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Abstract  

 

Plume location and prediction using mobile sensors is the main contribution of this 

thesis. Plume concentration values measured by chemical sensors at different locations 

are used to estimate the source of the plume. This is achieved by employing a stochastic 

approximation technique to localize the source and compare its performance to the 

nonlinear least squares method. The source location is then used as the initial estimate for 

the boundary tracking problem. Sensor measurements are used to estimate the parameters 

and the states of the state space model of the dynamics of the plume boundary. The 

predicted locations are the reference inputs for the LQR controller. Measurements at the 

new locations (after the correction of the prediction error) are added to the set of data to 

refine the next prediction process. Simulations are performed to demonstrate the viability 

of the methods developed. Finally, interpolation using the sensors locations is used to 

approximate the boundary shape. 
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Chapter 1 

Introduction 

 Accidental gas releases from industrial sites that results in dangerous chemical 

plumes makes the problem of tracking such plumes extremely important. The fear of 

biological terrorist attacks is another motive that made this subject a hot research topic to 

answer the question of what is the fastest and most accurate approach to locate and track 

a possible chemical plume. 

 Plume spreading is affected by different factors [10]. Apart from the nature of the 

gas and the temperature at the release point; weather conditions is the most important 

factor. It is impossible to track plumes without full knowledge of the weather conditions, 

especially the wind direction and velocity. The wind factor is included in most of the 

mathematical plume models in literature [10]. Figure 1.1 shows a real world plume that 

spreads in the downwind direction. 

 The objective of this work is to implement an application scenario to examine the 

performance of a new developed data sharing middleware that is able to handle multiple 

distributed data sources and dynamically changing items, and to assist in real-time 

INFOrmation Dissemination (INFOD) across multiple agencies for homeland security 

purposes. The ultimate goal of the INFOD model is to support the timely delivery of  
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Figure 1.1 A Real World Plume 
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valuable information [31]. Figure 1.2 shows an information dissemination plume 

scenario.  

 Researchers use the concentration of the gas at any location to study plumes [9]. 

Special sensors can measure the values of concentrations at the desired locations. The 

surrounding area around factories that use a certain poisoning gas is covered by a grid of 

sensors that are able to measure the concentration of this specific gas. 

In literature, many source localization techniques have been developed. In [11], 

the Maximum Likelihood algorithm (MLE) is compared with the Direct Triangulation 

algorithm. Based on the contaminant attenuation model, they proposed a wireless sensor 

network (WSN) to estimate the plume source location in a sensor field using the MLE 

algorithm and the Direct Triangulation algorithm respectively. They showed that better 

accuracy using the two algorithms is achieved if the sensor nodes reach to appropriate 

numbers in the field. The MLE algorithm was shown to be robust to the much noise 

compared with the Direct Triangulation algorithm. In [12], the problem of plume source 

localization was formulated using multiple intensity sensors as the most likely sequence 

decoding over a fuzzy hidden Markov model. Under the assumption that each sensor has 

high detection and low false alarm probability, they proposed a greedy heuristic decoding 

algorithm with much less computational cost than Viterbi algorithm. The plume 

localization accuracy of the algorithm was shown to be close to the best decoder using 

Viterbi algorithm when tracing a single plume using randomly deployed sensors. 
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Figure 1.2 An Information Dissemination Scenario. Plume tracking information should 

be distributed to nearest police offices, fire stations, etc. Figure from an InfoD quarterly 

review meeting presentation by Raghul Gunasekaran     
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 The problem of predicting the spread of an airborne plume has also been examined 

by many researchers. The prominent approach among these is to compute the parameters 

of the advection-diffusion equation which governs the spread of the agent [23]. A non-

linear least-squares method for estimating these parameters offline is presented in [24], 

and an exploration of agent spread under continuous release assumption is given in [25], 

[26]. In [12], the problem of plume localization was formulated using multiple intensity 

sensors as the most likely sequence decoding over a fuzzy hidden Markov model. Under 

the assumption that each sensor has high detection and low false alarm probability, they 

proposed a greedy heuristic decoding algorithm with much less computational cost than 

Viterbi algorithm. The plume localization accuracy of the algorithm was shown to be 

close to the best decoder using Viterbi algorithm when tracing a single plume using 

randomly deployed sensors. Several other methods have been proposed, and an overview 

of these is available in [27]. 

 The most common sensors are the semiconductors gas sensors [21]. Chemical 

sensors based upon semiconductors react to various reducing gases such as carbon 

monoxide, hydrogen or ethanol [22]. When exposed to air, a layer of oxygen is absorbed 

onto the bed of semiconductor granules that forms the sensing element. When a reducing 

gas is present, oxidation occurs and the layer of oxygen on the sensor surface is 

diminished, increasing the conductivity (and therefore reducing the resistance) of the 

sensor [22]. Other sensors use p-type semiconductor base materials (instead of the n-type 
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semiconductors mentioned above) and react to oxidizable gases (such as O2, NO2 and 

Cl2) [22]. All of these sensors are tuned to target specific gases by changing the operating 

temperature of the sensor or through the addition of impurities and catalysts. However 

most still have limited selectivity, reacting strongly to the target gas, but also reacting to a 

number of other reducing or oxidizing gases [22]. These sensors have fast response and 

high sensitivity, but have the disadvantage of a return time of approximately 30 seconds 

[21]. Other types of sensors are discussed in details in [22]. 

 In this thesis, the source of the plume is estimated for a fixed grid of sensors using 

two methods, Non Linear Least Squares [2] and Kiefer-Wolfowitz stochastic 

approximation algorithm [4]. Performance comparison between both methods is shown. 

Moreover, source localization will be performed using a number of mobile sensors that 

move and converge to the plume source. Plume source is then used as an initial location 

to start the plume location prediction process.   

 Thesis is organized as follows; Chapter 1 contains an introduction about the 

problem and what motives the work. Also it contains a summary of what people have 

done in this area.  

 Chapter 2 discusses mathematical models that describe plumes. Lagrangian and 

Eulerian dispersion models are discussed briefly while Gaussian dispersion model is 

discussed in details. The other part of the chapter discusses the main three types of 
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chemical plumes that are classified by the nature of the gas and the temperature at the 

release source. 

 Localizing the source of the plume is discussed in chapter 3. The approximate 

estimate of the source point will be used as the initial point in the tracking process later 

on. A uniform propagation of the plume is assumed and a time averaging of the 

measurements at the sensor nodes is performed before solving the nonlinear least square 

problem. Choosing the initial points to solve the problem is an important factor to reach 

the best solution faster. The nonlinear least squares approach is compared with the 

stochastic approximation approach. Stochastic approximation techniques are iterative 

methods that attempt to find zeros of functions which cannot be computed directly, but 

only estimated via noisy observations. The basic stochastic approximation algorithms 

were introduced by Robbins and Monro [3] and by Kiefer and Wolfowitz [4] in the early 

1950s. The original work was motivated by the problem of finding a root of a continuous 

function ( )g  , where the function is not known but the experimenter is able to obtain 

noisy measurements at any desired value of  . 

 Plume location prediction is discussed in chapter 4. The process depends mainly 

on the measurements of concentrations of the plume provided by sensors at different 

times and locations. The value of the concentration at the boundary of the plume is pre-

defined as the value that after which, the plume is not dangerous. Initial data for the 

dynamic boundary locations and times are needed to start the prediction process. Starting 
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from an initial location (the source of the plume), sensors send their measurements and 

move in different directions as long as they keep sending values of concentrations above 

the pre-defined boundary threshold value. In all simulations, it is assumed that sensors 

know their locations. 

 Chapter 5 discusses the interpolation process used to form the shape of the 

predicted boundary. The interpolation method used is Spline method. Finally, Chapter 6 

contains thesis conclusion and future work. 
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Chapter 2 

Plume Modeling 

2.1 Introduction 

 For simulation purposes, plume mathematical models are based on a mathematical 

description of physical and chemical processes taking place in the atmosphere. In this 

chapter, mathematical models of plumes are described. They can be grouped into classes 

based on different criteria; the spatial scale, temporal scale, pollutant type, and emission 

source type. The main three models encountered in the literature are Gaussian, 

Lagrangian and Eulerian models [10]. These models are discussed next. 

2.1.1 Gaussian model  

 Gaussian model is the oldest and the most commonly used model type. It assumes 

that the plume dispersion has a Gaussian distribution, meaning that the pollutant 

distribution has a normal probability distribution. Gaussian models are most often used 

for predicting the dispersion of continuous, buoyant air pollution plumes originating from 

ground-level or elevated sources. Gaussian models may also be used for predicting the 

dispersion of non-continuous air pollution plumes (called puff models) [7]. 
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2.1.2 Lagrangian model 

 Lagrangian dispersion model mathematically follows pollution plume particles as 

they move in the atmosphere and model the motion of the particles as a random walk 

process. The Lagrangian model then calculates the plume dispersion by computing the 

statistics of the trajectories of a large number of the pollution plume particles. A 

Lagrangian model uses a moving frame of reference as the particles move from their 

initial location [7]. 

 Lagrangian model is used to develop Second-Order Closure Integrated Puff 

(SCIPUFF) [6], a Lagrangian plume dispersion model developed by Titan's ARAP (The 

Alliance for Responsible Atmospheric Policy) Group that uses a collection of Gaussian 

puffs to represent an arbitrary, three-dimensional time-dependent concentration. The 

turbulent diffusion parameterization is based on turbulence closure theory, providing a 

direct relationship between the predicted dispersion rate and turbulent velocity statistics 

of the wind field. In addition to the average concentration value, the closure model also 

provides a prediction of the statistical variance in the concentration field resulting from 

the random fluctuations in the wind field. The closure approach also provides a direct 

representation for the effect of averaging time. SCIPUFF has been incorporated into the 

Defense Threat Reduction Agency's (DTRA) Hazard Prediction and Assessment 

Capability (HPAC) software. HPAC is utilized for planning and analysis as well as in the 

field by military personnel to rapidly determine consequences of dispersing chemical, 
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nuclear and biological agents. SCIPUFF has been validated against a number of 

laboratory and field experiments, demonstrating its usefulness for non-military 

applications. It has been recommended as an alternative model by the EPA which can be 

used on a case-by-case basis for regulatory applications [6]. 

2.1.3 Eulerian dispersion model 

 The Eulerian dispersion model is similar to a Lagrangian model in that it also 

tracks the movement of a large number of pollution plume particles as they move from 

their initial location. The most important difference between the two models is that the 

Eulerian model uses a fixed three-dimensional Cartesian grid as a frame of reference 

rather than a moving frame of reference [7]. 

 In the next section, different types of plumes are discussed. 

2.2 Types of plumes 

 There are three primary types of air pollution emission plumes: 

2.2.1 Buoyant plumes  

 Buoyant plumes are lighter than air because they are at a higher temperature and 

lower density than the ambient air which surrounds them, or they are at about the same 

temperature as the ambient air but have a lower molecular weight and hence lower 

density than the ambient air. For example, the emissions from the flue gas stacks of 
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industrial furnaces are buoyant because they are considerably warmer and less dense than 

the ambient air. As another example, an emission plume of methane gas at ambient air 

temperatures is buoyant because methane has a lower molecular weight than the ambient 

air [10]. 

2.2.2 Dense gas plumes:  

 Dense gas plumes are heavier than air because they have a higher density than the 

surrounding ambient air. A plume may have a higher density than air because it has a 

higher molecular weight than air (for example, a plume of carbon dioxide). A plume may 

also have a higher density than air if the plume is at a much lower temperature than the 

air. For example, a plume of evaporated gaseous methane from an accidental release of 

liquefied natural gas (LNG) may be as cold as -161 °C. [10]. 

2.2.3 Passive or neutral plumes:  

 Passive or neutral plumes are plumes which are neither lighter nor heavier than air 

and moves according to the surrounding weather conditions. An example of this type of 

plumes is mist; a phenomenon of small droplets suspended in air [10].  

2.3 One dimension Gaussian plume: 

 The basic one dimensional (1D) transport equation of a Gaussian plume dispersion 

is given by the following partial differential equation (PDE) [7]: 
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c c c

D v
t x x x

   
 
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 (2.1) 

which has the solution [7]: 

 

2( )
( , ) exp

44

M x vt
c x t

tDt D

 
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 
 (2.2) 

where the concentration c is a solution of the transport equation (2.1), M denotes the total 

mass per unit area in the fluid system, D is the diffusivity, v is the wind velocity. A one 

dimension  Gaussian plume for an instantaneous source for 6 time instants is shown in 

Figure 2.1. 

2.4 Two dimension Gaussian Plume: 

 In analogy to the 1D situation analytical solutions can be derived for the higher 

dimensional cases. The generalization of the 1D normal distribution for 2D is [7]: 

2 21 ( )
( , , ) exp

44 x yx y

M x vt y
c x y t t

t D Dt D D

  
     

  
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 (2.3) 

which is the solution of the 2D PDE [7]: 

x y

c c c c
D D v c

t x x y y x

     
   

     
 (2.4) 
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where the concentration c is a solution of the transport equation, M denotes the total mass 

per unit area in the fluid system, xD , yD are the diffusivities, v  is the wind velocity and 

λ  

 

 

 

 

 

Figure 2.1 1D Gaussian plume for instantaneous source for 6 time instants. 

Concentration c is a solution of the transport equation 2.1. 
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is the decay coefficient. Concentration distribution of an instantaneous source Gaussian 

plume in two dimension is shown in Figure 2.2. Gaussian plume along slices of a 

constant y axis is shown in Figure 2.3. 

2.5 Three dimension Gaussian plume: 

The PDE that describes the 3D Gaussian plume is given by [7]: 

x y z

c c c c c
D D D v c

t x x y y z z x

       
    

       
 (2.5) 

which has the solution [7]: 

2 2 2

3

1 ( )
( , , , ) exp

4(4 ) x y zx y z

M x vt y z
c x y z t t

t D D Dt D D D

  
      

  
  

 (2.6) 

where the concentration c is a solution of the transport equation, M denotes the total 

mass per unit area in the fluid system, xD , yD  and zD  are the diffusivities, v  is the 

wind velocity and λ is the decay coefficient. Concentration distribution from a 3D 

Gaussian plume is shown in Figures 2.4, 2.5. 

2.6 Steady State Continuous source plume: 

Solution of the steady state 3D Gaussian plume generated from a continuous emission 

source is given by [7]: 
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Figure 2.2 Instantaneous source Gaussian plume in 2D 
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Figure 2.3 2D Gaussian plume along slices y=constant 
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Figure 2.4 Concentration distribution from a 3D Gaussian plume 
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Figure 2.5 3D Gaussian puff along line x=0 
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 (2.7) 

where the concentration c  is a solution of the transport equation, M  denotes the total 

mass per unit area in the fluid system, xD , yD  and zD  are the diffusivities, v  is the 

wind velocity and λ is the decay coefficient. 

Such models are used extensively for estimations of the local development of a plume in 

the atmosphere. For the most common application of release from a stack, the parameters 

are visualized in Figure (2.6). The Gaussian models take into account diffusive processes, 

advection with a mean air flow direction (wind), and first order decay [7]. The term 

diffusion here is used as an umbrella term for various processes which have in common 

the tendency to lower concentration or temperature gradients. Diffusion at the molecular 

scale can surely be neglected in the atmosphere, while variations and fluctuations at 

various scales within the velocity field are the cause for the observation of diffusion at a 

larger scale. Moreover, turbulence adds as another origin of diffusion [17]. 
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Figure 2.6 Steady state Gaussian plume from a continuous emission source  
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Chapter 3 

Source Localization 

3.1 Introduction: 

 Tracking the source of a chemical plume is a hot research topic [8]. A terrorist 

attack or an accidental release from a chemical factory might produce a plume of this 

harmful gas. Accurate estimation of the source of the plume provides an opportunity to 

stop the release as fast as possible. It is also important to estimate the source of the plume 

for the purpose of tracking the boundary of the plume, the source is a good initial point 

for the prediction process. 

 To estimate the source of a plume we use values of concentrations of the gas at 

some points within the plume range. These values are measured by sensors that are 

assumed to be distributed in that area. Various types of sensors can measure releases of 

potentially harmful chemical, biological and radiological materials. When networked 

together they can provide real-time detection, identification and assessment of the event. 

In the literature, many source localization techniques have been developed. In 

[11], the Maximum Likelihood algorithm (MLE) is compared with the Direct 

Triangulation algorithm. Based on the contaminant attenuation model, a wireless sensor 

network (WSN) to estimate the plume source location in a sensor field using the MLE 

algorithm and the Direct Triangulation algorithm is proposed. It is showed that better 

accuracy using the two algorithms is achieved if the sensor nodes reach an appropriate 
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numbers in the field.  The MLE algorithm was shown to be robust to the much noise 

compared with the Direct Triangulation algorithm [11]. 

 In [12], the problem of plume localization was formulated using multiple intensity 

sensors as the most likely sequence decoding over a fuzzy hidden Markov model. Under 

the assumption that each sensor has high detection and low false alarm probability, the 

authors proposed a greedy heuristic decoding algorithm with much less computational 

cost than the Viterbi algorithm. The plume localization accuracy of the algorithm was 

shown to be close to the best decoder using the Viterbi algorithm when tracing a single 

plume using randomly deployed sensors. 

In this chapter, a uniform propagation of the plume is assumed and a time 

averaging of the measurements at the sensor nodes is performed. To estimate the source 

location, a nonlinear least square algorithm proposed in [1] is used. Choosing the initial 

points to solve the problem is an important factor to reach the best solution faster. This 

nonlinear least squares approach is compared with the stochastic approximation 

approach. 

Stochastic Approximation technique is developed to estimate the source. The 

Stochastic approximation techniques are iterative methods that attempt to find zeros of 

functions which cannot be computed directly, but only estimated via noisy observations. 

The basic stochastic approximation algorithms were introduced by Robbins and Monro 

[3] and by Kiefer and Wolfowitz [4] in the early 1950s. The original work was motivated 
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by the problem of finding a root of a continuous function , where the function is not 

known but the experimenter is able to obtain noisy measurements at any desired value of 

. 

3.2 Non-linear Least squares: 

Using the non-linear least squares technique to estimate the source of a plume is 

one of the standard techniques to solve the problem [1]. We assume a set of N stationary 

sensors that are randomly distributed at positions . The plume source 

is located at . If the concentration at the source is , the concentration at sensor  

is inversely proportional to the distance  between the source and the sensor raised to 

some power  which depends on the environment. The measured concentration  at 

sensor  is given by: 

 i i

i

c
z w

d 
   (3.1) 

where   is additive Gaussian noise with zero mean and variance  while  is the 

distance from the source, i.e.; 

 2 2( ) ( )i i s i sd x x y y     (3.2) 

we assume that sensor  knows its location through GPS or any localization technique. 

The cost function to be minimized is: 
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c
J z

x x y y
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

 
  
 
    

  
(3.3) 

where  are the source estimated coordinates,  are the location coordinates at 

sensor  and  is the measured concentration received from sensor . The goal is to find 

the optimum values of   that minimize the cost function . 

 The least squares technique gives better performance at low noise channels than 

high noise channels. That comes from the fact that this technique does not take noise into 

account. 

 The algorithm used in this problem is the Gauss-Newton nonlinear least squares 

algorithm [2]. The Gauss–Newton algorithm is a method used to solve non-linear least 

squares problems. It can be seen as a modification of Newton's method for finding a 

minimum of a function. Unlike Newton's method, the Gauss–Newton algorithm can only 

be used to minimize a sum of squared function values, but it has the advantage that 

second derivatives, which can be challenging to compute, are not required [2]. 

Non-linear least squares problems arise for instance in non-linear regression, 

where parameters in a model are sought such that the model is in good agreement with 

available observations. 

Given N functions , ( 1,..., )ir i N , where N is the number of sensors and 
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2 2 2ˆ ˆ( ) ( )

i i

s i s i

c
r z

x x y y


 

    

 
(3.4) 

Let ˆ ˆ( , )s sx y   denotes the minimization factors in (3.3), then the Gauss–Newton 

algorithm finds the minimum of the sum of squares [2]:  

 
2

1

( ) ( )
m

i

i

J r 


  (3.5) 

Starting with an initial guess  for the minimum, the method proceeds by the iterations 

[2]: 

 1 ,s s      (3.6) 

with the increment  satisfying the normal equations [2]: 

  (3.7) 

Here,  is the vector of functions  , and  is the  Jacobean matrix of  with 

respect to , both evaluated at  The superscript  denotes the matrix transpose. In data 

fitting, where the goal is to find the parameters  such that a given model function 

 fits best some data points , the functions   are the residuals [2]: 

  (3.8) 

Then, the increment  can be expressed in terms of the Jacobean of the function f, as 

[2]: 

  (3.9) 
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In order for  to be invertible, we always assume that  , i.e., the number of 

measurements are always larger than the number of minimization factors, which is 2 in 

the case of 2D Cartesian coordinates for the plume source. So the normal equation can be 

solved. For a relatively small m, methods like QR factorization or Choleski factorization 

can be used to solve the linear equations of the unknown   . Iterative methods are 

required when  is large. Conjugate gradient method is one choice [12]. Columns of  

should be independent, otherwise the iteration will fail because   becomes singular in 

this case. 

As stated earlier, Gauss-Newton algorithm can be derived also from Newton’s method. 

For minimizing a function  of a parameter   , the recurrence relation for Newton's 

method is [2]: 

  (3.10) 

where  is the gradient vector of  and  is the Hessian matrix of , and [2]: 

  (3.11) 

Differentiating the gradient elements  with respect to  produces the elements of the 

Hessian matrix [2]: 

  (3.12) 
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In the Gaussian-Newton method, the Hessian matrix is approximated by ignoring the 

second derivative terms [2]: 

  (3.13) 

  where  are entries of the Jacobean . In  matrix notation, the gradient and the 

Hessian matrix can be written as [2]: 

  (3.14) 

Substitution into the recurrence relation above gives the operational equations [2]:   

  (3.15) 

where  

 

Conversion is expected as long as the approximation is relatively accurate; that is [2]: 

 

 Figure 3.1 shows the simulation result of this technique with different noise levels. 
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Figure 3.1 Performance of the Non linear least squares source localization technique at 

different noise levels. Better results at higher signal to noise ratios.   
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3.3 Stochastic Approximation: 

Stochastic approximation (SA) techniques are iterative methods that attempt to 

find zeros of functions which cannot be computed directly, but only estimated via noisy 

observations. The basic stochastic approximation algorithms were introduced by Robbins 

and Monro [3] and by Kiefer and Wolfowitz [4] in the early 1950s.  

The original work was motivated by the problem of finding a root of a continuous 

function , where  denotes the minimization factors  in (3.3). The 

function is not known but the experimenter is able to take noisy measurements at any 

desired value of  [3]. 

An important feature of SA is the allowance for noisy input information in the algorithm 

[5]. SA methods are often better at coping with noisy input information than other search 

methods. Moreover, the theoretical foundation for SA is deeper than the theory for other 

stochastic search methods with noisy measurements. In the case of root-finding SA, the 

noise manifests itself in the measurements of    used in the search as  varies. 

The recursive procedure in the general SA form [3]: 

  (3.16) 

where  is the estimate of  at the iterate based on measurements of the loss 

function. Under appropriate conditions, the iteration in (3.16) converges to  in some 

stochastic sense. 
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Using the Kiefer-Wolfowitz algorithm [4], we wish to minimize the function  

over the  valued parameter . Let  (goes to zero) be a finite difference interval and 

let  be the standard unit vector in the th coordination direction. Let  denotes the th 

estimate of the minimum. Suppose that for each , and random vectors ,  we can 

observe the finite difference estimate [5]: 

 (3.17) 

Let  and update  by: 

  (3.18) 

The importance of dealing with noise in the stochastic approximation approaches 

is shown in Figure 3.2. Noise in the shown function leads to produce a false minimum. 

Using Least Squares method discussed in the previous section gives the false minimum 

as a result but SA gives a correct one as a result. 

Figure 3.3 shows that the SA technique gives better results than the Gaussian-

Newton non-linear least squares technique at the same noise level. This comes from the 

fact that the SA methods are often better at coping with noisy input information than 

other search methods. 
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Figure 3.2 Effects of noise in finding the minimum of functions 
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Figure 3.3 Performance of Stochastic Approximation technique compared with the least 

squares technique 
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Chapter 4 

Plume Location Prediction 

4.1 Introduction 

 Plume concentrations in general are very discontinuous. Gradient-based 

algorithms are not feasible in environments with high Reynolds numbers [17], [18]. The 

evolution of the chemical distribution in the flow at high Reynolds numbers, is turbulence 

dominated [17]. The result of the turbulent diffusion process is a highly discontinuous 

and intermittent distribution of the chemical [17], [19]. For a dense array of sensors 

distributed over an area, through which a turbulent flow was advecting a chemical, and 

the output of each sensor were averaged for a suitably long time (i.e., several minutes), 

then this average chemical distribution would be Gaussian. At low Reynold numbers, the 

evolution of the chemical distribution is dominated by molecular diffusion and the 

concentration field is well defined by a continuous function [19]. 

The problem of predicting the spread of an airborne plume has also been examined 

by many researchers. The prominent approach among these is to compute the parameters 

of the advection-diffusion equation which governs the spread of the agent [23]. A non-

linear least-squares method for estimating these parameters offline is presented in [24], 

and an exploration of agent spread under continuous release assumption is given in [25], 

[26].  In [12], the problem of plume localization was formulated using multiple intensity 
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sensors as the most likely sequence decoding over a fuzzy hidden Markov model. Under 

the assumption that each sensor has high detection and low false alarm probability, they 

proposed a greedy heuristic decoding algorithm with much less computational cost than 

Viterbi algorithm. The plume localization accuracy of the algorithm was shown to be 

close to the best decoder using Viterbi algorithm when tracing a single plume using 

randomly deployed sensors. Several other methods have been proposed, and an overview 

of these is available in [27]. 

 Plume location prediction process depends mainly on the measurements of 

concentrations of the plume sent by sensors at different times and locations. The value of 

the concentration at the boundary of the plume is pre-defined depending on the nature of 

the plume, for example it can be defined as the values of concentrations that after which, 

the plume is not dangerous. A few initial data for the dynamic boundary locations and 

times are needed to start the prediction process. Starting from an initial location (the 

source of the plume), sensors sent their measurements and move in different directions as 

long as they keep sending values of concentrations above the pre-defined boundary 

threshold value as shown in Figure 4.1. 

 Assuming that the sensors know their locations (using GPS or any other location 

determination techniques), when they send measurements less than the boundary 

threshold, they stop moving and their location is considered to be the boundary location 

1S  at time 1t . Because of the dynamic behavior of the plume, the boundary location   
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Figure 4.1: Sensors tracking plume boundary 
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changes with time. This is noticed when the sensor at that location starts sending values 

that are above the boundary threshold value, so they start moving again until they find the 

boundary location 2S   at time 2t . This process is repeated until we have the necessary 

values to begin the prediction process. 

 A practical plume tracking and prediction system requires the following [15]: 

1- A mobile robot with the ability to negotiate the target environment (airborne, 

submersible, rough terrain, indoors, etc.) with appropriate speed and maneuverability. 

2- Environmental sensors and appropriate control algorithms to allow the robot to 

safely negotiate its environment. 

3- Sensors specific to the target chemical that have all of the attributes of sensitivity, 

selectivity, speed, and so on as outlined in Section 2.1 to the level required by the 

particular application.  

4.2 State space model 

 The stochastic state space model for the plume boundary location estimation is 

assumed to take the following form:  

 1, , , ,k i k i k i k i  x A x w  (4.1) 

 , , , ,k i k i k i k i y C x v  (4.2) 



39 
 

where 

x

y

x

y

 
 
 
 
 
 

x  is the state vector, 

, ,( , )k i k ix y is the plume location at step k for sensor i , 

, ,( , )k i k ix y is the plume velocity at step k for sensor i , 

,k iy denotes the concentration measurements step k for sensor i , 

, ,,k i k iw v  are assumed to be sequences of independent random variables with zero mean 

values and covariances:  

1 2 12, ,T T TE R E R E R  ww vv wv . 

, ,,k i k iA C are the state space parameters to be estimated in the next section. 

4.3 Parameter Estimation 

Given measurements of concentration, a least squares technique is used to estimate 

the parameters A  and C  of the stochastic state space model. Equations (4.1) and (4.2) 

can be represented in the following expression:  

 
1, , ,

,

, , ,

k i k i k i

k i

k i k i k i

     
      

     

x A w
x

y C v
 (4.3) 
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 , , , ,k i k i k i k i Y Θ x E  (4.4) 

where,  

1, , ,

, , ,

, , ,

, ,
k i k i k i

k i k i k i

k i k i k i

     
       
     

x A w
Y Θ E

y C v
 

 For the least squares problem in (4.2) we find
,

,

,

k i

k i

k i

 
  
 

A
Θ

C
  such that:  

 
2

, , ,

1

1 N

i k i k i k i

k

J
N 

  Y Θ x  (4.5) 

is minimized. The Gauss Newton algorithm [2] is iteratively used to solve this problem. 

Gauss Newton algorithm was discussed in section 3.2. 

4.4 State estimation using The Kalman filter 

 The next step is the state estimation. The Kalman filter is used to estimate and 

predict the states  (i.e. location and plume velocity). The estimates are used as a 

reference input to the feedback controller feedback loop in section 4.5.   

 The Kalman filter is a group of mathematical equations that recursively estimates 

the states of a process by minimizing the mean of the squared error [28]. Kalman filter 

estimates past, present and future states of a process. In our state space model we have 

four states; the position of the boundary in  and  and the velocity at which the 
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boundary of the plume moves in the two dimension space. The State space equations of 

the process (4.1) and (4.2): 

1, , , ,
ˆ

k i k i k i k i  x A x w  

, , , ,
ˆ

k i k i k i k i y C x v  

where 

x

y

x

y

 
 
 
 
 
 

x  is the state vector, 

, ,( , )k i k ix y is the plume location at step k for sensor i , 

, ,( , )k i k ix y is the plume velocity at step k for sensor i , 

,k iy denotes the concentration measurements step k for sensor i , 

, ,
ˆ ˆ,k i k iA C are are the parameters that have been estimated in the previous part of this 

section. 

, ,,k i k iw v  are assumed to be sequences of independent random variables with zero mean 

values and covariances:  

                                       1 2 12, ,T T TE R E R E R  ww vv wv
 
 (4.6) 

Then the predicted states equation is [28]:  
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                                          1, , , , , , ,
ˆˆ ( )k i k i k i k i k i k i k i   x A x K y C x  (4.7) 

and the predicted output equation is:  

                                                    , , ,
ˆˆ

k i k i k iy C x , (4.8) 

where  is the Kalman filter gain matrix [28]: 

                                  , (4.9) 

and  is the covariance matrix of the state estimate error [28]: 

                           (4.10) 

 The next section discusses the optimum position controller which is the linear 

quadratic regulator (LQR). 

4.5 Design of a linear-quadratic regulator (LQR): 

 The optimum position controller that is used to control the positions of the moving 

sensors is an LQR controller which is a feedback controller [32]. For a discrete-time 

linear system described by: 

  (4.11) 

with a performance index defined as [32]: 

  (4.12) 

the optimal control sequence minimizing the performance index is given by [32]:  
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 k ku = -Fx  (4.13) 

where 

 
T -1 T

F = (R + B PB) B PA  (4.14) 

and P is the solution to the discrete time Riccati equation [32]: 

 
T T -1 T

P = Q + A (P - PB(R + B PB) B P)A  (4.15) 

 The next section is an overview of types of existing chemical sensors.  

4.6 Chemical Sensors: 

 The most common sensors are the semiconductors gas sensors [21]. Chemical 

sensors based upon semiconductors react to various reducing gases such as carbon 

monoxide, hydrogen or ethanol. When exposed to air, a layer of oxygen is absorbed onto 

the bed of semiconductor granules that forms the sensing element [22]. When a reducing 

gas is present, oxidation occurs and the layer of oxygen on the sensor surface is 

diminished, increasing the conductivity (and therefore reducing the resistance) of the 

sensor [21]. 

 Other sensors use p-type semiconductor base materials (instead of the n-type 

semiconductors) and react to oxidizable gases (such as O2, NO2 and Cl2). All of these 

sensors are tuned to target specific gases by changing the operating temperature of the 

sensor or through the addition of impurities and catalysts. However most still have 
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limited selectivity, reacting strongly to the target gas, but also reacting to a number of 

other reducing or oxidizing gases [21]. These sensors have fast response and high 

sensitivity, but have the disadvantage of a return time of approximately 30 seconds [21]. 

Other types of sensors are discussed in details in [21], [22]. 

4.7 Sensor Dynamics: 

We assume that the dynamics of a moving sensor has the behavior of two coupled 

second order differential equations, with constants that depends on the physical 

specifications of the sensor as well as the surrounding environment [30]: 

1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )M x t B B x t K K x t By t Ky t u t        (4.16) 

2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )M y t B B y t K K y t Bx t Kx t u t        (4.17) 

where: 

 are the 2D Cartesian coordinates, 

,  are the velocities in 2D, 

 are the accelerations in 2D, 

 are the input signals. 

 The state space representation in discrete time of (4.16) and (4.17) is: 
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 1, , ,k i k i k i  x Ax Bu  (4.18) 

 , ,k i k iy Cx  (4.19) 

where: 

1 1

1 1 1 1

1 1
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 
  
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C   

 The states vector ,

x

y

x

y

 
 
 
 
 
 

x  inputs vector 
1

2

u

u

 
  
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u  and the outputs vector 

x

y

 
  
 

y .  

Linear Quadratic Regulator (LQR) which was discussed in section 4.5 is used to 

calculate the optimum control inputs. The feedback loop is shown in Figure 4.2. 
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4.8 Boundary Prediction 

Plume location prediction process depends mainly on the measurements of 

concentrations of the plume sent by sensors at different times and locations.  

 

 

 

 

 

 

 

Figure 4.2 LQR controller feedback loop 
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A practical plume tracking and prediction system requires mobile robots with the 

ability to negotiate the target environment (airborne, submersible, rough terrain, indoors, 

etc.) with appropriate speed and maneuverability [27]. 

It also requires environmental sensors and appropriate control algorithms (we use 

LQR) to allow the robot to safely negotiate its environment. It is assumed that we have 

sensors specific to the target chemical that have all of the attributes of sensitivity, 

selectivity, speed, and so on. 

The value of the concentration at the boundary of the plume is pre-defined 

depending on the nature of the plume, for example it can be defined as the values of 

concentrations that after which, the plume is not dangerous. A few initial data for the 

dynamic boundary locations and times are needed to start the prediction process. Starting 

from an initial location (the source of the plume), sensors send their measurements and 

move in different directions as long as they keep sending values of concentrations above 

the pre-defined boundary threshold value as shown in Figure 4.3. They move according 

to the dynamics described in section 4.7 using the optimal LQR controller described in 

the same section. 

4.9 Full Process demonstration and simulation results: 

 In this experiment, three sensors move in three different directions. They keep 

moving until they sense a concentration value below the boundary threshold value as 
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Figure 4.3 Full process block diagram. Sensors send measurements to the predictor. The 

predictor output is the reference input signal to the LQR controller. 
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shown in Figure 4.3. At this location they stop and keep sending measurements. 

Meanwhile, the plume spreads and the value of the measurements exceeds the boundary 

threshold value, then sensors move again to find the second boundary location. This 

process is repeated as shown in Figure 4.6 until we have sufficient data to begin the 

prediction process. Sensors move to the predicted locations and sense the concentration 

values there.  

 Due to the prediction error, they will be either in the plume or out of it; this is 

determined by the concentration measurement there. If the measurement is larger than the 

boundary level, the sensor is still in the plume and should move until it reaches the 

boundary. If the measurement is less than the boundary level, the sensor is out of 

boundary and should reverse its direction back until it reaches the boundary. The new 

location is added to the previous data measurements in order to make a new prediction. 

The full process is shown in Figures 4.4 to 4.10. Prediction Error using 30 min. step 

prediction is shown in Figure 4.11.  
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Figure 4.4 Sensors keep moving until they sense a concentration value below the 

boundary threshold value 
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Figure 4.5 Sensors stop when they reach the boundary 
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Figure 4.6 As the boundary moves, the sensors continue to track it 

 

 

 

 

 

 

 



54 
 

 

Figure 4.7 A set of initial measurements is ready to start prediction process 
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Figure 4.8 Sensors move to the predicted locations of the boundary 
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Figure 4.9 Sensors reach the predicted locations of the new boundary, but they send 

measurements less than the boundary threshold 
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Figure 4.10 Sensors move back until they sense values above the boundary threshold, 

these locations are added to the previous set of boundary locations to predict the next 

boundary location at a desired time in the future. 
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Figure 4.11 Prediction Error (30 min. step prediction) 
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Chapter 5 

Interpolation 

 Interpolation process is needed to estimate the shape of the plume boundary. Up to 

this moment some locations of the boundary are known depending on the number of 

sensors used. Interpolation is a numerical method of constructing new data points within 

the range of a discrete set of known data points. In other words, we use interpolation to 

construct a function which closely fits the data points. The more data points we have (i.e. 

sensors), the closer shape to the real plume boundary we obtain. 

 There are many different interpolation methods like linear, polynomial and spline 

interpolation. Cubic spline interpolation will be used as it relatively gives more accurate 

results [29]. 

 An spline function consists of polynomial pieces on subintervals joined together 

with certain continuity conditions. Formally, suppose that 1n   points 0 1, ,..., nt t t  

have been specified and satisfy 0 1 nt t t   . These points are called knots. Suppose 

also that an integer 0k   has been prescribed. An spline function of degree k having 

knots 0 1, ,..., nt t t  is a function S such that [29]: 

a. On each interval 1[ , )i it t  S is a polynomial  of degree k   
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b. S has a continuous (k-1)st derivative on 0[ , ]nt t .  

Cubic splines (k = 3) are more often used in practice. Let: 

0 0 1 1( , ) ( , ), ( , ), ... , ( , )i i n nx y x y x y x y  

denotes the locations of the available data points at the plume boundary. A cubic spline S 

is to be constructed to interpolate the set of those available locations. On each interval 

0 1 1 2 1[ , ], [ , ], ... , [ , ]n nx x x x x x  , S is given by a different cubic polynomial. Let iS  

be the cubic polynomial that represents S on 1[ , ]i ix x . Thus [29]: 

0 0 1

1 1 2

1 1

( ) [ , ]

( ) [ , ]
( )

( ) [ , ]n n n

S x x x x

S x x x x
S x

S x x x x 





 

 

 
(5.1) 

The polynomials  and  interpolate the same value at the point  and therefore 

1( ) ( )i i i i iS x y S x  

            

(1 1)i n  

  

 (5.2) 

 Hence, S is automatically continuous. Moreover, the first and second derivatives S' 

and S" are assumed to be continuous, and these conditions will be used in the derivation 

of the cubic spline function. After some derivations, detailed in [29]  the final cubic 

spline interpolation is 
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 ( ) ( ) ( )[ ( ) ]i i i i i i i iS x y x x c x x B x x A        (5.3) 

Where 

1

1
( )

6
i i i

i

A z z
h

   (5.4) 

2

i
i

z
B   (5.5) 

1 1

1
( )

6 3

i i
i i i i i

i

h h
c z z y y

h
       (5.6) 

( ),i i iz S x

           

1 1( )i i iz S x 
   

 Cubic spline interpolation using three data point from sensor measurements is 

shown in Figures 5.1 and 5.3. The more sensors used, the more accurate boundary shape 

is obtained. 

 Interpolation is the last step of the plume tracking process; data is now ready to be 

sent to the interested destinations like the police department or the nearest fire station. 
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Figure 5.1 Interpolation using 3 sensors 
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Figure 5.2 Interpolation of predicted boundaries 
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Chapter 6 

Conclusion and Future Work 

 The source of a chemical plume has been located using two methods; Nonlinear 

Gauss-Newton least squares method and Kiefer-Wolfowitz stochastic approximation 

algorithm. Plume data have been generated using SCIPUFF; a well known plume model 

that uses multiple Gaussian plume models to generate the desired plume. It has been 

shown that stochastic approximation methods give more accurate results than least square 

methods when dealing with noise corrupted data. Indeed, Stochastic Approximation 

algorithms are derived for this purpose. Convergence of Stochastic Approximation is 

expected and depends on the noise variance of the data. 

Plume boundary tracking using mobile sensors has been performed starting from 

the plume source. A novel state space plume model is used in the estimation and 

prediction of the plume evolution. The predicted states of the plume progression are used 

as reference signals to deploy the sensors using optimal controllers. New measurements 

obtained from the sensors are then used to update the plume state estimates recursively at 

every time step. The estimates are further used in estimating the plume boundary thanks 

to spline interpolation. The process is repeated till the sensors converge to the plume 

boundary. 
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 In our future work, we plan to localize the source of chemical plumes using other 

Stochastic Approximation algorithms like Stochastic Gradient Descent algorithm [12] 

and The SPSA algorithm (Simultaneous Perturbation Stochastic Approximation) [13]. 

These stochastic approximation algorithms converge faster than Kiefer-Wolfowitz 

algorithm that is used in this thesis [ ].  We will also use the results of source localization 

as an initial starting point in the boundary tracking process with the knowledge of the 

plume source location, along with all the needed data like the weather conditions and the 

nature of the gas. 

 Currently the sensors are controlled independently.  We plan to develop 

autonomous consensus and rendez-vous distributed coordination motion algorithms for 

the sensors, to achieve tracking. A test bed in the lab using a non poisoning chemical, 

such as, water vapor, will be built to implement the developed methods. 
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