367 research outputs found

    A survey on gas leakage source detection and boundary tracking with wireless sensor networks

    Get PDF
    Gas leakage source detection and boundary tracking of continuous objects have received a significant research attention in the academic as well as the industries due to the loss and damage caused by toxic gas leakage in large-scale petrochemical plants. With the advance and rapid adoption of wireless sensor networks (WSNs) in the last decades, source localization and boundary estimation have became the priority of research works. In addition, an accurate boundary estimation is a critical issue due to the fast movement, changing shape, and invisibility of the gas leakage compared with the other single object detections. We present various gas diffusion models used in the literature that offer the effective computational approaches to measure the gas concentrations in the large area. In this paper, we compare the continuous object localization and boundary detection schemes with respect to complexity, energy consumption, and estimation accuracy. Moreover, this paper presents the research directions for existing and future gas leakage source localization and boundary estimation schemes with WSNs

    Estimating localized sources of diffusion fields using spatiotemporal sensor measurements

    Get PDF
    We consider diffusion fields induced by a finite number of spatially localized sources and address the problem of estimating these sources using spatiotemporal samples of the field obtained with a sensor network. Within this framework, we consider two different time evolutions: the case where the sources are instantaneous, as well as, the case where the sources decay exponentially in time after activation. We first derive novel exact inversion formulas, for both source distributions, through the use of Green's second theorem and a family of sensing functions to compute generalized field samples. These generalized samples can then be inverted using variations of existing algebraic methods such as Prony's method. Next, we develop a novel and robust reconstruction method for diffusion fields by properly extending these formulas to operate on the spatiotemporal samples of the field. Finally, we present numerical results using both synthetic and real data to verify the algorithms proposed herein

    Collective Odor Source Estimation and Search in Time-Variant Airflow Environments Using Mobile Robots

    Get PDF
    This paper addresses the collective odor source localization (OSL) problem in a time-varying airflow environment using mobile robots. A novel OSL methodology which combines odor-source probability estimation and multiple robots’ search is proposed. The estimation phase consists of two steps: firstly, the separate probability-distribution map of odor source is estimated via Bayesian rules and fuzzy inference based on a single robot’s detection events; secondly, the separate maps estimated by different robots at different times are fused into a combined map by way of distance based superposition. The multi-robot search behaviors are coordinated via a particle swarm optimization algorithm, where the estimated odor-source probability distribution is used to express the fitness functions. In the process of OSL, the estimation phase provides the prior knowledge for the searching while the searching verifies the estimation results, and both phases are implemented iteratively. The results of simulations for large-scale advection–diffusion plume environments and experiments using real robots in an indoor airflow environment validate the feasibility and robustness of the proposed OSL method

    Towards Odor-Sensitive Mobile Robots

    Get PDF
    J. Monroy, J. Gonzalez-Jimenez, "Towards Odor-Sensitive Mobile Robots", Electronic Nose Technologies and Advances in Machine Olfaction, IGI Global, pp. 244--263, 2018, doi:10.4018/978-1-5225-3862-2.ch012 VersiĂłn preprint, con permiso del editorOut of all the components of a mobile robot, its sensorial system is undoubtedly among the most critical ones when operating in real environments. Until now, these sensorial systems mostly relied on range sensors (laser scanner, sonar, active triangulation) and cameras. While electronic noses have barely been employed, they can provide a complementary sensory information, vital for some applications, as with humans. This chapter analyzes the motivation of providing a robot with gas-sensing capabilities and also reviews some of the hurdles that are preventing smell from achieving the importance of other sensing modalities in robotics. The achievements made so far are reviewed to illustrate the current status on the three main fields within robotics olfaction: the classification of volatile substances, the spatial estimation of the gas dispersion from sparse measurements, and the localization of the gas source within a known environment

    Plume Source Localization and Boundary Prediction

    Get PDF
    Plume location and prediction using mobile sensors is the main contribution of this thesis. Plume concentration values measured by chemical sensors at different locations are used to estimate the source of the plume. This is achieved by employing a stochastic approximation technique to localize the source and compare its performance to the nonlinear least squares method. The source location is then used as the initial estimate for the boundary tracking problem. Sensor measurements are used to estimate the parameters and the states of the state space model of the dynamics of the plume boundary. The predicted locations are the reference inputs for the LQR controller. Measurements at the new locations (after the correction of the prediction error) are added to the set of data to refine the next prediction process. Simulations are performed to demonstrate the viability of the methods developed. Finally, interpolation using the sensors locations is used to approximate the boundary shape

    Real-time estimation of gas concentration released from a moving source using an unmanned aerial vehicle

    Get PDF
    This work presents an approach which provides the real-time estimation of the gas concentration in a plume using an unmanned aerial vehicle (UAV) equipped with concentration sensors. The plume is assumed to be generated by a moving aerial or ground source with unknown strength and location, and is modeled by the unsteady advection-diffusion equation with ambient winds and eddy diffusivities. The UAV dynamics is described using the point-mass model of a fixed-wing aircraft resulting in a sixth-order nonlinear dynamical system. The state (gas concentration) estimator takes the form of a Luenberger observer based on the advection-diffusion equation. The UAV in the approach is guided towards the region with the larger state-estimation error via an appropriate choice of a Lyapunov function thus coupling the UAV guidance with the performance of the gas concentration estimator. This coupled controls-CFD guidance scheme provides the desired Cartesian velocities for the UAV and based on these velocities a lower-level controller processes the control signals that are transmitted to the UAV. The finite-volume discretization of the estimator incorporates a second-order total variation diminishing (TVD) scheme for the advection term. For computational efficiency needed in real-time applications, a dynamic grid adaptation for the estimator with local grid-refinement centered at the UAV location is proposed. The approach is tested numerically for several source trajectories using existing specifications for the UAV considered. The estimated plumes are compared with simulated concentration data. The estimator performance is analyzed by the behavior of the RMS error of the concentration and the distance between the sensor and the source

    Sensing physical fields: Inverse problems for the diffusion equation and beyond

    Get PDF
    Due to significant advances made over the last few decades in the areas of (wireless) networking, communications and microprocessor fabrication, the use of sensor networks to observe physical phenomena is rapidly becoming commonplace. Over this period, many aspects of sensor networks have been explored, yet a thorough understanding of how to analyse and process the vast amounts of sensor data collected, remains an open area of research. This work therefore, aims to provide theoretical, as well as practical, advances this area. In particular, we consider the problem of inferring certain underlying properties of the monitored phenomena, from our sensor measurements. Within mathematics, this is commonly formulated as an inverse problem; whereas in signal processing it appears as a (multidimensional) sampling and reconstruction problem. Indeed it is well known that inverse problems are notoriously ill-posed and very demanding to solve; meanwhile viewing it as the latter also presents several technical challenges. In particular, the monitored field is usually nonbandlimited, the sensor placement is typically non-regular and the space-time dimensions of the field are generally non-homogeneous. Furthermore, although sensor production is a very advanced domain, it is near impossible and/or extremely costly to design sensors with no measurement noise. These challenges therefore motivate the need for a stable, noise robust, yet simple sampling theory for the problem at hand. In our work, we narrow the gap between the domains of inverse problems and modern sampling theory, and in so doing, extend existing results by introducing a framework for solving the inverse source problems for a class of some well-known physical phenomena. Some examples include: the reconstruction of plume sources, thermal monitoring of multi-core processors and acoustic source estimation, to name a few. We assume these phenomena and their sources can be described using partial differential equation (PDE) and parametric source models, respectively. Under this assumption, we obtain a well-posed inverse problem. Initially, we consider a phenomena governed by the two-dimensional diffusion equation -- i.e. 2-D diffusion fields, and assume that we have access to its continuous field measurements. In this setup, we derive novel exact closed-form inverse formulae that solve the inverse diffusion source problem, for a class of localized and non-localized source models. In our derivation, we prove that a particular 1-D sequence of, so called, generalized measurements of the field is governed by a power-sum series, hence it can be efficiently solved using existing algebraic methods such as Prony's method. Next, we show how to obtain these generalized measurements, by using Green's second identity to combine the continuous diffusion field with a family of well-chosen sensing functions. From these new inverse formulae, we therefore develop novel noise robust centralized and distributed reconstruction methods for diffusion fields. Specifically, we extend these inverse formulae to centralized sensor networks using numerical quadrature; conversely for distributed networks, we propose a new physics-driven consensus scheme to approximate the generalized measurements through localized interactions between the sensor nodes. Finally we provide numerical results using both synthetic and real data to validate the proposed algorithms. Given the insights gained, we eventually turn to the more general problem. That is, the two- and three-dimensional inverse source problems for any linear PDE with constant coefficients. Extending the previous framework, we solve the new class of inverse problems by establishing an otherwise subtle link with modern sampling theory. We achieved this by showing that, the desired generalized measurements can be computed by taking linear weighted-sums of the sensor measurements. The advantage of this is two-fold. First, we obtain a more flexible framework that permits the use of more general sensing functions, this freedom is important for solving the 3-D problem. Second, and remarkably, we are able to analyse many more physical phenomena beyond diffusion fields. We prove that computing the proper sequence of generalized measurements for any such field, via linear sums, reduces to approximating (a family of) exponentials with translates of a particular prototype function. We show that this prototype function depends on the Green's function of the field, and then derive an explicit formula to evaluate the proper weights. Furthermore, since we now have more freedom in selecting the sensing functions, we discuss how to make the correct choice whilst emphasizing how to retrieve the unknown source parameters from the resulting (multidimensional) Prony-like systems. Based on this new theory we develop practical, noise robust, sensor network strategies for solving the inverse source problem, and then present numerical simulation results to verify the performance of our proposed schemes.Open Acces
    • …
    corecore