22 research outputs found

    Topology preservation and control approach for interference aware non-overlapping channel assignment in wireless mesh networks

    Get PDF
    The Wireless Mesh Networks (WMN) has attracted significant interests due to their fast and inexpensive deployment and the ability to provide flexible and ubiquitous internet access. A key challenge to deploy the WMN is the interference problem between the links. The interference results in three problems of limited throughput, capacity and fairness of the WMN. The topology preservation strategy is used in this research to improve the throughput and address the problems of link failure and partitioning of the WMN. However, the existing channel assignment algorithms, based on the topology preservation strategy, result in high interference. Thus, there is a need to improve the network throughput by using the topology preservation strategy while the network connectivity is maintained. The problems of fairness and network capacity in the dense networks are due to limited available resources in WMN. Hence, efficient exploitation of the available resources increases the concurrent transmission between the links and improves the network performance. Firstly, the thesis proposes a Topology Preservation for Low Interference Channel Assignment (TLCA) algorithm to mitigate the impact of interference based on the topology preservation strategy. Secondly, it proposes the Max-flow based on Topology Control Channel Assignment (MTCA) algorithm to improve the network capacity by removing useless links from the original topology. Thirdly, the proposed Fairness Distribution of the Non-Overlapping Channels (FNOC) algorithm improves the fairness of the WMN through an equitable distribution of the non-overlapping channels between the wireless links. The F-NOC is based on the Differential Evolution optimization algorithm. The numerical and simulation results indicate that the proposed algorithms perform better compared to Connected Low Interference Channel Assignment algorithm (CLICA) in terms of network capacity (19%), fractional network interference (80%) and network throughput (28.6%). In conclusion, the proposed algorithms achieved higher throughput, better network capacity and lower interference compared to previous algorithms

    Interference Mitigation Based on Radio Aware Channel Assignment for Wireless Mesh Networks

    Get PDF
    © 2018, Springer Science+Business Media, LLC, part of Springer Nature. An intricate network deployment for high demand users leads to simultaneous transmission in wireless mesh networks. Multiple radios are adapted to individual nodes for improving network performance and Quality of Service (QoS). However, whenever multiple radios are assigned to the same channel, co-located radio interference occurs, which poses a major drawback. This paper proposes a Radio aware Channel Assignment (Ra-CA) mechanism based on a direct graphical model for mitigation of interference in multi-radio multi-channel networks. Initially, the co-located radio interference is identified by classifying non-interfering links for simultaneous transmission in the network. Proposed channel assignment mechanism helps in allocating the minimal number of channels to the network that mitigate co-located radio interference. Performance analysis of the proposed Ra-CA strategy is carried out compared with other existing techniques, like Breadth First Search-Channel Assignment (BFS-CA) and Maximal Independent Set Channel Assignment (MaIS-CA), in multi-radio networks. Simulation results demonstrate that the proposed channel assignment scheme is more efficient compared to the existing ones, in terms of QoS parameters like, packet drop rate, packet delivery ratio, transmission delay and throughput

    Efficient Use of Partially Overlapping Channels in WMNs

    Get PDF
    There has been growing interest in using Wireless Mesh Networks (WMNs) because of their advantages such as easier to scale up and self-organization. We instigate whether increasing the number of available channels through the use of Partially Overlapping Channels (POCs) is always useful for improving the Quality of Service (QoS) of WMNs namely the throughput or delay. For the purpose of this thesis, we design a set of algorithms for: i) Channel assignment; ii) Transmission Configurations (TCs) which is a set of links with the ability of sending data simultaneously; iii) power control; and iv) delivery of packets to their destination in order to take advantage of POCs in WMNs. We evaluate our proposed algorithms by a comprehensive set of numerical experiments. Numerical experiments indicate that using POCs leads not only to increase throughput of networks, but also it can decrease delay of packet delivery

    Electronic spectroscopy of cold ions in a radio-frequency trap

    Get PDF
    The low density of ions in mass spectrometers generally precludes direct absorption measurements. The spectrum of ions can nonetheless be obtained by using resonance two-color photofragmentation or multiphoton photofragmentation techniques. In Basel an ion-trap instrument has been built to measure the electronic spectra of cations at low vibrational and rotational temperatures (20-40 K), as of relevance to astronomical observations. Ions are produced in an electron-impact ion source and are mass selected with a quadrupole filter before being fed into a 22-pole radio-frequency trap. Typically 3000 ions are held for approximately 70 ms, during which the ions are equilibrated to low temperatures through collisions with cryogenically cooled helium gas. Subsequently an electronic transition is induced through excitation with a tunable nanosecond laser. A second UV photon then initiates photofragmentation of the excited ions. Afterward the trap is opened and the fragment ions are mass selected by a second quadrupole and detected. The recently obtained results of the excited states of some polyacetylene cations, caynogen cation, C4H3Cl+ cation in the gas phase are presented

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing
    corecore