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Estimating Localized Sources of Diffusion Fields
Using Spatiotemporal Sensor Measurements
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Abstract—We consider diffusion fields induced by a finite
number of spatially localized sources and address the problem
of estimating these sources using spatiotemporal samples of the
field obtained with a sensor network. Within this framework, we
consider two different time evolutions: the case where the sources
are instantaneous, as well as, the case where the sources decay
exponentially in time after activation. We first derive novel exact
inversion formulas, for both source distributions, through the use
of Green's second theorem and a family of sensing functions to
compute generalized field samples. These generalized samples can
then be inverted using variations of existing algebraic methods
such as Prony's method. Next, we develop a novel and robust
reconstruction method for diffusion fields by properly extending
these formulas to operate on the spatiotemporal samples of the
field. Finally, we present numerical results using both synthetic
and real data to verify the algorithms proposed herein.
Index Terms—Spatiotemporal sampling, diffusion fields, finite

rate of innovation (FRI), Prony's method, sensor networks.

I. INTRODUCTION

R ECENTLY, the use of wireless sensor networks for
environmental monitoring has been a topic of intensive

research. The sensor nodes obtain spatiotemporal samples of
physical fields over the region of interest. For most cases these
fields are driven by well-known partial differential equations
(PDE) with the diffusion and wave equations being typical
examples. In this paper, we concentrate on processes governed
by the diffusion equation. An efficient and robust sampling
and reconstruction strategy for such fields will impact several
real-life applications, from the detection of pollution and plume
sources [3] in environmental monitoring to controlling the
spread of fungal diseases in precision agriculture [4], as well
as retracing the sources of biochemical and nuclear wastes and
leakages [5]–[7]. Furthermore, understanding the distribution
of hot and cold spots due to energy inefficiencies in processors
[8], [9], as well as, large data center clusters [10] can lead to
better load balancing.
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A lot of recent research has concentrated on developing
sensor data fusion schemes that aim to either, infer the sources
inducing the field [11]–[16] or to reconstruct directly the field
[17]–[19]. Diffusion fields are typically non-bandlimited and
hence require a dense set of samples for a faithful recovery
under the bandlimited (BL) framework [20]. Ranieri and Vet-
terli [21] suggest that in some interesting cases, specifically
when the initial field distribution is not important, a BL re-
construction is sufficient since the spatial bandwidth decays
exponentially fast with time and frequency. To alleviate the lim-
itation of BL reconstruction, Reise et al. [18], [22] propose the
use of hybrid shift-invariant spaces, since these spaces allow
the modeling of smooth non-BL fields without imposing strict
band-limitation. They investigate the use of B-splines for static
fields and extend their construction to time-varying fields using
an iterative procedure. In [9] Ranieri et al. also propose a sub-
space-based method for successfully recovering thermal maps;
in this case, an optimal low-dimensional approximation is used,
by first estimating the principal bases—eigenmaps—through
an experiment carried out at design-time. Techniques based on
the use of finite element method (FEM) [23], [24] to solve the
static field reconstruction problem have also been researched.
For example, van Waterschoot and Leus [19], [25] propose to
combine the spatiotemporal samples with the PDE-based field
model to achieve static field estimation at certain points of
interest. Furthermore, a compressed sensing (CS) approach is
proposed in [13] and is extended to incorporate the diffusion
equation model in [26].
For non-static fields however, it is common to first estimate

the sources of the field as this allows complete field recon-
struction in space and time. Statistical estimation methods, see
[27]–[30] and the references therein, based on Bayesian esti-
mation and Kalman filtering have been proposed. In addition,
Le Niliot et al. propose to estimate the sources using boundary
element methods (BEM) [16] and validate their proposed
iterative algorithm through real-life experiments [31]. In [5]
Matthes et al. develop a single source localization algorithm
based on continuous concentration measurements of the field.
Dokmanic et al. [11] retrieve the single source parameters by
approximating the single source field using a truncated Fourier
series, whereas Lu et al. demonstrate that by solving a set of
linear equations the single source parameters can be estimated
[14]. In addition, Lu and Vetterli propose two methods for
source estimation, namely spatial super-resolution [32] and an
adaptive scheme for sources with smooth spatial distributions
[33]; whilst the Finite Difference Time Domain method is used
to achieve source localization and signal reconstruction of
acoustic pressure fields in [34]. We note that existing schemes
based on FEM may require the use of dense meshes for a
faithful recovery of the field, whilst compressed sensing-based
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schemes rely on uniform spatial sampling which is often dif-
ficult to achieve in practice. A more realistic assumption is
a uniform placement of nodes but subjected to some random
jitter [35]. Furthermore some of these existing methods make
no assumptions on the temporal nature of the sources, and so
are more generally applicable, but they may become unstable
in the presence of noise or unable to fully reconstruct the entire
field in both space and time.
In this paper, we focus on developing efficient and robust

sampling and reconstruction schemes that can properly operate
given arbitrary spatial samples of the diffusion field. Specifi-
cally, we consider the problem of sampling and reconstructing,
diffusion fields induced by spatially localized sources and con-
sider two cases: sources localized in space and instantaneous in
time, and sources with a localized but time-varying/non-instan-
taneous distribution. Works in the area have predominantly fo-
cused on locating the sources of the field, we will however con-
sider estimating all the source parameters including their initial
intensities, activation times, as well as the decay coefficient for
non-instantaneous sources.
The main contribution of this paper is two-fold. First, we

provide a simple and exact closed-form inversion formula to
the diffusion equation driven by a finite number of spatially lo-
calized sources. Specifically, we derive two inversion formulas,
depending on the temporal nature of the sources inducing
the field—instantaneous or non-instantaneous, respectively.
Through the use of Green’s second theorem, we show that the
diffusion field can be combined using a family of well-chosen
sensing functions to yield a sequence which can then be anni-
hilated using Prony’s method [36], [37] to reveal the desired
source parameters. The second aspect of our contribution is
to adapt these inversion formulas to address the problem of
sampling and reconstructing diffusion fields. Specifically, given
discrete spatiotemporal measurements of the field obtained
with a network of arbitrarily distributed sensors, we provide
robust reconstruction schemes that successfully recover the
field by estimating the sources that induced it.
This paper is organized as follows. We formally present the

sampling and reconstruction problem formulation in Section II.
In Section III, we derive novel and exact closed-form expres-
sions for jointly recovering multiple diffusion sources, given
continuous field measurements. Then in Section IV, the inver-
sion formulas obtained are adapted to the real setting where only
discrete spatiotemporal sensor measurements of the field are
available; we also propose ways to tackle noise and model mis-
match. Simulation results are presented in Section V to show the
performance of our algorithm on both synthetic and real data.
Finally we provide some concluding remarks in Section VI.

II. PROBLEM FORMULATION

We consider the problem of reconstructing two dimensional
diffusion fields from its spatiotemporal samples. Specifically,
we focus on the case where the spatiotemporal samples of the
field are obtained by a network of randomly deployed sensors
(see Fig. 1). Denote by the diffusion field at location

and time , induced by some unknown source distribution
within the two-dimensional region . In such a setting

the field will propagate according to the diffusion equation,

(1)

where is the diffusivity of the medium through which the field
propagates. Moreover, from the theory of Green’s functions this
PDE has solution:

(2)

where

(3)

is the Green’s function of the two-dimensional diffusion field
and is the unit step function. The result in (2) implies that
the entire field can be perfectly reconstructed provided
the source distribution is known exactly. Therefore, this
paper will concentrate on estimating the source distribution
given spatiotemporal samples of the field. We will focus our
discussions on fields induced by localized sources and, for
clarity, we split the problem into the following two cases:

Instantaneous Sources: Sources are localized in
both space and time with the following parameterization:

(4)

where are the intensity and activation time
of the -th source respectively and is the source
location, specifically . Under this as-
sumption, the field reconstruction problem is equivalent to
estimating the parameters
from the spatiotemporal samples of the
field . Here, is an arbitrary spatial location cor-
responding to the position of sensor with
and , for are the instants at which the sen-
sors measure the field.

Non-instantaneous Sources: Sources are localized
in space but exponentially decaying in time after activa-
tion, as follows:

(5)

where is the decay coefficient. Similarly, this as-
sumption reduces the field reconstruction problem to esti-
mating the parameters
given spatiotemporal samples of the
field with and .

III. CLOSED-FORM INVERSION FORMULAS

In this section, we derive exact inversion formulas for dif-
fusion fields induced by spatially localized sources; both the
instantaneous and non-instantaneous source distributions are
considered. We demonstrate, in both cases, through the use
of Green’s second theorem that given access to generalized
measurements of the form:

it is possible to uniquely determine the unknown source param-
eters in . Here, is the variable of integration performed
over (a surface in 2D), and are properly chosen
sensing functions. Specifically, we show that the generalized
measurements for are given by aweighted-sum
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Fig. 1. An arbitrary sensor placement and the monitored domain .

of complex exponentials. Moreover, given a sum of exponen-
tials of the form ,
where , we then demonstrate how to map uniquely
the weights and exponents of this sum to the unknown source
parameters in using Prony’s method. This method is fre-
quently encountered in spectral estimation [37]and in the finite
rate of innovation (FRI) framework [38]–[41] and, for com-
pleteness, a brief overview is provided in Appendix A.
The use of Green’s second theorem here allows us to relate,

in a simple yet precise way, the boundary and interior measure-
ments of the field, to the sources inducing the field. This is the
basis of the reciprocity gap method [42] used in non-destruc-
tive testing of solids [42], [43]; it has also been exploited for
the identification of heat sources from boundary measurements
[44] and for estimating the sources of static fields governed by
Poisson’s equation in [45]. In this contribution, we propose an
extension of the reciprocity gap method to the identification
of instantaneous and non-instantaneous sources of diffusion in
both space and time, whilst exploiting the use of more stable
sensing functions.
Although the inversion formulas derived herein are based on

continuous full-field measurements, which are generally inac-
cessible in reality, they provide insights on how to combine
the discrete spatiotemporal sensor measurements in order to ob-
tain the generalized sequence , or at least an approxima-
tion of it, which then allows for source recovery using Prony’s
method.

A. Diffusion Fields of Multiple Instantaneous Sources
We begin by relating the continuous diffusion field

in to the source parameters. Let be a twice differentiable
function in , then Green’s second identity relates the boundary
integral and the integral over the bounded region as follows:

(6)

where is the outward pointing unit normal vector to the
boundary of . Moreover, if satisfies

(7)

in , then given that satisfies (1) we may substitute
and into the right hand

side (RHS) of (6) to obtain:

Finally multiplying through by and rearranging yields:

(8)

This integral equation gives a simple relationship between the
source parameterization and the induced field. We now estab-
lish how this expression can be used to recover the unknown
source parameters:
Proposition 1: For the instantaneous source parameter-

ization (4), providing is analytic and of the form
, with and

with , then the integral
equation in (8) can be used to recover jointly the intensities,
locations and activation times of the instantaneous sources.

Proof: Recall (8) and, for conciseness, denote its
left hand side (LHS) by ; hence it follows that

. This identity holds true for any ,
as such we can multiply both sides by some arbitrarily chosen
window . Hence,

Integrating this new expression over yields:

Since satisfies (4) we can write

Recall that because of (8), the LHS of the equation above is:

At this point, it is useful to notice that this integral coincides
exactly with the inner product . Moreover, evaluating
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it yields an expression dependent only on and , for this reason
we will denote it by . Specifically:

(9)

for and . Then it follows that,

hence substituting the expressions and
into the above immediately gives the Vander-

monde system:

(10)

Now (10) allows us to uniquely and simultaneously retrieve
and as follows:

For joint location and intensity recovery given instanta-
neous sources, notice that the sequence obtained by setting

(or equivalently ) in (10) for is gov-
erned by the following Vandermonde system:

(11)

where

(12)

and .
The sequence in (11) above is a weighted

sum of a finite number of complex exponentials and so
we can use Prony’s method to retrieve uniquely the pairs

from the sequence, provided (see
Appendix A). Then given the pairs , we apply
Prony’s method to the sequence to obtain the
pairs . Finally, we match the pairs of
estimates by source locations to get
and from this it is straightforward to retrieve , since and
are known.
Remark 1: The choice of and here is important. Firstly,
has to satisfy (7) in order to obtain (8). This is why we pick
to be analytic. Amongst the class of analytic functions, we

choose to be the damped complex exponential for numerical
stability. Similarly, whilst can be any arbitrary function of
time, again for stability reasons, we choose exponential function
with purely imaginary exponent.

B. Diffusion Fields of Multiple Non-Instantaneous Sources
In what follows, we consider the field induced by non-instan-

taneous sources and following an approach similar to Proposi-
tion 1, we derive closed-form expressions for simultaneous re-
covery of the source parameters.

1) Exact Recovery of Source Locations: In Section III-A we
showed that the field in can be recovered when the source
parameterization is assumed to be a sum of localized and
instantaneous sources. In this section, we are instead concerned
with localized and non-instantaneous sources. Indeed under this
source model we show that the Prony system is preserved. As
such, the localization step (discussed in Section III-A) can still
reveal the locations, along with corresponding coefficients that
we will refer to as the generalized energies of the non-instanta-
neous sources.
Proposition 2: For non-instantaneous source fields, with

source parameterization (5), providing is analytic, and
is chosen such that , then the integral
equation in (8) is governed by the following Vandermonde
system:

(13)

where is used to denote the family of definite integrals (12)
for , and is the generalized
energy of the -th source.

Proof: Firstly substitute into (8) and
integrate both sides of the resulting equation over , to
obtain:

(14)

where as before we denote . Notice that
the left hand side of (14) coincides with (12), we will henceforth
denote it by for brevity. However, given the non-instanta-
neous source parameterization for , the power-sum series for

is different to that obtained for instantaneous sources, but
can be easily obtained by substituting (5) into the right hand side
of (14) as follows:

where .
Again the sequence , governed by the weighted

sum of exponentials (13) can be solved to recover the lo-
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cations of the instantaneous sources, as well as the generalized
energies .
In the rest of this section, we establish a novel scheme for

directly recovering the remaining source parameters:
and from the generalized energy .
Remark 2: It is easy to show, from (8), that given any ar-

bitrary temporal parameterization of sources, it is possible
to recover their locations by evaluating the integral expression
(12), for and applying Prony’s method on the
resulting sequence , as long as all sources are
localized in space. Specifically, one can show that will
always take the form

, where is the generalized energy given by
for the generic source with parameteriza-

tion .
2) Exact Recovery of Decay Coefficients, Activation

Times and Source Intensities: We begin by noting that
for depends on

the interval over which the time-integration, in (14), is
performed; thus we may write,

(15)

to emphasize this dependence.
Now assume we obtain the coefficients

for the intervals and
. Then:

(16)

(17)

(18)

Subtracting (16) from (17) and similarly (17) from (18), we ob-
tain:

(19)
and,

(20)

respectively. Dividing (19) by (20) yields,

(21)

Therefore,

(22)

Given it is then possible to retrieve the activation time of
the -th source as follows:
Divide (16) by (17),

(23)

and re-arrange to obtain,

This yields

(24)

Finally, with access to estimates of and , it is straight-
forward to estimate using any of (16), (17), and (18). In
particular

(25)

as required.
Remark 3: An interesting point to notice about the proposed

framework is that, for sources lying outside the region their
contribution to the integral expressions (9), (12) and (14) is zero.
We can leverage on this fact to still recover the sources of diffu-
sion fields in bounded regions, i.e., when the medium through
which the field propagates is finite. Specifically, the method of
image sources allows us to model reflections in bounded regions
as: an unbounded medium containing several virtual sources.
However, the sensors enclose only the real sources, hence the
real sources will be recovered because the contributions of the
virtual sources to the integrals will be zero. Consequently, the
inversion formulas remain valid and we are still able to estimate
the unknown source parameters as far as the impermeable (or
semi-permeable) boundaries of the medium are outside . We
will demonstrate through simulations, using both synthetic and
real data, that we are able to fully recover the unknown source
distribution in the case where the field propagates a finite re-
gion with impermeable boundaries.

IV. ROBUST SOURCE ESTIMATION FROM SPATIOTEMPORAL
FIELD SAMPLES

With the insights gained and inversion formulas derived in
Section III, we now consider the inversion problem given re-
alistic spatiotemporal sensor measurements. In this new set-
ting, we have two issues: a) we do not have access to contin-
uous-field measurements and must approximate them using the
sensor readings, and b) the measurements may be noisy, there-
fore the inversion formulas derived need to be adjusted to pro-
mote stability and robustness.
In Section IV-A, we address the issue of approximating the

integrals in (9), (12) and (14), whilst Section IV-B tackles
the issue of noisy sensor measurements. Finally,
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Section IV-C presents the proposed, simultaneous and
sequential, multiple source estimation algorithms.

A. Approximating Integrals From Spatiotemporal Samples

In this new setting, we do not have the luxury of continuous
field measurements. Therefore given only spatiotemporal sam-
ples of the field, it is necessary to approximate the integrals
in the (9), (12) and (14) using standard quadrature methods
[46]. For the temporal integrals, a straightforward application
of Trapezium rule yields a good approximation. We therefore
focus only on (12) and (14), since (9) can be approximated easily
from these two. For the spatial integrals, we are specifically con-
cerned with approximating: a) path integrals along a boundary

of , as well as, b) surface integrals on the bounded re-
gion . As usual approximating these integrals with sums relies
on obtaining non-overlapping subdivisions of the domain over
which the integral is performed. We denote these elements as,
line segments with , and polygonal segments

with that make up the path and sur-
face integrals respectively. Hence, for path integrals pro-
viding for and that then
a well-known approximation exists, namely the path integral of
some function along is approximated as follows:

(26)

where and denote the end points of the line segment
and is its length.
Moreover, with surface integrals, if these non-overlapping

subdivisions are triangular such that
and for , the surface integral of over a
bounded region is approximated by the sum [47]:

(27)

where are the vertices of .
In our setup, these vertices coincide with the sensor lo-

cations, hence the triangular subdivisions depend directly
on them. Denote the collection of all sensor locations by

, we intend to construct non-overlapping
triangular subdivisions given the set . This allows us to define
the domains and (its boundary) over which the surface
and line integrals will be performed, respectively. In order
to obtain stable approximations of these integrals, we will
seek a triangulation that minimizes the occurrence of skinny
triangles which can lead to numerical instabilities. The so
called Delaunay triangulation [48] meets this require-
ment. Thus given , its Delaunay triangulation is denoted by

and the union of all these subdivisions
gives the Convex Hull of , i.e., . Therefore, for
a given sensor distribution, we define the bounded region to
be and the convex hull boundary to be as shown
in Fig. 2. Given this construction, we can then retrieve an
approximation of the family of integrals in (12), and (14), as
follows:

Fig. 2. An arbitrary sensor placement—the (approximate) monitored domain
divided into triangular meshes and the domain boundary divided into straight

line segments (black solid lines).

Again let be the vertices of the trian-
gular element . Then surface integrals in (12) and (14) are
approximated as follows:

(28)
where is the measurement of the sensor
situated at the vertex at time . Similarly to approxi-
mate the line integral,

the time integral is first approximated using trapezoidal rule,
such that:

then is approximated
using a first order central finite difference scheme, such
that , where

and are used to denote the
approximation of the field’s spatial derivatives. Moreover given
our choice of . Hence,

(29)

Finally for , assuming is a
cyclically ordered set, arranged in a counterclockwise order,
then:

and
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Therefore,

(30)
Note that due to the cyclic ordering, .

B. Tackling Noise and Model Mismatch: A Subspace
Denoising Approach
Given access to consecutive terms of the se-

quence , we apply Cadzow algorithm [49] to denoise
it. The basic idea of the method is as follows: when applying
Prony’s method on the sequence, we build a Toeplitz matrix

of the form

...
...

. . .
...

(31)

where . Moreover as highlighted in
Appendix A, in the absence of noise, the rank of is exactly
.
However, noisy sensor measurements and the approximation

of integrals using finite sums lead to model mismatches which
results in making full rank. Cadzow’s algorithm denoises
by first setting to zero the smallest singular values of
which are typically due to noise so as to obtain a rank matrix,
before enforcing the Toeplitz structure by averaging along the
diagonals of the reconstructed low-rank matrix. The method is
iterated a few times. The end result of applying Cadzow to is,
therefore, to denoise . A similar approach is applied
to .
1) Non-Instantaneous Source & Decay Coefficient Estima-

tionWith Cadzow: Consider the problem and assume that
the spatiotemporal samples are now corrupted by noise. We will
examine how to improve the estimates of the unknown non-in-
stantaneous source parameters in the presence of noise. The
generation of (16), (17) and (18) using equally spaced subinter-
vals suggests deeper underlying connections with Prony’s
method and its variations.
Define,

(32)

for positive integer values of . Then it immedi-
ately follows that:

(33)

where .
We stress that the terms are given by

where the ’s are computed by applying
Prony’s method to (13). Moreover, notice that for any fixed the
terms are equal. This is true only
in the ideal scenario when there exists no model mismatches in
the system, but is false in the presence of noise and other model
imperfections. Assuming that the perturbations can be modelled
as an approximately i.i.d process, then taking the average should
give a better estimate. As such we can form a new sequence as
follows:

(34)

It is easy to see that still satisfies , where
. This is again a sequence where we can apply

Prony’s method, but with a single unknown, hence it admits a
solution when . Moreover, if we can also apply
Cadzow’s denoising algorithm to it.
The complete algorithm is summarized in Algorithm 1.

Algorithm 1: Simultaneous Estimation of sources

Require: , sensor locations , sampling
interval , SourceType.
1: Retrieve the convex hull of the set of points .

and its boundary define and respectively, in
(9) and (14).

2: if SourceType ‘instantaneous’ then
3: Initialize and .
4: Set window length (where ).
5: Estimate sequence for and

over as explained in Section IV-A.
6: Denoise using Cadzow’s algorithm.
7: Apply Prony’s method to to jointly

recover the unknown parameters of the sources, i.e.,
.

8: else
9: Initialize window lengths as follows: set and

(where and ). Then
for .

10: Initialize and .
11: Estimate the sequence for each

window , to obtain different
sequences.

12: Denoise them all using Cadzow’s algorithm.
13: Apply Prony’s method to each of the sequences

to find generalized energy-location pair
for each of the sequences.

14: Match the generalized energies by their corresponding
locations to get: .

15: for do
16: Construct from using (34).
17: Denoise using Cadzow.
18: For apply Prony’s to the denoised sequence.
19: Find and using (24) and (25) respectively.
20: end for
21: end if
22: return and .
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Algorithm 2: Sequential Estimation of Sources

Require: , sensor locations , sampling
interval , SourceType.
1: Retrieve .
2: Let and the number of valid sources .
3: while do
4: Construct with and .
5: Estimate the generalized energy-location pairs

.
6: Set to be the number of pairs of having

both greater than some predefined threshold and
.

7: if then
8: Decrease window size and Go to 4.
9: else if then
10: Increase window size and Go to 4.
11: else if then
12: Estimate source parameters using

Algorithm 1.
13: Select the nearest sensors to . For each of

the sensors, retrieve , and for time-varying
sources too, as described in
Sections IV-C1 and IV-C2 respectively.

14: .
15: Reconstruct its field and adjust .
16: .
17: Increase window size and Go to 4.
18: end if
19: end while
20: return and .

C. Sequential Estimation of Multiple Sources

Algorithm 1 can be readily used to jointly estimate multiple
sources of diffusion fields from arbitrary field samples. This
approach works both in the case of simultaneously activated
sources or in the case of sequential activation. In the latter, how-
ever, it is more effective to estimate one source per time and
to remove its contribution from the sensor measurements be-
fore estimating the next source. This is possible when: a) the
sources have suitably distinct activation times; and b) the sam-
pling interval is small enough to resolve the activation of two
consecutive sources. In such a scenario, we propose the fol-
lowing approach. Firstly, we find a time window over which
only a single source is active. We do this by examining the rank
of the Toeplitz matrix constructed from . We then esti-
mate the source parameters as described in Algorithm 1 (with

). Given these preliminary estimates, a selection of sen-
sors nearest to the estimated source location are used to obtain a
more precise estimate for the activation time, and when appro-
priate, decay coefficient of the source. These sharper estimates
are obtained by performing a simple local search around the ini-
tial estimates, as follows:
1) Instantaneous Sources: Given the initial estimate of the

intensity, location and activation time, and , respectively,
consider the measurements collected
by the -th sensor (located at ) and the re-synthesized se-

quence .

By comparing the normalized inner-product between the recon-
structed sequence and the measurements, we choose the

where that maximizes this normalized inner
product—a modification of the Cauchy-Schwarz inequality for
vectors.
2) Non-Instantaneous Sources: Again we assume a single

source field and the initial estimates and for the source
parameters. The measured field is compared with the
reconstructed field to obtain better estimates of and .
In this case however, we perform a local 2D search over

and where are some
constants.
We perform the same search using the sensors closest

to the estimated source location and obtain a final estimate for
the activation time and decay coefficient, by averaging the esti-
mates of the sensors. The complete sequential method is sum-
marized in Algorithm 2.
Remark 4: The strategy of selecting the closest sensors to

the estimated field is implicitly noise reducing, as these sensors
will, in general, have a higher SNR since the field intensity is
greater at these locations (close to the source) whilst all sensors
experience the same noise power.

V. NUMERICAL SIMULATIONS AND RESULTS

A. Simulations With Synthetic Data
The 2D diffusion field is simulated numerically in MATLAB

using (2) for both source distributions (4) & (5).1 Furthermore,
spatiotemporal samples of the field are obtained by sensors ran-
domly deployed over a square region. For noisy simulations, the
spatiotemporal measurements are directly corrupted with zero
mean additive white Gaussian noise (AWGN), , as follows:

, so that the noise power is the
same for all sensors. Hence the SNR of the spatiotemporal sam-
ples is defined as:

(35)

The numerical results presented in this section utilizes both a
new arbitrary placement of sensors, as well as, a new realization
of additive white Gaussian noise for each new trial.
1) Instantaneous Sources: Fig. 3 shows the parameter esti-

mation results for sequential source estimation algorithm. The
algorithm is able to recover the source parameters with high ac-
curacy even in the noisy setting. We show results separately for
45 (top) and 63 (bottom) arbitrarily placed sensors respectively.
Furthermore we present in Table I a summary of the variation
of the (normalized) mean absolute error (MAE)2 for the activa-
tion time and intensity estimates with noise, in the single source
setting. The MAE decreases with increasing SNR, as expected;

1Consider an instantaneous source field for example, substituting (3)
& (4) into (2) gives the closed form expression for the field,

. This expression can therefore be

evaluated explicitly at the sensor locations and sampling instants
to obtain the desired spatiotemporal sensor measurements without resorting to
a grid.

2For total independent estimates of some parameter , the nor-
malized mean absolute error (MAE) of is defined here as:

.
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Fig. 3. Estimation of diffusion sources using randomly distributed sensors. The spatiotemporal samples have SNR equal to 20 dB and the results of 20
independent trials are shown. Intensities ; locations ; and activation times

s, s, s. Field is sampled for s at a frequency Hz and i.e., for the test function family
. The scatter-plot shows the true source locations (blue ‘ ’), the estimated locations (red ‘ ’) and one realization of the sensor distribution

(green ‘ ’). (a) 45 Randomly distributed sensors. (b) 63 Randomly distributed sensors.

TABLE I
NORMALIZED MEAN ABSOLUTE ERROR OF SINGLE SOURCE PARAMETER
ESTIMATES (500 INDEPENDENT TRIALS). FIELD IS INDUCED BY THE SINGLE
INSTANTANEOUS SOURCE, S AND ,

SAMPLED AT HZ, INDEPENDENTLY WITH 45 AND 63
ARBITRARILY PLACED SENSORS, FOR S. FOR THE

TEST FUNCTION FAMILY

moreover at dB we achieve activation time resolu-
tion MAE that is much less than the sampling interval, for both
sensor densities. When decreasing the SNR further, we notice
the threshold effect characteristic of Prony’s method in that a
large jump in the MAE of the estimates is observed.
2) Non-Instantaneous Sources: Fig. 4 shows our algorithm

(Algorithm 2) operating on the spatiotemporal samples of
the single non-instantaneous source field. We compare the
estimated parameters against their true values and the plots

demonstrate that our algorithm can successfully recover the
desired source parameters with good accuracy. Furthermore,
we summarize the normalized MAE of the estimation algorithm
in Table II.
3) Approximation Errors due to the Discretization of Inte-

grals: In this section, we provide simulation results to demon-
strate that the error due to approximating the integrals in (12)
(and equivalently in (14)) does not affect the estimation of the
sources of the field, in that, even at fairly high SNRs, the noise
in the sensor measurements dominates the errors in the recon-
struction. To this end, we compare the localization results ob-
tained by applying Prony’s method on two sequences, namely:

and for .
is constructed from noisy sensor measurements and represents
the real discretized case, where (12) (and (14)) are approximated
by weighted sums of the field. Conversely, is obtained
by adding an equivalent noise process to the exact power-sum
series, and thus represents the full-field measurement scenario,
where the integrals in (12) are known precisely. Fig. 5 shows the
standard deviation of the estimated spatial locations of
sources using (dashed lines) and (solid
lines) respectively. Observe that for realistic SNRs of interest,
i.e., 30 dB or less, the performance of the location recovery co-
incides with that of the ideal, full-field measurement, case.



MURRAY-BRUCE AND DRAGOTTI: ESTIMATING LOCALIZED SOURCES OF DIFFUSION FIELDS 3027

Fig. 4. Estimation of time-varying diffusion source using 63 randomly distributed sensors. The spatiotemporal samples have SNR equal to 20 dB and the
results of 15 independent trials are shown. Intensity ; decay coefficient ; location ; and activation time s. Field
is sampled for s at a frequency Hz, i.e., for the test function family s, s
and . The scatter-plot shows the true source locations (blue ‘ ’), the estimated locations (red ‘ ’) and one realization of the sensor distribution
(green ‘ ’).

TABLE II
NORMALIZED MEAN ABSOLUTE ERROR OF SINGLE SOURCE PARAMETER
ESTIMATES USING ALGORITHM 2 (500 INDEPENDENT TRIALS). FIELD IS
INDUCED BY THE SINGLE TIME-VARYING SOURCE,

S AND AND IS SAMPLED AT
HZ WITH 63 ARBITRARILY PLACED SENSORS. S,

S, , AND S

Fig. 5. Standard deviation of location estimates (500 trials) for simultaneous
double source localization using 63 randomly distributed sensors.

; and s.
s, Hz and .

B. Estimating Field Sources in Bounded Regions
We simulate the diffusion field in a square region, using the

well documented method of image sources, by simply intro-
ducing virtual sources to model reflections due to the edges of
the square. The edges of the bounded region are assumed to

Fig. 6. Spatial field distribution of a single source in a bounded square region
at different time instants after source activation. (a) Time s. (b) Time

s.

be perfectly insulating, so that the field incident upon them are
all reflected back (i.e., the field does not leak out of the region
through its walls). The resulting field therefore diffuses through
the square medium as shown in Fig. 6.
1) Source Estimation Results: The results presented in Fig. 7,

shows that our algorithm is able to recover multiple sources in-
ducing a field also when the sources are in a bounded region.

C. Experiments With Real Data
In this section, we utilize real temperature data measure-

ments, obtained using a thermal imaging camera, to further
validate the proposed source estimation algorithm. Firstly,
we outline the experimental setup; specifically we provide a
brief overview of how the thermal spatiotemporal samples are
obtained and then, we conclude with the results of applying the
proposed algorithm to the measured data.
1) Experimental Method: In the real data experiment con-

ducted, a silicon wafer disc of diameter m is used as
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Fig. 7. Estimation of diffusion sources in a bounded square
region, using 45 sensors arbitrarily placed inside the region. The spatiotem-
poral samples have SNR equal to 20 dB and 20 independent trials are
shown. True source parameters: intensities ; locations

; and
activation times s, s, s. Field is sampled for

s at a frequency Hz and i.e.,
for the test function family . The scatter-plot shows
the true source locations (blue ‘ ’), the estimated locations (red ‘ ’) and the
sensor distribution (green ‘ ’).

Fig. 8. Experimental Setup.

the diffusion medium. The wafer is placed m from
a thermal camera, with the disc lying on the focal plane of the
camera; this arrangement, shown in Fig. 8, allows us to mea-
sure the entire surface temperature of the silicon plate. We ob-
tain thermal recordings of the disc, at specified frame rates (we
use 10 Hz and 25 Hz). A heat gun, with a 1 mm nozzle, is used
to apply a localized and instantaneous initial heat source on the
opposite face of the silicon plate (i.e., the face opposite that seen
by the camera). We continue recording the thermal images for
15 s. We pre-process the recordings by averaging the first few
frames and subtracting this average from all frames in the video.
This has the effect of imposing the initial temperature distribu-
tion of C at all spatial locations at time s.3
The camera is properly calibrated so that true -locations

can be assigned to the 384 288 pixels of each frame. Then
spatial sampling, in our setup, corresponds to obtaining samples
at a few (specified) pixel locations. These spatial locations are
chosen randomly, and one such example is shown as the black
circles in 10(a). Moreover, the true value of the source location
is the center of the region where the heat source is first observed.
For the true activation time, since the frame rate is known, we
assume that the source is activated at the frame where we first
observe a hot region minus half the sampling interval.
2) Results: The results of our experimentation with real

thermal data are summarized in what follows. Fig. 10(a) shows
the complete temperature distribution of the monitored region
immediately after source activation with the hot (light) region
of the map indicating the true source location. Moreover, the
estimated source location is shown as the ‘ ’; this estimate
has been obtained by applying our proposed algorithm on spa-
tiotemporal measurements obtained at the 13 locations marked

3Note that, due to external factors, we obtain noisy non-zero measurements
as seen in Figs. 9 and 10(a).

Fig. 9. Measurements of two monitoring sensors obtained at different spatial
locations. The dotted vertical line in each plot indicates the instant of source
activation.

Fig. 10. Estimation of a single instantaneous heat source using real thermal
spatiotemporal measurements. The thermal camera is used to capture a sequence
of thermal images at 25 Hz for a duration of 16 s. The spatiotemporal sam-
ples are obtained by choosing 13 spatial locations (the circles ‘ ’ in plots (a)
and (b)) at random, and then downsampling in time by a factor of 13; hence

Hz and the localization time window s.
The true source location is m and activation time

s. In addition, for the test function family. (a) Shows
the thermal image immediately after source activation, the locations of the 13
sensors are indicated by the black circles ‘ ’ and the estimated source location
by the red ‘ ’. (b) Summarizes the results of 20 independent repetitions of the
source estimation algorithm on measurements obtained by a different set of 13
randomly chosen sensor locations; on the left is shown a scatter plot of the esti-
mated source locations (red ‘ ’) and the right is plot of the estimated activation
times.

by black circles ‘ ’. The temporal evolution of two such sensors
are shown in Fig. 9. Note that the sampling frequency
Hz, of the sensors is much lower than the frame rate of the
camera. This is achieved by downsampling the actual time
measurements.
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TABLE III
MAE OF SINGLE SOURCE PARAMETER ESTIMATES ON REAL THERMAL
DATA. THE STATISTICS SHOWN HERE ARE COMPUTED FROM ESTIMATES
OF 1000 INDEPENDENT TRIALS, WHERE EACH TRIAL CORRESPONDS TO
THE USE OF A DIFFERENT SET OF 13 RANDOMLY DISTRIBUTED SENSORS.
THE FIELD IS INDUCED BY THE SINGLE INSTANTANEOUS SOURCE WITH

S AND M AND THE SPATIOTEMPORAL
SAMPLES HAVE A SAMPLING FREQUENCY HZ,
DURATION OF WINDOW USED IN ESTIMATION S AND

FOR THE TEST FUNCTION FAMILY

TABLE IV
SOURCE ESTIMATION RESULTS FOR SIX INDEPENDENT EXPERIMENTAL SET
UPS. THE TRUE SOURCE PARAMETERS AND THE ESTIMATES OBTAINED BY
OUR SEQUENTIAL ALGORITHM ARE SHOWN. IN PARTICULAR, WE PERFORM
SIX INDEPENDENT RECORDINGS (EXPERIMENTS I AND II AT 25 HZ, WHILST
EXPERIMENTS III-VI ARE RECORDED AT 10 HZ), THEN THE MEASUREMENTS
ARE DOWNSAMPLED SO THAT AND FOR EXPERIMENTS I-II
AND III-VI RESPECTIVELY. 13 RANDOM LOCATIONS ARE SELECTED AS THE
SENSOR LOCATIONS AND ONLY THESE MEASUREMENTS ARE USED BY THE

ALGORITHM, OVER S WITH

To demonstrate the robustness of the algorithm to the choice
of sensor locations, we draw randomly a new set of 13 loca-
tions and apply Algorithm 2 on the new spatiotemporal sam-
ples. This experiment is repeated 20 times and a scatterplot of
the estimated source location and the activation time estimates
is shown in Fig. 10(b). The obtained estimates vary marginally
about the true values. For statistical significance, we repeat this
experiment 1000 times and present the MAE of the location and
activation time estimates in Table III. For the location estimates
the MAEs are small compared to the dimensions of the moni-
tored region, and also smaller than the average inter-sensor sep-
aration. Similarly, the normalized MAE of the activation time is
around 0.0867, which is almost an order of magnitude smaller
than the temporal sampling interval (0.52 s). Hence on average
we observe an absolute error of around 8.67% on the activation
time estimates.
We now consider recordings for different source setups. Spa-

tiotemporal measurements are taken for different source activa-
tion times and locations; then we attempt to recover the source
parameters for each data set using our method. The estimates are

presented, alongside the true values, in Table IV, we observe
that for each new experiment the parameter estimates remain
close to the true values.

VI. CONCLUSION

In this paper, we have presented novel expressions for simul-
taneously recovering the source parameters of a multi-source
diffusion field. Specifically we have considered two types of
spatially localized sources: temporally instantaneous and non-
instantaneous sources and derived exact inversion formulas for
recovering the unknown source parameters given full-field mea-
surements. Then, we properly adapted these formulas to operate
in the discrete setup where only sparse spatiotemporal sam-
ples of the field are available; and as a result derived and pre-
sented novel noise robust methods for estimating multiple field
sources.
Simulations carried out on synthetic data have shown that the

proposed methods are robust even in the presence of noise and
other model mismatches. Furthermore, we have also validated
our algorithms using real temperature measurements, obtained
experimentally, where the algorithm successfully recovered the
location and activation time of the source of a temperature field.

APPENDIX A
PRONY’S METHOD

The systems (11) and (13), as well as (10) for a fixed or
fixed , are of the general form:

(36)

where are unknowns. Such a system although linear
in the unknown parameters , is nonlinear in the parameters

. Hence there is some difficulty associated with finding these
nonlinear parameters. Fortunately this problem is well studied
and will be solved here by applying Prony’s method. A brief
overview of the method is given here, for a more in depth treat-
ment see [37].
The method is based on the observation that when the input of

a filter having zeros at is the sequence , then the output
will be zero. This filter is called the annihilating filter, and has
transfer function:

(37)

where is the impulse response of the filter .
Specifically,

(38)
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since . Given the sequence , the convo-
lution between may be written in the matrix/vector
form as , such that:

...
...

...

...
...

. . .
...

...
...

...

...

(39)

The matrix is rank deficient with rank and is therefore
overdetermined. Imposing enforces a unique solu-
tion—since there are now coefficients of the filter to be
found—therefore we need at least consecutive terms of
the sequence ; i.e., . Once has
been found, then the values of are simply the roots of the
polynomial . Finally the amplitudes can be determined
by simply taking any equations in (36) and solving the
resultant Vandermonde system.
In the presence of model mismatch, (39) is no longer satisfied

exactly, yet minimizing the Euclidean norm subject to
, gives a good estimate for [40]. Hence, the Total

Least-Squares (TLS) method is used to solve for , where is
chosen to be the eigenvector which corresponds to the smallest
eigenvalue of the matrix . More details of the TLS method
can be found in [40].
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