inferring the appearance of an object or scene based on a model. For predictive
rendering to be of any use, the simulation of light has to be of a sufficiently high
quality, so that the results not only look real, but are in fact reliable predictions
of the actual appearance of the finished product. Predictive rendering has obvi-
ous applications in architectural design, where buildings can be visualized prior
to construction. Predictive rendering is also used in product design to reduce
development costs and time to market. Cost can be reduced by relying less
on the time-consuming construction of expensive prototypes, and instead using
predictive rendering tools to evaluate design alternatives. The same techniques
that underlie physically based rendering can also be used for lighting design
and lighting engineering. Lighting design is the process of determining the best
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configuration of light sources and the materials in e.g. an office, so as to create
a comfortable lighting environment, whereas lighting engineering is the design
of the lighting fixtures themselves. Both of these tasks require simulating the
behavior of light, similarly to physically based rendering.

All the steps involved in realistic image synthesis are challenging subjects worthy
of investigation. However, in order to limit the scope of this work, we will
not consider the process of modeling the scene any further, but instead simply
assume that scenes of the appropriate kind are available as input to the rendering
step. We will also not consider the image reproduction step any further. Instead,
we will focus only on the rendering step.

1.1 Physically Based Rendering

As discussed above, physically based rendering is concerned with simulating the
behavior of light with the goal of producing photo-realistic synthetic images
intended for human viewers. Light is electromagnetic radiation, and in this
thesis we will use the word “light” exclusively to mean visible light, i.e. the part
of the spectrum of electromagnetic radiation that is visible to humans.

The history of light is also the history of some of the most important discoveries
in physics over the last few centuries. Many increasingly more accurate models
of light have been suggested over the years, and as a result the most sophis-
ticated models of light can today predict virtually any observed phenomenon.
Unfortunately, as these models became more accurate, they also became more
complicated, and thus more computationally intensive. This means that when
choosing a suitable model of light, a compromise has to be made. On the one
hand, we must choose a model that is rich enough to be able to predict the
effects we are looking for. On the other hand, we are always interested in pick-
ing the simplest model, since implementation of the resulting algorithm will be
simpler and computations less time consuming.

Physically based rendering is mostly concerned with the large-scale behavior of
light as it interacts with matter. By “large-scale,” we mean interaction with
matter on a scale much larger than the wavelength of visible light and over
time periods large compared to the frequency of visible light. This process is
known as light transport and in computer graphics the process of determining
the appearance by simulating light transport is known as global illumination.

Geometrical optics, also called ray optics, accounts for the large-scale behaviors
of light, such as linear propagation, reflection, and refraction. Geometrical
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optics is capable of predicting practically all important optical phenomena, while
still being fairly simple, and is therefore the most popular model of light in
computer graphics. However, traditional geometrical optics does not include
concepts necessary to quantify light energy, so for this theory to be useful it has
to augmented with radiometric concepts such as radiance.

Physical optics is a more advanced theory and includes all the effects of geomet-
rical optics and adds interference, diffraction, dispersion, and more. Physical
optics is much more complicated than geometrical optics and the additional phe-
nomena this theory predicts are of little importance in the majority of scenes,
so using it for global illumination is therefore rarely justified. However, physical
optics and other more advanced theories are still useful in computer graphics
to infer macroscopic properties used as part of geometrical optics (this field is
known as appearance modeling ; see e.g. Frisvad [2008]).

The behavior of light can also be studied at the transport level. Radiative
transfer uses geometrical optics and conservation laws from thermodynamics
to describe the distribution of radiant energy. The resulting model can predict
phenomena such as participating media, e.g. fog or smoke, and subsurface scat-
tering, scattering at surfaces, and much more. This model is presently the most
popular in computer graphics and is also the model used throughout this work.

1.2 Existing Methods

Global illumination algorithms have a more than 40 year long history in com-
puter graphics. Early global illumination algorithms were restricted by the
technology available at the time. While many were physically based, they did
not account for the full range of optical effects that the underlying model of
light predicted, or they were limited with respect to the kinds of geometry or
reflection models they supported.

The quality of global illumination algorithms can be judged according to the
degree to which they possess certain characteristics. The first of these is the limi-
tations of the algorithms with respect to the kind of scenes they support. Ideally,
global illumination algorithms should support any kind of scene, including scenes
with area/volume light sources, general camera and reflection models, partici-
pating media, and subsurface scattering. However, often a given algorithm only
supports a subset of these features or the algorithm supports them but only
at the cost of a disproportionate increase in computational resources. A second
way of evaluating a global illumination algorithm is according to how accurately
the light transport simulation is performed. Ideally, algorithms should account
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for all light energy emitted from the light sources that end up at the camera
no matter how complicated the underlying transport mechanism is. However,
presently all global illumination algorithms are limited in some way in this re-
spect, and therefore have missing lighting effects, such as e.g. missing indirect
illumination or caustics in the most severe cases. Finally, algorithms can be
judged according to the amount of computational resources they require. This
includes processing time, but also memory and other resources. A related is-
sue is the robustness of the algorithm. For some algorithms making even small
changes to a scene, such as adding a mirror, can greatly increase computational
burden. Such algorithms are not robust and should be avoided.

In the following we will give a brief overview of the most important devel-
opments in the history of global illumination algorithms. Global illumination
algorithms can be classified according to their solution space. Of course, the
goal of any global illumination algorithm is to produce an image of a scene
from particular view point, so image space is the final solution space for all of
these algorithms. However, view-independent algorithms first produce a global
solution to the light transport problem without considering the view point.
This solution can then be visualized from a particular view point often even
interactively. Such algorithms are always limited to scenes with low-frequency
(diffuse) reflection models, since both computing and storing a global solution
for general reflection models is not practical. Some view-independent algorithms
produce a global solution where the amount of detail in the different parts of the
solution space depends on how important those parts are to a given view point
or set of view points. Such algorithms are called importance-driven, and have
the advantage that because the global illumination computations are focused
on the important parts of the scene, the quality of the final result is improved
for the same amount of computational resources. View-dependent algorithms
come in several different flavors. Multi-pass algorithms first compute a partial
global solution using a view-independent method. This solution is then used in
a view-dependent pass, where high-frequency (specular or mirror-like) reflection
is added. The fundamental limitation of these algorithms is that they often only
partially account for the interaction between the high and low-frequency com-
ponents of light transport. Finally, image space algorithms directly compute the
values at each pixel without resorting to any intermediate step. These methods
are often conceptually simpler, but can be less effective.

Most global illumination algorithms today are based on ray tracing. Ray trac-
ing is essentially a geometrical optics approach, where rays are followed along
straight lines starting from the eye. As the rays traverse the scene they are scat-
tered and change direction instantaneously and form paths through the scene.
Full paths that connect the eye and light sources can be constructed e.g. by
connecting vertices from the paths to points on the light sources. Based on
the geometry of the path the amount of flux transferred along the path can be
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computed, which directly leads to the formation of an image of the scene.

A restricted form of ray tracing, called ray casting, was first used Appel [1968] to
render shaded line drawings. This work was later extended by Whitted [1980],
who is the person usually credited with introducing ray tracing to the computer
graphics community. This early form of ray tracing, nowadays referred to as
classical ray tracing, is based on a recursive algorithm that terminates at diffuse
surfaces, where lighting from point light sources is evaluated using a shading
model, but continues the recursion at specular surfaces. The advantage of this
formulation is that the need for time-consuming numerical integration is conve-
niently sidestepped, though at the price of not supporting diffuse interreflection
and other lighting effects. A consequence of this is that images produced with
classical ray tracing have a distinctive computer-generated look.

Finite element methods have also been used as the basis for global illumina-
tion algorithms. The radiosity method by Goral, Torrance, Greenberg, and
Battaile [1984] uses techniques borrowed from thermal engineering to compute
a global solution which includes diffuse interreflection. In order to use the ra-
diosity method it is necessary to discretize the scene. This has turned out to
be the Achilles’ heel of the method, since finding suitable basis functions that
work for general scenes remains an unsolved problem. Much research has been
devoted to this problem, which has led to algorithms such as substructuring [Co-
hen, Greenberg, Immel, and Brock, 1986], progressive refinement [Cohen, Chen,
Wallace, and Greenberg, 1988], and discontinuity meshing [Lischinski, Tampieri,
and Greenberg, 1992] to name a few. Importance-driven methods have also been
used with the radiosity method by Smits, Arvo, and Salesin [1992], who made
the accuracy of the different parts of the global solution depend on the view
point. The radiosity method has also been extended to non-diffuse surfaces by
Immel, Cohen, and Greenberg [1986] among others and to participating media
by Rushmeier and Torrance [1987]. However, despite a tremendous amount of
research, the radiosity method is today still not capable of handling general
scenes, such as scenes with significant high-frequency (non-diffuse) reflection
and participating media, and is therefore falling into disuse.

Algorithms based on Monte Carlo methods are presently the most popular way
of solving the light transport problem. Monte Carlo methods are a set of al-
gorithms for solving hard integration problems using random sampling. The
primary advantage of these methods is their generality: If combined with ray
tracing these methods support practically any kind of reflection model, geome-
try, light source type, or sensor type, as long as these are based on point sam-
pling, which is a very mild restriction. Monte Carlo methods can be classified
according to whether they are unbiased or biased but consistent. Briefly stated,
unbiased methods compute the correct answer on average, whereas biased but
consistent methods produce the correct answer in the limit. An advantage of un-
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biased methods is that they allow error estimates, unlike biased methods, where
it is often not even possible to bound the bias. This makes unbiased methods
desirable when the goal is to compute accurate measurements, i.e. measurements
that we can be confident are correct, which is necessary in e.g. predictive ren-
dering. However, often the goal of realistic image synthesis is simply to produce
pleasing pictures, rather than accurate measurements, and in this case biased
but consistent methods can be used and are often much more efficient.

Classical ray tracing lacks support for lighting effects such as penumbra from
area light sources, depth of field, motion blur, and indirect illumination. The
distribution ray tracing algorithm by Cook, Porter, and Carpenter [1984] uses
random sampling, to compute some of these “fuzzy phenomena.” Random sam-
pling, which is essentially a Monte Carlo method, was also used in the seminal
paper by Kajiya [1986]. In this paper Kajiya presented the “The Rendering
Equation,” which is an integral equation that describes the distribution of radi-
ance in a scene without participating media. This equation is significant, since
this is the equation all global illumination algorithms attempt to solve. It can
therefore be used to compare these algorithms according to how accurately they
do so. Kajiya also recognized that the rendering equation could be solved by
transforming it into an integration problem and suggested an unbiased Monte
Carlo method based on random walks, called path tracing, for doing so.

Path tracing works well for diffuse interreflection, but has a hard time finding
light paths that produce caustics. Conversely, the light tracing algorithm by
Dutré, Lafortune, and Willems [1993], which is based on random walks starting
from the light sources, is relatively efficient for caustics paths, but less so for
direct illumination. The insight that some paths are easier to find if the random
walks are started from the light sources and others if the walk is started from
the eye led to the development of bidirectional methods. An early example of
a bidirectional method is the algorithm by Arvo [1986]. This is a two-pass
method, where the first pass is spent tracing rays from the light sources and
accumulating light energy in textures across the surfaces of the objects in the
scene. In the second pass the scene is rendered from the eye using the light
energy stored in the texture maps. A more popular variation of this approach
is the photon mapping algorithm by Jensen [2001]. In this algorithm rays,
or “photons,” are also emitted from light sources, though rather than storing
them in texture maps, they are instead stored in a kd-tree. The final image is
rendered using ray tracing starting from the eye, where radiance is computed
using density estimation based on the photons. Algorithms based on virtual
point lights, such as the instant radiosity algorithm by Keller [1997], follow a
similar approach. In those algorithms point light sources that represent the
illumination in the scene are created using random walks starting from the light
sources. The final image is created using ray tracing from the eye, where the
incident illumination is estimated using the point light sources. Common for
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these algorithms is that they gain much of their efficiency from path reuse, i.e.
the representation of illumination is created once but reused for all the pixels
in final image. The downside to using such intermediate representations is
that their quality may not be sufficiently high to reproduce all lighting effects;
e.g. non-diffuse reflection can be difficult. Another issue is that due to reuse,
error is correlated between the pixels, which can lead to objectionable artifacts
in the final result. Not all bidirectional methods require intermediate storage.
Bidirectional path tracing, which was developed independently by Lafortune and
Willems [1993] and Veach and Guibas [1994, 1995], computes pixel intensities
directly similarly to path tracing and light tracing. This is achieved by forming
paths using a pair of random walks, one starting from the light source and one
starting from the sensor.

The random walks used in the aforementioned algorithms are all created using
the principle of local path sampling, which also forms the basis of most other ray
tracing based global illumination algorithms. The principles that underlie these
algorithms was studied in great detail in the Ph.D. thesis of Eric Veach [1997],
who gave the theory a solid mathematical foundation. In particular Veach stud-
ied the symmetry between radiance and importance in a scene and gave a precise
mathematical description of the equilibrium distribution of importance. This
important work is quoted numerous times throughout this thesis. Veach also
investigated the limitations of local path sampling, and suggested the Metropo-
lis light transport algorithm [Veach and Guibas, 1997] for dealing with difficult
lighting situations, i.e. scenes where local path sampling is ineffective. This al-
gorithm is still based on local path sampling, but is framed in a Markov Chain
Monte Carlo context, where paths are explored by mutating a Markov chain
using the Metropolis-Hastings algorithm.

Importance-driven methods have also been used to improve local path sampling.
For instance, Dutré and Willems [1994] suggest an adaptive algorithm for im-
proving light tracing by learning which outgoing directions on the light sources
that are likely to lead paths to areas visible to the camera. Similarly, Jensen
[1995] suggests improving path tracing by using the photon map to guide paths
to light sources (confusingly, the author calls this importance-driven path trac-
ing; a more appropriate description of this technique would be radiance-driven
path tracing).

Ray tracing has also been performed on graphics processing units (GPUs) by
Carr, Hall, and Hart [2002] and Purcell, Buck, Mark, and Hanrahan [2002]
among others. GPUs were originally special purpose hardware designed for
fast rasterization. However, over the years graphics hardware has become in-
creasingly programmable to the point where GPUs today are practically fully
programmable. The lure of using GPUs for physically based rendering is that
they offer higher peak performance than regular general purpose processors
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(CPUs). However, to achieve this speed it is necessary to express the algorithms
in an efficient way using the stream programming model. This has turned out to
be very challenging, since ray tracing, unlike rasterization, has highly incoherent
memory access patterns.

1.3 Thesis Statement

Today the challenge when solving the light transport problem is no longer that
we do not have algorithms that can handle all lighting effects, but rather that
these algorithm require too many computational resources.

Bidirectional path tracing and Metropolis light transport are among the most
effective unbiased Monte Carlo ray tracing algorithms today. These algorithms
construct paths using local path sampling based on information given explicitly
as part of the scene description, such as the location of the cameras, or how
much light is emitted from the light sources, or how light is scattered at a given
point. This makes it difficult to sample paths effectively in many situations.
For instance, random walks starting from the eye are built without considering
the distribution of radiance in the scene (except for emitted radiance, which
is given explicitly as part of the scene description). Similarly, random walks
starting from the light sources do not take importance into account. This leads
to inefficiencies when the distributions of radiance and importance in a scene are
dissimilar, which is the case in many common lighting situations. For instance,
consider an office lit by skylight streaming in through a window. In such cases
bidirectional path tracing degenerates to an inefficient form of path tracing,
since the light path is essentially wasted, and the Metropolis light transport
algorithm struggles with making good mutations.

The goal of this project is to investigate how additional information derived from
the scene description can be used to improve local path sampling and thereby
increase the effectiveness of these algorithms. We call this additional informa-
tion global context, since it is based on the properties of the entire scene. We
consider three different kinds of global context. The first kind is an approximate
representation of the equilibrium distribution of radiance in the scene. We use
this distribution to guide random walks starting on the sensors to brightly lit
areas of the scene. The second kind is a record of how much light energy each
part of the light sources contribute to the final image. We call this data adjoint
measurements and use it to pick good starting points for random walks starting
on light sources. The last kind we consider is an approximate representation
of the equilibrium distribution of importance in the scene. We use this distri-
bution to guide random walks starting at the light sources to the visible parts
of the scene. We call the resulting algorithm enlightened local path sampling to
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differentiate it from regular local path sampling.

The methods presented in this work can be used with any algorithm based on
local path sampling. However, to limit the scope of the work, we restrict our
attention to the subset of global illumination algorithms that are unbiased. We
also only consider designing algorithms for use on CPUs, and do not consider
the challenges of mapping the proposed algorithms to GPUs. Finally, many
implementation details that are necessary when designing rendering software,
such as acceleration structures, are not covered in this work. We refer the reader
to the book by Pharr and Humphreys [2004] for information on these topics.

1.4 Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2: The Light Transport Problem

We begin with a description of the light transport problem as it is usually
posed in computer graphics. Starting from transport theory we formulate
the equation of transfer with boundary conditions, which describes the
distribution of particles in an abstract setting. We then apply this theory
to the transport of radiant energy, which gives rise to the fields radia-
tive transfer and radiometry. We show how to provide a mathematical
description of the scenes that are the input to the rendering algorithms.
This description includes how to define scattering at boundaries, including
the challenges of asymmetric scattering, and how to define volume scat-
tering. We also include a description of how to define emission from light
sources and how to define the sensors in the scene. Finally we present the
measurement equation, which binds together the equation of transfer, the
scene description, and the description of the sensors, and which defines
the mathematical solution to the light transport problem.

Chapter 3: Monte Carlo Methods

Chapter 3 provides a general introduction to Monte Carlo methods. The
light transport problem is a high-dimensional integration problem that
only Monte Carlo methods currently provide a practical way of solving.
We also discuss the fundamental advantage of Monte Carlo over other in-
tegration schemes, which is that convergence rate is independent of the
dimensionality of problem. The remainder of the chapter is concerned with
improving the efficiency of Monte Carlo estimators. We present the im-
portant variance reduction methods of importance sampling and stratified
sampling, among others. We conclude the chapter with an introduction to
Markov Chain Monte Carlo based on the Metropolis-Hastings algorithm,
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and discuss the challenges of constructing good mutation strategies for
this algorithm.

Chapter 4: Solution Strategies

In this chapter we show how to solve the light transport problem using
Monte Carlo methods. We begin by presenting the integral formulation of
light transport and show how to use linear operators to reason about the
existence of solutions to the light transport problem. Adjoint operators
are introduced and these allow us to define the useful concept of impor-
tance. We then present the path integral formulation of the light transport
problem and discuss the important principle of local path sampling. Us-
ing this framework we explain the classical unbiased global illumination
algorithms. We conclude the chapter with a discussion of the limitations
of existing unbiased algorithms. In particular we discuss how effective
importance sampling is hampered by the lack of global context.

Chapter 5: Enlightened Local Path Sampling

We begin this chapter with a discussion of how global context can be
used to improve local path sampling. To this end we introduce the con-
cept of adjoint measurements. Adjoint measurements are the solution
to the adjoint light transport problem, i.e. they measure how important
the different parts of the light sources are to the sensors. This makes
adjoint measurements a useful tool for selecting good starting points on
light sources in bidirectional algorithms. We propose a two-pass algo-
rithm for implementing local path sampling using this global context. In
the first pass we analyze the flow of radiance and importance in the scene.
This is accomplished using a variation of particle tracing that allow us to
sample radiance and importance simultaneously. Using this procedure we
compute the adjoint measurements. We also construct a data structure
for representing the radiance and importance in scene that is compact,
while still being amendable to importance sampling. We call local path
sampling using these data structures for “enlightened,” since rather than
sampling paths blindly, we take adjoint quantities into account. Enlight-
ened local path sampling can be used as a drop-in replacement for any
algorithm based on regular local path sampling. We use it with a vari-
ation of Metropolis light transport and show that particularly for hard
lighting situations the proposed method is an advantage.

Chapter 6: Conclusion

We conclude with a summary of the results and an overview of possible
directions for future research.

The bibliography can be found starting on page 171 and the index can be found
starting on page 183.



Chapter 2

The Light Transport Problem

Images are formed when photons, that are emitted from light sources and scat-
tered in the scene, hit a sensor, such as a camera or the retina in the eye. The
amount of light energy that hits the sensor determines how strongly the sensor
responds. We will call the actual numeric value that describes the response of
the sensor a measurement, and we will define the light transport problem as the
task of computing these measurements for each sensor in the scene.

Computing measurements requires a model of how light behaves. Using this
model, we can describe how light is emitted in the scene and how sensors respond
to light. In order to perform these computations, it also necessary to have an
understanding how light interacts with matter. This means that the description
must also include information on how the materials of the objects in the scene
cause light to scatter.

In this chapter we provide a mathematical description of the light transport
problem suitable for global illumination algorithms based on Monte Carlo ray
tracing. We begin by studying transport theory. As discussed in the previous
chapter, geometrical optics, which is essentially a particle model of light, is a
suitable model of light for global illumination. Transport theory, is the study
of such particles and uses conservation laws from thermodynamics to derive
an equation that governs their distribution. We apply transport theory to the
transfer of radiant energy, which leads to radiative transfer. Using radiative
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transfer we can describe the distribution of radiant energy in a scene using ra-
diometric concepts such as radiance and distribution functions. We then discuss
the requirements for a complete scene description, including a how to describe
the light sources, the sensors, and how to describe scattering. We conclude by
presenting the measurement equation, which links together all these elements
and defines the solution to the light transport problem.

2.1 Domains and Measures

Before we begin, it will be necessary to introduce some mathematical concepts,
such as solid angle, as well as the domains and measures that we will use.

Much of this chapter is spent considering the distribution of light energy in a
3D scene. In this regard, we will use V to mean the finite subset of R3 that is of
interest. The points that belong to V can be classified into interior points, V0,
and boundary points, ∂V, so that V = V0 ∪ ∂V. The area measure is denoted
A(D2), where D2 ⊂ ∂V. Similarly, the volume measure is denoted V (D3), where
D3 ⊂ V0.

Directions are denoted ω and we use S2 to specify the set of all directions (the

unit sphere in R3). We will use ωx→x′ = x′−x
‖x′−x‖ to mean the unit vector from

x to x′, where x,x′ ∈ R3 and ‖ · ‖ is the L2-norm. We will use σ to mean the
surface area measure on S2, which we call the solid angle measure. This means
that if D ⊂ S2 then σ(D) is the solid angle of D. The solid angle is simply
the 3D analog to the more familiar 2D concept of angle. For instance, the solid
angle of the entire sphere of direction is σ(S2) = 4π. The solid angle subtended
by some object seen from a point x can be found by projecting the object onto a
unit sphere centered at x and then computing the area covered by the resulting
shape (see Figure 2.1a).

The solid angle measure is related to the area measure by

dσ(ωx→y) =
|ωx→y · n(y)|
‖x− y‖2

dA(y),

where n(y) is the normal at y ∈ ∂V (see Figure 2.1b). This relation is necessary
to account for the change of variables that occurs when changing the domain of
an integral from the solid angle measure to the area measure.

It will also be convenient to introduce the projected area measure,

A⊥ω(D2) =

∫
D2

|ω · n(x)| dA(x).
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Figure 2.1: The solid angle (top-left) of an object seen from x is found by first
projecting it onto a unit sphere centered at x and then computing the
dashed area. The relationship between differential solid angle and differ-
ential area is shown in the top-right figure. Projected area (bottom-left)
is found by projecting the shape onto a plane along the direction ω. Pro-
jected solid angle (bottom-right) is found by projecting onto the tangent
plane defined by the normal.

(a) (b)

(c) (d)

Similarly, projected solid angle measure is defined as

σ⊥x (D) =

∫
D

|ω · n(x)| dσ(ω).

Refer to Figure 2.1c and Figure 2.1d for a more intuitive explanation of these
concepts. Consequently, we have the relationships

dA⊥ω(x) = |ω · n(x)| dA(x) and

dσ⊥x (ω) = |ω · n(x)| dσ(ω).

In order to simplify notation, it will be useful to define a pair of measures over
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all of V, where the type of the measure depends on whether the subset belongs
to V0 or ∂V. The first of these is the area/volume measure,

dλ(x) ≡
{

dA(x) if x ∈ ∂V,
dV (x) if x ∈ V0.

The second is the projected area/volume measure,

dαω(x) ≡
{

dA⊥ω(x) if x ∈ ∂V,
dV (x) if x ∈ V0.

2.2 Transport Theory

The study of the behavior of “particles” in an abstract setting is called transport
theory. The particle model of light is well suited for simulating light flow in
a computer graphics context, so in our case the particles can be though of
as photons. When transport theory is applied to photons, as opposed to say
neutrons or gas molecules, it gives rise to the field of radiative transfer.

Radiative transfer, described in such famous books as Chandrasekhar [1960] and
Preisendorfer [1965], is the study of the interaction of electromagnetic radiation
with matter on a macroscopic scale. The origin of the field of radiative transfer
can be found in the seminal papers of Schuster [1905] and Schwarzschild [1906].
Arvo [1993], Cohen and Wallace [1993], and Glassner [1994] all give presentations
of transport theory and radiative transfer in the context of computer graphics,
that we will follow here.

Our goal will be to find a balance equation, called the equation of transfer, which
describes the equilibrium distribution of particles in a scene. As we will see,
the equation of transfer is a integro-differential equation, called the Boltzmann
equation. In the following, the equation of transfer for particles in the abstract
setting will be derived. In the next section these equations will be applied to the
transport of radiant energy which will give rise to the fields of radiative transfer
and radiometry.

2.2.1 Equation of Transfer

The purpose of transport theory is to find the distribution of particles in space
and time given a medium with suitable boundaries, where the resulting distri-
bution is expressed as geometrical and physical properties of the host medium.
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In order to find expressions for these distributions, it is necessary to first crys-
tallize what is meant by an abstract particle and what assumptions underlie this
particle model.

Particles in transport theory are described by their position and velocity. In
addition, particles can have internal state, such as frequency (or wavelength),
and polarization. The complete state of particle can be seen as a point in the
particles’ phase space.

Particles are assumed to be infinitely small and their number is assumed to be
so large, that their distribution can be treated as continuum. It is assumed that
particles do not interact, i.e. they never collide or attract each other and thus
only interact with the medium. In addition, the particles are not influenced by
external forces. Finally, it is assumed that all collisions with the medium and
boundaries are completely elastic, and that all particles move with the same
speed, v.

One-speed transport theory has a five dimensional phase space: R3 × S2. To
describe how many particles that have a particular configuration, we treat the
particles as a continuum, and talk about the phase space density, n(x,ω, t), of
the medium. The number of particles in a differential volume, dV (x), around
x ∈ R3 moving in directions within a differential solid angle of dσ(ω) around
the central direction ω ∈ S2 at time t is then given by

n(x,ω, t) dV (x) dσ(ω).

Figure 2.2: Phase space flux is the rate at which particles cross a surface per
unit area per unit solid angle. The number of particles in the
volume dA ds is n(x,ω, t) dA(x) ds dσ(ω), or, in terms of flux,
φ(x,ω, t) dA(x) dσ(ω) dt.

It turns out to be convenient to consider the rate at which particles cross a
possible imaginary surface. As illustrated in Figure 2.2, if the surface has dif-
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ferential area dA, then the resulting volume is dA(x) ds, where ds = v dt, and
the number of particles in this volume is

n(x,ω, t) dA(x) ds dσ(ω).

The notion of flow across a surface can also be expressed in terms of the phase
space flux

φ(x,ω, t) ≡ v n(x,ω, t),

in which case the number of particles in the differential volume dA(x) ds is

φ(x,ω, t) dA(x) dσ(ω) dt.

Consider the subset of the phase space, V × Ω, where V ⊂ R3 and Ω ⊂ S2,
illustrated in Figure 2.3. We will denote the surface that forms the boundary
of V as ∂V and the interior as V0 = V \ ∂V and in the following assume that
xs ∈ ∂V and xv ∈ V0. Then, the number of particles in the subset V × Ω is

N(t) =

∫
Ω

∫
V0
n(xv,ω, t) dV (xv) dσ(ω).

There are two ways the number of particles in the volume can change as function
of time. Firstly, the medium can have time-dependent properties; e.g. emission
can change over time, or the scattering properties might depend on time. Sec-
ondly, if any of properties of the medium have recently changed, the medium
might be moving toward equilibrium.

Figure 2.3: The subset of phase space Ω× V is defined as the Cartesian product of
Ω and V, i.e. {(x,ω)|x ∈ V andω ∈ Ω}.

Fortunately, the time it takes for light to reach equilibrium is very short in
environments on a human scale. In fact, light travels so fast compared to the
size of macroscopic features, that it is commonplace to assume that the speed
of light is infinite and that equilibrium is reached instantaneously. This means
that as long as the properties of the medium are undisturbed, the number of
particles in the volume V × Ω does not change; i.e.

dN(t)

dt
= 0.
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As a consequence, phase space density, and consequently phase space flux, are
independent of time and the time index can be dropped.

This is an example of dynamic equilibrium. The number of particles in V × Ω
is constant, but particles are still flowing in and out of the volume. Since the
number is constant, the number of particles flowing in must exactly match the
number flowing out, i.e. gains and losses must be equal. This means we can
write down a balance equation for gains and losses, if the sources of these can
be identified.

The three factors that influence the number of particles in a given volume are
emission, collision, and streaming. Emission is simply the creation of new par-
ticles in the volume. This can happen as a result of various physical processes,
such as incandescence. The exact nature of these processes is not of concern
here; only the state of the generated particles matter.

Collisions of particles with the medium results in either absorption or scattering.
If the particle is absorbed, it disappears from the model, and its energy is
converted to some other form, such as heat. Scattering is the instantaneous
change in direction of a particle. Streaming happens if a particle enter or leaves
the volume through the surface.

Emission

Volume emission is described by the phase space source function, qv(xv,ω). As
shown in Figure 2.4, it describes how many particles are generated per unit
volume, per unit solid angle, per unit time. The change in N caused by volume
emission can be found to be

E ≡
∫

Ω

∫
V0
qv(xv,ω) dV (xv) dσ(ω).

Since E is the change in the number of particles in Ω×V over time, it has units
of 1/s.

Streaming

Streaming is the change in particle count in Ω × V due to particles entering
or leaving through the surface, ∂V, something also referred to as leakage. The
amount leakage depends on the component of the flux normal to ∂V, so the
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Figure 2.4: The five causes of gains and losses of particles in Ω × V shown in Fig-
ure 2.3. Emission results in the creation of new particles. Particles enter
or leave V through the boundary ∂V by streaming. Absorption reduces
the number of particles by collisions with the medium. Finally, outscat-
tering causes particles to be scattered out of Ω, and inscattering causes
particles to be scattered into Ω.

total change in N due to streaming can be computed as

S ≡
∫

Ω

∫
∂V
φ(xs,ω)ω · n(xs) dA(xs) dσ(ω),

where n(xs) is the outward pointing normal at xs. This means that if S is
positive, more particles are leaving V than entering, i.e. N decreases.

Absorption

Collisions with the host medium can result in the particle getting absorbed. The
probability of a particle getting absorbed is proportional to the distance traveled.
The constant of proportionality is called the absorption coefficient, σa(xv), and
has units 1/m. The absorption coefficient is a macroscopic description of the
interactions of particles with the medium at a microscopic level. It is generally
a function of position, but is independent of direction for isotropic media, which
is the case considered here. The total change in the number of particles in Ω×V
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due to absorption can be computed as

Cabs ≡
∫

Ω

∫
V0
σa(xv)φ(xv,ω) dV (xv) dσ(ω).

Scattering

Collisions can also result in scattering, which causes particles to change direction
instantaneously. The probability distribution which characterizes the scattering
behavior of the medium is called volume scattering kernel, kv. It is defined
so that kv(xv,ω · ω′) dV (xv) dσ(ω′) is the probability that a particle at xv

traveling in direction ω is scattered into direction ω′. For isotropic media, the
volume scattering kernel depends only on the relative directions of ω and ω′.

If a particle in Ω×V is scattered into a new direction, ω′ /∈ Ω, it is an example of
outscattering. The total change in the number of particles due to outscattering
can be computed as

Cout ≡
∫

Ω

∫
V0

∫
S2

kv(xv,ω · ω′)φ(xv,ω) dσ(ω′) dV (xv) dσ(ω). (2.1)

Similarly particles in V but with directions outside Ω can be scattered into new
directions ω′ ∈ Ω. This results in an increase in particles and is known as
inscattering. The total number of particles gained through inscattering can be
computed as

Cin ≡
∫

Ω

∫
V0

∫
S2

kv(xv,ω
′ · ω)φ(xv,ω

′) dσ(ω′) dV (xv) dσ(ω). (2.2)

The Balance Equation

Now that the effects that cause changes in the number of particles in Ω×V have
been identified, we can group gains and losses to form a balance equation,

S + Cabs + Cout = E + Cin. (2.3)

Note that in Equation 2.1 and 2.2 the inner integral is over the complete
4π sphere of directions, which includes Ω. This means that inscattering and
outscattering both account for particles already in Ω scattered back into Ω.
However, since these particles appear both as gains and loses, they effectively
cancel each other out.
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Equation 2.3 expresses a condition that must be true for a particular subset
Ω × V of the phase space in order for equilibrium to exist. We would like to
show that this condition is true not only for arbitrary subsets of the phase space,
but also for any point (xv,ω) in the phase space. In order to do this, first note
that all terms, except the streaming term, have a double integral over Ω and
V0. Streaming is different in that it has an integral over the boundary of V,
∂V. This surface integral can be transformed into a volume integral using the
theorem of Gauss. Basically, the integral of flux streaming through the surface
is replaced by an integral of the divergence inside the volume, so

S =

∫
Ω

∫
V0

ω · ∇φ(xv,ω) dV (xv) dσ(ω).

The intuition behind this is that an integral over the sources and sinks present
in the volume must equal the net flow out of the region.

After transforming the streaming term to a volume integral, all five terms con-
tain the same double integral over Ω and V0. This means that the balance
equation must also hold for the integrand alone, so

ω · ∇φ(xv,ω) + σa(xv)φ(xv,ω) +

∫
S2

kv(xv,ω · ω′)φ(xv,ω) dσ(ω′)

= qv(xv,ω) +

∫
S2

kv(xv,ω
′ · ω)φ(xv,ω

′) dσ(ω′).

The outscattering term can be simplified, since the flux can be moved out of
the inner integral. We define the scattering coefficient

σs(xv) =

∫
S2

kv(xv,ω · ω′) dσ(ω′).

The scattering coefficient, like the absorption coefficient, has units of 1/m and
describes the macroscopic scattering properties of the medium. It is also a
function of position, but not direction for isotropic media.

It is convenient to define the sum of the absorption and scattering coefficient as
the extinction coefficient,1

σt(xv) = σa(xv) + σs(xv),

which is the probability that a particle will collide with medium per unit distance
traveled.

1Sometimes also referred to as the total interaction coefficient.
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Using the scattering and extinction coefficients, the balance equation can be
rewritten as

ω · ∇φ(xv,ω)+σt(xv)φ(xv,ω)

= qv(xv,ω) +

∫
S2

kv(xv,ω
′ · ω)φ(xv,ω

′) dσ(ω′), (2.4)

which we will call the equation of transfer.

Figure 2.5: Implicit boundary conditions cause particles that hit the boundary to be
reflected back into the volume.

2.2.2 Boundary Conditions

Equation 2.4 is a first order differential equation and needs boundary condi-
tions to fix the otherwise arbitrary constant of integration. Explicit boundary
condition are given by

φ(xs,ω) = qs(xs,ω),

where qs(xs,ω) is the surface emission term, measured in 1/m2sr, which is anal-
ogous to the volume emission term. Implicit, or reflecting, boundary conditions
are given by

φ(xs,ω) =

∫
H2
−

ks(xs,ω
′,ω)φ(xs,ω

′) dσ(ω′),

where ks(xs,ω
′,ω) is the surface scattering kernel, measured in 1/sr, and anal-

ogous to the volume scattering kernel. As shown in Figure 2.5, the integral
is over the negative hemisphere with respect to the normal n(xs), i.e. over di-
rections pointing into the volume. Both types of boundary conditions can be
combined, which yields the more general boundary condition,

φ(xs,ω) = qs(xs,ω) +

∫
H2
−

ks(xs,ω
′,ω)φ(xs,ω

′) dσ(ω′).
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2.3 Radiative Transfer

If transport theory is applied to transfer of radiant energy, the field of radiative
transfer emerges. In this case, the particles can be thought of as photons,
traveling with a speed of c0 = 299 792 458 m/s. This is assuming vacuum, or free
space, since the effective speed of light depends on the host medium.

For photons the phase space has to be extended with at least the notion of
frequency, ν, or equivalently, wavelength, λ, which are related by

ν =
c

λ
,

where c is the speed of light in the appropriate medium. Polarization can also be
included in the state of each photon; however, this component is often ignored
in computer graphics.

Limitations of the Particle Model

In the derivation of the equation of transfer, a number of assumptions were
made about the behavior of particles in the abstract in order to simplify the
resulting model. As discussed in the following, the consequence of this is that
certain kinds of lighting effects cannot be accounted for by transport theory.

The first of these limitations is caused by the use of the particle model itself,
where it was assumed that particles travel in straight lines. The consequence of
using rectilinear propagation is that diffraction cannot be accounted for.

Also, since particle-particle interactions were ignored in the derivation of the
equation of transfer, interference cannot be accounted for by this model. This
is justified on the grounds, that since most light sources are incoherent, i.e.
the phase of the emitted light changes randomly, the chances of interference
are small.2 This means that light energy passing through a point in a given
direction is completely independent from light energy passing through the same
point but in a different direction.

The model also excludes the phenomenon of phosphorescence. Phosphorescence
is time-delayed emission of light. In order to account for this effect, it would
be necessary to allow energy to be absorbed at one time and re-emitted later.
However, this would greatly increase the complexity of the model, which is not

2The most notable exception from this rule is light produced by a laser, which is strongly
coherent, and thus cannot be handled accurately by this model.
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justified in the majority of scenes, where phosphorescence plays a small role.
Similarly, fluorescence, cannot be accounted for, since wavelengths are assumed
to be decoupled.

Radiance

The fundamental quantity of interest in radiative transfer is radiance. Radiance
is radiant power arriving at or leaving a surface (real or imagined) perpendicu-
larly per unit solid angle per unit area. As such, it is a concept similar to phase
space flux, which only measured particles rather than power. Fortunately, find-
ing the power of a particle (photon) with a specified frequency can be done using
the Planck relation,

E = hν,

where h is Planck’s constant (6.626× 10−34 Js). Thus, radiance can be defined
in terms of phase space flux as

L(x,ω) = hν φ(x,ω)

= c hν n(x,ω).

and consequently, radiance has units W/m2sr.

It will be convenient to distinguish between exitant and incident radiance [Veach,
1997, pg. 83]. Exitant radiance, Lo(x,ω), is radiance leaving a point, x, in di-
rection ω and incident radiance, Li(x,ω), is radiance arriving at a point, x,
from direction ω. In free space (no participating medium) these quantities are
related by

Li(x,ω) = Lo(x,−ω).

However, in general, the relationship between incident and exitant radiance is
more complicated and depends on the scattering and emission properties at x.
In the following we will elide the subscript if either quantity can be used.

The remaining terms from transport theory can also be translated into their
radiative transfer equivalents. Volume emission is related to the phase space
source as

Le,V0(xv,ω) ≡ hν qv(xv,ω),

and has units W/m3sr. Surface emission can be defined in terms of radiance as

Le,∂V(xs,ω) ≡ hν qs(xs,ω),

and has units W/m2sr.
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The scattering kernels can also be rewritten in terms of their radiative transfer
equivalents. The volume scattering kernel is replaced by the phase function, fp,

kv(xv,ω
′ · ω) = σs(xv) fp(xv,ω

′ · ω)

with units 1/sr. The surface scattering kernel is replaced by the bidirectional
reflectance-distribution function (BRDF), fr, given by

ks(xs,ω
′,ω) = fr(xs,ω

′,ω) | cos θ|,

with units 1/sr and where θ is the angle between ω′ and n(xs).

Using these terms, the equation of transfer (Equation 2.4) can be rewritten in
the more familiar way as

ω · ∇Lo(xv,ω) + σt(xv)Li(xv,−ω) =

Le,V0(xv,ω) + σs(xv)

∫
S2

fp(xv,−ω′ · ω)Li(xv,ω
′) dσ(ω′), (2.5)

which is known as the radiative transfer equation. The same can be done for
the boundary conditions, which yields the equation

Lo(xs,ω) = Le,∂V(xs,ω) +

∫
H2
−

Li(xs,ω
′) fr(xs,ω

′,ω) | cos θ| dσ(ω′). (2.6)

If participating media are not present, i.e. if σs = σa = 0 and Le,V0 = 0, all the
terms in Equation 2.5 vanish and all that remains are the boundary conditions.
In this case, Equation 2.6 is known as the rendering equation, which was first
presented by Kajiya [1986], though in a slightly different form.

2.4 Radiometry

Radiance is an example of a radiometric quantity. Radiometry is the science of
measurement of electromagnetic radiation. The standard references for radio-
metric terms are Nicodemus [1976] and Nicodemus, Richmond, Hsia, Ginsberg,
and Limperis [1977]. An in-depth discussion of radiometric concepts can also
be found in Glassner [1994].

Photometry is a related field, and is covered in Section 2.5. Photometry, which
predates radiometry, is the science of the measurement of light as perceived by
the human eye. The inclusion of the human visual system makes photometry
very non-linear, and consequently radiometry is better suited for performing
calculations on light. Radiometric quantities can then be converted to their
photometric equivalents afterward, if desired.
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Spectral Radiance

It turns out to be convenient to redefine phase space density as a differential
quantity with respect to the frequency of light. In this case, the number of
particles in x ∈ R3 moving in directions within a differential solid angle of
dσ(ω) around the central direction ω ∈ S2 and with frequency ν ∈ dν is

n(x,ω, ν) dV (x) dσ(ω) dν

or, equivalently, with wavelength λ ∈ dλ is n(x,ω, λ) dV (x) dσ(ω) dλ. The
notion of phase space flux can also be extended in a similar fashion.

Using these definitions, spectral radiance can be defined as

L(x,ω, ν) = hν φ(x,ω, ν)

with units W/m2 sr Hz. Similarly, the units of spectral radiance measured with
respect to wavelength, L(x,ω, λ), are W/m2 sr nm.

Radiance is related to spectral radiance as

L(x,ω) =

∫ ∞
0

L(x,ω, ν) dν =

∫ ∞
0

L(x,ω, λ) dλ,

i.e., it is simply the integral of spectral radiance over all frequencies / wave-
lengths. As a consequence, non-spectral radiance is not a useful quantity for
physically based rendering, since it includes light energy outside the visible spec-
trum.

Instead, spectral radiance, typically restricted to the visible spectrum, should
be used. As noted above, spectral radiance can be measured per unit frequency
or per unit wavelength (other choices include the wave number). As discussed
in Nicodemus [1976], the most convenient form tends to be per unit wavelength,
with wavelength measured in nanometer (nm), so as not to confuse the units of
wavelength with the spatial units of area.

Though radiance measured with respect to wavelength is convenient, it has
the disadvantage that the wavelength depends on the medium (in particular, it
depends on the index of refraction of the medium, η(λ); see Section 2.6). This
means that the wavelength changes as the light ray traverses media with different
indices of refraction, unlike frequency, which is preserved. This makes both
modeling the scene and performing calculations very inconvenient. I.e., consider
modeling a light source embedded in a medium with η(λ) = 2. Normally, the
light sources used in physically modeling should emit light in the visible range
(roughly 360–830 nm). However, due to the changed index of refraction, the
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light source should instead emit light in the narrower interval 180–415 nm, but
with twice the power. This is to ensure that the light will be in the visible
range when it leaves the medium. In addition, as discussed in Section 2.6.1,
the radiance of the ray must be scaled by the relative index of refraction cubed,
rather than squared, as it crosses the boundary.

To avoid this, vacuum wavelength , which is simply the wavelength assuming
η(λ) = 1, can be used instead of regular media-dependent wavelength. Vacuum
wavelength, λ0, like frequency, is preserved across media with different indices
of refraction.

Sometimes it is necessary to convert radiance measured with respect to fre-
quency to wavelength [Wyszecki and Stiles, 2000]. In order to do so, first note
that L(λ) dλ = L(ν) dν. In addition, we know that λν = c. Differentiating
both sides yields

dλ = − c

ν2
dν or

dν = − c

λ2
dλ,

which can be used directly to convert between different units. The negative sign
appears as wavelength and frequency are inversely proportional. The remaining
radiometric quantities, which will be described shortly, can be converted in a
similar manner. Note that for quantities where the wavelength dependence is
purely functional, as opposed to derivative, such as the index of refraction, the
relation is much simpler (e.g., η(λ) = η(ν)).

Several other useful radiometric quantities exist, that can be derived from radi-
ance. They exist in both spectral and non-spectral versions; as mentioned, only
the spectral versions are really useful, but to simplify notation the wavelength
index is omitted in the following.

Radiant Energy and Flux

Radiant flux or radiant power, Φ, measured in watts (W), is defined as

Φ =

∫
Ω

∫
D2

L(x,ω) cos θ dA(x) dσ(ω).

where D2 ⊂ ∂V. It is the time derivative of radiant energy, Q, which is measured
in joules (J). Flux is a useful quantity for measuring the total power of a light
source or the total power a sensor receives.
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Radiant Intensity

Radiant intensity, with units W/sr, is used to describe the distribution of flux
emanating from a point in an infinitesimal beam, with solid angle dσ(ω), in
direction ω,

I(ω) =
dΦ(ω)

dσ(ω)
.

Radiant intensity is mostly useful for describing the emission of light from point
light sources. For instance, an isotropic point light source with power Φ would
have a radiant intensity of Φ

4π .

Radiant Flux Density

Total flux across a surface measured per unit area is called radiant flux density.
It is customary to distinguish between incident flux and outgoing, or reflected
flux. In the former case, the quantity is referred to as irradiance (W/m2)

E(x) =
dΦ(x)

dA(x)
.

In the latter, the amount flux leaving a surface per unit area is known as radiant
exitance (also W/m2)

M(x) =
dΦ(x)

dA(x)
.

Irradiance, and its photometric cousin illuminance, can be used to construct
iso-lux diagrams. Radiant exitance, which is also known as radiosity, is often
used to describe the emission from area light sources.

Properties of Radiance

Radiance, presented in the previous section, is in some sense the most funda-
mental quantity in radiometry, since all other quantities can be derived from it,
e.g.

L(x,ω) =
d 2 Φ(x,ω)

dσ(ω) dA(x) cos θ
=

dI(ω)

dA(x) cos θ
=

dE(x)

dσ(ω) cos θ
.

Radiance is defined as flow across a surface element dA perpendicularly to the
direction ω. If this is not the case, as in Figure 2.6, it is necessary to use the
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projected area, dA cos θ, instead, which is the reason for the appearance of the
cosine term in the denominator. Alternatively, the projected solid angle can be
used.

Figure 2.6: The geometry used in the definition of radiance (left). Illustration of the
invariance of radiance along a ray between two patches (right).

As discussed in Nicodemus [1963], radiance has the important property of being
invariant as it propagates along a ray (assuming vacuum). This makes radiance
the right radiometric quantity to associate with a ray and the fundamental
quantity to be used in realistic image synthesis.

To make this more concrete, consider Figure 2.6. The total flux leaving patch 1
with differential area dA1 within the solid angle dσ1 must equal the flux received
by patch 2,

L1 dσ1 dA1 = L2 dσ2 dA2 (2.7)

We know from the definition of solid angle that dσ1 = dA2/r
2 and dσ2 =

dA1/r
2. If these expressions are inserted into Equation 2.7, it becomes clear

that L1 = L2, i.e. the radiance leaving the first patch is equal to the incident
radiance at the second. This shows that radiance is invariant along a ray.

2.5 Photometry and Color

Spectral radiometric quantities, such as spectral radiance, are useful for per-
forming lighting calculations. However, the result of these calculations are often
intended for human viewers and humans cannot sense spectral radiance directly.
This means that once we have solved for the equilibrium distribution of spec-
tral radiance, as described by the equation of transfer, it will be necessary to
transform the result to a form more suitable for human viewers.



2.5 Photometry and Color 31

Photometry is the science of measurement of light as perceived by humans. The
sensitivity of the human visual system to light varies with wavelength in such
a way that light outside the range 360–830 nm is invisible to humans. The
function that describes this has been standardized and is known as the spectral
luminous efficiency function, V (λ). As shown in Figure 2.7, two versions of this
function exist; one for photopic vision, which is used when the eye is adapted
to light conditions and which is the standard in photometry and one for dark
conditions (scotopic vision).

Figure 2.7: The spectral luminous efficiency function for photopic and scotopic vi-
sion. The curves are normalized and peak at 555 nm and 507 nm, respec-
tively.

Photometry introduces a host of new quantities, each one corresponding to a
radiometric quantity. Only the quantities relevant to this thesis are covered
here; see Wyszecki and Stiles [2000] for a complete list.

Luminance is the photometric equivalent of radiance. It can be computed from
spectral radiance as3

Lv(x,ω) = Km

∫ ∞
0

L(x,ω, λ)V (λ) dλ,

and has units of cd/m2 (lm/sr m2). The constant Km is 683 lm/W for photopic
vision. As an example, the luminance of the sun is approximately 1.6×109 cd/m2

at noon. The photometric equivalent of irradiance is illuminance, which can be
computed from spectral irradiance as

Ev(x) = Km

∫ ∞
0

E(x, λ)V (λ) dλ,

3In practice these integrals can be restricted to the support of V (λ), i.e. 360–830 nm.
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and has units lux (lm/m2). Illuminance is useful for describing how brightly a
surface is illuminated. For instance, an appropriate illumination level in an office
environment is 100–1000 lux. The illuminance of direct sunlight at equator is
roughly 105 lux, since the solid angle of the sun is 6.75× 10−5 sr.

Often the desired result of radiometric calculations is a color image. The human
eye has three types of cone cells, each type sensitive to light corresponding
roughly to red, green, and blue wavelengths. A consequence of this is that the
sensation of color can be described using three parameters, so-called tristimulus
values. Based on measurements of the response of the cone cells, a standard
observer has been proposed by the International Commission on Illumination
(CIE) in 1931. This CIE 1931 2◦ Standard Observer, characterized by the color
matching functions shown in Figure 2.8, defines the CIE 1931 XYZ Color Space.

Figure 2.8: Color matching functions for the CIE 1931 2◦ Standard Observer. The
green color matching function, ȳ(λ), is identical to spectral luminous
efficiency function, V (λ).

Converting spectral radiometric quantities is similar to converting to photomet-
ric units. In fact, the color matching function corresponding to greenish wave-
lengths is defined to be identical to the spectral luminous efficiency function.
For example, the CIE XYZ coordinates of spectral radiance is

X =

∫ ∞
0

L(λ) x̄(λ) dλ, Y =

∫ ∞
0

L(λ) ȳ(λ) dλ, Z =

∫ ∞
0

L(λ) z̄(λ) dλ.

The CIE 1931 XYZ Color Space is designed so that any color can be represented
with non-negative weights. Before viewing a color, the CIE XYZ coordinates
must be converted into a color space suitable for display, such as sRGB or the
color space of a particular monitor. These color spaces are always smaller than
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CIE XYZ, i.e. the range of colors they allow is a subset of the colors of CIE

XYZ. This means that a choice must be made of how to transform the colors
between color spaces, a process called gamut mapping. Another issue is that the
dynamic range of the display device may be smaller than the dynamic range of
the image. This means the luminance values must be compressed in a process
called tone mapping.

2.6 Scene Description

So far, the equations governing the equilibrium distribution of radiance in a
single volume with boundaries and with a description of the scattering properties
and light emission have been described. In this section that description will be
generalized to multiple volumes, and the notion of sensors will be introduced,
so that a complete mathematical description of real scene can be made.

We will define a scene as a description of the scattering properties, light sources,
and sensors, associated with a finite volume V ⊂ R3. This volume, V, is divided
into a number of cells defined by their boundary ∂V and with interior V0 =
V \ ∂V. We will assume that it is possible to determine what cell a point
x ∈ V0 belongs to or which cells are on either side of a boundary, if x ∈ ∂V.
When modeling the scene, it is convenient to allow cells to overlap, since this
makes modeling certain features easier. However, it should still be possible to
unambiguously decide which cell a given point x ∈ V0 belongs to even in case
of overlap. A simple way of doing this is by assigning a precedence value to
each cell using the technique described by Schmidt and Budge [2002]. scene
description

Each cell is assumed to have constant index of refraction, n(λ), given by the
properties of the bulk matter or medium of the cell. The index of refraction
is generally wavelength dependent, but is assumed to be constant with respect
to position and direction throughout a single cell, and thus piecewise constant
throughout the scene. This means that light only refracts (bends) at interfaces
between different media, i.e. at cell boundaries. This assumption makes it im-
possible to account for effects caused by continuously varying index of refraction,
such as mirages, but greatly simplifies computations, since light can be assumed
to travel in straight lines. This assumption was also made in the derivation of
the equation of transfer.

The direction of the refracted ray depends on the relative index of refraction of
the two media, and can be found using Snell’s Law, which is covered in virtually
any book on optics (e.g. Hecht [2002] or Pedrotti, Pedrotti, and Pedrotti [2007]).
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Since the refractive index is wavelength dependent, the direction of the refracted
ray also depends on wavelength, which is the cause of dispersion. A common way
to reduce the time needed to solve the light transport problem is to compute the
solution for multiple wavelength simultaneously. Dispersion complicates this, so
a common approach is to ignore dispersion and use the refractive index at some
specific wavelength, typically at the Fraunhofer D line (589.29 nm), in which
case the refractive index is denoted nD, for all wavelengths.

In the general case, the refractive index is a complex number,

n(λ) = η(λ) + iκ(λ),

where κ(λ) is called the attenuation index. Confusingly, the imaginary part
of the refractive index is also sometimes called the extinction coefficient, but in
this work we will reserve that name for the sum of the absorption and scattering
coefficient, σt. In fact, the attenuation index turns out to be closely related to
the absorption coefficient,

σa(λ) =
4π κ(λ)

λ
.

The attenuation index can be used to classify materials according to whether
they are dielectrics or conductors. Dielectrics have zero or negligible attenuation
index, and thus absorb little or no light. Conductors, on the other hand, cause
the electric wave of the light to extinguish, and thus absorb most light. E.g.
gold, which is a great conductor, has a refractive index of (0.34 + 2.77i) at
555 nm. This means that a ray of light entering an object made from gold
will be reduced to one percent of its original intensity after traveling only some
73 nm. As a consequence, since in computer graphics we model objects on a
scale much larger than that of the wavelength of visible light, conductors can
for all practical purposes be treated as being completely opaque.

The surfaces that form the boundary between cells are assumed to be two man-
ifolds. Each point on these surfaces, xs ∈ ∂V, has an associated normal, n(xs).
In order to describe the scattering properties of each point, xs, first recall that
the bidirectional reflectance-distribution function (BRDF), fr(xs,ω

′,ω), was in-
troduced to describe reflecting boundary conditions (see Section 2.3). Reflection
is scattering of light into the same hemisphere from where it originated. To allow
for flow of light energy between cells, it must also be possible for light to scatter
into the opposite hemisphere, a process known as transmission. To describe the
transmissive scattering properties at a point, the bidirectional transmittance dis-
tribution function (BTDF), ft(xs,ω

′,ω), can be used in addition to the BRDF.

It turns out to be convenient to introduce the bidirectional scattering distribu-
tion function (BSDF), fs(xs,ω

′,ω), to describe both reflection and transmission.
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Essentially, a BSDF is formed by two pairs of BRDFs / BTDFs, i.e. by a BRDF

and a BTDF for each side of the surface. The BSDF concept does not appear in
most radiometry literature and the term seems to have been coined by computer
graphics researchers [Veach, 1997, pg. 86]. Using the BSDF, the boundary con-
ditions can be the rewritten to allow for light transfer between cells by replacing
the BRDF and changing domain of integration from the negative hemisphere,
H2
−, to the complete sphere of directions, S2,

Lo(xs,ω) = Le,∂V(xs,ω) +

∫
S2

Li(xs,ω
′) fs(xs,ω

′,ω) | cos θ| dσ(ω′). (2.8)

The scattering properties associated with points in the volume have already been
presented in an earlier section, but are repeated here for completeness. Recall
that each point in the volume, xv ∈ V0, has three associated scattering prop-
erties. These are the absorption coefficient, σa(xv), the scattering coefficient,
σs(xv), and the phase function, fp(xv,ω

′ · ω). Similarly, the light emission
properties of the scene were described earlier, but are also repeated here for
completeness. Recall that volume emission is described by the volume emission
function, Le,V0(xv,ω), and that surface emission is described by the surface
emission function, Le,∂V(xs,ω).

Table 2.1: The properties necessary for a description of a scene suitable for the light
transport problem as presented in this chapter.

Cells (V)
Refractive index η(λ)

Attenuation index κ(λ)

Boundary of cells (∂V)
BSDF fs(xs,ω

′,ω, λ)

Surface emission Le,∂V(xs,ω, λ)

Interior of cells (V0)

Phase function fp(xv,ω
′ ·ω, λ)

Absorption coefficient σa(xv, λ)

Scattering coefficient σs(xv, λ)

Volume emission Le,V0(xv,ω, λ)

Sensors (V) Flux responsivity functions W j
e (x,ω, λ)

The last part of the scene description is the specification of the sensors. As dis-
cussed in the introduction to this chapter, the light transport problem consists
of performing a number of measurements of the equilibrium radiance distribu-
tion. Each measurement is the result of the response of a hypothetical sensor
to the radiance in the scene. These sensors are defined by their flux respon-
sivity functions, W j

e (x,ω). Nicodemus [1978, pg. 58] calls these function RΦ,
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but we will use W j
e to mimic the notation used for describing emission. This

convention is common in computer graphics, since sensors can be seen as emit-
ting “importance,” as discussed further in Chapter 4. The flux responsivity
functions are measured in S/W, where the uppercase S denotes the unit of sen-
sor response, so as not to confuse it with the units of time. Note that unlike
radiance, the dependence of We on position and direction (and wavelength) is
purely functional.

All the properties necessary for describing a scene are summarized in Table 2.1.

2.6.1 Surface Scattering

Scattering at surfaces is defined by the BSDF, which in turn is defined in terms
of BRDFs and BTDFs. The primary reference for the BRDF is the work of
Nicodemus et al. [1977], where the BRDF is derived from the more general
bidirectional scattering-surface reflectance-distribution function (BSSRDF).

As illustrated in Figure 2.9, the BSSRDF, denoted S(xi,ωi,xo,ωo), is a function
that relates differential reflected radiance at one point to differential incident
flux at another point,

dLo(xo,ωo) = S(xi,ωi,xo,ωo) dΦi(xi,ωi)

= S(xi,ωi,xo,ωo)Li(xi,ωi) cos θi dσ(ωi) dA(xi).

As such, it accounts for light being scattered inside the surface and exiting
elsewhere, a phenomenon known as subsurface scattering. Unfortunately the
eight-dimensional nature of the BSSRDF makes it somewhat impractical to work
with. If instead light is restricted exit at the same point it entered the material,
the simpler BRDF concept can be used.

Properties of the BRDF

The bidirectional reflectance-distribution function is a four-dimensional4 func-
tion used for describing how light is reflected at a surface. Isotropic BRDFs
are a special case, where only the relative orientation of the incident and out-
going directions matters. If the directions are written as spherical coordinates,
ω = (θ, φ), then an isotropic BRDF can be written fr(θi, θo, φi−φo), and is con-
sequently a three-dimensional function. For the more general anisotropic BRDF,
fr(θi, φi, θo, φo), the absolute directions of the incident and outgoing directions

4Six-dimensional, if the spatial parameters are also considered.



2.6 Scene Description 37

Figure 2.9: The BSSRDF (left) describes how differential incident flux at xi is scat-
tered into differential reflected radiance at xo through subsurface scatter-
ing. The BRDF (right) describes how differential irradiance is scattered
into differential radiance at a single point.

matter. This is necessary to model materials that have oriented patterns in
their micro-structure, such as velvet and brushed metals.

Like the BSSRDF, the BRDF is a distribution function, meaning that it can
contain generalized functions, such as Dirac delta functions. Mathematically,
the BRDF describes the relationship between differential irradiance incident at
a point and the differential outgoing radiance at the same point,

fr(x,ωi,ωo) =
dLo(x,ωo)

dE(x,ωi)
=

dLo(x,ωo)

Li(x,ωi) cos θi dσ(ωi)
,

as illustrated in Figure 2.9. The BRDF has units sr−1 and range fr : H2
+×H2

+ 7→
[0,∞). To simplify notation, we drop the spatial parameter, x, in the following.

Physically plausible BRDFs have two important properties. Firstly, they are
symmetric functions with respect to ωi and ωo,

fr(ωi,ωo) = fr(ωo,ωi),

a principle known as Helmholtz reciprocity. Secondly, they conserve energy. The
amount of energy a given BRDF reflects is given by the hemispherical-directional
reflectance,

ρhd(ωo) =

∫
H2

+

fr(ωi,ωo) cos θi dσ(ωi).

To ensure energy conversation, the hemispherical-directional reflectance must
obey

ρhd(ωo) ≤ 1 for all ωo ∈ H2
+.
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Strictly speaking, ρhd(ωo) < 1, since real surfaces always reflect less that 100%.
It is also possible to compute the total fraction of reflected light from any di-
rection,

ρhh =
1

π

∫
H2

+

∫
H2

+

fr(ωi,ωo) cos θi cos θo dσ(ωi) dσ(ωo),

which is known as the hemispherical-hemispherical reflectance.

Properties of the BSDF

Veach [1996] shows that any physically valid BSDF must satisfy

fs(ωi→ωo)

η2
i

=
fs(ωo→ωi)

η2
o

, (2.9)

where the arrow notation is used to indicate the direction of light flow (the terms
are given in Figure 2.10). This is a generalization of the Helmholtz reciprocity
principle for BRDFs, since for reflection ωi and ωo are in the same medium, and
thus have the same index of refraction. The implication for transmission is that
BTDFs are not symmetric.

Figure 2.10: Scattering by a BSDF with incident direction ωi and outgoing ωo. In
the case of reflection (left), the BSDF must obey the Helmholtz reci-
procity principle, fs(ωi→ωo) = fs(ωo→ωi), a special case of Equa-
tion 2.9, since ηi = ηo. In the case of transmission (right), scattering
is between media with different indices of refraction, so fs(ωi→ωo) =
η2i /η

2
o fs(ωo→ωi).

The reason for the appearance of the indices of refraction in Equation 2.9 is that
the BSDFs is defined in term of radiance. However, radiance is not invariant
across boundaries between media of different refractive indices. Basic radiance,
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L/η2, is invariant along a ray5 even as it crosses smooth boundaries between
media with different indices of refraction, assuming no loss to scattering or
absorption [Nicodemus, 1963]. It is possible to rephrase the light transport
problem in terms of basic radiance, rather than radiance [Veach, 1997, chp. 7], in
which case the BSDFs become symmetric even for transmission. However, there
are other reasons why the BSDFs used in computer graphics are non-symmetric,
and they would still have to be handled explicitly even in this framework.

As discussed in a later chapter, we solve the light transport problem by con-
structing random paths that connect the sensors and light sources in a scene.
By path we simply mean a series of n vertices, x0x1 . . .xn−1, with each xi ∈ V,
where the first vertex is on a light source and the last vertex is on a sensor.
The intermediate vertices are either in V0, in which case they have an associ-
ated phase function, or are in ∂V, in which case they have an associated BSDF.
The amount of radiance that is transferred along any of these paths, can be
computed based on the emitted radiance, the relative geometry of the vertices
of the path, and the scattering at these vertices (more details will be given in
Chapter 4).

Bidirectional methods are a class of solution strategies that construct these paths
starting both at the light sources and at the sensors. To create a full path, a light
source subpath is connected to a sensor subpath. However, note that for paths
starting at light sources, the directional arguments to the BSDF cannot simply
be exchanged compared to sensor subpaths. The reason is that if the BSDF is
non-symmetric, its value will depend on whether it is part of the light or sensor
subpath, and as a result, the amount of radiance transferred along the path will
depend on how the path was constructed. This is clearly inconsistent, since no
matter how a complete light path is constructed, the amount of radiance that
flows along the path should be the same.

To remedy this situation, the concept of the adjoint BSDF is introduced by
Veach [1997, pg. 93]. The adjoint BSDF is similar to the ordinary BSDF, but
with the directional arguments exchanged,

f∗s (ωi→ωo) = fs(ωo→ωi),

and should be used for paths starting at light sources. This way, we can be sure
that our results are consistent, no matter how the paths connecting the sensors
and light sources were formed.

Non-symmetric BSDFs are also caused by shading normals. The basic idea
behind shading normals is to replace the true geometric normal, which is the

5Assuming spectral radiance measured with respect to frequency. If spectral radi-
ance is measured with respect to wavelength, L/η3 is invariant and Equation 2.9 becomes
fs(ωi→ωo)/η3i = fs(ωo→ωi)/η

3
o .
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normal we have been using so far, with an arbitrary normal that is used only
in the lighting calculations. This is a useful trick, that can be used to alter the
appearance of a surface in a rather inexpensive way. The earliest example of
shading normals seems to be the use of interpolated vertex normals by Phong
[1975] to make polygonal meshes appear smooth. Another early use of shading
normals was for bump mapping, as described by Blinn [1978]. Here, the geomet-
ric normal is procedurally altered based on a bump map to produce a shading
normal that gives the surface the desired bumpy appearance. In the following,
shading normals will be referred to as ns, and geometric normals as ng.

As discussed by Veach [1997, pg. 151], the shading normal is best is understood
as a parameter to the BSDF. To see how shading normals change the appearance,
consider again Equation 2.8,

Lo(x,ωo) = Le,∂V(x,ωo) +

∫
S2

Li(x,ωi) fs(x,ωi→ωo) |ng ·ωi| dσ(ωi), (2.10)

where we have written out the cosine term as a dot product, cos θi = ng · ωi.
In order to replace the geometric normal with the shading normal, the original
BSDF can be replaced by a modified BSDF,

f ′s(ωi→ωo) = fs(ωi→ωo)
|ns · ωi|
|ng · ωi|

,

which will cause the |ng · ωi| term to cancel and effectively replace ng with ns.
This substitution is often done implicitly; i.e. the shading normal is simply used
as a replacement for the geometric normal everywhere. This turns out to be
a bad idea, since it has a number of unfortunate side effects. The first is that
even if the original BSDF was symmetric, the modified BSDF is not. Instead,
the following adjoint BSDF should be used,

f∗s (ωi→ωo) = f ′s(ωo→ωi) = fs(ωo→ωi)
|ns · ωo|
|ng · ωo|

,

whenever paths are created starting from the light sources. Note that this BSDF

has an extra factor that depends on the direction we came from (ωo) and does
not cause any terms to cancel.

A second problem is that shading normals can cause a surface to reflect more
energy than it receives. This can happen even if the BSDFs themselves conserve
energy. As discussed in Chapter 4, this can cause the equilibrium radiance to
become infinite.

As shown in Figure 2.11, shading normals can also cause light leaks and black
spots. Light leaks can happen if ωi and ωo lie on different sides of the surface
with respect to ng, but not with respect to ns. This can be fixed by ensuring
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Figure 2.11: Shading normals can cause light to leak through surfaces (left). This
can be fixed by ensuring that both ωi and ωo are on the same side with
respect to the normals. Unfortunately this causes dark spots to appear
if ωo fails this test (right).

that ωi and ωo lie on the same side with respect to both normals. However,
this results in black spots on the surface, whenever ωo fails this test.

A solution is presented by Veach [1997, pg. 157]. The idea is to extend the
BRDF and the BTDF to be full spherical functions, S2×S2 7→ [0;∞). As shown
in Algorithm 2.1, the key is to evaluate the BRDF only if the incident and
outgoing directions are in the same hemisphere with respect to the geometric
normal. Otherwise the BTDF should be evaluated. This approach avoids light
leaks, while the extension to S2 (and the use of absolute values in the dot
products) avoids black spots.

Algorithm 2.1: Veach’s method for evaluating the BSDF product function for a pair
of directions ωi and ωo, while taking shading normals into account.
This approach prevents both light leaks and black spots.

1: if (ωi · ng)(ωo · ng) ≥ 0 then
2: f = fr

3: else
4: f = ft

5: end if
6: if adjoint then
7: return f(ωo→ωi)|ωo · ns||ωi · ng|/|ωo · ng|
8: else
9: return f(ωi→ωo)|ωi · ns|

10: end if

In the following, the BSDF and the modified BSDF and its adjoint BSDF for
some of the most common scattering functions will be described. These BSDFs
are the Lambertian BSDF and the BSDFs for perfect specular reflection and
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transmission.

Lambertian Reflection

The Lambertian BRDF, also known as ideal diffuse BRDF [Nicodemus et al.,
1977, pg. 43], is given by

fr,d(ωi→ωo) =
ρd
π
,

where ρd is the reflectance, which is generally a function of both wavelength
and position, ρd(x, λ). Lambertian surfaces have the property that they appear
equally bright regardless of viewing angle, i.e. the reflected radiance from these
surfaces is constant.

If shading normals are introduced, the modified Lambertian BRDF can be writ-
ten

f ′r,d(ωi→ωo) =
ρd
π

|ns · ωi|
|ng · ωi|

, (2.11)

and its adjoint can be written

f∗r,d(ωi→ωo) =
ρd
π

|ns · ωo|
|ng · ωo|

. (2.12)

When evaluating these functions, it is assumed that ωi and ωo lie in the same
hemisphere with respect to the geometric normal, in the vein of Algorithm 2.1.

Direct application of these BRDFs can cause artifacts in the form of surfaces
that appear to be lit from behind, which is especially apparent when using
bump mapping. The reason is the use of absolute values in the dot products
with the shading normal. Fortunately, the solution is simply to clamp to zero,
rather than take absolute value: i.e. use max(ns · ωi, 0) and max(ns · ωo, 0) in
Equations 2.11 and 2.12 instead. These artifacts do not appear in the results of
Veach [1997] (e.g. Figure 5.11a, pg. 163), which implies that clamping was also
used in their implementation.

The use of interpolated vertex normals on polygonal meshes can also cause
artifacts. As shown in Figure 2.12, the border between light and shadow (which
is called the terminator) appears jaggy, and the underlying tessellation of the
mesh becomes visible. This artifact appears because the shading normal is used
for lighting calculations, while visibility is still determined by the facetted mesh.
This inconsistency can result in discontinuities if a point falls in shadow before
the cosine between the shading normal and light vector reaches zero.
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Figure 2.12: Illustration of the terminator problem on a simple polygonal teapot
with increasingly finer tessellation. At the terminator, artifacts appear
in the form of discontinuities. This is caused by self-shadowing hap-
pening before the cosine-term with the shading normal drops to zero.
Increasing the triangle count diminishes the problem, but does not re-
move it completely.

(a)

(b) (c)

This well known problem is called the terminator problem (see Snyder and Barr
[1987] and also Woo, Pearce, and Ouellette [1996]). Several partial solutions
have been suggested. These include approximating better starting points for
shadow rays, which could exacerbate the errors caused by shading normals even
further. Higher order surfaces, polygonal meshes with finer tessellation, or dis-
placement maps can also be used, though this can increase the cost of finding
intersections considerably. Finally, the use of area light sources, rather than
point light sources, and global illumination tend to make the terminator prob-
lem less objectionable.

Another solution is presented in Blender Community [2004] (also mentioned in
Wächter [2007]). Though not a complete solution, this method is inexpensive
and effective in many cases. The idea is to replace the (clamped) dot product
in Equations 2.11 and 2.12 with another function,

ϕ(cos θ, τ) =
max(cos θ − τ, 0)

1− τ
.

As shown in Figure 2.13, this function is a modified cosine function, where τ is
used to control how fast the function drops to zero. This causes the terminator
to move further into the illuminated region, eventually causing the artifacts to
become hidden in the shadows (see Figure 2.14).
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Figure 2.13: The function ϕ(cos θ, τ) for a range of different values of τ
(0.00, 0.05, 0.10, 0.15, 0.20). Note how larger values of τ cause the func-
tion to drop to zero faster, which has the effect of moving terminator
further into the lit region, effectively hiding the aforementioned arti-
facts.
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The optimal value of τ depends on the curvature of the polygonal mesh and
the fineness of the tessellation. If τ is chosen too small, artifacts will appear in
certain cases and if τ is chosen to large, the object will become unnecessarily
dark. Blender Community [2004] suggest computing a single τ value for the
entire mesh based on the average dot product of triangle and vertex normals.
This can cause problems for meshes that have a highly non-uniform tessellation.
In such cases, it would be better to allow τ to vary as a function of position on
the mesh.

Using the function ϕ, the modified Lambertian BRDF can be written

f ′r,d(ωi→ωo) =
ρd
π

ϕ(ns · ωi, τ)

|ng · ωi|
,

and its adjoint can be written

f∗r,d(ωi→ωo) =
ρd
π

ϕ(ns · ωo, τ)

|ng · ωo|
.

Though these function work well in practice, artifacts can still occur if both
interpolated vertex normals and bump mapping are used simultaneously.
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Figure 2.14: The effect of different values of τ . In the first image, the standard cosine
function is used (τ = 0), and artifacts are visible near the terminator.
In the next image, a τ value of 0.025 has been used, which has moved
the terminator, but some artifacts are still visible. Finally, in the large
image, a τ value of 0.1 has been used, which has caused the terminator
to move sufficiently to hide all the artifacts.

(a) (b)

(c)

Perfect Specular Reflection

The BRDF for ideal (lossless) perfect specular reflection, also called mirror-like
reflection [Nicodemus et al., 1977], is given by the symmetric function of ωi and
ωo

fr,m(ωi→ωo) =
δ(ωi −R(ωo,n))

|n · ωi|
,

where the reflection direction is R(ωo,n) = 2 (n ·ωo) n−ωo. This BRDF maps
a single incident direction to a unique outgoing direction, which is the reason
for the appearance of the Dirac delta function.
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It is common to combine this BRDF with the Fresnel equations (see e.g. Hecht
[2002]), so that the amount of reflected light becomes a function of incident
angle and of the indices of refraction. The resulting BRDF can be written

fr,r(ωi→ωo) = F (|n · ωi|)
δ(ωi −R(ωo,n))

|n · ωi|
(2.13)

This BRDF can reproduce colored reflections, such as those from metals, since
the (possibly complex) indices of refraction are generally wavelength dependent.
It also reproduces the effect that surfaces become ideal lossless (colorless) mirrors
at grazing angles.

If shading normals are introduced, the modified version of Equation 2.13 be-
comes,

f ′r,r(ωi→ωo) = F (|ns · ωi|)
δ(ωi −R(ωo,ns))

|ns · ωi|
|ns · ωi|
|ng · ωi|

= F (|ns · ωi|)
δ(ωi −R(ωo,ns))

|ng · ωi|
(2.14)

where the reflection direction is now found by mirroring around ns. Note that
the denominator in Equation 2.14 still uses the geometric normal, since this
term exists to cancel the corresponding term in Equation 2.10. The adjoint
BRDF is given by

f∗r,r(ωi→ωo) = F (|ns · ωo|)
δ(ωo −R(ωi,ns))

|ng · ωo|
,

which is different from Equation 2.14, since ns 6= ng implies that |ng · ωi| 6=
|ng · ωo|. Again, it is assumed ωi and ωo lie in the same hemisphere with
respect to the geometric normal (otherwise the functions evaluate to zero).

Perfect Specular Transmission

The BTDF for perfect specular transmission [Veach, 1997, pg. 145] is given by

fr,t(ωi→ωo) =
η2

o

η2
i

δ(ωi − T (ωo,n))

|n · ωi|
, (2.15)

where T (ωo,n) is the refracted direction, which can be computed using Snell’s
Law and the indices of refraction (defined in Figure 2.10). The scaling by the
relative index of refraction is necessary to account for the change in radiance
that occurs when an interface is crossed. For instance, radiance scattered into a
medium with higher index of refraction will be intensified, since the solid angle
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of the ray in the dense medium will be smaller. This happens because the full
incident hemisphere is compressed into a partial hemisphere, where the missing
part is the region where total internal reflection occurs.

The adjoint BTDF for transmission can be derived from Equations 2.9 and 2.15,
and is given by

f∗r,t(ωi→ωo) =
η2

i

η2
o

fr,t(ωo→ωi) =
δ(ωo − T (ωi,n))

|n · ωo|
,

where it is seen that term involving the relative indices of refraction cancels. This
is sometimes explained as being because the adjoint BTDF is used to propagate
flux, which, unlike radiance, is conserved across boundaries between media with
different indices of refraction.

If shading normals are introduced, Equation 2.15 becomes

f ′r,t(ωi→ωo) =
η2

o

η2
i

δ(ωi − T (ωo,ns))

|ns · ωi|
|ns · ωi|
|ng · ωi|

=
η2

o

η2
i

δ(ωi − T (ωo,ns))

|ng · ωi|
.

Similarly, the adjoint BTDF for refraction with shading normals can be written

f∗r,t(ωi→ωo) =
δ(ωi − T (ωo,ns))

|ns · ωi|
|ns · ωo|
|ng · ωo|

Again, it is assumed that the BTDFs evaluates to zero if ωi and ωo are in
the same hemisphere with respect to ng. Like the BRDF for perfect specular
reflection, the BTDF for perfect specular transmission can also be combined
with a Fresnel term.

2.6.2 Volume Scattering

Participating media, such as fog and smoke, cause volume scattering to occur.
Recall that the scene is modeled as a set of connected cells, where each cell is
assigned volume scattering properties, which may depend on position inside the
cell, such as would be the case for a heterogeneous media like smoke. We will
further assume that the bulk index of refraction of a cell is the same as that of
the surrounding cells, such that scattering does not occur on the boundary of
the cell. Essentially, this means that the boundary can be ignored with respect
to scattering.
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If the indices of refraction are different between neighboring cells with partic-
ipating media, we will assume that a BSDF exists at the boundary, which will
cause light to scatter and refract into the cell. If this is the case, subsurface
scattering is said to occur, which is the effect responsible for the soft appear-
ance of many materials, such as skin, milk, and marble. Subsurface scattering
is usually treated as a different phenomenon than ordinary volume scattering,
though the underlying equations are the same.

Recall that the volume scattering properties of a medium are determined by the
phase function, and the scattering and absorption coefficients. Specifically, the
phase function determines the distribution of scattered radiance at any point in
the volume, and thus serves the same function as the BSDF for surfaces.

Like BRDFs, phase functions are Helmholtz reciprocal,

fp(ωi→ωo) = fp(ωo→ωi).

However, unlike the surface scattering case, there are no shading normals to ruin
reciprocity and also no asymmetry due to refraction and therefore the concept of
an adjoint phase function does not need to be introduced. To make matters even
simpler, for isotropic media, which is the case considered here, phase functions
are only a function of the relative directions, so fp(ωi · ωo) = fp(cos θ).

Unlike BRDFs, phase functions are normalized, so∫
S2

fp(ωi · ωo) dσ(ωi) = 1 for all ωo ∈ S2.

Instead, the amount of scattering is controlled by the scattering coefficient, σs.
The directional arguments to the phase function follow a different convention
than that of the BSDF, since the incident direction is reversed (i.e., θ = 0 if
ωi = ωo).

The Henyey and Greenstein [1941] phase function is arguably the most com-
monly used phase function. It is given by

fp,s(ωi · ωo) =
1

4π

1− g2

(1 + g2 − 2g cos θ)
3
2

,

where g ∈ ]−1; 1[ is called the asymmetry parameter. This parameter controls
the degree to which the function is forward scattering (positive g) or backward
scattering (negative g). If g = 0, the Henyey-Greenstein phase function is
reduced to the isotropic phase function,

fp(ωi · ωo) =
1

4π
.
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2.6.3 Light Sources

Light emission happens either as volume emission or surface emission. Emission
of light from surfaces is by far the most common situation in computer graphics,
though volume emission is also used occasionally (for instance, volume emission
would be necessary for accurately modeling a candle flame). Computer graphics
light sources also include the ubiquitous point light source, which is an example
of a zero dimensional light source, and also linear (1D) light sources.

The classical isotropic point light source can be described using a delta function
as

Le,V0(x,ω) =
Φ(λ)

4π
δ(xp − x),

where Φ(λ) is the spectral power distribution (SPD) and xp ∈ V0 the position.
A spotlight can be modeled by restricting the emission directions of a point light
to a cone or other shape [Barzel, 1997].

Light sources can be classified according to whether they are natural or artificial.
The most important natural light source is of course the sun. The source of
skylight is also the sun, but the light has undergone Rayleigh and Mie scattering.
Simulating these phenomena can be time consuming, so in computer graphics
the sky is often treated as a separate distant light source where the emission has
been precomputed, as has been done in Preetham, Shirley, and Smits [1999] for
daylight. Other models for skylight include Haber, Magnor, and Seidel [2005]
for twilight, and in Jensen, Durand, Dorsey, Stark, Shirley, and Premože [2001]
for the night sky.

Instead of proving a mathematical model, light sources can also be measured.
Natural light can be measured using light probes, as is done in Debevec [1998],
and used as background illumination. Artificial light sources can also be mea-
sured and used as input for rendering algorithms (see e.g. Goesele, Granier,
Heidrich, and Seidel [2003]).

Rather than having explicit light source objects, all surfaces in a scene are
assumed to have an emission term. The area light sources are then simply the
subset of the surfaces that have a nonzero emission term. This means that
surfaces that emit light, can also scatter light, since these surfaces also have a
BSDF. The simplest form of surface emission is when the emission characteristics
only varies as a function of wavelength, such as when emission is described by
an ideal blackbody emitter of temperature T (in Kelvins),

Le,∂V(xs,ω, λ) =
Me(T, λ)

π
.
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The spectral radiant exitance of blackbody radiator can be computed using a
variation of Planck’s formula [Wyszecki and Stiles, 2000]6

Me(T, λ) =
c1λ
−5

exp
(
c2
Tλ

)
− 1

,

which has units W/m2 m. The two radiation constants are c1 = 2π hc2 =
3.741832 × 10−16 W ·m2 and c2 = hc

k = 1.438786 × 10−2 m ·K, where k =
1.380662× 10−23 J/K is the Boltzmann constant.

Another option is to use the illuminants defined by International Commission
on Illumination (CIE). These include the CIE Illuminant A, which is designed to
model light created due to incandescence, such as that from a standard tungsten-
filament light bulb. The spectrum for this illuminant can be computed directly
using Planck’s formula (with T = 2856 K). Illuminants B and C represent
direct sunlight and average daylight (correlated color temperatures of 4874 K
and 6774 K, respectively), but have fallen into disuse. CIE Illuminants D are
a whole family of relative spectral power distributions for daylight simulation,
of which D55, D65, and D75 are best known. They can be computed using a
simple formula based on a tabulated set of basis functions [Wyszecki and Stiles,
2000] and are used extensively in various fields. E.g. D65 is the white point of
the sRGB color space mentioned previously. Finally, Illuminant E is an equal
energy spectrum, and the Illuminant F series can be used to approximate the
spiky SPDs of fluorescent lighting.

If surface emission is constant with respect to ω, the resulting light source is
said to be ideal diffuse. A simple empirical formula can be used to create a
more directional light source, such as a spotlight. The idea, which is similar to
what is proposed in Warn [1983], is to let the falloff away from the normal be
controlled by a cosine lobe,

Le,∂V(xs,ω, λ) =
n+ 1

2π
(ns · ω)n−1Me(T, λ)

where the exponent n ≥ 1 controls the speed of the falloff (n = 1 gives a diffuse
emitter).

The emission of a light source can also be controlled by actually modeling the
light fixture. This is the most accurate solution, but can be impractical in some
cases. Verbeck and Greenberg [1984] suggest another option, which is to use
goniometric diagrams to describe the directional emission properties of light
sources. Goniometric diagrams are a standard tool in the lighting industry and
are often made available from lamp manufacturers. Surface emission can also

6This formula assumes λ is measured in meters, rather than nanometers.
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be a function of position. As discussed by Gershbein, Schröder, and Hanrahan
[1994], this can be useful to model the emission from a computer monitor, where
the radiant exitance would be encoded in a high dynamic range texture map.

2.6.4 Sensors

Solving the light transport problem entails computing how a set of sensors re-
sponds to the equilibrium radiance distribution. The response of sensor j is a
single real number, called a measurement, which is denoted Ij .

Cameras are the most common form of sensor in computer graphics. However, in
this terminology, it is more correct to think of cameras as collections of sensors,
since real cameras perform multiple measurements simultaneously. This means
that the value of each pixel corresponds to a single measurement. E.g., if we
are modeling a digital camera, each photosensor, j, on the imaging chip would
have its own unique flux responsivity function, W j

e .

Figure 2.15: The flux responsivity function for a single pixel from a pinhole cam-
era (left) is non-zero only for the set of directions within the pyramid
formed by the pinhole and the four corners of the corresponding pixel.
Similarly, W j

e (xs,ω) for a camera with a finite aperture (right) is non-
zero only for the set of directions formed by connecting points on the
aperture to points within the footprint of the pixel in the plane of per-
fect focus.

The simplest camera model used in computer graphics is the pinhole camera.
The flux responsivity of a single pixel of such a camera can be written,

W j
e (xv,ω) = W j

e (ω) δ(xp − xv),

where xp ∈ V0 is the pinhole. The function W j
e (ω) is the image reconstruction

filter. It is defined to be nonzero only within the solid angle subtended by the
support of the filter function in the image plane as seen from the pinhole (see
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Figure 2.15). It is well known that rather than using a constant reconstruction
filter, which has a poor frequency response, better results can be achieved using
the filter suggested by Cook [1986] (a truncated Gaussian) or the filters described
in Mitchell and Netravali [1988] (a family of filters that provide trade-off between
ringing and blurring).

The pinhole camera can be modified to account for light incident from the
complete 4π sphere of directions. Such a camera is sometimes called a light probe
camera, since it can be used to create synthetic light probes. The definition is
similar to the pinhole camera, except that function W j

e (ω) is now defined over
a full spherical image plane, instead of being based on the rectangular image
plane of the pinhole camera. Note the similarity of the definitions of the pinhole
camera and light probe camera to the definitions of the spotlight and isotropic
point light source in the previous section.

Real cameras have a lens and a finite aperture, which is the cause of depth
of field. Such cameras can be modeled using a finite aperture camera model
[Potmesil and Chakravarty, 1981]. The aperture, which usually has a circular
shape, should be modeled as being a part of the scene, A ⊂ ∂V (see Figure 2.15).
The flux responsivity function for this camera is non-zero only for the pairs of
points and directions, (x,ω), that satisfy

{(x,ω) | x ∈ A and ωx→y where y ∈ Pj} ,

where Pj is the footprint of the jth pixel in the plane of perfect focus (the
distance to the plane of perfect focus is given as input to model for this kind
camera). The use of a lens causes light to refract, so that it focuses on the
image plane. It is common to approximate the refraction in the lens using a
thin lens model, so that only one refraction is accounted for. On the other hand,
if the goal is to match the geometry of image formation of a real camera, such
a simple model will not suffice. Instead Kolb, Mitchell, and Hanrahan [1995]
suggest modeling a camera based on a description of apertures, stops, and lens
elements and using the more accurate thick lens model.

So far we have not considered the wavelength dependence of the flux responsivity
functions or the camera response, which can be nonlinear. If an ideal camera
is assumed, the response is linear, and the CIE color matching functions can be
used to compute tristimulus values,

W j
e (x,ω, λ) = W j

e (x,ω) ȳ(λ),

and similarly for x̄ and z̄. A camera defined this way has a gamut that en-
compasses all colors, unlike real cameras whose gamut is always a subset of
this. If the goal is to match the output of a real camera, Grossberg and Na-
yar [2003] suggest a method for measuring the camera response. This method
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was developed for computer vision, where the opposite problem is faced; i.e.,
scene radiance needs to be estimated based on the camera response. For com-
puter graphics we need to invert the response function, so that camera response
can be computed based on scene radiance. However, we will assume that such
adjustments are done in a postprocess, so that all sensors are linear.

2.7 The Measurement Equation

As discussed, linear sensors are defined by their flux responsivity functions, W j
e ,

which define a weighting on the radiance in the scene. Using these functions,
the notion of a measurement can be defined for each sensor as

Ij =

∫ ∞
0

∫
S2

∫
∂V
Li(x,ω, λ)W j

e (x,ω, λ) | cos θ| dA(x) dσ(ω) dλ,

where the units of Ij are sensor response, S. Consequently, this equation is
known as the measurement equation [Nicodemus, 1978, pg. 65]. This equation
describes measurements across sensors defined as part of ∂V, such as a camera
with a finite aperture.

We will extend Nicodemus’ definition of a measurement to also include measure-
ments over points from V0, such as those resulting from the light probe camera
mentioned previously. In that case, since there is no surface, and consequently
no normal associated with x, the cosine term disappears, and the measurement
equation becomes

Ij =

∫ ∞
0

∫
S2

∫
V0
Li(x,ω, λ)W j

e (x,ω, λ) dV (x) dσ(ω) dλ.

It will be convenient to combine these two equations, so that we can perform
measurements regardless of whether W j

e (x,ω) is defined to be nonzero across
∂V or V0. This can be done using the α measure, defined in Section 2.1, as a
measure on V. Using this measure, the measurement equation can be written

Ij =

∫ ∞
0

∫
S2

∫
V
Li(x,ω, λ)W j

e (x,ω, λ) dαω(x) dσ(ω) dλ. (2.16)

The light transport problem is the task of solving the measurement equation for
each sensor in the scene. Often it is desirable to perform several measurements,
I1, . . . , In, simultaneously, since some computations can be shared. For instance,
to construct an image, Equation 2.16 must be solved for each pixel.
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The end result need not be an image, however. As discussed in the previous
section, the sensor formalism is not restricted to cameras in the classical sense
and can easily be extended to more general measurements, such as sensors for
measuring irradiance across a surface.

2.8 Summary

In this chapter a complete description of the light transport problem suitable
for realistic image synthesis has been presented. This description consists of
three parts.

The first part is the description of the scene itself. This includes the geometry
that make up the surfaces of the scene. It includes the scattering properties
associated with these surfaces and the volumes they enclose. It also includes a
description of the emission from light sources and the responsivity of the sensors
in the scene.

The second part is the equation of transfer with boundary conditions given by
the local scattering equation (rendering equation). These equations describe
conditions that must apply to the equilibrium radiance of the scene.

ω · ∇Lo(xv,ω, λ) + σt(xv, λ)Li(xv,−ω, λ) =

Le,V0(xv,ω, λ) + σs(xv, λ)

∫
S2

fp(xv,−ω′ · ω, λ)Li(xv,ω
′, λ) dσ(ω′)

Lo(xs,ω, λ) = Le,∂V(xs,ω, λ) +

∫
S2

Li(xs,ω
′, λ) fs(xs,ω

′,ω, λ) | cos θ| dσ(ω′)

The third and last part is the measurement equation. This equation must be
solved for each for each sensor in the scene, leading to a number of measure-
ments, I1, . . . , In, which is the solution to the light transport problem.

Ij =

∫ ∞
0

∫
S2

∫
V
Li(x,ω, λ)W j

e (x,ω, λ) dαω(x) dσ(ω) dλ

We can now turn to algorithms for solving the light transport problem, which
is the topic of the next chapters.



Chapter 3

Monte Carlo Methods

Monte Carlo methods are a set of mathematical algorithms developed in the
1940s for solving hard integration problems. They are based on the idea that
many interesting problems can be investigated using the outcomes of games of
chance. In fact, the name “Monte Carlo” is a reference to the Monte Carlo
casino in the city-state of Monaco on the French Riviera, a place famous for
gambling.

The use of games of chance, or random sampling, makes the outcome of these
algorithms non-deterministic and subject to statistical interpretation. By ran-
dom sampling we simply mean that the outcome of some number of random
events are used as input to the algorithm, and usually, as the number events are
increased, the result of the algorithm will converge toward the correct result.

Early methods used “analog” random events, such as rolling a dice or drawing
numbered pieces of paper from a bowl. Modern Monte Carlo methods are
implemented on computers and use sequences of random or pseudo random
numbers.

Monte Carlo methods can be used to solve both probabilistic and deterministic
problems. Probabilistic problems are those where the underlying model is of a
statistical nature, such as a physical random process. A simple example is the
behavior of a photon. Here the scattering direction of the photon can be seen as
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a random process that could be directly simulated using random numbers. In
contrast, deterministic problems do not have an underlying random structure
that can be directly simulated using Monte Carlo. To solve these problems using
Monte Carlo methods we must construct a, perhaps unrelated, random process
that can be simulated and from which a statistic can be drawn that corresponds
to the solution of the original problem. An example of deterministic problems
are the integro-differential equations investigated in this thesis. These equations
do not correspond to any random process. However, as these equations describe
light transport, it is not difficult to come up with a suitable random process,
namely the scattering of photons, that can be used to investigate this problem.

3.1 Background

Historically, it is difficult to determine the first use of random sampling to solve
scientific problems. There are several known isolated instances, several of which
are discussed below. However, none of these people seem to have recognized the
use of random sampling as a principled way of solving scientific problems.

An early example, which is often quoted, is that of the Comte de Buffon. In
1777 he determined the probability that a needle of length L thrown at random
on piece of paper with straight lines a distance d > L apart would intersect one
of the lines. Using analysis he deduced the probability, p, to be

p =
2L

πd
,

and confirmed his result experimentally by performing many throws. Later,
Laplace noted that this method could be used to determine π. Either way, this
method is essentially an analog Monte Carlo method for estimating p or π.

In 1901 Lord Kelvin appears to have used random sampling to study the ki-
netic theory of gasses. A few years later, in 1908 Student (W. S. Gosset) used
experimental sampling to find an expression for the distribution of the corre-
lation coefficient and later to bolster his confidence in his t-distribution. In
1928 Courant, Friedrichs, and Lewy showed the equivalence of a class of ran-
dom walks to the solution of certain partial differential equations and in 1931
Kolmogorov proved the relationship between Markov stochastic processes and
integro-differential equations.

See Kalos and Whitlock [1986] and Hammersley and Handscomb [1964] for fur-
ther examples of the early uses of Monte Carlo methods.
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The group of people most directly responsible for the “modern” Monte Carlo
methods are some of the individuals brought together at Los Alamos in the
1940s. The Los Alamos National Laboratory, part of the top secret Manhattan
Project, and known then as Site Y, was founded in 1943 to conduct research
on nuclear weapons. This extraordinary group included people such as Richard
Feynman, Stanislaw Ulam, Hans Bethe, Enrico Fermi, John von Neumann,
Edward Teller, and Nicholas Metropolis.

Unfortunately, early attempts at using Monte Carlo methods at Los Alamos
were hampered by the lack of digital computers at that time. It was not until
a few years after the war that computers had matured enough to be useful
for Monte Carlo. This first happened with the ENIAC, which was used in the
development of the “super,” the first thermonuclear weapon, and also ran the
first computerized Monte Carlo experiments.

In the following years Monte Carlo methods were applied to a number of dif-
ferent problem. These experiences lead to the famous paper “The Monte Carlo
Method” by Metropolis and Ulam [1949].

Looking back, Monte Carlo methods have been highly successful and are today
used in many fields. There are several reasons for the success of Monte Carlo
methods compared to other techniques. The most important are

• Convergence rates are O(N−
1
2 ) independent of dimension

• They handle non-smooth functions and functions with singularities

• They are general, and often simple to implement

• They are well suited for implementation on computers

The remainder of chapter is organized as follows: First the necessary probability
theory needed for understanding Monte Carlo is reviewed. Then the Monte
Carlo method itself is presented in Section 3.3. Finally, the class of methods
known as Markov Chain Monte Carlo.

3.2 Probability Theory

Probability plays a central role in Monte Carlo methods, so before discussing
Monte Carlo, we will review a few of the basic notions of probability theory. A
distinction is usually made between discrete and continuous probability theory;
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only continuous probability theory is discussed here, since it is most relevant for
topics covered in this thesis.

3.2.1 Random Variables

We begin with the definition of a random event: An event is a set of outcomes
each assigned a probability. If each event is also assigned a real number, the
result is called a random variable.

A cumulative distribution function (CDF) is a function that describes the dis-
tribution of probability of a random variable. It is written

P (x) = Pr [X ≤ x] .

As illustrated in Figure 3.1, this is understood to mean the probability that the
random variable X takes on a value less than or equal to x.

Figure 3.1: The cumulative distribution function (left) and the probability density
function (right) for the 1D case.

A related concept is the probability density function (PDF), which describes
the density of probability at each point in the sample space for a given random
variable. It is closely related to the CDF, since

p(x) =
dP

dx
(x),

assuming the CDF is differentiable. Since the CDF is a non-decreasing function
of x, the PDF must be a non-negative function of x. The PDF also has the
normalization property∫ ∞

−∞
p(x) dx = P (∞)− P (−∞) = 1.
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A special case is a uniform PDF, which is a PDF that is constant everywhere.

If P (x) is continuous, X is called a continuous random variable. This implies
that Pr [X = a] = 0. On the other hand, if P (x) is discontinuous, probability
will concentrated at a set of discrete points. At these points the PDFs can be
described using a Dirac delta function,

δ(x) =

{
∞, x = 0
0, x 6= 0

which, like the PDF, also has the normalizing property∫ ∞
−∞

δ(x) dx = 1.

As a result PDFs are generally unbounded.

3.2.2 Expected Values and Moments

The expected value of a random variable Y = f(X), or simply the expectation
or mean, is given by

E [Y ] =

∫ ∞
−∞

f(x) dP (x)

=

∫ ∞
−∞

f(x) p(x) dx, (3.1)

assuming P (x) is differentiable. The expected value is also called the first mo-
ment of X, and often denoted µ.

From the definition, it is easy to see that the expected value is linear

E [aX + bY ] = aE [X] + bE [Y ] ,

for any constants a and b.

The moment of order n of X is given by

E [Xn] , n = 1, 2, . . .

Of particular interest are the central moments

E [(X − µ)n] =

∫ ∞
−∞

(x− µ)n p(x) dx.
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The second central moment is called the variance, and usually denoted

σ2 = Var [X] = E
[

(X − µ)2
]
. (3.2)

It has the property
Var [aX + b] = a2 Var [X] ,

for any constants a and b.

A convenient way of computing the variance can be found by expanding Equa-
tion 3.2

Var [X] = E(X2 − 2µX + µ2) = E
[
X2
]
− 2µE [X] + µ2

= E
[
X2
]
− µ2 = E

[
X2
]
− E [X]

2
.

The standard deviation, σ, which is the square root of the variance, is a useful
measure of the dispersion of the random variable. It is also referred to as the
root mean square error (RMSE).

A given moment is said to exist if E [Xn] <∞, that is, if it is finite. If E [Xn] is
finite for a given n, then for k ≤ n, E

[
Xk
]

is also finite. Conversely, if E [Xn]

does not exist, then for k ≥ n, E
[
Xk
]

does not exist either.

3.3 Monte Carlo Integration

Suppose we must solve the following definite integral,

F =

∫
Ω

f(x) dx,

for some possible multidimensional domain Ω. Assume the integrand f(x) is a
function of the form R 7→ Rn and F is the unknown parameter, or quantity of
interest, called the estimand. In order to solve this integral using Monte Carlo
integration, we first express F as an expectation,

F =

∫
Ω

f(x)

p(x)
p(x) dx, (3.3)

with respect to a probability density function p. Writing the problem this way
makes it clear how to transform the original deterministic problem into a form
suitable for Monte Carlo, since according to Equation 3.1, this is actually the

expected value of a random variable. Or put another way: E
[
f(X)
p(X)

]
= F .
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This means we can approximate F using random sampling. To do this we gener-
ate N independent realizations of the random variable X, called sample points,
or simply samples, X1, . . . , XN with density p, and compute the empirical av-
erage

FN =
1

N

N∑
i=1

f(Xi)

p(Xi)
. (3.4)

Since FN “on average” provides a usable approximation of F , it is a valid esti-
mator of F and FN for a particular set of random variables X1, . . . , XN is called
an estimate of F . To see why FN is correct on average, note that FN has the
property that its expected value is equal to the correct result, since

E [FN ] = E

[
1

N

N∑
i=1

f(Xi)

p(Xi)

]

=
1

N

N∑
i=1

∫
Ω

f(x)

p(x)
p(x) dx

=

∫
Ω

f(x) dx = F.

In general, an estimator is simply a function of the form

FN = FN (X1, . . . , XN ),

which can be used to estimate some unknown parameter, such as the mean.
Consequently an infinite number of estimators exist for solving a given prob-
lem. In order to compare estimators, so that we can choose the best one, the
properties of estimators is discussed below.

First, the error of an estimator is simply the difference between the estimate
and the true value, FN − F . The expected value of the error is called the bias
of the estimator,

β [FN ] = E [FN − F ] .

An estimator is said to be unbiased if β [FN ] is zero for all sample sizes, i.e.

E [FN ] = F, for all N ≥ 1.

A less strict requirement than that of unbiasedness, is that an estimator should
be consistent. A consistent estimator only converges to the mean in the limit

Pr
[

lim
N→∞

FN = F
]

= 1.
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A sufficient condition for consistency is that both bias and variance go to zero
in the limit

lim
N→∞

β [FN ] = lim
N→∞

Var [FN ] = 0.

Unbiased estimators are generally preferred in Monte Carlo. The reason is that
one often used measure of quality of a given estimator is its mean squared error,

MSE(FN ) = E[(FN − F )2]

For biased estimators the MSE can be written as the sum of the variance and
bias

MSE(FN ) = Var [FN ] + β [FN ]
2
.

Unfortunately this means that to estimate the MSE we need to know the bias,
which we generally do not. For unbiased estimators we do not have this problem,
since in this case

MSE(FN ) = Var [FN ] .

This means that to get an error estimate, all we need to do is to estimate the
variance.

As discussed above, low variance is a desirable property of an estimator. How-
ever, a property that is just as important is the speed of the estimator; that is
how long it takes to generate a sample. This means that to evaluate a given
estimator, both the variance and the temporal aspect must be taken into ac-
count, and this is exactly what is embodied in the notion of the efficiency of an
estimator

ε [FN ] =
1

Var [FN ] T [FN ]
,

where T[·] is the time it taken to generate the samples.

Although unbiased estimators should be preferred, biased estimators should
still be considered in some cases. Sometimes it is possible to construct biased
estimators that are vastly more efficient than their unbiased counterparts. In
such cases biased estimators should be preferred as long as they are consistent
and it is possible to estimate or bound the bias. In other cases it is simply
not possible to construct an unbiased estimator. This typically happens if the
problem involves a ratio of integrals, in which case the estimator will always be
biased.
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3.4 Sampling Random Variables

To perform Monte Carlo computations, random numbers are required. True
random numbers are rarely used, since producing these in large quantities is
impractical. Instead, pseudorandom numbers, produced by a random number
generator, are used. Though not truly random, since they are produced by an
algorithm, and thus completely deterministic, these numbers are still suitable
for Monte Carlo, since they have the same statistical properties as true random
numbers.

Countless random number generators have been suggested in the Monte Carlo
literature over the years. The Mersenne Twister, described in Saito and Mat-
sumoto [2006], is a popular choice, and is also the random number generator
used to produce the results in this thesis.

The Inversion Method

Often, random numbers with distributions different from uniform are desired.
This happens for instance with some of the variance reduction methods discussed
later in this chapter. The inversion method, described by Kalos and Whitlock
[1986], is a general approach that makes it possible to generate random numbers
distributed according to an arbitrary PDF. The only requirement is that the
corresponding CDF must be continuous and invertible.

To make this more concrete, let p(x) be a PDF with continuous CDF and let
P−1(x) be its inverse, as illustrated in Figure 3.2. If ξ is a uniform random
variable in [0; 1], then X = P−1(ξ) is a random variable distributed according
to P (x).

To see why X is distributed according to P (x), consider that

Pr [X ≤ x ] = Pr
[
P−1(ξ) ≤ x

]
= Pr [ ξ ≤ P (x) ] = P (x),

and recall that P (x) is a non-decreasing function of x.

If inverting the CDF is not an option, a discrete approximation of the CDF can
always be made. This is of course also an option if the PDF is discrete to begin
with. Evaluating the inverse CDF can then be done using a binary search in
O(log2N) time for N sample points.

The inversion method can also be used in the multi-dimensional case. For
instance, in 2D we might want to generate random variables (X,Y ) distributed
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Figure 3.2: The inversion method. Uniform random variables, ξ, are mapped to
X = P−1(ξ) so that the distribution of X becomes P (x) in the limit.

according to p(x, y). To do so we first compute the marginal density

pX(x) =

∫
p(x, y) dy.

We can then sampleX as x = P−1
X (ξ1). Once we knowX, the problem is reduced

to 1D, and we can compute the conditional density for the corresponding slice,

pY (y|x) =
p(x, y)

pX(x)

and sample Y as y = P−1
Y (ξ2|x). This procedure can be generalized to any

number of dimensions.

3.5 Convergence Rates

As noted in the beginning, the convergence rate of Monte Carlo is O(N−
1
2 ). To

see why this is the case, consider first the variance of the estimator F1. For

convenience let w(x) = f(x)
p(x) , then

Var [F1] = Var [w(X)] .
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Similarly, the variance of FN is given by

Var [FN ] = Var

[
1

N

N∑
i=1

w(Xi)

]

=
1

N2
Var

[
N∑
i=1

w(Xi)

]
=

1

N2

N∑
Var [w(X)]

=
1

N
Var [F1] ,

which means that the variance decreases linearly with 1
N . The standard devia-

tion, which can be seen as a measure of integration error, is then given by

σ [FN ] =
1√
N
σ [F1] ,

which is the reason for the O(N−
1
2 ) convergence rate of Monte Carlo.

The Chebychev inequality can be used to get a probabilistic bound on absolute
error. It is so important that it is suggested by Kalos and Whitlock [1986] to
name this inequality the first fundamental theorem of Monte Carlo. It is given
by

Pr

[
|FN − F | ≥

√
Var [FN ]

δ

]
≤ δ,

where δ is a small positive number. It tells us that the probability of generating
an estimate that deviates greatly from the true mean can be made arbitrarily
small simply by using enough samples.

The distribution of the mean of a random variable can be investigated using the
central limit theorem. This theorem states that for a given number of samples,
N , the distribution of FN follow some PDF, and as N → ∞, this distribution
converges to the normal distribution. Following Veach [1997], this can be written

lim
N→∞

Pr

[
FN − F ≤ t

σ [F1]√
N

]
=

1√
2π

∫ t

−∞
exp

(
−x2

2

)
dx.

Rearranging terms gives the following more convenient expression

Pr
[
|FN − F | ≥ t σ [FN ]

]
=

√
2

π

∫ ∞
t

exp

(
−x2

2

)
dx.

As shown in Figure 3.3, this means that given N is large enough for the Central
Limit Theorem to apply, the so-called 68-95-99.7 rule applies. I.e., the probabil-
ity that FN is within one, two, or three standard deviations of F is 68%, 95%,
and 99.7%, respectively.
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Figure 3.3: The central limit theorem states that the distribution of the sum of N
random variables each with an arbitrary PDF with finite mean, µ, and
variance σ2 approaches the normal distribution as N →∞. This means
that the probability that the sum is within one, two, or three standard
deviations of the true mean is 68%, 95%, and 99.7%, respectively.

This makes the central limit theorem a very powerful tool for investigating the
distribution of FN . However, one problem limiting the use of the theorem is
that it only applies in the limit and determining exactly how large N must be
for a given problem is generally nontrivial. A rule of thumb is presented by
Kalos and Whitlock [1986] for when using the theorem is substantially satisfied,
and it is given by

|µ3| � σ3
√
N,

where µ3 is the third central moment. If no such analysis is performed, and the
central limit theorem is simply used without regards to sample size, the reported
errors should be considered optimistic.

In the above discussion, we assumed that the variance existed. However, this
is not always the case. If not, we need the law of large numbers (strong form),
which states that if we sample a random variable with finite mean, like

FN =
1

N

N∑
i=1

w(Xi).

then FN converges almost surely to the mean, F ,

Pr
[

lim
N→∞

FN = F
]

= 1.

This is true even if the variance does not exist, although convergence in that
case will be slower.
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3.6 Blind Monte Carlo

Over the years numerous techniques have been developed for reducing variance
in Monte Carlo computations. These techniques work by determining sampling
locations more intelligently so that variance in the final estimate is reduced.

Recall that one of the most important goals when designing estimators is to
maximize their efficiency

ε [FN ] =
1

Var [FN ] T [FN ]
.

Since the use of variance reduction techniques typically requires more compli-
cated computations, the time required to generate each sample is usually in-
creased. That is, as Var [FN ] decreases, T [FN ] typically increases. The obvious
implication of this is that it is only advantageous to use a variance reduction
technique on a given problem if the relative decrease in variance is larger than
the relative increase in computation time.

Unfortunately it can be hard to determine in advance whether using a variance
reduction method on a given problem is an advantage. One solution is to perform
trial runs with each estimator. If the first estimator produces a variance of σ2

1

in t1 seconds and the second σ2
2 in t2 seconds, an informed decision can be made

based on their relative efficiency, which can be computed as the ratio
σ2
1t1
σ2
2t2

.

A distinction is made by Glassner [1994] between blind Monte Carlo and in-
formed Monte Carlo variance reduction methods, that we will also use here.
Blind Monte Carlo methods, which are covered in the remainder of this sec-
tion, are methods which require no a priori knowledge about the integrand. In
contrast, informed Monte Carlo methods use some knowledge of the integrand
to construct low variance estimators. These methods are covered in the next
section.

3.6.1 Crude Monte Carlo

For completeness, we will first consider the case of uniform sampling. Consider
the integral F =

∫
[0,1]d

f(x) dx, where the domain is the d-dimensional hy-

percube. If this integral is estimated using independent, uniformly distributed
random variables, then

FN =
1

N

∑
f(Xi)
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is an unbiased estimator of F and is called a crude Monte Carlo estimator. This
is obviously just a special case of Equation 3.4 with p(Xi) = 1.

3.6.2 Rejection Sampling

Often in Monte Carlo we would like to generate samples distributed according
to some function f(x), which is not necessarily normalized. Unfortunately, if
f(x) is complicated or defined on some irregular domain, it may be difficult to
do so. In such case the method of rejection sampling,1 first proposed by von
Neumann [1951], can be used.

The basic idea of rejection sampling is as follows. Imagine we wish to generate
samples according to f(x), but this function cannot be sampled from directly.
Instead assume we have a simpler function, q(x), that we can generate samples
from, and a constant M , such that the envelope property is satisfied, i.e. f(x) ≤
M q(x) for all x.

Then, we first generate a tentative sample X ′ from q(x). We then generate a

uniform random number ξ in [0; 1]. If ξ ≤ f(X′)
M q(X′) , X ′ is accepted as the next

sample; otherwise the procedure is repeated until a sample that passes the test
is found. Algorithm 3.1 shows the procedure in pseudo code.

Algorithm 3.1: Rejection sampling algorithm. Generate a sample distributed ac-
cording to f(x) using the envelope function M q(x).

1: loop
2: X ′ ∼ q(x) {generate tentative sample X ′ from q(·)}
3: ξ ∼ U(0, 1) {sample uniform random number in [0, 1]}
4: if ξ ≤ f(X′)

Mq(X′) then

5: X ← X ′ {accept tentative sample}
6: break
7: end if
8: end loop

An alternative way of thinking about rejection sampling is to consider the sam-
pling procedure as increasing the dimension by one. This idea is illustrated in
Figure 3.4 for the 1D case. In this case, to find the 2D coordinate (x, y) of the
tentative sample, we first sample x from q(x). We then sample a random num-
ber ξ and compute the y coordinate as y = ξ M q(x). If y < f(x) the sample is
accepted; otherwise a new tentative sample is generated.

1Sometimes also referred to as hit-or-miss sampling.
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The biggest problem with rejection sampling is that if M q(x) is chosen unwisely
many tentative samples might have to be generated to get a single accepted
sample. Looking at Figure 3.4 it is clear that to reduce the number of rejected
samples M q(x) should follow f(x) as closely as possible. I.e. the area between
f(x) and M q(x) should be kept as small as possible.

Figure 3.4: Illustration of the rejection sampling algorithm. Green circles represent
accepted samples and red crosses rejected samples.

The expected number of tentative samples required to generate a single accepted
sample can be found as the ratio

n =
M
∫
q(x) dx∫

f(x) dx
.

If we assume f(x) is normalized (q(x) is always normalized) then this is reduced
to n = M . This means that if M is large and evaluating f(x) is expensive,
rejection sampling can be very inefficient. In such cases the Metropolis-Hastings
algorithm, presented in Section 3.8.2, should be considered instead, since it is
able to also utilize information from the rejected samples.

3.6.3 Stratified Sampling

Techniques, such as crude Monte Carlo, have the problem that the resulting
samples only follow the desired distribution, e.g. uniform, in the limit. This
means that when using relatively few samples generated independently chances
are that these samples will often tend to clump together rather than cover the
domain uniformly. This is unfortunate, since this will manifest itself as increased
variance.

One way to reduce this clumping is to use the technique of stratified sampling.
As shown in Figure 3.5, the intuition behind stratified sampling is that if we
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split the domain into k disjoint regions, and place a few samples in each region,
then by construction the samples are forced to cover the entire domain, and
clumping should be reduced.

Figure 3.5: Illustration of the stratified sampling algorithm. The domain of f , Ω, is
divided up into k disjoint regions, Ω1,Ω2, . . . ,Ωk, and a random sample
is taken in each region.

Each of these disjoint regions is called a stratum and their union is the entire
domain

k⋃
i=1

Ωi = Ω.

Following Veach [1997], if we assume the domain is the d-dimensional unit cube,
Ω = [0; 1]d, and that we place ni samples in each stratum with uniform proba-
bility, then the estimator is of the form

F ′ =

k∑
i=1

viFi,

where vi is the volume of Ωi and the estimator for each stratum is

Fi =
1

ni

ni∑
j=1

f(Xi,j),

where Xi,j is the jth independent sample in the ith stratum. The variance of
this estimator is

Var [F ′] =

k∑
i=1

v2
i

ni
σ2
i ,

where σ2
i is the variance of Fi.
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If we assume that the number of samples in each region is proportional to
volume, ni = viN , where N is the total number of samples, N =

∑k
i=1 ni, then

the variance can be written as

Var [F ′] =
1

N

k∑
i=1

viσ
2
i . (3.5)

For comparison, as shown by Veach [1997, pg. 51], the variance of the normal
(non-stratified) estimator is

Var [F ] =
1

N

[
k∑
i=1

viσ
2
i +

k∑
i=1

vi(µi − I)2

]
,

where µi is the average value in Ωi and I is the average in Ω. Compared to
Equation 3.5, it can be seen that stratified samples can never increase variance.
However, variance is only reduced if strata can be chosen with means that differ
from the function average I. Also, even though variance is never increased,
efficiency can still be reduced with stratified sampling if the time to generate
each sample is increased, though the simple nature of stratified sampling makes
this unlikely to be a problem in practice.

The convergence rate of stratified sampling for a certain class of functions is dis-
cussed by Mitchell [1996]. He shows that when using stratified sampling on func-
tions that obey a Lipschitz smoothness condition the variance is O(N−1−2/d),
where N is the number of samples and d is the number of dimensions. Compared
to the normal convergence rate of O(N−1), it is clear that stratified sampling can
be a great advantage for low dimensional problems (e.g. O(N−3) convergence
in 1D), but that this benefit is quickly lost as the dimension increases.

For high dimensional problems, using stratified sampling is unpractical, since
the number of samples required grows too fast. For instance, if 100 samples are
used per dimension, the growth is O(100d), something often referred to as the
curse of dimensionality. However, stratified sampling can still be used for many-
dimensional problems in some cases. The idea is first to identify the dimensions
that are responsible for the majority of variation in the integrand and then only
stratify these, rather than all the dimensions. Kalos and Whitlock [1986] report
that using this strategy can significantly reduce variance.
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3.7 Informed Monte Carlo

In the last section we covered blind Monte Carlo methods: variance reduction
methods that did not use any information about the integrand. In this section
informed Monte Carlo methods are presented. These methods use information
about the integrand (full or partial) to guide the placement of samples to im-
portant regions in the domain of the integrand.

3.7.1 Importance Sampling

Consider again Equation 3.3,

F =

∫
Ω

f(x)

p(x)
p(x) dx.

As discussed in the previous sections, in Monte Carlo, we estimate such integrals
using estimators that are often of the form

FN =
1

N

N∑
i=1

f(Xi)

p(Xi)
.

The variance of FN depends on both f(x) and p(x). To reduce the variance, note
that we can not change f(x), but are free to change p(x) within the previously
mentioned restrictions. This begs the question of what choice of p(x) produces
an estimator with minimum variance for a given f(x).

This question is answered by Kalos and Whitlock [1986, pg. 92]. First consider
that the variance of F is

Var [F ] =

∫
Ω

(
f(x)

p(x)

)2

p(x) dx− F 2.

Ideally we would like Var [F ] to be as small as possible by choosing a suitable
p(x). This can be achieved by minimizing Var [F ] with respect to p(x) using the
method of Lagrange multipliers. To do this we need to find a scalar λ such that

L(p) =

∫
Ω

f2(x)

p(x)
dx+ λ

∫
Ω

p(x) dx

is minimized. To find the minimum we first differentiate with respect to p and
set the result to zero,

0 =
∂

∂p

[∫
Ω

f2(x)

p(x)
dx+ λ

∫
Ω

p(x) dx

]
= −f

2(x)

p2(x)
+ λ.
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It is now straight forward to solve for p(x)

p(x) =
1√
λ
|f(x)|,

which means that the ideal p(x) must be proportional to f(x). To find the
constant of proportionality recall that p(x) is a PDF, so it must be normalized.
This means that

1 =

∫
Ω

1√
λ
f(x) dx

=
F√
λ
,

and the optimal PDF is then given by

p(x) =
f(x)

F
=

f(x)∫
Ω
f(x) dx

.

To check that this is indeed the optimal choice of p(x), we can compute the
variance

Var [F ] =

∫
Ω

(
f(x)

f(x)/F

)2

f(x)/F dx− F 2

= F 2 − F 2 = 0,

which means that no choice of p(x) can be better.

Unfortunately, direct application of this method is impossible, since we need
to know F , which is the quantity we are trying to find in the first place. In
addition, we can not hope to draw samples from f(x), since its complicated
nature is what made us resort to Monte Carlo methods. However, we can still
use the general principle, if we note that the reason this “perfect” sampling
resulted in zero variance is because the ratio f(x)/p(x) is constant for any x.
Since it is not possible to make this ratio absolutely constant, we must contend
ourselves by picking a p(x) that is only roughly proportional to f(x) and that
results in a f(x)/p(x) that is only approximately constant.

This principle is called importance sampling and was first recognized by Marshall
[1956]. It is arguably the most important variance reduction method. The name
comes from the fact that when using importance sampling more samples are
placed where the integrand is large, i.e. in the important regions of Ω.

In practice finding a suitable p(x) is always a compromise, since on the one
hand p(x) should be simple enough so that it can be sampled from, e.g. using
the inversion method. But on the other hand p(x) should be as similar as
possible to the complicated function f(x), since this will result in a low variance
estimator.
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Multiple Importance Sampling

As discussed above, constructing a single PDF that matches the integrand well
while still allowing for sampling is a hard problem. As it turns out, it is often
the case that several candidate probability density functions are available. Indi-
vidually these functions would typically only be a good match for the integrand
in some subset of the domain, but taken together they could potentially be a
good match in the entire domain.

This might happen if the integrand is a product of two or more simpler functions,
such as if

F =

∫
Ω

g(x)h(x) dx,

in which case generating samples distributed according to either g(x) or h(x)
might be possible. These PDFs could also be found in other ways. For instance,
the bimodal function shown in Figure 3.6 could be sampled using a combination
of samples from two normal distributions centered at each mode.

Figure 3.6: Generating samples distributed according to a complicated f(x) is of-
ten not possible. Instead samples can be generated using the simpler
functions p1(x) and p2(x) and combined using the framework of multiple
importance sampling. The resulting effective PDF is p(x), assuming the
balance heuristic is used and that the same number of samples is taken
from each technique.

To make this more general, consider again the integral

F =

∫
Ω

f(x) dx.

Imagine we have n sampling techniques, p1, p2, . . . , pn and that we take ni > 0
samples from each technique pi. This leads to the samples [Xi,1, Xi,2, . . . , Xi,ni ]
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from each technique, and to a total of N =
∑n
i=1 ni samples. Then the following

FN =
1

n

n∑
i=1

1

ni

ni∑
j=1

f(Xi,j)

pi(Xi,j)
(3.6)

is a simple unbiased estimator of F . The downside to this estimator is that its
variance is potentially very high. To see why, consider again Figure 3.6. In this
case it can happen that a sample generated from p1(x) falls in the right lobe of
f(x). This will only happen with low probability, so p(x) will be small, but f(x)
will be large, which according to the principles of importance sampling, will lead
to high variance. If we let ai = 1

(nni)2
, then the variance of this estimator can

be written as

Var [FN ] = a1 Var

 n1∑
j=1

f(X1,j)

p1(X1,j)

+ · · · + an Var

 nn∑
j=1

f(Xn,j)

pn(Xn,j)

 .
I.e. the variance of the estimator is simply a weighted sum of the variances of
each of the individual techniques. This means that if one or more techniques
results in high variance, then Var [FN ] will also be high.

Ideally we would like to combine samples from different sampling techniques
in a way that preserves their relative strengths, while reducing their influence
where the techniques perform poorly. An effective way of doing this is to use
the technique of multiple importance sampling described by Veach and Guibas
[1995] (with more details given in Veach [1997, chp. 9]).

The basic idea of multiple importance sampling is that rather than using a con-
stant weight for samples from a given technique, better results can be achieved
if the weight is allowed to depend on the sample location and the other sampling
techniques. This idea is embodied in the multi-sample estimator

FN =

n∑
i=1

1

ni

ni∑
j=1

wi(Xi,j)
f(Xi,j)

pi(Xi,j)
,

which is an unbiased estimator of F as long as

1.
∑n
i=1 wi(x) = 1 whenever f(x) 6= 0 and

2. wi(x) = 0 whenever pi(x) = 0.

Several weighting functions are suggested by Veach and Guibas [1995]. A weight-
ing function known to work well is the balance heuristic. It is given by

wi(x) =
ni pi(x)∑
k nk pk(x)

.
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Note that wi(x) depends on x and on pk(x) for k 6= i. This means that to com-
pute wi(x) it must be possible to evaluate the PDFs for all the other techniques.
To see the intuition behind this weighting function, it can be inserted into the
multi-sample estimator

FN =

n∑
i=1

1

ni

ni∑
j=1

(
ni pi(x)∑
k nk pk(x)

)
f(Xi,j)

pi(Xi,j)

=

n∑
i=1

ni∑
j=1

f(Xi,j)∑
k nk pk(x)

=
1

N

n∑
i=1

ni∑
j=1

f(Xi,j)∑
k ck pk(x)

,

where ck = nk/N is the fraction of samples from the kth technique. Essentially,
this means that compared to the regular estimator (Equation 3.6), pi(x) is re-
placed with its expected value, p(x) =

∑
k ck pk(x), which is the actual mixture

density used to generate samples.

To see why using multiple importance sampling reduces variance, we again re-
turn to Figure 3.6. In this example we saw that if a sample drawn from p1(x)
ended up in the right mode of f(x), this would result in high variance when using
the original estimator, since f(x)/pi(x) was far from constant. When using the
balance heuristic, pi(x) is replaced with p(x) =

∑
k ck pk(x), which is a much

better match for f(x). As result, the ratio f(x)/p(x) is much closer to constant,
and thus in general has lower variance. A proof that the balance heuristic al-
ways performs within an additive constant of the optimal combination strategy
is given by Veach [1997, pg. 264].

A generalization of the balance heuristic is the power heuristic

wi(x) =
(ni pi(x))β∑
k (nk pk(x))

β
.

The exponentiation has the effect of sharpening the function, which can be
advantageous for some low variance problems. A value of β = 2 has been
suggested to work well on many problems.

The cutoff heuristic can also sometimes outperform the balance heuristic on
low variance problems. It works by ignoring contributions that occur with low
probability and is given by

wi(x) =

{
0, if ni pi(x) < κ

ni pi(x)∑
k{nk pk(x) |nk pk(x)>κ} otherwise
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where κ is the maximum of αnk pk(x) and α is a parameter that controls where
the cutoff occurs. The maximum heuristic only considers samples from the most
likely technique, and ignores all other samples.

3.8 Markov Chain Monte Carlo

In the previous sections we saw how we could estimate an integral using Monte
Carlo integration. The basic idea was that an estimator of integrals of the form

F =

∫
Ω

f(x) dx,

could be formed as the expected value of a random variable FN ,

E [FN ] = E

[
1

N

N∑
i=1

f(Xi)

p(Xi)

]
,

with the random variables X1, X2, . . . , XN distributed according to the PDF,
p(x). Then, since the samples are assumed to be independent, the law of large
numbers told us that FN would converge to F as N →∞ almost surely.

We also saw how the efficiency of the estimator depended crucially on the choice
of p(x), and why the ideal choice of PDF was p(x) ∝ f(x).

Unfortunately, generating independent samples distributed according to some
possibly very complex PDF can be very challenging. However, if the inde-
pendence requirement is relaxed, then any process that generates samples dis-
tributed according to f(x) can be used. In particular, if the samples are gener-
ated from a Markov chain with stationary distribution π∗(x) ∼ f(x), then the
resulting algorithm is said to be a Markov Chain Monte Carlo algorithm. As
it turns out, this leads to a class of algorithms that can sample effectively from
even very complicated PDFs.

The price of using dependent samples is that the methods for testing convergence
presented in Section 3.5 can not be directly applied anymore, since they require
independently generated samples. However, it is possible to work around this
problem by running multiple experiments in parallel. Since the outcomes of
these experiments will be independent, the central limit theorem can still be
used to asses convergence.

The following is based on Gilks, Richardson, and Spiegelhalter [1995] and Robert
and Casella [2005].
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3.8.1 Markov Chains

A Markov chain is a special kind of stochastic process. They are named after
the Russian mathematician Andrey Andreyevich Markov. What distinguishes
them from other stochastic processes is that they have the Markov property,
which states that if {X1, X2, X3, . . .} is a sequence of random variables with
this property, then

Pr(Xt+1 = x|Xt = xt, . . . , X1 = x1) = Pr(Xt+1 = x|Xt = xt).

That is, the probability of choosing the next state Xt+1 depends only on the
current state Xt and thus not on the earlier history of the chain.

Markov chains are either continuous-time or discrete-time stochastic processes,
(Xt)t∈N. Since continuous-time Markov chains are not used in Markov Chain
Monte Carlo, this type is not considered further, and all chains are assumed to
be discrete-time chains.

In the context of Markov Chains, the conditional probability density, Pr(Xt+1 =
x|Xt = xt), which describes how the chain evolves, is called the transition kernel
and gives the probability of moving from one state to another in one step.

All the possible values of x form the state space of the Markov chain. If the
state space is finite, the chain is a discrete-state Markov chain and the transition
kernel can be described with a transition matrix. In the continuous case, such
as when x ∈ Rn, the transition kernel must be a normalized conditional density,∫

Pr(Xt+1 = x|Xt = xt) dx = 1.

A chain is said to be time-homogeneous if

Pr(Xt+1 = x|Xt = xt) = Pr(Xt = x|Xt−1 = xt),

which basically means that the transition kernel does not change over time.
Time-homogeneous chains are by far the most common, and also what is con-
sidered in this thesis.

In order for the distribution of (Xt) for a Markov chain to converge to a given
stationary distribution, π∗(x), the chain must satisfy three properties. These
properties are that the chain must be irreducible, aperiodic, and positive recur-
rent.

Informally, a chain is said to be irreducible if for any starting point the chain
can reach any other state with positive probability. This is essentially a form of
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connectedness condition. More formally, a state x is said to be accessible from
another state x0 in t steps if

Pr(Xt = x|X0 = x0) > 0,

for t > 0. If x0 is also accessible from x, these two states are said to com-
municate with each other. A set of states that communicate with each other
form a communicating class, and if the entire state space happens to be a single
communicating class, then the chain is said to be irreducible.

The requirement of aperiodicity is necessary to ensure that the chain does not
oscillate between two or more states in regular intervals. A state x is said to
have period

k = gcd {t > 0 : Pr(Xt = x|X0 = x) > 0} ,

if revisits to state x must occur in multiples of k time steps and gcd is the
greatest common divisor. An irreducible chain is called aperiodic if k = 1 for
any state.

Irreducibility ensures that a Markov chain will visit every region of the state
space. However, this is a fairly weak property, as it does not specify how often
any region will be visited. It turns that stronger statements can be made if
chains are classified according to whether they are transient or recurrent.

A state is said to be transient if there is a non-zero probability that the chain
will never revisit a given state. Let τx be the time of the first return to state x

τx = min {t > 0 : Xt = x|X0 = x} .

Then a state is said to be transient if

Pr(τx =∞) > 0.

If the state is not transient, it is recurrent. If all states are recurrent (transient),
the chain is said to be recurrent (transient). An irreducible recurrent chain is
called positive recurrent if the expectation of the revisit time to given state is
finite

E [τx] <∞,

for any x. Otherwise the chain is null-recurrent.

Together, a chain that is both aperiodic and positive recurrent is called ergodic.
As stated above, an irreducible chain has a stationary distribution if and only
if it is positive recurrent. In addition, the stationary distribution is unique and
satisfies

π∗(x) =

∫
K(y→x)π∗(y) dy,
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where K(y→x) = Pr(Xt+1 = x|Xt = y) is the transition kernel.

It is important to remember that this is only true in the limit. For instance,
consider a chain with starting value X0 = x0. For this chain the distribution of
X0 is π0(x) = δ(x − x0). The continued evolution of the chain is described by
the Chapman-Kolmogorov equation

πt+1(x) =

∫
K(y→x)πt(y) dy, (3.7)

and it is only in the limit, as t→∞, that we have

lim
t→∞

πt = π∗.

This means that the stationary distribution is the limiting distribution of πt.
This is true regardless of the choice of starting point x0, as the chain forgets its
starting value over time.

3.8.2 Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is a well known algorithm from computa-
tional physics. It was first described in a short paper by Metropolis, Rosenbluth,
Rosenbluth, Teller, and Teller [1953], and is therefore also known as the M(RT)2

algorithm. It was later generalized by Hastings [1970].

As described above, the basic idea of Markov chain theory is to construct a
chain using a given transition kernel. If the transition kernel satisfies certain
conditions, the chain is known to have a unique stationary distribution. The
Metropolis-Hastings algorithm, and Markov Chain Monte Carlo in general, turns
this around. Instead a stationary distribution is given, and the goal is to con-
struct a transition kernel that causes the Markov chain to converge to this
distribution.

Finding such a transition kernel may seem impossible. However, a simple recipe
exists for finding such functions based on the concept of detailed balance. Infor-
mally, detailed balance is the equilibrium condition given by

π∗(x)K(x→y) = π∗(y)K(y→x).

Since we are trying to sample from f , we want π∗(x) = f(x)/F , where F is the
unknown normalizing constant F =

∫
Ω
f(x) dx. Substituting f(x) for π∗(x),

we have
f(x)K(x→y) = f(y)K(y→x).
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Intuitively this says that the system will favor moves from places where f is small
to places where f is large, which makes sense, since we want π∗(x) ∝ f(x).

Following Chib and Greenberg [1995], to find a usable transition kernel, consider
first what happens if a tentative transition kernel2 T (x→y) is used, which does
not satisfy the detailed balance condition. If this happens, we might have that

f(x)T (x→y) > f(y)T (y→x). (3.8)

This means that we move too often from x to y and too rarely from y to x. To
correct this, we introduce a function α(x→y) ≤ 1, which gives the probability
of actually performing the move. The transition kernel can then be written as

K(x→y) = T (x→y)α(x→y).

What this means is that we first generate a tentative sample, y, using T (x→y),
which we then probabilistically accept or reject according to α(x→y). As de-
scribed in Algorithm 3.2, if the sample is accepted it becomes the next state
of the chain; otherwise the old sample becomes the next state. This essentially
makes the Metropolis-Hastings algorithm a form of rejection sampling, though
with the important difference that unlike regular rejection sampling, as de-
scribed in Section 3.6.2, the Metropolis-Hastings algorithm uses the framework
provided by Markov chain theory

Algorithm 3.2: The Metropolis-Hastings algorithm. The initial sample could be
chosen with uniform probability in Ω. The only requirement is that
f(x(0)) > 0.

1: x(0) ← {generate initial sample, ensure f(x(0)) > 0}
2: for i = 1 to N do
3: y ∼ T (x(i−1)→y) {generate sample from tentative transition kernel}
4: ξ ∼ U(0, 1) {sample uniform random number in [0, 1]}
5: if ξ < α(x(i−1)→y) then
6: x(i) ← y {accept tentative sample with probability α(x(i−1)→y)}
7: else
8: x(i) ← x(i−1) {reject proposed sample and stay at x(i−1)}
9: end if

10: end for

To determine α(x→y) consider again Equation 3.8. In that example there were
too few moves from y to x (or too many moves from x to y). One way to correct
this is to set α(y→x) = 1, and α(x→y) < 1. As discussed later, this turns out
to be a good strategy for making the chain converge quickly, since it maximizes

2In some texts called the proposal distribution.
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the probability of accepting a move. Inserting this into the detailed balance
equation, we get

f(x)T (x→y)α(x→y) = f(y)T (y→x)α(y→x)

= f(y)T (y→x).

Given this choice, the acceptance probability, α(x→y), becomes

α(x→y) = min

[
f(y)T (y→x)

f(x)T (x→y)
, 1

]
.

Note that the normalizing constant F in π∗(x) = f(x)/F does not appear, as it
has canceled out. This is fortunate, since estimating F might easily be as hard
as solving the original problem.

If the tentative transition kernel is symmetric, T (x→y) = T (y→x), the accep-
tance probability simplifies to

α(x→y) = min

[
f(y)

f(x)
, 1

]
.

This is in fact the original algorithm proposed by Metropolis et al. in 1953.
Using a symmetric transition kernel makes it a bit easier to see how the algorithm
works: If f(x) < f(y) the move is deterministically accepted and if f(x) > f(y)
the move is accepted with probability f(y)/f(x). The important generalization
of the algorithm to non-symmetric transition kernels was made by Hastings in
1970.

To verify that that the Metropolis-Hastings kernel does not disturb the sta-
tionary distribution, we can insert it into the Chapman-Kolmogorov equation
(Equation 3.7)

πt+1(x) = πt(x)

[
1−

∫
Ω

T (x→y)α(x→y) dy

]
+

∫
Ω

πt(y)T (y→x)α(y→x) dy

= πt(x) +

∫
Ω

[
πt(y)T (y→x)α(y→x)− πt(x)T (x→y)α(x→y)

]
dy

= πt(x).

The two terms on the right hand side of the first line of the equation is the prob-
ability of already being at x and not leaving and the second is the probability
of transitioning to x from elsewhere. In the second line the integral vanishes,
due to the detailed balance condition.
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Startup Bias

Since the Metropolis-Hastings algorithm is only guaranteed to sample from f(x)
asymptotically, the first samples, {x0, x1, . . .} are not necessarily distributed
according to π∗. If these samples are used anyway, the results will suffer from
systematic error, something usually referred to as start up bias.

To avoid start up bias, it is necessary to allow the sampler to “burn in” before
using any of the samples. Ideally this would mean that all samples generated
before the chain reaches its stationary distribution are discarded. Unfortunately
determining the burn-in period for given chain can be very difficult.

Random Walk and Independence Kernels

Two classical tentative transition kernels used in Markov Chain Monte Carlo are
the random walk kernel and the independence kernel. When using the random
walk kernel

Tr.w.(x→y) = T (|x− y|),

the next state is sampled as a slightly perturbed, or mutated, version of the
current state. I.e., x(t+1) = x(t) + ε, where ε is typically a random variable with
a (multivariate) normal distribution and constant covariance matrix. Note that
these transition kernels are symmetric.

Independence transition kernels are of the form

Tind.(x→y) = T (y),

which, as the name implies, means that y is sampled independently of x. In-
dependence kernels are often used in combination with random walk kernels to
ensure a faster exploration of the state space.

Random walk transition kernels allow for local exploration of f(x), which can
be a great advantage if the integrand is complicated. For instance, consider
an integrand which has its mass concentrated in some small subset of its high-
dimensional domain. Since in general we have no a-priori knowledge of where
these regions are, we can only hope to find them using random sampling. This
means that when using independent samples, these high value regions are only
sampled with low probability, which leads to a high variance estimator. As
illustrated in Figure 3.7, random walk algorithms have the same low probability
of finding samples in these important regions. However, once found, they will
explore nearby samples, which will typically also tend to be important. This
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Figure 3.7: Comparison of two different mutation strategies used for generating 6
samples from a simple 1D target density. Green circles signify ac-
cepted samples (concentric green circles imply repeated samples), and
red crosses mean rejected samples. Independent samples generated using
a uniform PDF (left) leads to many rejected samples and consequently
highly correlated samples. A random walk (right) often performs better
since it can perform local exploration of the function.

(a) Independence kernel. (b) Random walk kernel.

property of being able to preserve the sampling context means that the high
cost of finding the initial sample can be amortized over multiple samples.

For a random walk algorithm to be effective, the transition kernel must be tuned
to f(x). In particular, for a random walk algorithm based on proposals with a
normal distribution, the covariance matrix should be chosen so that the size of
the mutations matches the size of features of f(x). To see why this is important,
consider what happens if the variance is chosen too small or too large, as shown
in Figure 3.8a. If the variance is chosen too small, the acceptance rate will be
high, but the samples will be highly correlated, since the mutations are small.
On the other hand, if the variance is large, as is the case in Figure 3.8b, the
mutations will also be large, and the proposed samples will tend to be in regions
of low importance. This leads to a low acceptance rate, and consequently highly
correlated samples, since the chain will not move at all.

Unfortunately target densities cannot be assumed to be unimodal, so finding a
globally optimal mutation size is generally not possible. For instance, consider
the 1D bimodal target density show in Figure 3.9. Here the modes are sufficiently
dissimilar, so that a good mutation size for one of the modes will likely result
in poor performance for the other. In Figure 3.9a the mutation size has been
chosen to match the width of the left mode. Assuming the chain started in
this mode, samples might very well only been generated in this mode, since the
probability of “jumping” to the other mode is very small.
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Figure 3.8: The effect of mutation size on mixing and acceptance rate. Very small
mutations (left) give a high acceptance rate, but correlated samples and
a poorly mixing chain. Conversely, very large mutations (right) give a
low acceptance rate, and thus also highly correlated samples, due to the
many rejections. As a result, the optimal mutation size usually produces
a medium acceptance rate.

(a) Small mutations. (b) Large mutations.

Such chains are called slowly mixing. Slowly mixing chains still converge to
their stationary distribution in the limit (assuming they are ergodic). However,
the number of samples (and thus the time required) will be very high. As
a consequence, chains which quickly explore all the state space, rather than
getting stuck in some region are clearly preferable. Such chains, usually called
rapidly mixing chains, not only have shorter burn-in period, but also generate
less correlated samples, which reduces the error in the estimate.

To overcome the problem that random walk kernels can get stuck in local modes,
it is customary to combine these kernels with the independence kernel. An
example of this is given in Figure 3.9b. This means that before each new sample
is generated, a random choice is made between which of the two kernels to use.
If the random walk kernel is chosen, the sample space will be explored near the
current sample, which has the advantage of preserving the sampling context.
On the other hand, if the independence kernel is chosen, the chain will explore
new regions of the sample space and the ergodicity of the chain will be ensured.

This still leaves the problem of finding a suitable mutation size for an arbitrary
target density. Much research has been devoted to developing techniques for
solving this problem. For instance, Gelman, Roberts, and Gilks [1995] found
that for a certain class of target distributions, the asymptotically optimal accep-
tance rate is approximately 0.234 as the dimension d→∞. This means that to
find the best mutation size, the acceptance rate of a pilot run can be monitored.
If the acceptance rate is higher than 0.234 then this means that the proposed
mutations are too small and that the variance of the proposal function should
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Figure 3.9: Comparison of using the random walk kernel alone with using the ran-
dom walk kernel together with the independence kernel. The random
walk kernel tends to get stuck in local modes. Supplementing the local
moves with independent samples has the desirable effect of improving
the mixing of the chain and ensuring ergodicity.

(a) Random walk kernel. (b) Both kernels.

be increased. Conversely, if the acceptance rate is too low, the variance should
be lowered.

3.9 Summary

In this chapter we have provided a general introduction to Monte Carlo meth-
ods. Variance reduction methods, such as stratified sampling and importance
sampling, have been explained and an introduction to the more advanced meth-
ods of Markov Chain Monte Carlo has been provided. We end this chapter by
just briefly mentioning some of the most important Monte Carlo methods that
have not been covered here.

A variance reduction method called control variates is presented [Kalos and
Whitlock, 1986, pg. 107]. This method can be advantageous in some cases,
but requires the existence of a function correlated to the integrand that can be
integrated analytically. Another variance reduction method is antithetic variates
[Kalos and Whitlock, 1986, pg. 109], which achieves a decrease in variance using
random variables that are negatively correlated. Intelligent sample placement
is another important challenge. Adaptive sampling is a method for placing
more samples in high variance regions, the pitfalls of which are examined by
Kirk and Arvo [1991]. Latin hypercube sampling is a way generating high-
dimensional sampling patterns [Shirley, 1991], whereas quasi-Monte Carlo uses
low-discrepancy sequences to produce well-distributed samples [Keller, 1995].



Chapter 4

Solution Strategies

In this chapter we will discuss methods for solving the light transport problem.
We will begin by rephrasing the light transport problem as an integration prob-
lem, thus making it suitable for applying the Monte Carlo techniques presented
in Chapter 3. To do so, we first rewrite the equation of transfer in the simpler
integral form. By combining the integral form with the measurement equation,
it is possible to formulate the light transport problem as the integral of a specific
function, called the measurement contribution function, over an abstract space
of paths.

The path integral formulation has the advantage of stating the light transport
problem in a way that is both simpler to understand and which makes it easier
to apply more advanced Monte Carlo methods. Using the path integral for-
mulation, we explain the classical unbiased algorithms based on regular Monte
Carlo (path tracing, light tracing, and bidirectional path tracing) and also the
algorithms based Markov Chain Monte Carlo (e.g. Metropolis light transport).

We conclude the chapter with a discussion of the challenges of importance sam-
pling according to the measurement contribution function.
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4.1 Integral Form of Light Transport Problem

As discussed in the previous chapter, the equilibrium distribution of radiance is
governed by the equation of transfer,

ω · ∇Lo(xv,ω)+σt(xv)Li(xv,−ω) =

Le,V0(xv,ω) + σs(xv)

∫
S2

fp(xv,−ω′ · ω)Li(xv,ω
′) dσ(ω′),

with boundary conditions given by the local scattering equation,

Lo(xs,ω) = Le,∂V(xs,ω) +

∫
S2

Li(xs,ω
′) fs(xs,ω

′,ω) | cos θ| dσ(ω′),

where xv ∈ V0 and xs ∈ ∂V as usual.

Due to the directional derivative, ω · ∇Lo(xv,ω), these equations are not con-
venient to work with. It turns out to be possible to rewrite the equation of
transfer in integral form and at the same time incorporate the boundary condi-
tions. This transforms the original problem from an integro-differential equation
to an integral equation, which is easier to manipulate. As shown by Arvo [1993],
this can be done by integrating each side of the equation of transfer along a ray
segment.

Before presenting the equation of transfer in integral form, it is necessary to
define two utility functions. The first is the boundary distance function, which
returns the distance to the boundary along a ray,

d∂V(x,ω) = inf {s > 0 | x + sω ∈ ∂V} . (4.1)

We will assume that the scene is closed, so that d∂V(x,ω) <∞. If the scene is
open, this can be achieved by enclosing it in a bounding sphere that is totally
absorbing. The nearest point on the boundary along a ray is then given by the
ray-casting function

x∂V(x,ω) = x + d∂V(x,ω)ω, (4.2)

where x∂V(x,ω) ∈ ∂V holds, since d∂V(x,ω) <∞.

We will rewrite the equation of transfer by integrating each side of the equation
along a ray segment, which requires us to compute how radiance is changed
as it traverses a participating medium. The decrease in radiance along a line
segment depends on the optical depth of the medium the ray traverses. The
optical depth can be computed by integrating the extinction coefficient along
the ray segment,

τ(x↔x′) =

∫ ‖x−x′‖
0

σt(x + sωx→x′) ds. (4.3)
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This function is symmetric function, as is indicated by the double arrows. The
optical depth can then be used to compute the fraction of radiance transmitted
from x′ to x that is not absorbed or outscattered. This quantity is called the
transmittance, and is given by

T (x↔x′) =

{
exp

[
− τ(x↔x′)

]
if ‖x− x′‖ ≤ d∂V(x,ωx→x′),

0 otherwise.
(4.4)

The transmittance decays exponentially as a function of distance. If the ray
segment from x to x′ intersects the boundary, the transmittance is zero due to
refraction.

Figure 4.1: The equation of transfer in integral form along a ray segment is expressed
as the sum of two components. The first is the radiance scattered into the
ray at the boundary given by the local scattering equation and suitably
adjusted by the transmittance along the ray segment. The second is the
integral of the sum of inscattered and emitted radiance along the ray,
also attenuated by the transmittance term.

Using the above definitions, the equation of transfer can now be rewritten in pure
integral form. Consider the radiance at x incident from direction ω, Li(x,ω),
as illustrated in Figure 4.1. Let xs = x∂V(x,ω) be the point on the boundary
along the ray with exitant radiance Lo(xs,−ω) given by the local scattering
equation. Then, the equation of transfer can be expressed in integral form as a
sum of two components,

Li(x,ω) = T (x↔xs)Lo(xs,−ω) +

∫ ‖x−xs‖

0

T (x↔xv)[
Le,V0(xv,−ω) + σs(xv)

∫
S2

fp(xv,−ω′ · −ω)Li(xv,ω
′) dσ(ω′)

]
ds (4.5)

where xv = x + sωx→xs
are points in the volume along the ray. The first

component is the radiance scattered into the ray at the boundary. The second
is the integral of the sum of the emitted and inscattered radiance along the ray.
Both of these terms must be attenuated by the transmittance term to account
for absorption and outscattering.
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4.2 Operator Form

The equation of transfer can also be rephrased in terms of linear operators acting
on functions from some infinite function space, such as Lp (see Hansen [2006]
for a very readable introduction to functional analysis). As discussed in the
next sections, this approach has the advantage that it becomes possible to show
under what circumstances solutions to the light transport problem exist. It also
directly leads to new insight that can be used to construct algorithms for solving
the problem.

Operators have also been used in the field of computer graphics to study the light
transport problem. In the special case of surface light transport (i.e. no partic-
ipating media), which is the case that has been studied most, Arvo [1995a,b],
Lafortune [1995], Dutre [1996], and Veach [1996, 1997] all use this approach.
The general case with participating media is covered in Pauly [1999] and Pauly,
Kollig, and Keller [2000]. Our approach is based on Veach [1997], but extended
to participating media.

The equation of transfer can be expressed using linear operators by separating
out the emission terms (Le,∂V and Le,V0) from the actual light transport pro-
cess. Light transport can be seen as consisting of two alternating steps that
are repeated indefinitely. The first step is scattering, where incident radiance
is transformed to exitant radiance using a scattering kernel, which is either the
BSDF or phase function. The second step is propagation, where exitant radi-
ance is distributed throughout the scene. Since we distinguish between points
on surfaces, ∂V, and points in the volume, V0, it will be necessary to define a
pair scattering and propagation operators for each.

The surface scattering operator is given by

(K∂V h)(x,ωo) ≡


∫
S2
h(x,ωi) fs(x,ωi,ωo) | cos θ| dσ(ωi), if x ∈ ∂V

0, if x ∈ V0,

and transforms incident radiance functions at surfaces to exitant radiance func-
tions. Since BSDFs are not defined for points in the volume, this portion of Lo

is simply set to zero.

The volume scattering operator is given by

(KV0 h)(x,ωo) ≡


0, if x ∈ ∂V,

σs(x)

∫
S2
h(x,ωi) fp(x,−ωi · ωo) dσ(ωi), if x ∈ V0,



4.2 Operator Form 91

and transforms incident radiance functions in the volume to exitant radiance
functions. This operator only applies to points in the volume, i.e. where fp

is defined, and is thus complementary to the surface scattering operator. The
operator that describe scattering at all points in V is then simply the sum of
these two operators,

K ≡ K∂V + KV0 ,

which is known simply as the scattering operator.

The other part of light transport is propagation. The surface propagation oper-
ator is given by

(G∂Vh)(x,ωi) ≡ T (x↔xs)h(xs,−ωi),

with xs = x∂V(x,ωi). This operator propagates exitant radiance from surfaces.
Similarly, the volume propagation operator transforms exitant radiance functions
in the volume into incident radiance functions,

(GV0h)(x,ωi) ≡
∫ ‖x−xs‖

0

T (x↔xv)h(xv,−ωi) ds,

where xv = x + sωx→xs
(Li = GV0 Lo). Like the scattering operator, it is con-

venient to define a single operator that accounts for both types of propagation.
This operator is called the propagation operator and is simply the sum of the
previous two operators,

G ≡ G∂V + GV0 .

The scattering and propagation operators can be combined in two ways to form
the light transport operators,

TLo
≡ K G and TLi

≡ G K.

The reason that there are two light transport operators is that it is possible
to express the equilibrium distribution of radiance in both exitant and incident
form.

Using the source terms and the transport operators, the complete equation of
transfer including boundary conditions can be expressed in terms of exitant
radiance as

Lo = (Le,∂V + Le,V0) + TLo
Lo. (4.6)

Alternatively, the equilibrium distribution can be expressed in terms of incident
radiance,

Li = G(Le,∂V + Le,V0) + TLi Li. (4.7)

In the latter case, it is necessary to transform the source terms, which are
given as part of the description in exitant form, to incident form using a single
application of the propagation operator. Both of these equations are examples
of Fredholm integral equations of the second kind.
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4.3 Formal Solution

A formal solution to the light transport problem can be found by first isolating
Lo in Equation 4.6 and then inserting this quantity into the measurement equa-
tion. Alternatively, Li could be isolated in Equation 4.7. However, the exitant
radiance case is the most commonly used, so in the following we will use this
case and drop the subscript on TLo . The exitant radiance can be isolated as

Lo −TLo = (Le,∂V + Le,V0)

(I−T)Lo = (Le,∂V + Le,V0)

Lo = (I−T)−1(Le,∂V + Le,V0), (4.8)

where I is the identity operator (IL = L).

The inverse of the operator in the last line of Equation 4.8 is guaranteed to exist
if ‖T‖ < 1, where ‖T‖ is the operator norm. If this is the case, this operator,
which is known as the solution operator, can be written as a Neumann series
[Hansen, 2006],

S = (I−T)−1 = I + T + T2 + T3 + · · · =
∞∑
i=0

Ti. (4.9)

The solution operator also exists in some cases when ‖T‖ ≥ 1, which can happen
even for physically valid scenes (i.e. scenes where scattering always results in
some absorption). However, the inverse operator exists as long as the series in
Equation 4.9 is convergent, even when ‖T‖ ≥ 1.

If Equation 4.9 is substituted back into Equation 4.8, the equilibrium radiance
can be written as

Lo = Le + TLe + T2 Le + T3 Le + · · · =
∞∑
i=0

Ti Le = SLe,

where we used the shorthand Le = Le,∂V + Le,V0 . This means that equilibrium
distribution of exitant radiance in a scene is the sum of emitted radiance and
emitted radiance transported once, twice, thrice, and so forth.

Once we know the distribution of radiance, we can compute a measurement by
evaluating the measurement equation. Measurements are typically evaluated
by computing the inner product of the flux responsivity function (an exitant
quantity) with the incident radiance. This can be done by noting that Li =
G SLe, so that

I =

∫
S2

∫
V
Li(x,ω) We(x,ω) dαω(x) dσ(ω)

= 〈Li,We〉 = 〈GLo,We〉 = 〈G SLe,We〉, (4.10)
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where we have used bracket notation to denote inner product. We have also
simplified notation a bit by dropping the j superscript on W j

e .

4.4 Adjoint Operators

The adjoint of an operator O is an operator, denoted O∗, which satisfies

〈OF,G〉 = 〈F,O∗G〉,

for any functions F and G. Adjoint operators can be used to gain additional
insight into the light transport problem by investigating the adjoints of the
operators defined thus far. In particular, if adjoint operators are used in Equa-
tion 4.10, we get

I = 〈G SLo Le,We〉 = 〈Le, (G SLo)∗We〉.

What this means is that the light transport problem can also be solved by
considering how some quantity, that is emitted from the sensors, is transported
through the scene and impinges on the light sources. Scattering and propagation
of this quantity, which is called importance or potential, does not correspond to
any physical process, but is rather a side effect of an inherent symmetry between
sensors and light sources present in the mathematical model.

The name “importance” comes from the fact that this quantity tells us which
parts of the scene influence the solution the most. This means that importance
can be used as a guide to concentrate global illumination calculations where
they matter most. As discussed in Christensen [2003], importance is defined
as a specific adjoint of radiance. Integral equations, such as Equation 4.6 or
Equation 4.7, have an infinite number of adjoint equations each with a differ-
ent source term. One of these adjoint equations will have a source term (We)
that defines which parts of the function domain that matter most for solving
a particular problem, and it is the solution to this equation that is called the
importance.

Like radiance, importance exists in both exitant and incident versions, Wo and
Wi. However, the rules that govern how importance is scattered and propagated
are different from radiance and are instead given by the adjoints of the previously
defined operators.

The adjoint operators in the case with no participating media are covered by
Veach [1997]. They show that the surface propagation operator is self-adjoint,
i.e. G∂V = G∗∂V . They also show that the surface scattering operator is self-
adjoint only if the BSDF is symmetric. However, as discussed in Chapter 2,
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BSDFs are generally not symmetric, and therefore it is necessary to define the
adjoint surface scattering operator, K∗∂V , given by

(K∗∂V Li)(x,ωo) ≡


∫
S2
Li(x,ωi) f

∗
s (x,ωi,ωo) | cos θ| dσ(ωi), if x ∈ ∂V

0, if x ∈ V0.

The only difference from the ordinary surface scattering operator is the use of
the adjoint BSDF. See Veach [1997, pg. 130] for proofs.

The proofs for the volume operators are similar. Since the phase function is
symmetric, the volume scattering operator is self-adjoint, i.e. K∗V0 = KV0 . The
adjoint scattering operator is then simply

K∗ = K∗∂V + K∗V0 .

The volume propagation operator is also self-adjoint, so G∗V0 = GV0 .

Based on the adjoint scattering operator and the propagation operator, the
importance transport operators can be defined by

TWo
≡ K∗G and TWi

≡ G K∗.

Using the importance transport operators and the radiance transport operators,
the four equations governing the equilibrium distribution of exitant/incident
radiance/importance can be written

Lo = Le + TLo
Lo, Li = GLe + TLi

Li,

Wo = We + TWo Wo, Wi = GWe + TWi Wi.

The corresponding solution operators for the equilibrium distribution of exitant
and incident importance are given by

SWo = (I−TWo)−1 and SWi = (I−TWi)
−1,

whereas the solution operators for exitant and incident radiance were given by

SLo
= (I−TLo

)−1 and SLi
= (I−TLi

)−1.

This leads to the four ways of evaluating the measurement equation,

I = 〈G SLo
Le,We〉 = 〈SLi

GLe,We〉 = 〈Le,G SWo
We〉 = 〈Le,SWi

GWe〉.
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4.5 Path Integral Formulation

The path integral formulation of light transport was first introduced by Veach
and Guibas [1994] and Veach [1997] and later extended to participating media
by Pauly [1999] and Pauly et al. [2000].

The idea is to express the light transport problem as a simple integral,

I =

∫
Ω

f(x̄) dµ(x̄),

of a function called the measurement contribution function over an abstract
space of paths. The advantage of this formulation is simplicity. So far, the light
transport problem has been expressed as the inner product of a flux responsiv-
ity function with the incident radiance (the measurement equation), where the
incident radiance is only defined implicitly through a fairly complicated integral
equation (the equation of transfer in integral form). Instead, with the path inte-
gral formulation, the light transport problem is expressed as an ordinary integral
of a simple function over the paths connecting sensors and light sources.

4.5.1 Path Space and Path Space Measure

The path integral formulation is based on rewriting the measurement equation
as an integral over path space. To do so, it is necessary to define what exactly is
meant by path, path space, and what the associated measure is. In the following
we use the definition given by Pauly [1999].

A path of length k ≥ 1 is defined as a sequence of k + 1 vertices,

x̄ = x0 x1 . . .xk, (4.11)

where the vertices can be either on the surfaces of scene, ∂V, or in the volume
these surfaces enclose, V0.

To define the notion of path space, it is necessary to consider all the ways paths
can be formed. A given path of length k can be formed in 2k+1 ways, since
each vertex can belong to either ∂V or V0. The k + 1 bit representation of this
relationship is called the path characteristic, denoted l ∈ N, of the path. To
make this more concrete, let bi(l) be the ith bit of the binary representation of
l. Then, we will define bi(l) to be 1 if xi ∈ ∂V and 0 if xi ∈ V0.
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Using the above definitions, the space of paths of length k, with path charac-
teristic l is defined by

Ωlk ≡
{

x̄ = x0 x1 . . .xk

∣∣∣∣ xi ∈
{
∂V if bi(l) = 1
V0 if bi(l) = 0

}
with 0 ≤ l < 2k+1.

A measure on Ωlk can be defined as

µlk(A) =

∫
A

k∏
i=0

dµlk,i(x̄)

where A ⊆ Ωlk. The differential measure, dµlk,i(x̄), is given by

dµlk,i(x0 x1 . . .xk) ≡
{

dA(xi) if bi(l) = 1,
dV (xi) if bi(l) = 0.

The space of paths of length k with any path characteristic, 0 ≤ l < 2k+1, is
given as the union,

Ωk ≡
2k+1−1⋃
l=0

Ωlk,

with associated measure

µk(B) =

2k+1−1∑
l=0

µlk(B ∩ Ωlk),

where B ⊆ Ωk. Finally, path space is defined as the union of path spaces
containing paths of all lengths,

Ω ≡
∞⋃
k=1

Ωk.

with associated measure

µ(C) =

∞∑
k=1

µk(C ∩ Ωk),

and where C ⊆ Ω.
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4.5.2 Three Point Form of the Equation of Transfer

The equation of transfer, presented in Section 4.1, is a set of equations that
define the equilibrium radiance in a scene. In particular, for points xv ∈ V0,
radiance is determined by volume scattering and emission,

Ls(xv,ω) = Le,V0(xv,ω) + σs(xv)

∫
S2

fp(xv,−ω′ · ω)Li(xv,ω
′) dσ(ω′),

and for points xs ∈ ∂V, radiance is determined by surface scattering and emis-
sion,

Lo(xs,ω) = Le,∂V(xs,ω) +

∫
S2

fs(xs,ω,ω
′)Li(xs,ω

′) | cos θ| dσ(ω′).

Exitant radiance is related to incident radiance by integrating along a ray,

Li(x,ω) = T (x↔xs)Lo(xs,−ω) +

∫ ‖x−xs‖

0

T (x↔xv)Ls(xv,−ω) ds,

where xs = x∂V(x,ω) and xv = x + sω. This is simply the equation of transfer
in integral form, where the terms involving volume and surface interaction have
been separated out.

In the above form, the equation of transfer is expressed using integrals over
directions in S2. In order to use these equations with the path integral formu-
lation, it will be necessary to express these directions in terms of path vertices,
rather than directions. This leads to the three point form of the equation of
transfer.

We will begin by defining incident and exitant radiance in terms of path vertices,

L(x1←x2) = Li(x1,ωx1→x2
),

L(x1→x2) = Lo(x1,ωx1→x2
)

where it is assumed that x1 6= x2. This representation has some redundancy,
since L(x1←x2) = L(x1←x3) whenever ωx1→x2

= ωx1→x3
.

Using the new notation, volume interaction can be expressed as

L(xv→xo) = Le,V0(xv→xo) +

σs(xv)

∫
V
fp(xi→xv→xo)L(xi→xv)G(xi↔xv) dλ(xi), (4.12)
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and surface interaction can be expressed as

L(xs→xo) = Le,∂V(xs→xo) +∫
V
fs(xi→xs→xo)L(xi→xs)G(xi↔xs) dλ(xi). (4.13)

Here we have just changed the domain of integration from S2 to V. Since
the integration is over exitant radiance at all points, there is no need for a
third equation to describe the relationship between exitant radiance and incident
radiance.

The BSDF and phase function are defined using the new notation as

fs(xi→xs→xo) = fs(xs,ωxs→xi ,ωxs→xo), and

fp(xi→xv→xo) = fp(xv,ωxs→xi · ωxs→xo).

The function G is called the geometry term. It is necessary to introduce this
term to account for the change of variables from the solid angle measure to the
area/volume measure. The ordinary geometry term is given by

G∂V(x1↔x2) = T (x1↔x2)
|ng(x1) · ωx1→x2

| |ng(x2) · ωx2→x1
|

‖x1 − x2‖2
.

The ordinary geometry term is only defined when x1,x2 ∈ ∂V, since it depends
on the normals. To also account for points in the volume, the generalized ge-
ometry term presented by Pauly et al. [2000] can be used instead. First, let

g(x→x′) =

{
|ng(x) · ωx→x′ | if x ∈ ∂V
1 otherwise.

Then the generalized geometry term is given by

G(x1↔x2) = T (x1↔x2)
g(x1→x2) g(x2→x1)

‖x1 − x2‖2
.

Equations 4.12 and 4.13, which describe scattering and emission in the volume
and at surfaces, have similar form. It turns out to be convenient to be able to
describe scattering and emission independently of whether the vertex belongs
to V0 or ∂V. To this end we define the scattering kernel as

fk(xi→x→xo) =

{
fs(xi→x→xo) if x ∈ ∂V
σs(x) fp(xi→x→xo) if x ∈ V0,

and the adjoint scattering kernel as

f∗k (xi→x→xo) =

{
f∗s (xi→x→xo) if x ∈ ∂V
σs(x) fp(xi→x→xo) if x ∈ V0.
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Note this is a slight abuse of notation, since the units differ (the BSDF and
phase function both have units 1/sr, but the scattering coefficient has units 1/m).
However, it simplifies notation, so we will ignore this inconsistency.

Similarly, a function can be defined that describes emission regardless of whether
x ∈ V0 or x ∈ ∂V. This emission function is given by

Le(x1→x2) =

{
Le,∂V(x1→x2) if x1 ∈ ∂V
Le,V0(x1→x2) if x1 ∈ V0.

Here too the units differ (ordinary radiance for surface emission versus volume
radiance for volume emission), but we also ignore this for the sake of notational
convenience. The importance emission function, We, can also be expressed in
this way. Let We(x1→x2) = We(x2,ωx2→x1

), where the arrow notation is still
used to indicate the direction of radiance flow (which is the opposite direction
of importance flow).

Using these conventions, the equation of transfer that govern the equilibrium
distribution of exitant radiance can be expressed as

L(x→xo) = Le(x→xo) +∫
V
fk(xi→x→xo)L(xi→x)G(xi↔x) dλ(xi). (4.14)

Similarly, the distribution of exitant importance can be expressed as

W (xo→x) = We(xo→x) +∫
V
f∗k (xi→x→xo)W (x→xi)G(x↔xi) dλ(xi). (4.15)

4.5.3 The Measurement Contribution Function

We can now rewrite the measurement equation using the new three point form
of the equation of transfer. Assume we have solved the equation of transfer
(or its adjoint version) and obtained the equilibrium radiance or importance in
the exitant version. In that case, the measurement equation can be written as
integral over all paths from Ω1, i.e. over paths of length 1,

I =

∫
Ω1

L(x0→x1)G(x0↔x1)We(x0→x1) dµ(x0 x1)

=

∫
Ω1

W (x0→x1)G(x0↔x1)Le(x0→x1) dµ(x0 x1).
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If we choose to solve for the equilibrium radiance, L can be computed using
the Neumann series from Section 4.3. The idea is to recursively expand Equa-
tion 4.14,

I =

∫
Ω1

Le(x0→x1)G(x0↔x1)We(x0→x1) dµ(x0x1)

+

∫
Ω2

Le(x0→x1)G(x0↔x1) fk(x0→x1→x2)G(x1↔x2)

We(x1→x2) dµ(x0x1x2)

+ . . .

If the repeated terms are collected, this can also be written

I =

∞∑
k=1

∫
Ωk

Le(x0→x1)G(x0↔x1)[
k−1∏
i=1

fk(xi−1→xi→xi+1)G(xi↔xi+1)

]
We(xk−1→xk) dµk(x0 x1 . . .xk). (4.16)

Alternatively, the equilibrium importance functionW could have been expanded.
The only difference would have been that the adjoint scattering kernel, f∗k ,
should have been used instead, but with the arguments reversed. However, be-
cause of the way the adjoint BSDF is defined, this would result in the same
numerical value for the measurement, as it should.

The integrand of Equation 4.16 is called the measurement contribution function,

f(x̄) = Le(x0→x1)G(x0↔x1)[
k−1∏
i=1

fk(xi−1→xi→xi+1)G(xi↔xi+1)

]
We(xk−1→xk).

Using this function, the path integral formulation of the light transport problem
can be written simply as

I =

∫
Ω

f(x̄) dµ(x̄). (4.17)

This makes it clear that the light transport problem is really an integration
problem suitable for solving using the Monte Carlo methods described in Chap-
ter 3.
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4.6 Sampling Strategies

As shown in Section 3.3, the solution to integration problems of the kind de-
scribed by Equation 4.17 can be found using estimators of the form

I ≈ f(x̄)

p(x̄)
.

It was also shown that such an estimator forms unbiased estimates of I as long
p(x̄) is a valid PDF in a Monte Carlo sense. I.e., if p(x̄) > 0 whenever f(x̄) 6= 0,
then

E

[
f(x̄)

p(x̄)

]
= I.

In order to apply this estimator, a method must exist for generating random
paths and for computing the probabilities that each of these paths were gener-
ated with.

Finding good methods for generating paths turns out to be a surprisingly diffi-
cult problem, and, as we will see, this is the key problem much of the published
literature on efficient Monte Carlo ray tracing is concerned with. Recall that
we are interested in finding high efficiency estimators, i.e. estimators with low
variance that can still generate samples quickly. This means that we should
attempt to generate paths distributed according to the measurement contribu-
tion function, f(x̄), since this results in low variance estimators according to
the principle of importance sampling. Unfortunately, as discussed later in this
chapter, generating samples distributed according to f(x̄) is not possible, and
consequently compromises have to be made.

Most methods for constructing paths are based on local path sampling. Local
path sampling is essentially a recipe for constructing paths and computing path
probabilities. Using local path sampling directly leads to the three principal
ways of constructing paths: namely, constructing path by starting from the
sensor (path tracing), constructing paths by starting from the light sources
(light tracing), and constructing paths by starting at both sensor and light
sources (bidirectional path tracing).

4.6.1 Local Path Sampling

Local path sampling, as described by Veach [1997, pg. 226] for the case with no
participating media, is based on constructing paths using three rules. The three
rules for constructing paths using random walks in the presence of participating
media are
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1. The initial vertex in a subpath can be chosen according to some predefined
density, p(x0), over all of V. This means that these vertices can be sampled
from both V0 and ∂V.

2. Given a vertex in a subpath, xi, a new vertex can be appended to this sub-
path. The new vertex is sampled using a conditional density, p(xi+1|xi).
This is usually done in two steps. First a random direction is sampled and
then xi+1 is found by sampling a random distance along this direction.

3. Finally, vertices from two or more subpaths can be connected to form new
paths.

Sampling the Initial Vertex

According to rule 1, the initial vertex in a subpath is sampled using some a
priori probability distribution. It is common to chose the initial vertex at a
point where Le > 0 or We > 0, though this is not a requirement. For instance,
for x0 ∈ ∂V, it is common to make p(x0) proportional to radiant exitance.

Once the initial vertex in a subpath has been found, it is necessary to determine
the surrounding media. Specifically, for path vertices in V0 the surrounding
medium must be known, whereas for vertices in ∂V the media on both sides
of the boundary must be determined. As discussed in Section 2.6, each cell
with a medium can be assigned a precedence value, so that the current medium
can always be unambiguously decided in case cells overlap. To facilitate this,
each ray can keep a list with all the cells it is currently traversing sorted by
precedence. This list can be initialized by tracing a ray from a random position
outside V to the vertex while keeping track of all the cells that are entered and
exited along the way.

Sampling Additional Vertices

The second rule states that a vertex can be added to an existing subpath by
sampling a new vertex conditional on the last vertex in the subpath. This is done
by first sampling a random direction according to some density p(ω), usually
expressed with respect to solid angle, and then sampling a distance along this
direction using some 1D density, p(s).

The probability of sampling the vertex with respect to the area/volume measure
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can be computed as

p′(xi+1|xi) = p(ω)
g(xi+1→xi)

‖xi+1 − xi‖2

where xi+1 is a point visible along the direction ω from xi. If xi+1 cannot be
assumed to visible from xi, a visibility term, V (xi↔xi+1), needs to be included
in the conversion.

The densities, p(ω), used for sampling directions depend on the vertex. For
the first vertex in a path these function typically attempt to importance sample
according to the product of Le(x,ω) or We(x,ω) and the cosine term depending
on if it is a subpath starting at the light source or at the sensor. For vertices in
∂V, the best idea is usually to importance sample according to the product of
the BSDF and the cosine term. Similarly, for vertices in V0 it is customary to
importance sample according to the phase function.

Once a direction has been sampled, a distance along this direction must be sam-
pled. The most common approach is to sample according to the transmittance
term, since it is too complicated to account for inscattered and emitted radi-
ance/importance along the ray (see e.g. Lafortune and Willems [1996] or Pauly
[1999]). In the case of homogeneous media, a suitable density is given by

p′(s) = σt e
−σts,

which is simply a normalized version of the transmittance function. It is possible
to sample from this density using a simple analytical formula, which can be
derived using the inversion method,

s = − ln(1− ξ)
σt

, (4.18)

where ξ is a uniform random number in [0; 1). Let xs = x∂V(x,ω) be the first
point seen along the direction ω at a distance d from x on the boundary. Then
we will adapt the convention that if s ≥ d the next vertex will be chosen to be
xs, otherwise the next vertex will be x + sω. This means that the (discrete)
probability of choosing the next vertex in V0 is

PV0 =

∫ d

0

σt e
−σts ds = 1− e−σtd,

whereas the probability of choosing xs as the next vertex is

P∂V = 1− PV0 = e−σtd.

Combining these probabilities with p′(s) normalized to the interval [0; d) leads
to the final probability for propagation in homogeneous media,

p(s) =

{
P∂V if s ≥ d,
σt e
−σts otherwise.
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For the case of heterogeneous media, no such simple procedure exists. In this
case, if the inversion method is applied, the result is the implicit equation,∫ s

0

σt(x + tω) dt = − ln(1− ξ). (4.19)

The classical way of solving this equation is to use ray marching [Perlin and
Hoffert, 1989]. Ray marching works by stepping along the ray in fixed increments
while accumulating σt. This is continued until the threshold − ln(1 − ξ) is
reached or until xs is reached, whichever comes first.

As discussed by Raab, Seibert, and Keller [2007], this approach is biased. A
solution is also presented in this paper, which depends on being able to bound
σt(x) along the ray segment. First, let σt = sups∈[0,d) σt(x + sω) be the max-
imum extinction coefficient along the ray. Then, the proposed algorithm is as
follows. Let t1, t2, . . . be independent random distances sampled using Equa-
tion 4.18. Furthermore, let ξ1, ξ2, . . . be uniformly distributed random numbers
in [0; 1]. Then, the first distance si =

∑i
j=1 tj which satisfies ξi ≤ σt(x+siω)/σt

is distributed according to Equation 4.19.

It is also necessary to have a way of determining when to terminate a random
walk. Recall that in order to solve Equation 4.17 in an unbiased way there
must be a nonzero probability of sampling any path that transmits light to
the sensor, regardless of the length of the path. Consequently, simply restrict-
ing paths to a maximum length will lead to biased results. Instead, Russian
roulette, introduced to the graphics community by Arvo and Kirk [1990], can be
used. Russian roulette is an unbiased technique and works by terminating paths
randomly with a predefined probability. To compensate, if a path survives it
is given an additional weight of 1/q, where q is the probability of survival. To
see that this is unbiased, note that it does not change the expected value of the
integral,

(1− q)× 0 + q × I

q
= I.

This strategy works well to reduce the number of long paths. It can however
increase the variance of the estimator, though this is usually offset by the re-
duction in the number long paths that needs to be considered.

If the probabilities for scattering, propagation, and Russian roulette are com-
bined, we get the following expression,

p(xi+1|xi) = p′(xi+1|xi) p(s) qi+1,

for the probability of sampling xi+1 as the next vertex given that xi is the
current vertex. Due to the survival probability, qi+1, this PDF is subcritical, i.e.
it integrates to less than one.
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Finally, once we know the probability of sampling the first vertex in a subpath
and the probability of sampling the following vertices, the probability of the
entire subpath, x̄ = x0x1x2 . . .xk, can be computed as

p(x̄) = p(x0) p(x1|x0) p(x2|x1) . . . p(xk|xk−1).

Connecting Subpaths

The last rule of local path sampling stated that new paths could be formed
by connecting existing subpaths. Since subpaths are usually generated in-
dependently, computing the probabilities is fairly straightforward. If x̄1 =
x0x1x2 . . .xk and x̄2 = xk+1xk+2xk+3 . . .xk+l are two independently gener-
ated subpaths, then the probability of the path formed by connecting the two
subpaths is simply

p(x̄1x̄2) = p(x̄1) p(x̄2).

Implications of using Local Path Sampling

Local path sampling forms the basis of numerous global illumination algorithms,
including all the known unbiased algorithms. One of the requirements of an
unbiased estimator is that there must be a positive probability of generating
samples wherever the integrand is nonzero, which in terms of light transport is
translated into that every path that transports light from the light source to
the sensor must be sampled with positive probability. In order to investigate
the unbiasedness of such algorithms, we therefore need a way to reason about
the limitations of local path sampling with respect to what paths that can be
sampled using this approach.

A useful tool for investigating these limitations is the regular expression frame-
work developed Heckbert [1990]. Though originally developed to classify paths
for regular surface light transport, the framework is easily extended to also han-
dle participating media. The idea is to classify each vertex in a path according
to whether the scattering event at the vertex is specular (S) or diffuse (D).
Here we will adopt the convention that specular means that the scattering ker-
nel (BSDF or phase function) that resulted in the scattering event includes a
Dirac delta function. All remaining vertices are classified as diffuse.

The original framework of Heckbert [1990] only describes scattering events at the
interior vertices of a path connecting a sensor and a light source and not at the
two endpoints. To also describe the scattering event at the first and last vertex,
i.e. at the light source and sensor, the full path regular expressions described in
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Veach [1997] can be used. Scattering at these vertices can be described using
two letter combinations. For vertices on light sources, the first letter will be S
(specular) if Le(x,ω) has a Delta function with respect to the spatial component
x and otherwise D (diffuse). Similarly, the second letter will be S if Le(x,ω)
has a Delta function with respect to the directional component ω and diffuse
otherwise. Using this convention, a point light source would be described by
LSD and an area light source by LDD. Cameras, or sensors, can be described
in a similar way using We(x,ω), so that DSE is a pinhole camera, and DDE
is a camera with finite aperture (see Veach [1997, pg. 230] for further details).

Using these conventions, any path can be described by a regular expression of
the form1

L (S|D)∗E,

where parentheses signify grouping, ‘∗’ implies zero or more repetitions of the
string, and ‘|’ means alternation. However, any path generated using local path
sampling is necessarily of the form

L (S|D)∗DD (S|D)∗E, (4.20)

which is clearly a subset of all possible paths (see Veach [1997, pg. 237] for
a proof of this claim). The reason that two consecutive diffuse vertices are
required is that if at least one of the vertices was specular then the scattering
function of this vertex would only be nonzero for single directions, technically
sets of measure zero, and finding these directions randomly is impossible. A
consequence of this is that any algorithm based on local path sampling will be
biased if the scene contains paths with f(x̄) > 0 that cannot be described by
Equation 4.20. Since local path sampling cannot find these paths, the effect of
these paths will be missing and the resulting image will be too dark.

A simple way to avoid this problem is to disallow specular vertices altogether.
This would mean that perfect specular reflection and refraction, pinhole cam-
eras, etc., would have to be approximated. E.g., perfect specular reflection could
be approximated using the BRDF by Cook and Torrance [1982] with a very low
roughness. A more practical alternative is too only disallow that the first and
last vertices in a path are specular. This means that the renderer would only
support area light sources (LDD) and/or cameras with finite aperture (DDE).
Several commercial renderers that claim unbiasedness seem to follow this route.

1With these regular expressions it is understood that their length must always be at least
four, since LXXXX E corresponds to a path of length one, which is the shortest possible
path.
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4.7 Existing Algorithms

Local path sampling forms the basis of most newer global illumination algo-
rithms. This includes algorithms based on photon mapping (e.g. Jensen [2001]
and more recently Hachisuka, Ogaki, and Jensen [2008] ) and algorithms based
on virtual point light sources, such as Keller [1997] and Walter, Fernandez,
Arbree, Bala, Donikian, and Greenberg [2005], and countless other algorithms.

However, as discussed in Chapter 1, we will restrict our attention to the subset
of global illumination algorithms that are unbiased.

4.7.1 Path Tracing

Path tracing is generally considered the earliest unbiased global illumination
algorithm. The algorithm was introduced in the seminal paper by Kajiya [1986],
which is arguably the most cited paper in computer graphics. This paper also
introduced the rendering equation, which is the equation that describes the
distribution of radiance in the absence of participating media (it is essentially
the boundary conditions for the equation of transfer introduced earlier). The
introduction of the rendering equation was important, since it provided a way
of identifying the limitations of earlier rendering algorithms, such as classical
ray tracing [Whitted, 1980], distribution ray tracing [Cook et al., 1984], and
radiosity algorithms [Goral et al., 1984].

Path tracing constructs paths by sampling the first vertex on the sensor. The
remaining vertices are sampled according to the local path sampling procedure
described previously. This is illustrated in Figure 4.2. Since the branching factor
is one at each vertex, this results in a path, rather than a tree as in classical ray
tracing, which is the reason for the name of the algorithm.

Two variations of the path tracing algorithm exists. The simplest is pure path
tracing, shown in Figure 4.2a. This variation samples random paths of the form,
x0x1 . . .xk, which results in the estimator

I ≈ f(x0x1 . . .xk)

p(x0) p(x1|x0) p(x2|x1) . . . p(xk|xk−1)
.

Due to importance sampling, many of the terms in the measurement contri-
bution function will get canceled by corresponding terms in the denominator.
The notable exception is that the Le(xk→xk−1) term is not matched by any
corresponding term in the denominator, since paths are generated completely
independently of the light sources in the scene. A consequence of this is that
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Figure 4.2: The path tracing algorithm samples paths starting at the sensor (blue
line marked E in the figure). We will adopt the conventation that blue ar-
rows/circles mean that the subpath was sampled starting from the sensor
and red arrows/circles indicate that it was started from the light source.
Two concentric circles indicate that this vertex is the initial vertex in the
path. Pure path tracing (left) generates paths x0x1 . . .xk, which only
contribute if one of the vertices fall on a light source (red line marked L
in the figure). Path tracing with next event estimation (right) explicitly
connects non-specular vertices in the eye path to random points, yn, on
the light source generating path of the form x0x1 . . .xkyn. Visibility
between the connecting vertices is checked by tracing a shadow feeler,
which is illustrated using dashed lines. Using next event estimation is
typically more efficient, but risks generating a weak singularity if a path
randomly gets very near a light source.

(a) Pure path tracing. (b) Path tracing with next event estimation.

this estimator can have very high variance even for simple scenes. The reason
is that for typical scenes Le(xk→xk−1) is zero for most of V. This means that
there will only be a contribution if a path randomly hits a light source, which
is unlikely if the light sources are small.

One cause of this inefficiency is that pure path tracing does not use the full
framework provided by local path sampling. As a result, pure path tracing can
only sample paths of type

LDD (S|D)∗E,

i.e., only area light sources are supported and the effects of point light sources
and directional light sources will simply be missing. The efficiency of path trac-
ing can be improved by using direct lighting techniques (also known as next
event estimation, see Lafortune [1995] or Dutre [1996]). The resulting algo-
rithm, illustrated in Figure 4.2b, also samples paths starting at the sensor, but
at each non-specular vertex attempts to form a complete path by sampling a
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random point on a light source and checking visibility. The resulting algorithm
can sample paths of type

L (S|D)DD (S|D)∗E,

which means that point light sources can now be handled. However, some
effects will still be missing, such as caustics from point light sources. Using
direct lighting leads to paths of the form x0x1 . . .xkyn and estimators

I ≈ f(x0x1 . . .xkyn)

p(x0) p(x1|x0) p(x2|x1) . . . p(xk|xk−1) p(yn)
.

These estimators are often much more efficient, since now the Le(xk→xk−1)
term is also matched in the denominator, assuming yn is sampled according to
emitted light. Much more sophisticated methods of doing direct lighting are
also possible; see e.g. Shirley [1991].

Though the direct lighting optimization can greatly improve the efficiency, it can
in some cases compromise the stability of the algorithm compared to pure path
tracing. The reason is that the inverse square distance hidden in the geometry
term in the measurement contribution function, G(xk↔yn), is not matched in
the denominator when next event estimation is used. As discussed by Kollig
and Keller [2004], this leads to a weak singularity and potentially infinite vari-
ance. The authors present a solution based on bounding the geometry term and
compensating for the resulting bias by sampling a random direction according
to the BSDF or phase function. However, this can only be used to avoid weak
singularities from area light sources; point light sources can still cause problems.

The adjoint photon tracing algorithm presented in Morley, Boulos, Johnson,
Edwards, Shirley, Ashikhmin, and Premože [2006] is a variation of path tracing
designed to overcome some of these problems. The algorithm is based on pure
path tracing (i.e. no direct lighting), but uses a mixture density based on the
BSDF or phase function, and the light sources to choose new directions at each
vertex. The final probabilities are computed using multiple importance sam-
pling. In addition, adjoint photons only carry one wavelength. This avoids the
infinite variance that could result from wavelength dependent scattering, such
as Rayleigh scattering.

4.7.2 Light Tracing

The “adjoint” of the path tracing algorithm is called light tracing [Dutré et al.,
1993]. As shown in Figure 4.3, this algorithm samples paths using random
walks starting at the light sources. Like path tracing, light tracing comes in two
variations depending on whether or not next event estimation is used.
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Pure light tracing, illustrated in Figure 4.3a, is a direct simulation of how par-
ticles are scattered in an environment and randomly end up on the sensor. In
some sense, this is a more natural approach than path tracing, since it more
accurately mirrors the underlying physical process of transporting light energy
from the light source to the sensor.

Figure 4.3: Light tracing can be seen as the adjoint of the path tracing algorithm,
since it samples paths starting at the light sources. Pure light tracing
(left) generates paths y0y1 . . .yk, which only contribute if a ray randomly
intersects the sensor. Light tracing with next event estimation (right)
explicitly connects non-specular vertices to random points, xn, on the
sensor generating path of the form y0y1 . . .ykxn.

(a) Pure light tracing. (b) Light tracing with next event estimation.

Unfortunately, this approach can be very inefficient, since it relies on randomly
hitting the set of rays where We(yk−1→yk) > 0, which may be arbitrarily small.
For instance, a typical camera has an aperture with a radius of only a few mm,
which makes it a very small target in typical scenes. In fact, since the path must
intersect the sensor to form a complete path, only cameras with finite aperture
can be simulated this way. I.e., only paths of type

L (S|D)∗DDE

can be sampled. Using pure light tracing results in an estimator of the form

I ≈ f(y0y1 . . .yk)

p(y0) p(y1|y0) p(y2|y1) . . . p(yk|yk−1)
.

As shown in Figure 4.3b, adding next event estimation is analogues to the path
tracing case. For each non-specular vertex, a random point is selected on the
aperture and visibility is checked. This leads to paths, y0y1 . . .ykxn, of type

L (S|D)∗DD (S|D)E,
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which means that pinhole cameras can now be properly accounted for. The
estimator for light tracing with next event estimation is

I ≈ f(y0y1 . . .ykxn)

p(y0) p(y1|y0) p(y2|y1) . . . p(yk|yk−1) p(xn)
.

This estimator suffers from the same problem with weak singularities that the
path tracing estimator does. One fundamental difference from path tracing is
that where a given path family generated with path tracing only contributes to
pixel(s) near the start point of the path, the paths generated with light tracing
can influence many different pixels across the image plane.

4.7.3 Bidirectional Path Tracing

For most scenes, path tracing is a more efficient algorithm than light tracing.
However, certain paths are very difficult to find starting from the sensor, and
consequently light tracing is better at finding these paths. Bidirectional path
tracing is an algorithm that attempts to preserve the strengths of both these
algorithms by sampling paths from both directions. Bidirectional path tracing
was developed independently by Lafortune and Willems [1993] and Veach and
Guibas [1994] and extended to participating media by Lafortune and Willems
[1996].

Figure 4.4: Bidirectional path tracing samples paths by first performing two random
walks; the first path, x0x1 . . .xk, starting from the sensor and the second
path, y0y1 . . .yl, starting from the light sources. Complete paths are
then formed by connecting a vertex from the eye path to a vertex from
the light path.

The general idea behind bidirectional path tracing is illustrated in Figure 4.4.
In this algorithm, for each sample two random walks are performed; the first
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starting from the sensor and the second from the light source. Complete paths
are formed by connecting a vertex from the eye path to a vertex on the light
path. This requires computing visibility and transmittance between the two
vertices, similar to the process of next event estimation. Bidirectional path
tracing can sample paths of the form

L (S|D)∗DD (S|D)∗E,

i.e. any path that can be sampled with local path sampling. This makes it
a more general algorithm than path tracing or light tracing. However, since
bidirectional path tracing is based on local path sampling, there are still some
paths it cannot sample.

Consider a sensor subpath, x̄ = x0x1 . . .xt−1, with t vertices and a light source
subpath, ȳ = y0y1 . . .ys−1, with s vertices. If the endpoints of these paths are
connected the path, z̄ = y0y1 . . .ys−1xt−1xt−2 . . .x0, of length k = s+ t− 1 is
formed. An estimator for this path is given by

I ≈ ws,t(z̄)
f(z̄)

p(x̄) p(ȳ)
,

where p(x̄) = p(x0) p(x1|x0) p(x2|x1) . . . p(xt−1|xt−2) is probability of generat-
ing path x̄ and analogously for p(ȳ).

The function ws,t(z̄) is the weight of the path. Recall that we are trying to solve
Equation 4.16 by generating samples from each integral. However, as shown in
Figure 4.4, a single sample generated using bidirectional path tracing results in
a family of paths with k + 2 paths of length k, if Russian roulette and specular
vertices are ignored. This means that the contribution from each path needs to
be weighted according to how long the path is.

Rather than using constant weights, much better results can be achieved if the
weight is allowed to depend on how the path was generated. The key insight by
Veach [1997] is that a path of length k can be generated using k + 2 methods,
corresponding to how many vertices there are in the sensor subpath versus how
many in the light subpath. These k+2 methods generate the same path but with
different probabilities. This makes bidirectional path tracing an ideal candidate
for applying the technique of multiple importance sampling (Veach and Guibas
[1995], see Section 3.7.1 for a general description of this technique). For instance,
if the balance heuristic is used, the weighting function is given by

ws,t(z̄) =
ps,t(z̄)∑s+t

i=0 pi,s+t−i(z̄)
, (4.21)

where ps,t(z̄) is the probability of generating the path z̄ using s vertices in the
light source subpath and t vertices in the sensor subpath. In Equation 4.21, the
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numerator is the probability with which the path was actually generated, i.e.
p(x̄) p(ȳ). In the denominator, the summation is over all the possible ways the
path could have been generated, which can generally happen in k+ 2 ways, but
can be fewer if the path has specular vertices.

It is also possible to use other heuristics. Veach [1997, pg. 306] suggests using the
power heuristic with β = 2, and shows that this heuristic is often the best choice.
Another alternative is to use the maximum heuristic, which has the advantage
that the number of shadow rays can be reduced, since only the most likely
method of generating a path has to be considered. The problem of reducing
the number of shadow rays is also considered in Lafortune and Willems [1995a]
and in Veach [1997, pg. 317]. Kollig and Keller [2004] presents a weighting
function based on bounding the geometry term, and shows that this method
can outperform weighting functions based on multiple importance sampling in
some cases.

4.7.4 Markov Chain Monte Carlo Ray Tracing

Markov Chain Monte Carlo has also been applied to solving the light transport
problem. The Metropolis-Hastings algorithm, presented in Section 3.8.2, was
used in the Metropolis light transport algorithm by Veach and Guibas [1997]
(with many more details in the thesis by Veach [1997, chp. 11]). This algorithm
was later extended to participating media by Pauly [1999] and Pauly et al.
[2000].

The idea is to use the Metropolis-Hastings algorithm to directly sample paths
in path space using the measurement contribution function, f(x̄), as the desired
stationary distribution of the chain,

π∗(x̄) =
f(x̄)

b
(4.22)

where b =
∫

Ω
f(x̄) dµ(x̄) is a normalization constant. This target density is

chosen, since it is a good choice from an importance sampling point of view.

This formulation leads to a Markov chain, where each state corresponds to
a path connecting the light source and sensor. One complication with this
approach is that we are trying to compute an image with many pixels and each
pixel has its own flux responsivity function, W j

e , and thus its own measurement
contribution function. A simple way to solve this problem is to define a global
flux responsivity function by combining the n flux responsivity functions in some
way, such as by taking their sum

We(x,ω) = W 1
e (x,ω) +W 2

e (x,ω) + . . .+Wn
e (x,ω).
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The global flux responsivity function can then be used in the measurement
contribution function used in Equation 4.22 to ensure that all measurements
get sampled.

The result is that when a path has been generated during rendering, the pixels
that this path contributes to have to be identified and their accumulators incre-
mented. What this essentially means is that an image is formed by making a
histogram of how the path endpoint moves in the image plane. I.e., bright pix-
els are more intense because more paths have been generated that pass through
them. This is contrary to how path tracing and bidirectional path tracing work.
In those algorithms bright pixels are caused by randomly finding high energy
paths using a typically fixed number of samples per pixel.

Initializing the Markov chain can be tricky. This is the problem of startup bias
discussed in Section 3.8.2. The problem is that it is generally not possible to
sample the initial state according to Equation 4.22, since this is the reason we
are resorting to the Metropolis-Hastings algorithm in the first place. Instead, a
random initial state is chosen and the chain is allowed to burn in by ignoring the
k first states, which effectively causes the chain to forget its starting point. The
problem with this approach is that determining k is difficult. It is also wasteful,
since the k first samples are ignored. The Metropolis light transport algorithm
solves the initialization problem using a two step procedure that results in a
population of seed paths distributed according to Equation 4.22. This is done
by first sampling a large number of paths using bidirectional path tracing. A
smaller number of paths are then resampled from the large population with
probability f(x̄)/p(x̄), where p(x̄) is probability with respect to path space.
This results in a number of seed paths with the correct distribution that can
be used as the initial states of the chains. See Szirmay-Kalos, Dornbach, and
Purgathofer [1999] for further discussion of the problems of startup bias.

Once the path corresponding to the initial state has been found, Algorithm 3.2
is used to evolve the chain and generate the next states. A tentative sample is
first generated by mutating the current path according to a set of predefined
mutation strategies. The tentative sample is then probabilistically accepted as
the next state, or rejected, which means that the chain stays in the current
state. Veach and Guibas [1997] suggest a number of strategies for mutating the
current path. Bidirectional mutations modify a path by replacing a random
subpath by a new subpath. This mutation type causes large changes to the
current path, and thus helps improve the mixing rate, while also ensuring the
ergodicity of the chain. Scattering perturbations are mutation types that favor
small changes to the path by altering the outgoing direction at a vertex. These
mutations are effective at handling certain difficult lighting situations, most no-
tably caustics. Finally, Pauly et al. [2000] suggest a propagation perturbation
designed to handle participating media. Like scattering perturbations, propa-
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gation perturbations favor small changes and thus explore locally around the
current path. As discussed in Section 3.8.2, this ability to preserve the sampling
context is the background for the success of the Metropolis-Hastings algorithm.

More recently, Kelemen, Szirmay-Kalos, Antal, and Csonka [2002] introduced a
new formulation of Metropolis light transport based on mutating the random
numbers used to generate a path, rather than mutating the vertices of the path
directly. Raab et al. [2007] discuss how to extend this variation to participating
media. The idea is that the random numbers used to generate a given path
can be seen as a point in the infinite dimensional unit cube, which they call the
primary sample space. By perturbing the current state in the primary sample
space they achieve an effect similar to the original Metropolis light transport
algorithm.

The primary advantage of this formulation is its simplicity. Rather than working
directly with the geometry of paths, which can be tricky, the new algorithm
simply modifies the random numbers and regenerates the path, which tends
to lead to a simpler algorithm. Another advantage of working in the primary
sample space is the algorithm is not tied to a particular way of sampling paths.
This means that any of the previously covered algorithms, such a path tracing
and light tracing, can be used as the underlying algorithm to map the random
numbers to path space. In particular, if bidirectional path tracing is used to map
from the primary sample space to path space, then each sample corresponds to
a family of paths, such as the paths in Figure 4.4. This is quite different from
the original formulation of the Metropolis light transport algorithm, where a
sample corresponds to a single path connecting the light and sensor. With this
new formulation the target density (Equation 4.22) needs to be modified, so
that it is based on the flow of light energy along all the paths in the family.

Kelemen et al. suggest two strategies for mutating the samples in the primary
sample space. Large mutations generate new samples independently of the cur-
rent sample by sampling a new random position in the primary sample space.
This is similar to ordinary Monte Carlo, and ensures the ergodicity of the chain.
Small mutations perturb the current location according to an exponential den-
sity and help explore locally around the current sample. These are in fact the
independence kernel and random walk kernel discussed in Section 3.8.2. In
a sense, this means that the algorithm can be described as a combination of
regular Monte Carlo and Markov Chain Monte Carlo.

It is unclear which formulation of Metropolis light transport leads to the most
efficient estimators, since no in-depth study of the relative merits of the two
formulations has been performed. The variance of the original algorithm was
studied by Ashikhmin, Shirley, and Smits [2001], but this paper predates the
new formulation. Kelemen et al. [2002] provide one numerical comparison of the
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efficiency of the two methods. As mentioned in that paper, their formulation
has the advantage that perturbations take place before importance sampling.
As discussed in Section 3.8.2, this means that the size of the mutations automat-
ically adapt to the shape of the integrand, which reduces correlation between
samples, while increasing the acceptance ratio. However, since importance sam-
pling is not carried out after the full integrand of Equation 4.14 or 4.15 (incident
radiance/importance is ignored) it is unclear how large the benefit of this re-
ally is. Also, as mentioned by Veach [1997, pg. 354], their algorithm is not
particularly sensitive to the size of mutations in the first place.

Another difference between the algorithms is the cost of generating a sample.
Generally, generating new samples with the original algorithm is much cheaper,
since it often only requires tracing a few additional rays, whereas generating a
sample with the new formulation requires tracing two random walks and con-
necting the vertices. This means that the new formulation risks oversampling
easy to find paths while trying to sample a few hard paths, since the easy paths
are automatically generated by the bidirectional path tracing algorithm.

Other algorithms exist that use path mutations. The Energy Redistribution
Path Tracing algorithm by Cline, Talbot, and Egbert [2005] uses a combination
of regular Monte Carlo and Metropolis-Hastings mutations. The authors claim
that this leads to a simpler algorithm than the original Metropolis light transport
algorithm, while still being competitive performance wise.

4.8 Discussion

The framework of local path sampling provides a simple recipe for constructing
paths based on random walks. As discussed above, this leads to a number of
different estimators with different properties. One of these properties is the
efficiency of the estimator. As discussed in Section 3.3, the efficiency of an
estimator tells us something about the variance of the resulting samples and
how fast they can be generated, i.e. how fast the estimator can solve a given
problem. As with any Monte Carlo estimator, the variance is caused by the
inability to importance sample exactly according to the integrand, which in the
present case is the measurement contribution function, f(x̄). In the remainder
of this chapter we will discuss why algorithms based on local path sampling
have difficulty sampling paths distributed according to this function.

The first question that needs to be answered is if it is even desirable to sample
according to f(x̄) across the image plane. Recall that we are usually computing
multiple measurements simultaneously, each measurement the result of a sensor
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response W j
e for j = 1, 2 . . . n, which is nonzero only for some typically small

subset of the image plane. If paths are sampled according to f(x̄) (based on
the global flux responsivity function, We) then bright pixels will automatically
receive more samples than dimmer pixels, and there will be a large disparity
between how many samples each measurement receives. A consequence of this
is that the measurements corresponding to bright pixels will get estimated with
a relatively higher accuracy than measurements corresponding to dimmer pixels.

The result of this partial undersampling will be perceived by an observer as
noise in the dark regions of an image. The problem is that sampling according
to f(x̄) will tend to reduce absolute error. However, the human visual system is
more sensitive to ratios than to absolute differences. Therefore, since images are
usually intended for human viewers, it is better to sample in the image plane so
as to reduce relative error or a more advanced perceptual metric. This is easy to
do for an algorithm such as path tracing, since the sample positions are chosen
explicitly in the image plane. This makes it relatively simple to control how
many samples each measurement receives, and also makes it possible to assign
more samples to measurements with high variance. However, for an algorithm
such as Metropolis light transport, controlling the sample density in the image
plane is more difficult. A partial solution is suggested by Veach [1997, pg. 357],
which is based on computing a low resolution luminance image in a preprocess.
This image is then used to modify the target density in a way that forces the
sampling density to be approximately uniform across the image plane. The
downside to this approach is that it can be time consuming to compute the
luminance image and if the resolution is insufficient artifacts in the form of an
uneven amount of noise across the image plane can appear.

4.8.1 Drawbacks of Local Path Sampling

The algorithms covered in the previous sections, such as path and light tracing,
follow importance, radiance, or both, as it scatters through the scene. The
random walks are created using local path sampling by first sampling a random
starting point on either the sensor or light source. Additional vertices are found
by first sampling a direction using the scattering kernel at the vertex and then
sampling a distance along that direction based on the properties of the medium.
In the following we will discuss the assumptions of local path sampling as it is
typically used and the inefficiencies these assumptions cause.

The first problem that needs to be considered is how the initial vertex in a path
is sampled. It turns out that deciding where to sample the first vertices on
sensor paths is often easier than finding good starting points for the light paths.
The reason is that there is usually only one camera, which has a nonzero flux
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responsivity function for only a very small subset of V (or even just a single point
for a pinhole camera). However, there may be many light sources in a scene,
and information on which of those light sources are important to the camera is
generally not available. Ideally we would like to sample starting points on light
sources according to the product of incident importance and emitted radiance
across the light sources, since this is essentially f(x̄). However, this is generally
not possible without some sort of global context, such as knowledge of Wi or Li.

Additional vertices are added to a path by first sampling a direction according
to a suitable density, which depends on the type of the vertex. This is the
scattering step of local path sampling. For the initial vertex on a light path
directions are sampled according to emitted radiance or cosine weighted emitted
radiance, depending on whether it is a volume or surface light source. For the
initial vertex on a sensor path the direction is sampled according to the flux
responsivity function defined by the camera model and for the remaining vertices
the direction is sampled according the scattering kernel. Ideally, for a vertex
on a light path it would be better to sample according to the product of this
function and incident importance, since this would closer mimic all of the terms
of f(x̄). Similarly, for vertices on the sensor path, sampling according to the
product of this function and incident radiance would closer match f(x̄) (with
the possible exception of the first vertex, as discussed above). However, again
this is not possible without knowledge of Wi or Li.

The second part of sampling additional vertices with local path sampling is
the propagation step. As discussed in Section 4.6.1, the new vertex is sampled
on a random point in the given direction or at the boundary, where the exact
procedure for doing this depends on whether the medium is homogeneous or
heterogeneous. In either case, for sensor paths (light paths) the sampling pro-
cedure is based on the assumption that inscattered radiance (importance) along
the ray is constant and the same as the inscattered radiance (importance) at the
boundary. The sampling procedure also ignores emitted radiance (importance),
i.e. it assumes that the emitted radiance (importance) along the ray and the
emitted radiance (importance) at the boundary is zero. As a result, whenever
these assumptions are not true, the probability density is a poor match for the
integrand and the result is excessive noise. Unfortunately, like above, solving
these problems requires knowledge of Wi or Li.

With local path sampling, random walks are probabilistically terminated using
Russian roulette. Using this technique can be advantageous, since it limits the
number of long paths that need to be considered in an unbiased way. The
probability of continuing a path is often given as the albedo of the scattering
kernel (the hemispherical-directional reflectance for BSDFs and σs(x)/σt(x) for
phase functions). This can lead to increased variance in cases where the incident
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radiance or importance at a vertex is high, but the albedo is low. This means
that ideally, the probability of terminating a path should also depend on incident
radiance or importance. For instance, a light path should be terminated with
high probability if it enters a region with low importance and similarly for sensor
paths. However, applying this strategy also requires knowledge of Wi or Li.

Based on the above discussion, it is clear that algorithms based on local path
sampling could benefit from having some global context, such as a representation
of incident radiance or importance, so that the measurement contribution func-
tion can be more efficiently importance sampled and variance reduced. It should
also be clear that using more sophisticated sampling strategies that take more
factors into account will generally be slower than the simple sampling strate-
gies of regular local path sampling. As a consequence, for this to be of benefit,
the increase in computation time must be more than offset by the reduction in
variance, since otherwise the resulting estimator will be less efficient.

4.8.2 Drawbacks of Existing Algorithms

As discussed above, local path sampling has some limitations when it comes to
sampling paths according the measurement contribution function. In this part,
we will discuss how this affects the algorithms based on local path sampling that
were covered earlier.

Unidirectional methods, such as path tracing and light tracing, follow either
radiance or importance through the scene. This can be inefficient, since some
important paths are easier to find if you start from the camera, whereas others
are easier to find starting from the light source. The reason for this is the lack of
global context discussed in the previous section. An example is caustics paths,
which tend to be easier to find starting from the light source. Since any given
scene can easily contain both types of paths, neither algorithm will perform well
in these cases.

Bidirectional path tracing uses a superset of the techniques of path tracing
and light tracing. This means that it can sample paths in more ways than
either of those algorithms, and easily find some paths that are difficult for those
algorithm to find. However, some paths are hard to find even with bidirectional
path tracing or any technique based on local path sampling. The most common
example of such a “hard” path is a path in a so-called near-singular configuration
(see Veach [1997, pg. 240]).

Recall that in the discussion of the limitations of local path sampling in Sec-
tion 4.6.1 it was found that only paths with two consecutive non-specular ver-
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tices, DD, could be sampled. Paths without DD would simply be missing. A
simple example of such a missing path is a point light source seen in a mirror
through a pinhole camera. However, consider if the point light source is re-
placed by a small spherical area light source. Since this path can only be found
using a random walk starting at the sensor that randomly intersects the sphere,
the probability of generating the path will depend directly on the size of the
sphere. If the size of the sphere is reduced, the path approaches a near-singular
configuration as the probability of generating the path goes to zero. Another
more advanced example of such a path is a caustic from a small light source seen
indirectly through a specular surface from a pinhole camera, such as caustic on
the bottom of a pool. These paths have type LDDSDSDSE, and can also
only be generated in one way and the probability of doing so can be arbitrarily
small, since it depends on the size of the light source. Near-singular configura-
tions can also happen because of small geometric features in the scene, such as
light flowing through a door slightly ajar or through a keyhole.

The algorithms based on Metropolis-Hastings are the only effective unbiased
methods for handling scenes with near-singular configurations. Unfortunately,
these algorithms tend to perform worse than bidirectional path tracing on the
simple parts of the integrand, mostly due to lack of stratification. Bidirectional
path tracing, on the other hand, tends to perform quite well in scenes without
these near-singular configurations.



Chapter 5

Enlightened Local Path Sampling

In the previous chapter the classical unbiased global illumination algorithms,
path tracing, light tracing, and bidirectional path tracing, were presented. These
algorithms essentially provide recipes for generating samples, x̄, from path space,
Ω, with known probability p(x̄). This makes it possible to solve integrals of the
form

I =

∫
Ω

f(x̄) dµ(x̄) (5.1)

using standard Monte Carlo estimators,

I ≈ f(x̄)

p(x̄)
.

Common for these algorithms is that they construct paths using local path
sampling (see Section 4.6.1). Paths constructed using local path sampling are
typically generated independently of the relevant adjoint quantity. E.g., light
paths are generated by sampling the first two vertices according to emission, Le,
and the remaining by sampling directions according to BSDFs or phase functions,
thereby ignoring incident importance at each step (the situation for eye paths
is completely analogues). Unfortunately, this is usually the only choice, since
no knowledge of the incident quantity (radiance or importance) at each vertex
is known, i.e. we lack some sort of global context. Because of this, the resulting
probability functions, p(x̄), will in general not be proportional the measurement
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contribution function, f(x̄), which would be the ideal case according to the
principle of importance sampling, and consequently the resulting estimators
may have high variance.

Global illumination algorithms based on Markov Chain Monte Carlo, such as
the two variations of Metropolis light transport discussed in the previous chap-
ter, often outperform regular Monte Carlo whenever p(x̄) ∝ f(x̄) is far from
being true. However, as with any Markov Chain Monte Carlo algorithm, these
algorithms only follow the desired distribution in the limit. In addition, since
these algorithms are still based on local path sampling, the further p(x̄) is from
being proportional to f(x̄) the harder it becomes to propose good tentative sam-
ples (recall the discussion in Section 3.8 that a good sample is a sample that is
very different from the current state of the chain and that is accepted with high
probability, since this ensures that the state space is explored quickly). How-
ever, if p(x̄) is very different from f(x̄), most large mutations will be rejected
and only the small perturbations accepted, which will cause the chain to mix
slowly, resulting in slow convergence. As a consequence, even algorithms based
on Markov Chain Monte Carlo will benefit from having global context, so that
importance sampling can happen more effectively.

This chapter presents an algorithm that attempts to provide this missing global
context. The algorithm has two parts. In the first part radiance and importance
flow in the scene is analyzed and organized in suitable data structures. In
the second part, the scene rendered using a variation of the Metropolis light
transport algorithm modified to use this data structure.

The remainder of this chapter is organized as follows. In the first section we
present an overview of the proposed algorithm. In the next sections we discuss
how to provide global context and how to use this extra information to improve
rendering. In the last sections we present results of using this algorithm and
compare its performance to other algorithms. We conclude with a discussion of
possible improvements.

5.1 Algorithm Overview

The global context required to sample according to f(x̄) is the equilibrium
distribution of incident radiance, Li(x,ω), and the equilibrium distribution of
incident importance, Wi(x,ω), in the scene, or an approximation thereof. If
this information is known, it is, at least theoretically, possible to generate paths
with a probability distribution based on all the terms of the measurement con-
tribution function.
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5.1.1 Local Path Sampling Using Global Context

To make this more concrete, consider generating a light path as part of doing
bidirectional path tracing. With traditional local path sampling, the initial
vertex, x0 ∈ ∂V, is typically sampled with density

p(x0) ∝
∫
S2

Le(x0,ω) | cos θ| dσ(ω), (5.2)

i.e., proportional to radiant exitance. However, if the importance equilibrium
distribution is known, the following density can be used instead,

p(x0) ∝
∫
S2

Le(x0,ω)Wi(x0,ω) | cos θ| dσ(ω). (5.3)

The use of importance in an inner product with an exitant quantity (Le) makes it
clear that it is the importance equilibrium distribution in incident form, rather
than exitant form, that is needed (similarly, the equilibrium distribution of
radiance in incident form will be needed for creating eye paths).

The difference between Equation 5.2 and Equation 5.3 is that the latter takes
both the intensity of the light source and how important the emitted light is
to the camera into account. This could potentially reduce variance in some
scenes. For instance, consider a scene with many light sources, where only a
small fraction contribute light that is visible to the camera. If the initial vertices
of the light paths are sampled according to Equation 5.2, most of the resulting
paths will be wasted, since they will be in regions of the scene unimportant to
the camera. On the other hand, if the initial vertices are sampled according to
Equation 5.3, most light paths will explore important regions and it will be more
likely that full paths that connect the camera and light source can be made.

The same principle can be applied when sampling the remaining vertices in the
light path. For instance, if the nth vertex is xn ∈ ∂V, then the next vertex,
xn+1, is chosen by first sampling an outgoing direction according to the BSDF

product function,

p(ω′) ∝ f∗s (xn,ω
′,ω) | cos θ|.

The danger of using this density is that the sampled directions may lead the
path to unimportant regions of scene. As shown in Figure 5.1, if the incident
importance is included in the density,

p(ω′) ∝ f∗s (xn,ω
′,ω)Wi(xn,ω

′) | cos θ|,

the risk of this happening is reduced, since the random walk will be more inclined
to move toward the camera. This approach can also be used if xn ∈ V0, such
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Figure 5.1: A simple scene where the sensor and the light source are located in two
different rooms connected by a small opening. Regular local path sam-
pling creates random walks by sampling the outgoing direction at each
vertex according to the BSDF product function, phase function, or emis-
sion. This can be inefficient if the distribution of radiance and the dis-
tribution of importance are dissimilar. If incident importance/radiance
(show as blue/red semicircles) is also taken into account when sampling
the outgoing direction, light paths will be more likely reach areas visible
to the camera, and eye paths will be more like to reach brightly lit areas.
Since this approach consider more terms from the measurement con-
tribution function, importance sampling should be improved. Incident
quantities can also be used to improve Russian roulette, so that ran-
dom walks that enter unimportant parts of the scene can be terminated
(indicated with red crosses) with higher probability.

as if x0 is a volumetric light source or xn a phase function. The only difference
would be that the cosine terms would disappear.

Random walks are terminated using Russian roulette. The decision to termi-
nate a path is typically based on the albedo at xn. If xn ∈ ∂V the albedo
can be computed as the ratio f∗s (xn,ω

′,ω) | cos θ| / p(ω′) (assuming p(ω′) is
proportional to the BSDF product function). If xn ∈ V0 the albedo is simply
σs(xn)/σt(xn). In both cases, the decision is based on an assumption of uniform
incident importance and may therefore also benefit from incorporating the inci-
dent importance, so that paths that enter areas of scene that are unimportant
to the sensors are terminated with higher probability (see Figure 5.1).

The remaining steps of the local path sampling procedure could potentially also
benefit from having global context. In case of participating media, the propa-
gation step is used to find the next vertex along the ray. Here, the standard
approach is to sample the distance according to a 1D density which is propor-
tional to the transmittance of the ray. This is essentially based on an assumption
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of uniform incident importance. When this assumption is false, the variance of
the estimator will be high. In such cases it may be advantageous to incorpo-
rate the inscattered importance along the ray and incident importance at the
boundary into the density.

In the example above it was shown how light paths used in bidirectional path
tracing could be sampled using knowledge of incident importance. Generating
eye paths using global context is similar, but instead uses the incident radiance.
The equations are the same; simply replace Wi with Li, We with Le, and the
adjoint BSDF, f∗s , with the ordinary BSDF, fs.

Using incident radiance or importance changes the probability density functions
that are used for sampling the vertices in the paths, but it does not fundamen-
tally change the local path sampling procedure. I.e., even if other PDFs are
used, the algorithms are still based on the local path sampling framework. This
means that all of the algorithms based on local path sampling, including path
tracing, light tracing, bidirectional path tracing, as well as the algorithms based
on Markov Chain Monte Carlo, can be used with this approach.

5.1.2 Building Global Context

In order to apply the strategy outlined above, it should be possible to query
incident radiance/importance at any point the scene. Le and We are given
explicitly as part of the scene description. However, Li and Wi are only given
implicitly in terms of Le and We and the scattering properties of the scene and
will therefore have to be computed in a preprocess and the results stored in a
suitable data structure.

It is possible to construct an unbiased representation of Li and Wi using a
set of samples, which are essentially weighted rays. These samples are called
“photons” when they represent radiance and “importons” when they represent
importance, or simply particles. The classical approach for creating these
particles is to perform a random walk using a procedure similar to local path
sampling. Generating these particles in an intelligent way turns out to be an
interesting subproblem that we will study in some detail later in this chapter.
In our case, both radiance and importance is part of the required global context,
so both types of particles will have to be generated. Once the particles have
been created, they will need to be organized in a data structure suitable for use
with the algorithm described above.

There are three main requirements for such a data structure. Firstly, the data
structure should provide a faithful representation of radiance or importance,
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while still being compact enough to fit in main memory. This will invariably
involve a trade off between accuracy of representation and storage requirements.
Secondly, querying the data structure should be fast. That is, given a point
x ∈ V, it should be possible to quickly locate the 2D slice of the 5D function
that describes incident radiance or importance at that point. Finally, the last
requirement is that it should be possible to importance sample as outlined in
the previous section.

Our approach is based on constructing a representation of Li/Wi that is piece-
wise constant with respect to position (see Figure 5.2). We first divide the scene
into a number regions of varying size. For each region we compute the average
incident radiance or importance across the region, similar to an environment
map. When we create the regions, we ensure that their size depend on how
much the paths that pass through those parts of the scene contribute to the
image. This means that the regions in the most important parts of the scene
will be smaller and consequently radiance or importance we be approximated
relatively more accurately in those regions. We find the regions and estimate
the relevant quantities using a form of particle tracing that samples photons
and importons simultaneously, and which takes both radiance and importance
into account.

Figure 5.2: We approximate incident radiance or importance by dividing the surfaces
of the scene into a number of regions (shown here as dashed ellipsoids).
Inside each region we store an environment map with the average incident
radiance/importance across the region. Rather than using constant size
regions, we allow the size of the regions in a given part of the scene to
depend on how much paths that pass through that part influence the
final image.

In summary, the algorithm described above is a two-part procedure consist-
ing of a preprocessing pass and a rendering pass. In the preprocessing pass a
representation of the flow of radiance and importance in the scene is created.
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This extra information, or global context, is then used in the rendering pass
to implement a more intelligent form of path sampling that attempts to match
more terms from the measurement contribution function and thus provide more
efficient importance sampling. In the following, each part of the algorithm will
be described in more detail.

5.2 Preprocessing Pass

The goal of the preprocessing pass is to construct a compact representation
of radiance and importance. Storing the equilibrium distribution of radiance
or importance for an arbitrary scene is challenging for a number of reasons.
The primary reason is that Li and Wi are high-dimensional functions. E.g., in
the form used in the previous chapters, radiance, Li(x,ω, λ, t), is a seven di-
mensional function of position, direction, wavelength, and time and importance
likewise.

In order to simplify the problem, and make storage requirements more practical,
the dimensionality of these functions will have to be reduced. The wavelength
dependence can be removed if spectral radiance or importance is replaced with
a wavelength averaged quantity by integrating Li(λ) over the visible spectrum.
Optionally, a weighting function, such as the spectral luminous efficiency func-
tion, V (λ), can be used. This has been done in all the results in this chapter.

The time dependence can also be dropped, and time averaged radiance (or
importance) used instead. This is assumption is usually justified for ordinary
scenes, since the shutter time of typical cameras is relatively short compared
to the speed of most everyday objects. This means that except for scenes with
very strong motion blur, both radiance and importance can be assumed to be
nearly constant with respect to time

However, even with these assumptions, creating an exact representation of Li

or Wi in an explicit form, such as using a finite number of basis functions,
is not possible in the general case, since these functions are not bandlimited.
Fortunately, having an exact representation of Li and Wi is not a requirement for
the algorithm described above. Recall that Li and Wi are only used for creating
better probability density functions. This means that even if approximations of
Li or Wi are used, then as long as the resulting PDFs are valid in a Monte Carlo
sense, the algorithm will remain unbiased. However, it should be expected that
the poorer these approximations are the less effective importance sampling will
become.
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5.2.1 Adjoint Measurements

Recall that rather than sampling the initial vertex in a light path according
to radiant exitance, it should be possible to achieve better results by sampling
according to Equation 5.3, i.e. according to

p(x0) ∝
∫
S2

Le(x0,ω)Wi(x0,ω) | cos θ| dσ(ω), (5.4)

since this density takes both radiance and importance into account. While a
similar approach could be used for sampling the initial vertex in the eye path,
i.e. sampling according to

p(y0) ∝
∫
S2

We(y0,ω)Li(y0,ω) | cos θ| dσ(ω), (5.5)

this is usually not a particularly good choice. The reason is that for the standard
camera models typically used in computer graphics, the contribution of each
point on the aperture across all measurements does not vary much. Therefore,
we use the simpler approach of sampling the initial vertex of the eye path with
uniform probability across the aperture.

Equation 5.4 has a form similar to that of the measurement equation (Equa-
tion 2.16), except that rather than measuring sensor response to incident radi-
ance, it measures the “response” of the emitted radiance function to incident
importance. The single number, which is the result, is given by

I∗ =

∫
S2

Le(x0,ω)Wi(x0,ω) | cos θ| dσ(ω), (5.6)

and is a new type of measurement, which we will call an adjoint measurement.
Adjoint measurements are useful because they allow us to implement importance
sampling according Equation 5.4. To do so, a single adjoint measurement will
not suffice, and therefore it will be necessary to define a number of adjoint
measurements, I∗j , each with their own Lje for j = 1, 2, . . . ,m. The functions

Lje can be found by decomposing Le in various way, as discussed below. Note
that this is essentially the opposite situation compared to regular measurements,
since in that case we started with the functions W j

e and formed We by combining
those, whereas with adjoint measurements we start with Le and extract the Lje’s.

An infinite number of ways of decomposing Le exist, each with their own ad-
vantages and drawbacks. The perhaps simplest way of finding the Lje’s is by
decomposing Le based on the objects in the scene. If a scene has m discrete
light sources, we will define Lie to be equal to Le on the ith light source and zero
elsewhere, so that

Le(x,ω) = L1
e(x,ω) + L2

e(x,ω) + . . .+ Lme (x,ω). (5.7)
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The results of this decomposition are the adjoint measurements I∗1 , I
∗
2 , . . . , I

∗
m,

which tells us the relative importance of each light source. The adjoint measure-
ments can then be used as discrete probabilities,1 so that rather than choosing
the initial vertex in the light path uniformly across the light sources or based
on emitted power, the first vertex is chosen (approximately) according to both
radiance and importance (Equation 5.4). In this way, light sources that con-
tribute light that is actually visible to the sensors will be sampled with higher
density, and light sources that are invisible will be ignored no matter how bright
they are. Once the initial light source has been identified, a random position can
be chosen across its surface area (or inside its volume, in the case of volumetric
light sources).

The downside to the above approach is that its effectiveness depends on how
the light sources in the scene are organized. In the worst case, if a scene only
has a single light source, then the above procedure will be of no benefit at all.
To make matters worse, if the scene has large area/volume light sources, then it
should be expected that Equation 5.4 could vary considerably across the light
sources. Unfortunately, the above procedure does not take this into account,
because Equation 5.4 is approximated as a piecewise constant function.

In order to avoid these problems and create an importance sampling procedure
that provides a better match for Equation 5.4, we have instead opted to use
a method based on warping the random numbers used to find the first vertex
in the light path. The idea, which is illustrated in Figure 5.3, is to start out
with a simply way of mapping a pair of random numbers in [0; 1]2 to a point
on the surface of a light source. We will assume that such a procedure, F :
R2 7→ ∂V, exists and that it is injective. If none exists, constructing one is
trivial. For instance, if the scene has m light sources, simply pick one randomly
(with probability 1/m) and then pick a random position on its surface (with
probability 1/Ai, where Ai is the surface area of the chosen light source). This
can be done using two random numbers. The functions Lje can now be defined
by subdividing the unit square into smaller domains of equal size. Each domain
has an associated Lje, which is equal to Le across the part of the surface area of
∂V that this domain maps to and zero elsewhere. The resulting Lje’s must then
also satisfy Equation 5.7.

This procedure has the advantage of being independent of how the scene is
organized into objects and also solves the problem of variation in Equation 5.4
across area light sources, assuming the resolution is fine enough to capture
these variations. We typically divide the unit square into 64× 64 domains. We
set the actual number of horizontal subdivisions to an integer multiple of the

1To ensure unbiasedness, it is necessary to add a small epsilon value to the adjoint measure-
ments, so that there is a non-zero probability of sampling any light source. This is necessary,
since the measurements are not evaluated exactly, but are Monte Carlo estimates.
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Figure 5.3: The traditional way of finding the initial vertex in a light path is based
on mapping a uniform random number in [0; 1]2 (left) to a position on
the light sources (right). This mapping is usually uniform with respect
to area or radiant exitance, which has the disadvantage that importance
is not taken into account. To avoid this problem, we first perform a
set of adjoint measurements, I∗1 , I

∗
2 , . . ., to discover which parts of the

light sources that matter most when solving the light transport prob-
lem. As shown, this is done by subdividing [0; 1]2 into smaller regions,
and computing how important these regions are. Based on the resulting
measurements, we modify the original sampling procedure so that posi-
tions on light sources that will tend to lead to light paths that are visible
to the sensors will get sampled more often. This can be done by first
sampling a region with probability proportional to I∗j and then picking
a random position within that region.

number of light sources, since this ensures that a domain will not cover multiple
light sources. The resulting image, which we will call the adjoint image to
differentiate it from the regular image formed by the normal measurements, is
essentially the scene seen by the light sources illuminated by the sensors.

The measurements necessary to create the adjoint image can be computed as
part of the Metropolis particle sampling procedure used to create the environ-
ment maps with incident radiance/importance described in the next section.
This is possible, since the Metropolis method works by sampling paths connect-
ing light sources and sensors. To make this work it should also be possible to
perform the inverse mapping, F−1 : ∂V 7→ R2. That is, given a position on
a light source xs ∈ ∂V, it should be possible to find F−1(xs) ∈ R2. This is
necessary in order to implement multiple importance sampling, so that if an eye
path randomly intersects a light source, the probability of starting a light path
at that point can be computed. Also, to ensure that the adjoint image does not
take too long to converge, the resolution should be significantly smaller than
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the final image.

Once the adjoint image has been computed, it is possible to sample the initial
vertices of the light paths approximately according to Equation 5.4. To do so we
start out with a pair of uniform random numbers in [0; 1]2 as usual. However,
rather than using these numbers directly as input to F , their distribution is first
“warped” according to the adjoint image, before being used to find xs. Warping
the numbers can be done by importance sampling using the inversion method
described in Section 3.4. The end result when sampling this way is that the
density now depends on both the radiance exitance and on how much of that
light energy that ends up at the sensors. This technique can also be extended
to volumetric light sources, though we have not implemented this. The main
difference is that the adjoint measurement are now arranged in a 3D array, and
that a triplet of random numbers in [0; 1]3 needs to be warped.

5.2.2 Particle Sampling

The equilibrium radiance distribution and the equilibrium importance distribu-
tion can be represented in an unbiased way using a set of weighted rays. Es-
sentially, these weighted rays form a discrete approximation of either Li(x,ω)
or Wi(x,ω). It is also possible to represent their exitant counterparts, Lo(x,ω)
and Wo(x,ω), in this way, though this is less frequently useful. Such approxima-
tions form the basis of many global illumination algorithms, such as algorithms
based on virtual point light sources and photon mapping based methods.

We use the formulation of particle tracing given by Veach [1997, pg. 121]. A
representation of Li(x,ω) can be formed by tracing a random walk comprised
of N steps in the scene. The result is a set of N rays, ri = (xi,ωi), each with
a weight αi. In order for these weighted rays, (ri, αi), to form an unbiased
representation of the equilibrium radiance distribution, the weights must satisfy

E

[
N∑
i=1

αiWe(xi,ωi)

]
= 〈We, Li〉, (5.8)

for any We. Exactly analogous, the equilibrium importance distribution can by
represented by a set of N weighted rays, (ri, βi), which is an unbiased approxi-
mation of Wi(x,ω) if

E

[
N∑
i=1

βi Le(xi,ωi)

]
= 〈Le,Wi〉 (5.9)

is satisfied for any Le. Another way to express this is using a pair of joint density
function, pLi

(α, r) and pWi
(β, r), that describe the distribution of photons and
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importons and their weights. For Equation 5.8 and Equation 5.9 to be satisfied,
these joint density functions must fulfill∫

R
αpLi

(α, r) dα = Li(r) and

∫
R
β pWi

(β, r) dβ = Wi(r). (5.10)

Equations 5.10 describe conditions that must apply in order for the particles to
form unbiased representations of radiance or importance, but they do not tell us
how to generate the particles in the first place. In order to generate the particles
we need an algorithm that can sample the rays and compute the weights. Some
of these algorithms are discussed in the following.

The differences between how these algorithms sample rays cause the distribution
of the of the generated particles to differ. This can have important consequences
when the particles are actually used, since some distributions are more suitable
than others depending on what the intended use of the particles are. Another
important difference between the algorithms is that some algorithms have the
advantage that they can sample radiance and importance simultaneously, while
others sample photons and importons with essentially independent simulations.

Classical Particle Sampling

The traditional way of sampling photons in computer graphics is based on recur-
sively expanding the equation of transfer (Equation 4.5) with boundary condi-
tions. This operation is identical to parts one and two of the local path sampling
procedure (see Section 4.6.1), and will not be repeated here.

The local path sampling procedure yields a set of rays. In order to compute
their weights, we will first simplify notation by writing emission as a product of
a positional part and a directional part,

Le(y0→y1) = L(0)
e (y0)L(1)

e (y0→y1).

The directional part can then be written as a special kind of “emission” scat-
tering kernel,

f∗k (y−1→y0→y1) ≡ L(1)
e (y0→y1),

where the vertex y−1 can be thought of as a special virtual vertex that is the
source of all radiance in the scene.

The weights associated with the rays of a particular path ȳ = y0y1 . . . are then
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given by the expression

αi =
L

(0)
e (y0)

p0(y0)

i∏
j=0

f∗k (yj−1→yj→yj+1)G(yj↔yj+1)

pj+1(yj→yj+1)
, (5.11)

where f∗k is adjoint scattering kernel (adjoint BSDF, phase function, or ra-
diance emission kernel) and G is the generalized geometry term. The PDF,
pj+1(yj→yj+1), gives the probability density with respect to area/volume of
sampling yj+1 as the next vertex given that the current vertex is yj . This
function includes the probability of sampling the kernel at yj , the probability
associated with propagation step in case of participating media, and the survival
probability if Russian roulette is used.

Figure 5.4: The traditional way of sampling particles to represent radiance or im-
portance is based on recursively expanding the equation of transfer or its
adjoint version. As shown, this is done by creating random walks start-
ing at the sensor (E) or light source (L). Importons (blue) and photons
(red) are stored at each vertex along the resulting paths along with their
weights. Note that the arrows point in the opposite direction of the flow
of importance/radiance, since the particles represent incident quantities.

This procedure is illustrated in Figure 5.4. As an example, the ith ray of the
light path is ri = (yj+1,ωyj+1→yj ) and the ith photon is (ri, αi). Note that
directions are opposite to the direction of light flow, since the particles represent
incident radiance.

An almost identical procedure can be used to generate importons. First decom-
pose the flux responsivity function into positional and directional parts,

We(x0→x1) = W (0)
e (x0)W (1)

e (x0→x1).

Then write the directional part as special kind of scattering kernel,

fk(x−1→x0→x1) ≡W (1)
e (x0→x1),
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where x−1 is a virtual vertex which can be thought of as the source of all
importance. The weights for the rays in the path x0x1 . . . are then given by

βi =
W

(0)
e (x0)

p0(x0)

i∏
j=0

fk(xj−1→xj→xj+1)G(xj↔xj+1)

pj+1(xj→xj+1)
, (5.12)

where fk is the regular scattering kernel (BSDF, phase function, or importance
emission kernel). The ith ray ri = (xj+1,ωxj+1→xj

) yields an importon (ri, βi)
and now the directions point toward the sensor, since the particles represent
incident importance.

Sampling using the above procedure generates particles with particular distri-
butions, pLi

(α, r) or pWi
(β, r). To investigate this further, consider how the

probability density functions in Equation 5.11 and Equation 5.12 influence the
weights of the particles. When sampling paths, it is common to make the PDF in
the denominator proportional to the corresponding term in the numerator, since
this decreases the variance of the weights. In the special case that importance
sampling can be carried out exactly, the weights of all the resulting particles will
be constant; i.e., all particles will have the exact same weight. Note that even if
importance sampling is only nearly exact, this will still be approximately true.

Figure 5.5: The limitations of classical particle sampling. Classical particle attempts
to distribute photons so that their density is proportional to radiance
(likewise for importance and importons). Unfortunately this means that
the density of photons may be low near the sensors and the density of
importons low near the light source, which is problematic if we attempt
to use the particles in these regions to estimate Li or Wi. As shown in
the figure, this happens in scenes where the distribution of radiance and
importance is very different.

What this means is that the radiance or importance of the scene is encoded in
the particles only by how they are distributed throughout the scene and not
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by their weights. For instance, brightly lit parts of the scene will be brighter
because more photons are located there, rather than because these parts contain
photons with higher weights (similarly for importance/importons). Another way
too see this is to consider the joint densities. If the particle weights are constant,
the joint densities of the particles can be written

pLi
(r, α) = pLi

(r) δ(α− αLi
) and pWi

(r, β) = pWi
(r) δ(β − βWi

), (5.13)

where αLi
is the weight of the photons and βWi

is the weight of the importons. If
these equations are substituted back into Equations 5.10 we get (in the radiance
case) ∫

R
αpLi

(r) δ(α− αLi
) dα = αLi

pLi
(r) = Li(r),

and similarly for importance. This shows that pLi
(r) ∝ Li(r) and pWi

(r) ∝Wi(r)
(and that the constants of proportionality are αLi

and βWi
).

Constant, or low-variance, weights can be an advantage for some algorithms,
such as those based on density estimation. However, for other algorithms near-
constant weights can be a disadvantage, since this means that particles are
sampled without considering the corresponding adjoint quantity. For instance,
if the sensors and light sources are separated by difficult geometry, very little
importance may reach the light sources and very little radiance may reach the
sensors. As shown in Figure 5.5, this means that only few importons will be
found near the light sources and few photons near the sensors. Unfortunately,
this is exactly where we need them the most. Recall that in the algorithm
described earlier we attempt to guide eye paths to light sources using the incident
radiance and guide light paths to the sensor using the incident importance. If
no photons are found near the sensor and no importons near the light source,
it will be difficult to accurately estimate the relevant incident quantity and this
strategy will not be possible. As a consequence, this type of particle sampling
is not well suited for the proposed algorithm.

Bidirectional Particle Sampling

To overcome the aforementioned problem of unsuitable particle distributions, it
will be necessary to develop a new way of sampling particles. Such an algorithm
should generate particles with marginal densities, pLi

(r) and pWi
(r), such that

the density of particles in a given region of R3 × S2 depends on how relevant
this region is to the problem being solved.

In order to apply this strategy it will be necessary to define exactly what rele-
vancy means in this context. Recall that the problem we are attempting to solve
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is the light transport problem given by Equation 5.1. This problem is formu-
lated as an integral over all paths, which implies that any region of R3×S2 could
potentially be relevant (this is essentially the “global” nature of global illumina-
tion). However, not all paths contribute equally as defined by the measurement
contribution function, f(x̄), and consequently not all parts of R3 × S2 will be
equally important. It follows that one natural way of defining the relevancy of
a subset R3 × S2 of the scene could be by basing it on the contributions of the
paths that pass through that region.

Two definitions are required to make this notion more precise. First, let ΩLi
(r)

be the set of paths that include the ray r = (x,ω), where it is understood that
x is a vertex in the path and ω is the outgoing direction of the path from that
vertex in the direction of the light source. Similarly, ΩWi

(r) is the set of paths
that include r = (x,ω), but with the important difference that ω points toward
the sensor. Suitable particle densities are then given by

pLi
(r) ∝

∫
ΩLi

(r)

f(x̄) dµ(x̄) and pWi
(r) ∝

∫
ΩWi

(r)

f(x̄) dµ(x̄). (5.14)

Basically, using these densities ensures that regions of R3 × S2 that “matter”
when solving Equation 5.1 get sampled more densely, since the distributions of
particles are now based on both radiance and importance.

The discussion above shows that desirable particle distributions should be based
on both Li and Wi, but it does not explain how to actually generate particles
that follow these distributions. The simplest way to do this is to use classi-
cal particle sampling combined with a resampling step. The idea is as follows:
first generate a set photons and a set of importons using the classical particle
sampling procedure described above. The result is two sets of particles; one
distributed approximately according to radiance and one according to impor-
tance. Based on these particles it is now possible to estimate Li(r) and Wi(r)
anywhere in the scene, e.g. using some form of density estimation. The second
part of the procedure is a resampling step to “thin out” oversampled regions.
For each particle it is randomly decided whether to keep it in the set. This can
be done using a variation of Russian roulette, where the probability of survival,
p, depends on the adjoint quantity, which can be estimated using the other set
of particles. For instance, each photon, (ri, αi) with ri = (xi,ωi), is terminated
with a probability that depends on how much the incident importance at xi
from all directions is scattered in the direction of ωi. If the photon survives,
the weight of the photon becomes αi/p to ensure that the particles remain an
unbiased approximation of Li. Importons can be resampled in the same way.

The above procedure produces particles distributed approximately according to
the product of radiance and importance. This is done by reducing the number
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of particles in oversampled regions and adjusting the weights of the surviving
particles. For instance, importons in regions with high radiance will be more
likely to survive and thus be more numerous, so to compensate their weights
must be made smaller. The downside to this approach is that in some cases
many particles will have to be terminated, and these particles are essentially
wasted. This happens if the distribution of radiance and importance in a scene
is very different, since then few particles will reach regions near the source of the
corresponding adjoint quantity. As a consequence, a large number of particles
will have to be generated and eventually terminated in order to reach a sufficient
sample density in those regions. To make matters worse, using Russian roulette
with very low survival probabilities can increase the variance of weights. This
is obviously very inefficient, and shows that it would be better if it was possible
to directly sample particles distributed according to Equation 5.14, rather than
having to resort to an intermediary distribution and resampling step.

Unfortunately, directly sampling particles distributed according to Equation 5.14
is not possible, since that requires sampling paths with density proportional to
f(x̄) (recall that sampling paths with distributions that closer match the mea-
surement contribution function is exactly the problem we are trying to solve
in the first place). However, it may still be possible to generate particles with
distributions along the lines of Equation 5.14 by using the full framework pro-
vided by local path sampling. Classical particle tracing, as outlined above, is
essentially a unidirectional approach, similar to pure path tracing or light trac-
ing. E.g., photons are only sampled using paths starting on the light sources,
and therefore the particle density may be low near the sensor. In order to avoid
this, photons can also be sampled from paths starting on the sensors and ending
on the light sources, which should cause the photon density near the sensors to
increase. Similarly, importons could be sampled using paths starting on the
light sources, which should cause the importon density to increase near light
sources. An additional advantage of this is that it is sometimes easier to find
a path connecting lights and sensors if the path is started from the sensors, so
using a sampling strategy based on performing random walks in both directions
should be beneficial. This is closely related to the discussion of the advantages
of bidirectional path tracing over path tracing and light tracing in the previous
chapter, and suggests that particle sampling based on a bidirectional method
could be advantageous.

In order to carry out bidirectional particle sampling it is necessary to develop
a way of generating the particles and a method of computing their weights.
This must be done in such a way that the resulting joint densities, pLi

(α, r) and
pWi

(β, r), still satisfy Equations 5.10. I.e., the photons/importons should still
form an unbiased representations of radiance/importance in the scene even if
the resulting distributions are now different.
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Bidirectional particle sampling is based on sampling complete paths that con-
nect the sensor and light sources. Once a path has been created, photons and
importons can be extracted from the vertices along the path. This procedure is
illustrated in Figure 5.6 for paths of lengths one through three. Since a photon
and importon is generated at each vertex (except the first and last vertices), a
path of length k produces up to k photons and k importons. These paths are
created by first performing two random walks, one starting from the sensor and
one from the light source, and then connecting the endpoints of two random
walks. Note that unlike bidirectional path tracing, a sample is here a single
path and not a whole family of paths (compare to Figure 4.4).

Figure 5.6: Bidirectional particle sampling works by generating full paths that con-
nect the sensor and light source and extracting photons and importons
from the vertices along the paths. Paths are created using a pair of
random walks from the sensor and light sources whose endpoints are
connected by tracing a shadow feeler (dashed lines). The numbers un-
derneath each figure indicate how many vertices the light path and eye
path contain using standard (s, t) notation. Note that in case of a (s, 0)-
method or a (0, t)-method, one of these random walks will be empty.

In order to find the weight of a particle, it is necessary to compute how much
radiance or importance is transported along the path to the particle and then
divide this value by the probability of generating the path segment. The incident
radiance at a given vertex is simply the product of geometry terms and scattering



5.2 Preprocessing Pass 139

kernels. Computing the probability of the particle is more involved and depends
on the strategy used to sample the paths. It should be clear that simply sampling
paths of given fixed length will not yield the correct result. E.g. if photons are
only extracted from paths of length k = 2 only direct lighting and the first
indirect bounce will be accounted for. Therefore, there should be a non-zero
probability of sampling paths of any length so that radiance (or importance)
that has scattered any number of times is properly accounted for.

The first task is therefore to randomly choose the length of the path. We use
the following probabilities for sampling paths of length k,

pk =
1

2k
.

Using these probabilities ensures that there is a chance of sampling paths of any
length. It also favors shorter paths, since these are usually the most important.
Sampling photons (or importons) in this way means the probability of generating
a given particle depends on how many scattering events it is away from the light
source (or sensor). For instance, photons corresponding to the first indirect
bounce (i = 2) are only generated if the sampled path has length k ≥ 2. This
means that the probability gets an extra factor of

qi =

∞∑
k=i

pk = 1−
i−1∑
k=1

pk,

to compensate. Therefore particles corresponding to direct illumination get an
extra factor q1 = 1, since these are always generated no matter the value of k
(refer to Figure 5.6). On the other hand, particles corresponding to the nth
indirect bounce get an additional factor of qn+1.

Once the length of the path has been determined, the number of vertices in
the light path, s, versus the number in the eye path, t, must be decided. Since
we have no a priori knowledge of which methods are best for a given scene, we
simply pick randomly among the k + 2 variations. I.e., the length of the light
path, s, is selected with uniform probability among [0, 1, . . . , k + 1], and the
number of vertices in the eye path is then given by t = k − s+ 1.

Once we know the desired length, we perform the two random walks with a
maximum of s or t vertices in each. Figure 5.7 shows two paths generated this
way and the resulting particles. We will use these two paths to demonstrate
how to compute the weights of the particles. The first path is z̄ = y0y1x1x0,
which was generated using a (2, 2)-method (two vertices in the light path and
two vertices in the eye path). For this path the path segment between the
connecting vertices, y1 and x1, is not blocked, so sampling this path results in
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Figure 5.7: Two paths generated during bidirectional particle sampling. The first
path has length three and contributes the full compliment of three pho-
tons and three importons. The second path has length two and the ray
segment between the connecting vertices, y′1 and x0, is blocked. Since
the path is blocked it contributes fewer particles (in this case only one
photon and no importons).

three photons and three importons. As we will see later, sometimes a path of
length k will result in fewer than k photons and k importons.

Consider computing the weight of the photon at x1 (the procedure for computing
the weights of the importons is exactly analogues). To find the weight we need
to first find the incident radiance along the subpath of y0y1x1,

fL(y0y1x1) = Le(y0→y1)G(y0↔y1)f∗k (y0→y1→x1)G(y1↔x1).

The next step is to compute the path space probability of sampling the subpath
y0y1x1 as part of z̄. Since z̄ has length three, this can be done in up to five
different ways, corresponding to how many vertices there are in the light subpath
versus the eye subpath. The probabilities are given by

p4,0 = pL(y0) pL(y0→y1) pL(y1→x1)

p3,1 = pL(y0) pL(y0→y1) pL(y1→x1)

p2,2 = pL(y0) pL(y0→y1) pW (x0) pW (x0→x1)

p1,3 = pL(y0) pW (x0) pW (x0→x1) pW (x1→y1)

p0,4 = pW (x0) pW (x0→x1) pW (x1→y1) pW (y1→y0).

Note that these are not the same probabilities used in bidirectional path tracing
(see Section 4.7.3), since they are probabilities for sampling the path segment,
y0y1x1, rather than the full path. For instance, p4,0 and p3,1 are the same,
since these probabilities are independent of how the last path segment of z̄ was
sampled.
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We now have all the information needed for computing the weight of the photon
at x1. If we use multiple importance sampling, the weight can be written as

α2 =
5 p2

2,2

p2
4,0 + p2

3,1 + p2
2,2 + p2

1,3 + p2
0,4

fL(y0y1x1)

p2,2 q2
.

The multiplication by k + 2 = 5 is necessary, since we are only using one of the
k + 2 methods in each sample. We used the power heuristic with β = 2, which
means that the multiple importance weight of the sample is linear in probability.

In the above example we computed the weight of a photon in a complete path, i.e.
a path that connected the sensor and light source. Often the sampled path does
not connect the sensor and light sources. This can happen because the generated
random walks are shorter than desired (s or t vertices respectively), which is
caused by the paths escaping the scene or because the paths are terminated early
using Russian roulette. It can also happen because the connecting vertices in
the random walks are not mutually visible (only for s ≥ 1 and t ≥ 1) Finally,
it can happen because (s, 0)-methods fail to randomly hit the sensor or because
(0, t)-methods fail to hit a light source. All these cases have to considered when
computing weights.

Figure 5.7 also shows a path, y0y
′
1x0, where the connecting vertices are blocked.

This path only contributes a single photon and no importons (the photon at x0

must have weight zero, since the geometry term, G(y′1↔x0), is zero due to the
visibility function). Similarly, the weights for the importons are also zero.

In order to compute weight of the photon at y′1 we need to find the probabilities.
The k + 2 probabilities are given by

p3,0 = pL(y0) pL(y0→y′1)

p2,1 = pL(y0) pL(y0→y′1)

p1,2 = pL(y0) pW (x0) pW (x0→y′1) = 0

p0,3 = pW (x0) pW (x0→y′1) pW (y′1→y0) = 0.

However, note that because the ray segment between y′1 and x0 is blocked some
of these probabilities are now zero. In particular, the term pW (x0→y′1) is zero,
since the conversion from probability measured with respect to solid angle to
probability measured with respect to area/volume also includes a visibility term.
The weight is thus

α1 =
4 p2

2,1

p2
3,0 + p2

2,1 + p2
1,2 + p2

0,3

fL(y0y
′
1)

p2,1 q1
=

2 fL(y0y
′
1)

p2,1 q1
.

What this means is that bidirectional particle sampling is reduced to classical
particle sampling in the special cases mentioned above. The extra factor of two
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is necessary to compensate for the fact that half of the method do not produce
any photons.

Metropolis Particle Sampling

Bidirectional particle sampling generates particles with distributions that closer
match Equations 5.14 compared to classical particle sampling. This is the case
since paths are sampled based on both the distribution of radiance and the
distribution of importance in the scene. However, while the distributions of
photons and importons may be better, the particles are still not distributed
exactly according to Equations 5.14. The reason for this is again that it is
not possible to sample paths distributed exactly according to the measurement
contribution function using regular local path sampling.

As discussed in Section 4.7, it is possible to use the framework of Metropolis-
Hastings in combination with local path sampling. When this strategy is used,
it becomes possible to sample paths whose distribution, in the limit, follow the
measurement contribution function. The idea is to construct a Markov chain2

with an appropriate stationary distribution and then evolve this chain using
Algorithm 3.2 and a set of predefined mutations strategies.

The stationary distribution of the chain can be chosen to be proportional to the
importance weight of a path,

π∗(x̄) ∝ f(x̄)

p(x̄)
, (5.15)

where f(x̄) is the measurement contribution function and p(x̄) is probability of
sampling the path as described above. Using this stationary distribution has
the advantage of placing more samples where they matter most. I.e., paths that
are undersampled with local path sampling compared to their contribution will
receive more samples, whereas paths with small contributions that are oversam-
pled with local path sampling will receive fewer samples (see Figure 5.8).

Sampling particles from paths based on a Markov chain with stationary distri-
bution given by Equation 5.15 will not always lead to particle distributions that
are unbiased representation of their respective quantity. To see why consider
a scene, where one of the light sources is completely isolated from the sensor.
Since a chain with stationary distribution given by Equation 5.15 will only visit
paths where f(x̄) > 0, no particles will be sampled from paths starting on the
isolated light source, and the contribution from this light source will therefore

2See Section 3.8.2 for further details.
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Figure 5.8: Generating particles using Metropolis particle sampling ensures that the
density of both photons or importons is high in regions of R3 × S2 that
matter (compare with Figure 5.5). To compensate for the changed den-
sity compared to classical particle sampling, the weights of the particles
need to be adjusted so that they remain unbiased representations of ra-
diance/importance. In the figure this means that the weights of photons
in the brightly lit left part must be increased (illustrated with longer ar-
rows) since there are now relatively fewer and the weights of the photons
near the sensor in the right part decreased since there are now more (the
situation for importons is exactly the opposite).

be completely missing. This is obviously biased. However, since isolated light
sources do not contribute to Equation 5.1, they are of no interest to us. There-
fore, not generating any particles to represent these light source is actually an
advantage, since time/memory is not wasted generating/storing these particles.
Note that if all light sources in a scene are isolated from the sensors, it does
not make sense to sample particles using the above stationary distribution; of
course, such scenes are of little practical interest.

Ideally, the initial state in Algorithm 3.2 should be chosen according to Equa-
tion 5.15, since other choices will lead to startup bias. As discussed in Sec-
tion 3.8.2, startup bias can be avoided by letting the chain forget its initial
state, which can be achieved by ignoring the first k samples. Unfortunately,
the number of samples to ignore can be difficult to determine, since it depends
on the mixing properties of the chain. A better approach is given in Veach
[1997, pg. 339], which is based on a two-stage sampling procedure. First a large
number of paths are sampled using regular bidirectional path tracing. Then a
smaller number of paths from this population are resampled according to their
importance weight. We typically use 65536 paths for the initial population
and from this resample 1024 paths according to Equation 5.15. The resampled
paths can then be used as the initial states of 1024 chains, which can be evolved
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independently across multiple CPU cores, if desired.

Once the initial state of the chain has been determined, the rest of Algorithm 3.2
can be executed. The challenging part of the algorithm is devising a way of
proposing tentative samples. As discussed in Section 4.7.4, two different strate-
gies exists for proposing tentative samples (mutating paths): the original strat-
egy by Veach and Guibas [1997], which mutates paths by directly changing their
geometries and the newer variation by Kelemen et al. [2002], which operates in
the primary sample space (the unit hypercube of random numbers) and mutates
paths by perturbing the random numbers used to generate the paths. We have
used the latter strategy with the extensions to participating media proposed in
Raab et al. [2007], though it should also be possible to use the original strategy
by Veach and Guibas.

5.2.3 Clustering

The result of the particle sampling algorithms described above are two sets parti-
cles, photons and importons, that present radiance and importance in the scene.
These particles are distributed approximately according to Equations 5.14 and
therefore have higher sample density where the particles will be needed, unlike
the particle distributions that result from classical particle tracing.

While a set of particles can be a relatively compact representation of radi-
ance/importance, they do not lend themselves well to importance sampling.
Recall that our goal is to be able to importance sample according to incident
radiance/importance, so that light paths can be guided to sensors and eye paths
to light sources. While it certainly is possible to estimate these incident quanti-
ties directly from the particles, e.g. using some kind of density estimation, this
can be very time consuming, since it involves searching for the nearest particles.
In addition, once the nearest particles have been identified, they will have to
be organized in a way that allows for importance sampling, which can also be
time consuming. Since this procedure has to be performed for each vertex when
generating paths using local path sampling, this will simply make generating
paths too slow (note that estimating the incident quantity will also have to be
performed even if the outgoing direction from a given vertex is sampled from
the scattering kernel, since this is necessary to facilitate multiple importance
sampling).

Rather than using the particles directly, we will instead use the particles to
build another data structure, which will be used during rendering and which is
better suited for importance sampling. The basic idea is to divide the scene into
a set of regions, and store the average incident radiance/importance over those
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regions in a way that allows for easy importance sampling. The 5D incident
quantities, Li(x,ω) or Wi(x,ω), are then approximated as piecewise constant
with respect to the 3D positional component, whereas the 2D directional com-
ponent is stored for each region in an image (essentially an environment map)
using some suitable parametrization of the sphere. The advantage of this data
structure, compared to using the particles directly, is that we only need to de-
termine the current region to find the incident quantities, which is faster than
locating a large number particles. Another advantage is that the environment
map can be stored in a convenient way that allows for fast importance sampling.

In order to apply the above strategy it is necessary to find a way to divide the
scene into regions. Recall that the scene is defined as a finite volume, V ⊂ R3,
with associated scattering and emission properties, which in turn is composed
of a number of cells with boundary ∂V and interior V0. Before presenting
the chosen solution, a few observations regarding desirable properties of such
decomposition are in order. Firstly, rather than dividing V into regions of equal
size, it is better to let the size of a region depend on how important that part
of the scene is to solving Equation 5.1. The reason is that since we intend
to store average quantities within each region, a large region will invariably
mean a poorer approximation, and therefore small regions are preferable in
important parts of the scene. Secondly, rather than directly dividing V into
regions, it is better to handle ∂V and V0 separately, so that a given region
only contains points from either ∂V or V0, but not both sets. The reason
for this is that radiance/importance changes discontinuously at boundaries, so
having regions that span multiple cells will lead to poor approximations of the
incident quantities. This means that the average incident radiance/importance
is computed either as surface integral or a volume integral, depending on whether
the region belongs to ∂V or V0. I.e., if X ⊂ ∂V and Y ⊂ V0 then

Li,avg(ω) =

∫
X

Li(x,ω) dA(x) and Li,avg(ω) =

∫
Y

Li(x,ω) dV (x),

and similarly for Wi,avg(ω). Finally, given a point in the scene, xs or xv, it
should be possible to quickly determine which region the point belongs to.

A solution to this problem, which fulfills the above requirements, is to define
the regions based on a Voronoi decomposition of ∂V and V0. To do this it is
necessary to first define two point sets, one with points distributed across ∂V
and one with points in V0, which will be the centers of the regions. It will
also be necessary to define a distance function, which will be used to decide
which points belong to what region. The region centers should be distributed
so that there are more in important parts of the scene, since this will ensure
better approximations, as discussed above. We achieve this by using particles
generated using Metropolis particle tracing to find the centers in the following
way: First, a large number of particles are generated (typically on the order of
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106) and these are divided into two sets depending on whether they belong to
∂V or V0. Then, a k-means clustering [Johnson and Wichern, 2002] is performed
on each set, which results in a number of cluster centers (typically on the order
of 103), which are used directly as the final region centers. Lastly, the two sets
of region centers are organized in a kd-tree [Bentley, 1975], so that the nearest
region center can be found quickly. This is done for both photons and importons,
so the result is four kd-trees with region centers: one for each of surface/volume
radiance/importance.

In order to perform k-means clustering it is necessary to define a distance func-
tion. The classical choice is to use Euclidean distance to classify points. How-
ever, in the surface case (∂V), this leads to poor results, since points on opposite
sides of e.g. a thin wall can end up being clustered together. This is suboptimal,
since the incident radiance/importance at these points can be very different, and
therefore these points should not be part of the same region. To avoid this a
more sophisticated distance function should be used. A distance function which
measures actual geodesic distance along the manifold would suffer less from this
problem, but would be prohibitively expensive to evaluate. A compromise can
be made by using a distance function based on Euclidean distance, but which
also uses information about the normal at the region center and at the point on
the surface where the particle hit. We used the function

dist(xs,xc) = α |xs − xc|+ (1− n(xs) · n(xc)), (5.16)

where xs is the position of the particle, xc is the region center, and n is the
normal at the given point. The α parameter is necessary to control the influ-
ence of the distance part versus the normal part, and depends on the scale of
scene. While not completely foolproof, taking curvature into account tends to
be significantly better than using Euclidean distance alone, and in addition the
function remains fast to evaluate. To actually use it, it is necessary to store
the (shading) normal with each particle. It is also necessary to store a normal
together with the region center and update this normal as part of the k-means
algorithm. An example of the clusters resulting from using this procedure is
shown in Figure 5.9.

For the volume case (V0), the situation is slightly different. As mentioned above,
here we want to avoid clustering particles across cell boundaries. We solve
this problem by giving each cell a unique identifier and then only clustering
particles from the same cell using the ordinary Euclidean distance function. To
accomplish this, it is necessary to store the cell identifier with each particle. It is
also necessary to store the cell identifier together with the region center, so that
it is possible to locate the nearest region center which is also in the same cell
when performing the k-means clustering. This too is not completely foolproof,
but tends to work well enough in practice for most scenes.
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Figure 5.9: The Voronoi regions resulting from clustering the photons shown in Fig-
ure 5.13 using the k-means algorithm and the distance function from
Equation 5.16. Note how the regions automatically get smaller in the
important parts of scene where the photon density is high. This is an
advantage, since having smaller regions means that the environment map
with incident radiance is computed by averaging over a smaller surface
area and therefore is more accurate. The regions resulting from cluster-
ing the importons are very similar.

5.2.4 Projection

Once the region centers and their extents have been determined, the environ-
ment maps with incident radiance or importance needs to be computed. These
environment maps can be computed using the particles that were also used to
find the region centers using the k-means algorithm. This is done by taking
the set of particles that were assigned to a particular region and adding their
weights to the texels in the environment map that corresponds to their incom-
ing directions. Often, too few particles will be assigned to a given region for
the environment map with incident radiance/importance to converge properly.
Too overcome this problem, more particles can simply be generated. I.e., once
the current set of particles have been assigned to their respective regions and
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projected, they can be discarded. A new set of particles can then be traced,
assigned, and projected, and so on until the environment maps have converged.

Numerous different environment map parametrizations exist. We use a variation
of the ordinary latitude-longitude parametrization, where each texel subtends
the same solid angle. Compared to the regular latitude-longitude format, this
parametrization, which is also known as Peters’ Projection, has the advantage
that because each texel has the same solid angle, the distribution of samples
(particles) across the texels will be more uniform. Since the environment maps
represent average incident quantities, they tend to be low-frequency, and there-
fore need not be high resolution (we use a resolution of 32× 16).

Once the environment maps have been computed, it will be necessary transform
them into a form suitable for importance sampling, so that directions can be
sampled with densities p(ω) ∝ Li(ω) or p(ω) ∝ Wi(ω). Environment maps are
essentially tabulated 2D functions, and they can be sampled using a numerical
version of the inversion method described in Section 3.4. Importance sampling
such a function with the inversion method is a two step procedure, where first the
row is chosen according to a 1D CDF, and then the column is chosen according
to another 1D CDF. The CDF for choosing the row is based on the marginal
density, which can be found by integrating the environment map along each
row of texels. The CDFs for choosing the columns can be computed from the
rows of the environment map. Inverting a tabulated CDF can be done using
a binary search. This means that to find a texel corresponding to a pair of
random numbers, we first perform a binary search to find the row and then
another binary search to find the column. Once the texel has been found, a
random direction within the solid angle of that texel is chosen. Due to the
parametrization used, each texel has the same solid angle 4π/n, where n is the
number of texels in the environment map. This means that the final probability
becomes

p(ω) = prow pcolumn
n

4π
,

where prow and pcolumn are the probabilities of sampling the texel.

Memory consumption can be an issue if the scene has many regions. If this is the
case, it may not be possible to store all the environment maps in main memory at
the same time both during preprocessing and rendering. Memory requirements
can be reduced during preprocessing by instead storing the environment maps
in a memory mapped file. This can be achieved in the following way: First,
generate the kd-tree with the region centers as described above and initialize a
memory mapped file with empty environment maps. Next, trace particles and
sort these according to what region they belong to using the kd-tree. Finally,
load the environment maps from disk one by one and add the particles from
the corresponding region. Once enough particles have been traced so that the
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environment maps will have converged, the environment maps can be converted
to the CDF form and compressed using the technique described in Lawrence,
Rusinkiewicz, and Ramamoorthi [2005], which should ensure that the memory
requirements during rendering also become more manageable.

5.3 Rendering Pass

In the previous section we saw how global context could be created using particle
sampling. In this section we will discuss how this global context can be used to
improve the local path sampling procedure. A summary of the generated global
context and its intended use is shown in the following table:

Type Quantity Purpose

Adjoint image I∗j
Used for sampling the initial ver-
tex in light paths.

Surface radiance tree Li(xs,ω)

Used for sampling outgoing di-
rections from vertices, xs ∈ ∂V,
in eye paths.

Surface importance tree Wi(xs,ω)

Used for sampling outgoing di-
rections from vertices, xs ∈ ∂V,
in light paths.

Volume radiance tree Li(xv,ω)

Used for sampling outgoing di-
rections from vertices, xv ∈ V0,
in eye paths.

Volume importance tree Wi(xv,ω)

Used for sampling outgoing di-
rections from vertices, xv ∈ V0,
in light paths.

5.3.1 Light Source Sampling

The first task when creating the light path is to find the position of the ini-
tial vertex in the random walk. Rather than sampling this vertex according
to radiant exitance, we sample it using the adjoint image as detailed in Sec-
tion 5.2.1. This means that the initial vertex, x0, is sampled with density given
approximately by

p(x0) ∝
∫
S2

Le(x0,ω)Wi(x0,ω) | cos θ| dσ(ω).
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Once we know the position of the initial vertex, we perform a lookup in the
importance kd-tree to find the region that this vertex belongs to and the en-
vironment map with approximate incident importance. Using this additional
information, it is possible to sample the outgoing direction from the light source
using the mixture density,

p(ω) = c1 pLe(ω) + c2 pWi
(ω), (5.17)

where pLe
(ω) is a PDF that is proportional to Le,∂V(x0,ω) | cos θ|. The con-

stants, c1 and c2, control the influence of the radiance term versus the impor-
tance term. The effectiveness of the algorithm is not particularly sensitive to
these values, so in our experiments we have simply used c1 = c2 = 0.5.

Ideally we would like to have sampled the outgoing direction according to

p(ω) ∝ Le,∂V(x0,ω)Wi(x0,ω) | cos θ|,

i.e., according to product distribution of radiance and importance. Compared
to this, it is clear that Equation 5.17 is only an approximation. See Section 5.4.3
for further discussion of this issue.

5.3.2 Camera Sampling

Sampling the initial vertex in the eye path turns out to be simpler than sampling
the first vertex in the light path. As discussed in Section 5.2.1, we simply sample
the initial vertex with uniform probability across the aperture.

It is possible to sample the outgoing direction using a procedure similar to how
the outgoing direction from light sources is found. I.e., find the incident radiance
by querying the radiance kd-tree and then sample a direction using a mixture
density based on PDFs proportional to We and Li. However, this is often not a
good idea. The reason is that while the this density may in fact reduce absolute
error, it can result in a very uneven distribution of samples among the different
measurements (the W j

e ’s), since the number of samples allocated to a given
measurement will depend on how bright the corresponding pixel is. As a result,
dimmer pixels will be estimated with a relatively lower accuracy than brighter
pixels, which will manifest itself as noise in the shadows, something to which
the human visual system is particularly susceptible. Instead, we sample the
outgoing direction according to We as defined by the camera model.
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5.3.3 Kernel Sampling

We also modify the procedure for sampling outgoing directions at the remaining
vertices in the random walks. If xn ∈ ∂V, the usual approach is to sample the
outgoing direction according to a pair of PDFs, pfs

and pf∗s
. The first PDF, pfs

,
is proportional to fs(xn,ω,ω

′) | cos θ| and is used when constructing eye paths
and the second PDF, pf∗s

, is proportional to f∗s (xn,ω,ω
′) | cos θ| and is used

when constructing light paths.

We augment these densities by a term that accounts for incident radiance or
importance. Like above, we query the kd-trees to find the current region and
the incident quantities. This makes it possible to use the mixture density,

p(ω) = c1 pfs
(ω) + c2 pLi

(ω), (5.18)

for constructing eye paths and the mixture density,

p(ω) = c1 pf∗s
(ω) + c2 pWi

(ω), (5.19)

for constructing light paths. Note that it is necessary to query both radiance
and importance even if only one of these quantities is ever used for constructing
a particular path. The reason is that this information is required for computing
the probabilities of the other ways the path could have been constructed, which
is necessary for doing multiple importance sampling.

The functions, pfs
and pf∗s

, may themselves be mixture densities. This is com-
mon if the BSDF has multiple components. For instance, plastic can modeled
with a BSDF for the base layer (e.g. a Lambertian BSDF) combined with a BSDF

for the coating (e.g. a Cook-Torrance BSDF). In that case, pfs (and pf∗s
) would

be mixture densities with a term for each BSDF component and the final mix-
ture density would then have three components. We assign equal weights to all
the densities, so that c1 = c2 = . . . = cn = 1/n, if there are n components in
the mixture.

If the BSDF (and thereby pfs
) contains a Dirac delta function, the above pro-

cedure cannot be used. The reason is that for these materials (perfect mirrors,
glass, etc.) only single incoming directions matter, and attempting to find these
by random sampling according to incident radiance or importance is not pos-
sible. Instead, we simply sample these directions according to pfs

. However,
incident radiance or importance can still be used for selecting among specular
BSDF components if the BSDF has more than one. For instance, glass is often
modeled using the BSDF for perfect specular reflection combined with the BSDF

for perfect specular transmission (see Section 2.6.1). The standard way of select-
ing between these two components is to use the Fresnel coefficients. However,
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if we know the incident quantities, we can look up the approximate incoming
radiance or importance from the reflected and refracted directions using the en-
vironment maps. We can then base our decision on these values scaled by the
Fresnel coefficients.

Sampling outgoing directions for the volume case (xn ∈ V0) is very similar to
the above procedure. We first query the kd-tree so that incident radiance and
importance can be estimated. Then rather than sampling the outgoing direction
according a PDF, pfp(ω) ∝ fp(ω · ω′), we use the mixture density,

p(ω) = c1 pfp
(ω) + c2 pLi

(ω),

for constructing eye paths and the mixture density,

p(ω) = c1 pfp
(ω) + c2 pWi

(ω),

for the light paths. Like above, we assign equal weights to all the components
in the mixture.

5.3.4 Russian Roulette

Global context can also be used to improve Russian roulette, so that paths that
are heading toward unimportant regions of the scene are terminated with higher
probability. In order to implement this we first sample a candidate outgoing
direction, ω′, according to the p(ω′) given above. We then perform a look up in
the appropriate environment map to find the incident importance or radiance
from that direction.

For light paths the survival probability can be computed as

q = min

{
1,
α f∗s (xs,ω

′,ω)Wi(xs,ω
′) | cos θ|

c1 pf∗s
(ω) + c2 pWi

(ω)

}
,

and for eye paths it can be computed as

q = min

{
1,
β fs(xs,ω

′,ω)Li(xs,ω
′) | cos θ|

c1 pfs
(ω) + c2 pLi

(ω)

}
.

The constants, α and β, are necessary since neither Wi or Li are normalized. The
procedure for computing the survival probability in the volume case is almost
identical, but of course uses the phase function instead.
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5.4 Results

We have implemented a spectral version of the Metropolis light transport algo-
rithm in C/C++ (using the variation by Kelemen et al. [2002]) that we will use
to demonstrate the enlightened local path sampling algorithm.

5.4.1 Sampling using Adjoint Measurements

We begin by examining the advantages of sampling starting positions on light
sources using adjoint measurements. The algorithms used are bidirectional path
tracing and Metropolis light transport modified to sample starting positions in
light paths according to the adjoint image, rather than according to radiant
exitance alone.

The test scene, shown in Figure 5.10, is a maze-like scene of 3 × 3 connected
rooms. Each room has a diffuse area light source labeled a–i and all the light
sources have the same power. The camera is located in the bottom right room
observing a glass sphere on a blue slab. Light source ‘i’ is responsible for the
majority of lighting is this room, though the camera is also able to see a small
part of the adjacent rooms, which are lit primarily by light source ‘f’ and ‘h’.

The right part of Figure 5.10 shows the adjoint image for this scene, which was
rendered in the resolution of 72 × 72 using regular Metropolis light transport.
Due to the way positions in [0; 1]2 are mapped to the light sources, the appear-
ance of the adjoint image is that of nine almost solid colored columns (some
Monte Carlo noise is still visible). These nine 8× 72 sub-images corresponds to
the adjoint measurements across the light sources. E.g. light source ‘f’, which
is highlighted in red, corresponds to the fifth of these sub-images.

The reason the nine columns are almost solid colored is that the incident im-
portance across the light sources in almost constant (the light sources are small
planar quadrilaterals). Since the radiance is also constant, the adjoint mea-
surements become near constant across the light sources (recall the definition
of adjoint measurements, Equation 5.6). This is only true for simply scenes
such as this; for scenes with more complicated area light sources the adjoint
measurements can vary considerably across a light source.

While each sub-image is of relatively constant intensity, the difference in in-
tensity between the columns is considerable. Not surprisingly, light source ‘i’
in the room containing the camera is the most important by far, so we should
expect that spending most time on this light source would be beneficial. The
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Figure 5.10: Test scene used to demonstrate sampling using adjoint measurements.
This scene consists of 3 × 3 connected rooms each with an area light
source in the ceiling. All the nine light sources have the same power
and are labeled a–i. The camera is in the room in the bottom right
observing a glass sphere on a blue slab. The adjoint image of the scene
is shown in the right part of the figure together with the regular image
seen from the camera. Each column in the adjoint image corresponds
to adjoint measurements of one of the nine light sources.

light sources in the rooms directly adjacent to the room containing the camera
are also relatively important (‘f’ and ‘h’) and so is light source ‘e’. However,
the remaining light sources are all relatively unimportant, since they contribute
very little light visible to the camera, and should therefore only be assigned few
computational resources.

Figure 5.11 shows the results of rendering the maze scene using bidirectional
path tracing and Metropolis light transport. The top row of images were ren-
dered using bidirectional path tracing and the bottom row using Metropolis light
transport. The left column of images uses regular sampling of light path starting
positions, whereas the right column uses the adjoint image seen in Figure 5.10.
All images were rendered in approximately the same time (the overhead intro-
duced by warping samples according to the adjoint image is negligible compared
to the cost of finding intersections, sampling BSDFs etc.). The images rendered
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Figure 5.11: Results of rendering the maze scene with and without the proposed
technique using bidirectional path tracing and Metropolis light trans-
port. All the images were rendered using four samples per pixel, which
took approximately one minute.

(a) Bidirectional path tracing
(using radiant exitance).

(b) Bidirectional path tracing
(using adjoint measurements).

(c) Metropolis light transport
(using radiant exitance).

(d) Metropolis light transport
(using adjoint measurements).

using bidirectional path tracing used four samples per pixel. The images ren-
dered using Metropolis light transport used four samples per pixels on average,
since due to the nature of this algorithm it is not possible to stratify the sam-
ples exactly. The rendering time does not include the time required to generate
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the adjoint image. However, the low resolution of the adjoint images (72× 72),
compared to the resolution of the final image (512×512) means that the cost of
generating the adjoint image is very small (e.g. the cost of rendering the adjoint
image at 50 samples per pixel is approximately the same as rendering the full
image at one sample per pixel).

The benefit of sampling according to the adjoint image when using bidirectional
path tracing can be seen by comparing Figure 5.11a and Figure 5.11b. With
regular bidirectional path tracing many light paths are started on the unimpor-
tant light sources. Since it is unlikely that these random walks will end up near
the eye path, most of the shadow feelers will be blocked and consequently many
samples will be zero. On the other hand, if the adjoint image is used, most light
paths will start on the light source in the room with the camera or in the rooms
directly adjacent to this. These paths will have a much higher probability of
successfully connecting to the eye path and therefore have lower variance.

As shown in Figure 5.11, the Metropolis light transport algorithm also benefits
from sampling according to the adjoint image, though to a lesser extent than
bidirectional path tracing. If the noise in Figure 5.11c and Figure 5.11d is
compared it can be seen that the noise in the left image is more splotchy, whereas
the amount of noise in the right image is less and in addition the noise has a
more “pleasant” uniform distribution. The reason for this difference is related
to the discussion of bidirectional path tracing above, since the Metropolis light
transport algorithm uses this algorithm to generate paths.

Recall that Metropolis light transport is based on the idea of mutating paths
using two mutation strategies (see Section 4.7.4), Also recall that a good muta-
tion is a mutation that significantly changes the current state, while still being
accepted with high probability, since such mutations quickly explore the state
space. The first mutation strategy is responsible for small mutations and the sec-
ond is responsible for large mutations (these are implemented using the random
walk kernel and the independence kernel described in Section 3.8.2). We chose
each type with equal probability. The reason for the appearance of Figure 5.11c
is that most large mutations are rejected, since the proposed paths do not con-
nect the sensor and light sources, and thus transfer no energy. This means that
many samples will be repeated and the chain will move only because of small
mutations. This leads to highly correlated samples and the splotchy patterns in
the noise. This is not the case in Figure 5.11d, since here the adjoint image is
used to find starting points for light paths. Large mutations are therefore more
likely to be accepted and the state space is explored more quickly.
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5.4.2 Metropolis Particle Sampling

The algorithms of bidirectional particle sampling and Metropolis particle sam-
pling were presented in Section 5.2.2. The advantage of these algorithms com-
pared to classical particle sampling is that the distribution of particles is based
on both radiance and importance, rather than only one of these quantities. Since
Metropolis particle sampling is really an extension of bidirectional particle sam-
pling, we will focus on this method here.

In order to demonstrate Metropolis particle sampling, we will use the scene
shown in Figure 5.12. This scene, which is similar to the test scene in Veach
and Guibas [1997], consists of two rooms. The camera is observing a table with
some objects in one of the rooms. The only light source in the scene is an area
light source in the ceiling of the other room. The door between the rooms is
almost closed allowing only small fraction of the emitted light to reach the room
with the camera.

Figure 5.12: Test scene used to demonstrate the proposed technique. This scene,
which is inspired by Veach and Guibas [1997], consists of two rooms
separated by a door slightly ajar. The scene has one light source, which
is an area light source in the ceiling of the adjoining room. This scene
is lit almost exclusively by indirect illumination.

This scene is difficult, because the distribution of radiance is very different from
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the distribution of importance. This means that if photons and importons are
sampled using classical particle sampling, very few photons would end up near
the sensors and very few importons near the light source.

As shown in Figure 5.13, this is not the case with Metropolis particle sampling.
Since this algorithm samples particles using paths starting from both sensors
and light sources, many photons end up in visible parts of the scene. Similarly,
the density of importons in the adjoining room is much higher with Metropolis
particle sampling than it would have been with classical particle sampling.

Figure 5.13: Photons (left) and importons (right) generated using Metropolis parti-
cle sampling. Note the similarity between the distributions of photons
and importons. Also note the much high particle density inside the
camera frustum (the camera location is that of Figure 5.12). Had the
photons been sampled using classical photon sampling, the vast major-
ity of photons would have been located in the adjoining room and only
very few would have found their way to the camera.

(a) Distribution of photons. (b) Distribution of importons.

Another thing to notice is that the distribution of photons and importons is very
similar, as they should be according to Equation 5.14. This is due to the way
the particles are generated using Metropolis sampling and bidirectional particle
sampling, since with these algorithms a photon and an importon is extracted
from each vertex along the generated paths. One consequence of this is that the
density of particles in visible areas will be high, which is seen in the image as
the outline of the camera frustum.
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5.4.3 Sampling Directions using Incident Quantities

Previously we saw how the adjoint image could be used to improve sampling
of light path start positions by sampling according to the product of emitted
radiance and incident importance. As discussed in Section 5.3.3, this idea can
be extended to sampling outgoing directions at the remaining vertices in the
path, so that eye paths are sampled according to both the scattering kernel
and incident radiance and light paths according to the adjoint scattering kernel
and incident importance. Unfortunately, as discussed further below, sampling
outgoing directions at each vertex using these incident quantities turns out to
be more challenging than sampling starting positions in light paths.

To test the proposed algorithm we will use the scene shown in Figure 5.12. This
scene is interesting, since it is very difficult to generate paths that randomly pass
through the small opening in the doorway using regular bidirectional path trac-
ing. We first built the required data structures as described in Section 5.2. This
involved generating particles using Metropolis particle sampling. The photons
were then organized into approximately 16384 clusters (shown in Figure 5.9)
and the same was done for the importons. Finally, the environment maps with
incident radiance or importance were computed (we used a resolution of 32×16).
See Table 5.1 for details. For this particular scene there is no advantage to sam-
pling light path start positions using the adjoint image, since the scene only has
one light source, which is a simple planar area light source, so that part of the
algorithm has been elided.

Table 5.1: Various statistics for the preprocessing pass that was used for generating
the picture shown in Figure 5.14a. The total time for the preprocessing
pass was 121 seconds. Particles is the total number of photons and im-
portons that were sampled. The memory usage includes both the kd-tree
and environment maps.

Particles traced Clusters Resolution Memory usage

Radiance 85× 106 16384 32× 16 40 MiB

Importance 85× 106 16384 32× 16 40 MiB

As described in Section 5.3, the basic idea of enlightened local path sampling
is to guide light paths to areas visible to the camera and eye paths to areas
“visible” to the light sources. In the present scene this means that the outgoing
direction from the initial vertex in the light path should be chosen in the general
direction of the doorway (based on Equation 5.17). The same is true for the
remaining vertices in the light path (but instead using Equation 5.19), and also
for vertices in the eye path (using Equation 5.18). Ideally, this should lead to
a higher probability of successfully generating a path that connects the light
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source and the sensor.

Figure 5.14: Results of rendering using the proposed algorithm. The top image was
rendered in five minutes, which does not include the 121 seconds for
the preprocessing pass. The bottom image was rendered using regular
Metropolis light transport in seven minutes.

(a) Metropolis light transport (using enlightened local path sampling).

(b) Metropolis light transport (using regular local path sampling).
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Figure 5.14 shows the results of rendering with and without the proposed tech-
nique on an Intel Core 2 Quad (Q6600) using four threads. Both images were
rendered in approximately seven minutes. Compared to the technique of sam-
pling starting positions using the adjoint image, it is clear that the benefit of
sampling directions in this way is much more questionable (in fact in this par-
ticular scene it even seems to be detrimental to the overall image quality). As
with any importance sampling scheme, the goal is to increase to efficiency. Since
the preprocessing pass takes time from the rendering pass and each sample in
addition is more expensive using the proposed method, the total number of
samples is less compared to regular Metropolis light transport. This means that
for the proposed method to be of any benefit, the decrease in variance of the
samples must more than make up for this, since otherwise efficiency is reduced.
Unfortunately this does not seem to be the case, since Figure 5.14a has more
variance than Figure 5.14b.

There are several possible causes of the negative results. Firstly, the environment
maps with incident radiance/importance had not converged completely, so some
Monte Carlo noise was still present. This could have negatively impacted the
sampling. Secondly, the resolution of the environment maps may not have been
sufficient. In the test scene the small slither in the doorway is a very small
target, which could not be accurately represented in a 32× 16 image. Thirdly,
the clusters may have been too large. This would mean that the representation
of the incident quantity would have been inaccurate with negative consequences
for sampling. Finally, the overhead of sampling according to additional PDFs
also negatively affects the results. These are causes that could be fixed by
assigning more resources (both time and memory) to the preprocessing pass,
though at the cost of further reducing the resources available for the rendering
pass. Alternative options for addressing these issues are discussed in Section 5.6.

5.5 Related Work

In the following we discuss existing algorithms and point out their differences
and similarities to the present work.

5.5.1 Particle Sampling

As described earlier, particle sampling is used to create the data structures we
use to improve importance sampling. Particle sampling has been used exten-
sively in computer graphics. The most popular algorithm based on particle
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sampling is the photon mapping algorithm by Jensen [1996], which was later
extended to participating media by Jensen and Christensen [1998]. Photon
mapping is a two-pass algorithm, where photons are generated in the first pass
using the procedure we called classical particle sampling earlier. In the second
pass the scene is rendered from the view point and radiance estimated using
density estimation based on the photons. Since this algorithm uses classical
particle sampling, it suffers from problem of unsuitable particle distributions
described earlier, i.e. only few photons may reach areas visible to the camera.
Peter and Pietrek [1998] propose a three-pass algorithm to remedy this situ-
ation. Their idea is to first trace importons through the scene and then use
these to guide photons to visible areas. They also propose a way of sampling
the starting positions on the light sources based on importance, which is similar
in spirit to how we select starting positions on the light sources using adjoint
measurements. However, while using this algorithm could potentially result in
better photon distributions in some scenes, it is still based on classical particle
sampling. Therefore, in difficult scenes too few importons will reach areas near
the light sources where they would be needed later in the second pass to guide
the photons. Simpler variations of this approach are described by Suykens and
Willems [2000] and by Keller and Wald [2000]. They both trace photons using
classical particle sampling, but then randomly decide whether or not to store
the photon based on the importance. This can help reduce the number of pho-
tons in unimportant regions, but does not help to increase the photon density
in important regions.

Our particle sampling approach is closer to that of Fan, Chenney, and Lai [2005],
who also sample particles from paths using Metropolis-Hastings based on the
measurement contribution function. This leads to a distribution of photons that
is based on both radiance and importance. However, their motivation is different
from ours. Their goal is to generate a distribution of photons that is well suited
for final gathering in a traditional photon mapping context. In contrast, we
sample both photons and importons and use these particles to improve the
sampling of paths in bidirectional path tracing. An additional difference is that
their algorithm is based on the original formulation of Metropolis light transport,
whereas we used the Kelemen variation.

5.5.2 Radiance/Importance Driven Path Sampling

Many algorithms used radiance or importance to improve path sampling. An
early example of radiance driven path sampling is the two-pass algorithm by
Jensen [1995]. In the first pass a photon map is constructed similar to regular
photon mapping and in the second pass the scene is rendered using path tracing.
During path tracing, the outgoing direction at each vertex is sampled using a



5.5 Related Work 163

PDF based on the product of the BRDF, cosine term, and the incident radiance,
which is estimated using the photon map. A variation of this approach described
by Hey and Purgathofer [2002], which differs only in how photons are used.
Lafortune and Willems [1995b] also use radiance driven path tracing, though in
their case radiance is stored in a 5D “binary” tree that is constructed during
rendering.

An algorithm for importance driven path sampling is described by Dutré and
Willems [1994]. This algorithm is a variation of light tracing, where adaptive
PDFs are constructed at the (point) light sources, so that outgoing directions
of high importance can be chosen with higher probability. This algorithm was
extended by Dutré and Willems [1995] to also take importance into account
when sampling outgoing directions at the remaining vertices. This is achieved
by discretizing the scene into a number of patches that each store incident
importance, which is quite similar to how we divide the scene into regions.

The biggest difference, compared to the above algorithms, is that our algorithm
is based on bidirectional path tracing. In most cases, this algorithm is much
more efficient than path tracing or light tracing, especially if combined with
Metropolis light transport. Since this algorithms is bidirectional, we generate
light paths using importance and eye paths using radiance. This means that
our algorithm can be seen as a combination of radiance driven path tracing and
importance driven light tracing, but combined based on the weights given by
multiple importance sampling.

5.5.3 (Ir)radiance Caching

Indirect illumination changes smoothly across surfaces and is therefore well
suited for interpolation. This is exploited in the irradiance caching algorithm
by Ward, Rubinstein, and Clear [1988], which stores (indirect) irradiance in an
octree. During rendering the octree is queried for irradiance samples near the
current vertex. If suitable samples are found the irradiance is computed by
interpolation; otherwise the irradiance is computed using Monte Carlo integra-
tion and the octree updated with the new irradiance value. This algorithm was
later improved by Ward and Heckbert [1992] with gradients for higher quality
interpolation.

Since the stored quantity is irradiance, only Lambertian (ideal diffuse) can be
handled with irradiance caching. Radiance caching, developed by Křivánek,
Gautron, Pattanaik, and Bouatouch [2005b] and improved with gradients by
Křivánek, Gautron, Bouatouch, and Pattanaik [2005a], caches radiance encoded
as low-order hemispherical harmonics. This makes it possible to also handle
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low-frequency BRDFs. Radiance caching has also been extended to participat-
ing media by Jarosz, Donner, Zwicker, and Jensen [2008a] and improved with
gradients by Jarosz, Zwicker, and Jensen [2008b].

Unlike the algorithm presented in this work, these algorithms are all biased,
since they use interpolated values. However, there are still many similarities,
especially with the radiance caching algorithms. For instance, in our algorithm it
would also have been possible to store incident radiance/importance as low-order
spherical harmonics. This could potentially have reduced memory requirements
and would have made it possible to use gradients for better interpolation. Func-
tions encoded as spherical harmonics can also be importance sampled directly
(using the method presented in Jarosz, Carr, and Jensen [2009]). However, we
found that compared to our tabulated CDF representation, this way of impor-
tance sampling is significantly slower, since we can only warp a single sample at
a time.

5.5.4 Exploiting Coherence

Several other algorithms gain efficiency by exploiting various forms of coherence.
Clarberg and Akenine-Möller [2008] encode the 4D visibility function sparsely
as 2D visibility maps stored in a kd-tree. During rendering the nearest sample
with similar normal is located and used to improve the efficiency of the Monte
Carlo integration using the technique of control variates. This is very similar to
our approach, except that we store radiance/importance rather than the binary
visibility function.

Budge, Anderson, and Joy [2008] present an algorithm for rendering unbiased
caustics lighting in a virtual point light source algorithm. Like ours, this algo-
rithm is based on tracing particles (in this case caustics photons) and clustering
them. In each cluster the incident radiance from caustics is computed and rep-
resented in tabulated form. This in turn makes it possible to importance sample
using the inversion method. Our algorithm is essentially a generalization of this
algorithm to any kind of lighting effect (i.e. not just caustics). Unlike their al-
gorithm, we also need to represent importance, since we use bidirectional path
tracing as the underlying algorithm rather than virtual point light sources.

Coherence also exists between pixels in an image, a fact which is exploited in
the algorithm by Cline, Adams, and Egbert [2008]. This algorithm works by
constructing “importance maps,” which are similar to our tabulated CDFs. Like
our algorithm, these maps are then used to warp the random number used for
sampling paths. However, unlike our algorithm, these maps are constructed
“lazily” based on previously rendered pixels, rather than in a preprocess.
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5.6 Future Work

In the following we discuss possible improvements to the presented algorithm
that could be interesting to pursue as future work.

5.6.1 Hierarchical Basis Functions

Hierarchical basis functions, such as wavelets or spherical harmonics, could po-
tentially be used to improve the procedure for sampling outgoing directions
at vertices. Recall that rather than sampling according to the product of the
scattering kernel and incident radiance/importance, we sample according ei-
ther factor separately and then combine the results using multiple importance
sampling (see Section 5.3.3). Multiple importance sampling works well if the
functions are relatively similar (i.e. if they “overlap”). However, if the functions
are very dissimilar, multiple importance sampling can be inefficient, since few
samples will be placed where the product of the functions is large.

Clarberg, Jarosz, Akenine-Möller, and Jensen [2005] propose a method for sam-
pling according to the product distribution of functions represented using Haar
wavelets. This work is generalized to spherical harmonics by Jarosz et al. [2009].
Using these methods would make it possible to sidestep the problems with mul-
tiple importance sampling mentioned above. The difficulty with using these
methods is that the scattering kernel would have to be available in the chosen
basis. The is not a problem for measured BRDFs, since they can be stored
directly as e.g. wavelets. However, obtaining the wavelet coefficients of a 2D

slice of an analytical reflectance model or phase function is more challenging.
Another issue is the time it takes to generate a single sample. These methods
were presented in the context of computing direct lighting from environment
maps, where many samples can be warped simultaneously, which makes the per
sample overhead of the warping algorithm small. However, as mentioned earlier,
this is not possible when using the method for creating random walks, since in
that case only a single outgoing direction is needed at each vertex. This makes
this form of sampling fairly costly compared to traditional methods, such as
BSDF importance sampling for analytical reflection models.

5.6.2 Gradient Based Interpolation

As mentioned, storing incident radiance and importance as spherical harmonics
rather than as tabulated functions may decrease storage requirements and even
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enable sampling according to the full product distribution.

Another advantage of representing these quantities as spherical harmonics is
that it could make the approximations of the functions more accurate. Recall
that radiance and importance is currently approximated as being constant with
respect to position within each region. If a spherical harmonic approximation is
used instead it becomes possible to reconstruct the quantities by interpolating
the coefficients in the nearest regions. I.e., rather than simply using the coeffi-
cients stored in the nearest region, we find the n nearest regions and interpolate
the coefficients stored in them. If this approach is used in combination with
the gradients derived by Křivánek et al. [2005a] and by Jarosz et al. [2008b] the
resulting approximation should be significantly improved.

5.6.3 Progressive Construction of Global Context

Two-pass algorithms have the disadvantage that it may be difficult to determine
in advance how many computational resources to assign to each pass. In the
present case this means that it may be difficult to determine how much time to
allocate to constructing global context versus the actual rendering process.

This problem can be avoided if the algorithm is transformed into a single pass
algorithm, where the approximations of radiance and importance in the scene
are constructed progressively during rendering. This should be possible, since
the preprocessing pass and rendering pass are quite similar in that they both
sample paths. The difference is just that in the preprocessing pass the paths
are used to build global context, whereas in the rendering pass they are used to
create the image. During rendering the paths would be used both to create the
image and to update the global context and associated PDFs. Once updated
rendering would then continue with the new improved PDFs.

The difficulty with this approach is that changing PDFs during rendering when
using regular Monte Carlo can be tricky. In general it will be necessary to discard
all samples generated using the previous PDFs to ensure unbiasedness, which
of course is wasteful. Alternatively the samples can be reweighted, though this
would require storing all previously generated samples, which is unpractical. A
solution to this problem may be offered by Population Monte Carlo methods.
Population Monte Carlo [Cappé, Guillin, Marin, Robert, and Roberty, 2004] is
an alternative formulation of Monte Carlo based on evolving a population of
samples through successive generations. The advantage of approach is that the
algorithm is unbiased even if the PDFs are updated after each generation.
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Conclusion

The light transport problem can be phrased as an integration problem that can
be solved using Monte Carlo methods. Unfortunately many interesting scenes
are difficult to render using these methods, due to lack of good methods for
importance sampling. The fundamental difficulty that limits effective impor-
tance sampling is lack of global context; i.e. we do not have enough information
available to sample paths distributed according to the measurement contribu-
tion function, which would be ideal according to the principle of importance
sampling. Consequently, generating images using these methods can in some
cases be extremely time consuming.

The goal of this work was to investigate how additional information derived
from the scene description could be used to improve importance sampling. Our
focus was on modern unbiased methods, in particular bidirectional path tracing
and Metropolis light transport.

The challenge of any importance sampling strategy is that the additional time
spent must be more than offset by the reduction in variance the method provides,
since otherwise overall efficiency is reduced. In our case this meant that the
relative decrease in variance of the samples had to be greater than the relative
increase in rendering time caused by having to analyze the scene, extract the
relevant information, and build data structures.
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We have investigated two methods for improving importance sampling that
we together call enlightened local path sampling and that uses this kind of
derived information. The first method is simple to implement and provides
good speedups in scenes with many or complicated light sources. The second
method is more complicated and unfortunately did not provide the expected
speedup.

We have also derived a new method of particle sampling. This was necessary,
since existing methods were unsuitable for our purposes.

6.1 New Ways of Sampling Particles

Particle sampling forms the basis of many algorithms in computer graphics. The
standard way of generating photons is to perform a random walk starting from
the light source. The downside to this approach (and the similar approach to
create importons) is that the particles become distributed according to radiance
(or importance). This is undesirably in scenes where the distribution of radiance
and importance differ greatly, which is common in hard scenes.

To avoid this problem we suggested bidirectional particle sampling. Bidirec-
tional particle sampling samples photons and importons simultaneously from
paths built starting from both sensor and light source. Metropolis particle sam-
pling extends this method by sampling paths according to the measurement
contribution function so that particles are sampled where radiance and impor-
tance are simultaneously high.

The advantage of this approach is that regions where many important paths
pass through are sampled more densely. This means that more samples are
placed where they matter most to the integral being solved.

6.2 Sampling using Adjoint Measurements

Sampling the initial vertex in light paths in bidirectional path tracing can be
difficult in scenes with many light sources. The problem is that based on the
scene description we only know the power of the light sources, but not how
important the emitted light is to the sensors. To help solve this problem we
introduced the concept of adjoint measurements. Adjoint measurements are the
light sources’ response to incident importance. This makes adjoint measure-
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ments ideal for importance sampling light path start positions. Computing the
adjoint measurements can be done in a preprocess and is fairly fast.

Implementing this method in a existing bidirectional path tracer is fairly straight-
forward and only requires a modest amount of coding. The advantage of using
this method can be large in scenes with many light sources and we are able to
demonstrate significant reduction in variance both for bidirectional path tracing
and Metropolis light transport.

6.3 Sampling using Incident Quantities

Bidirectional path tracing can be inefficient in scenes where the distribution
of radiance and importance differ greatly. The reason is that light paths and
eye paths explore different parts of the scene and therefore never “meet.” This
happens because the random walks are based on either radiance or importance,
but not both.

To solve this problem we suggested also taking incident importance into account
when sampling vertices in the light paths and incident radiance into account
when sampling vertices in the eye paths. This is similar in spirit to sampling
using adjoint measurements and the effect would be to make light paths more
inclined to move to areas of high importance and eye paths more inclined to
visit brightly lit areas.

The difficulty with this approach is that in order to use it we need a represen-
tation of radiance and importance in the scene. Storing and computing these
quantities accurately is much more difficult than calculating and storing the 2D

adjoint image due to the higher dimensional nature of these functions.

To keep memory requirements manageable we used a compact data structure
that stored the quantities sparsely as low resolution environment maps. As
discussed in the previous chapter this was not ideal for a number of reasons,
which lead to disappointing results. However, as outlined in the section on
future work, other ways of representing these functions exist and may be worth
exploring.

We also discussed how this technique could be extended to the volume case.
This was achieved by storing a representation of radiance/importance inside
the cells of the scene, in addition to storing the quantities across the boundaries
of the cells. The idea was that this could potentially allow for more effec-
tive importance sampling in the presence of participating media and subsurface
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scattering. However, due to time constraints we did not implement this. Con-
sequently, more work is necessary to determine whether this approach is really
beneficial.
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V (λ), see luminous efficiency function
Le(x,ω), see emission function
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δ(x), see Dirac delta function
qs(xs,ω), see surface emission term
qv(xv,ω), see phase space source
fk(xi→x→xo), see scattering kernel
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′ · ω), see phase function
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′,ω), see adjoint BSDF
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′,ω), see surf. scattering kernel
kv(xv,ω · ω′), see vol. scattering kernel
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λ0, see vacuum wavelength
µ(C), see path space measure
ν, see frequency
∂V, see boundary points
φ(x,ω, t), see phase space flux
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σs(xv), see scattering coefficient
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adjoint operators, 93
adjoint scattering kernel, 98
appearance modeling, 5
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bidirectional methods, 8
bidirectional particle sampling, 135
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black spots, 40
blackbody radiator, 50
blind Monte Carlo, 67
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boundary points, 14
BRDF, 26, 34
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energy conservation, 37
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properties, 36
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properties, 38
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Chebychev inequality, 65
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electromagnetic radiation, 4
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light sources, 49
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volume emission, 25
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defined, 23
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relative efficiency, 67
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existing algorithms, 107
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exitant importance, 93
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finite element methods, 7
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Fresnel equations, 46
fuzzy phenomena, 8

gamut mapping, 33
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summary, 149
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GPU, see graphics processing unit
graphics processing unit, 9
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importons, 125
incident importance, 93
incident radiance, 25
independence kernel, 83
index of refraction, 33

continuously varying, 33
informed Monte Carlo, 72
integral equation, 8
integral form, 89
integration problem, 8
interior points, 14
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light probe camera, 52
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light transport operators, 91
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Monte Carlo methods, 55
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surface emission term, 23
surface propagation operator, 91
surface scattering, 36
surface scattering kernel, 23
surface scattering operator, 90
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theorem of Gauss, 22
thesis organization, 11
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unbiased estimator, 61
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view-dependent methods, 6
view-independent methods, 6
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