24 research outputs found

    Multitarget Tracking in Nonoverlapping Cameras Using a Reference Set

    Get PDF
    Tracking multiple targets in nonoverlapping cameras are challenging since the observations of the same targets are often separated by time and space. There might be significant appearance change of a target across camera views caused by variations in illumination conditions, poses, and camera imaging characteristics. Consequently, the same target may appear very different in two cameras. Therefore, associating tracks in different camera views directly based on their appearance similarity is difficult and prone to error. In most previous methods, the appearance similarity is computed either using color histograms or based on pretrained brightness transfer function that maps color between cameras. In this paper, a novel reference set based appearance model is proposed to improve multitarget tracking in a network of nonoverlapping cameras. Contrary to previous work, a reference set is constructed for a pair of cameras, containing subjects appearing in both camera views. For track association, instead of directly comparing the appearance of two targets in different camera views, they are compared indirectly via the reference set. Besides global color histograms, texture and shape features are extracted at different locations of a target, and AdaBoost is used to learn the discriminative power of each feature. The effectiveness of the proposed method over the state of the art on two challenging real-world multicamera video data sets is demonstrated by thorough experiments

    Vision-Based Production of Personalized Video

    No full text
    In this paper we present a novel vision-based system for the automated production of personalised video souvenirs for visitors in leisure and cultural heritage venues. Visitors are visually identified and tracked through a camera network. The system produces a personalized DVD souvenir at the end of a visitor’s stay allowing visitors to relive their experiences. We analyze how we identify visitors by fusing facial and body features, how we track visitors, how the tracker recovers from failures due to occlusions, as well as how we annotate and compile the final product. Our experiments demonstrate the feasibility of the proposed approach

    Object Association Across Multiple Moving Cameras In Planar Scenes

    Get PDF
    In this dissertation, we address the problem of object detection and object association across multiple cameras over large areas that are well modeled by planes. We present a unifying probabilistic framework that captures the underlying geometry of planar scenes, and present algorithms to estimate geometric relationships between different cameras, which are subsequently used for co-operative association of objects. We first present a local1 object detection scheme that has three fundamental innovations over existing approaches. First, the model of the intensities of image pixels as independent random variables is challenged and it is asserted that useful correlation exists in intensities of spatially proximal pixels. This correlation is exploited to sustain high levels of detection accuracy in the presence of dynamic scene behavior, nominal misalignments and motion due to parallax. By using a non-parametric density estimation method over a joint domain-range representation of image pixels, complex dependencies between the domain (location) and range (color) are directly modeled. We present a model of the background as a single probability density. Second, temporal persistence is introduced as a detection criterion. Unlike previous approaches to object detection that detect objects by building adaptive models of the background, the foreground is modeled to augment the detection of objects (without explicit tracking), since objects detected in the preceding frame contain substantial evidence for detection in the current frame. Finally, the background and foreground models are used competitively in a MAP-MRF decision framework, stressing spatial context as a condition of detecting interesting objects and the posterior function is maximized efficiently by finding the minimum cut of a capacitated graph. Experimental validation of the method is performed and presented on a diverse set of data. We then address the problem of associating objects across multiple cameras in planar scenes. Since cameras may be moving, there is a possibility of both spatial and temporal non-overlap in the fields of view of the camera. We first address the case where spatial and temporal overlap can be assumed. Since the cameras are moving and often widely separated, direct appearance-based or proximity-based constraints cannot be used. Instead, we exploit geometric constraints on the relationship between the motion of each object across cameras, to test multiple correspondence hypotheses, without assuming any prior calibration information. Here, there are three contributions. First, we present a statistically and geometrically meaningful means of evaluating a hypothesized correspondence between multiple objects in multiple cameras. Second, since multiple cameras exist, ensuring coherency in association, i.e. transitive closure is maintained between more than two cameras, is an essential requirement. To ensure such coherency we pose the problem of object associating across cameras as a k-dimensional matching and use an approximation to find the association. We show that, under appropriate conditions, re-entering objects can also be re-associated to their original labels. Third, we show that as a result of associating objects across the cameras, a concurrent visualization of multiple aerial video streams is possible. Results are shown on a number of real and controlled scenarios with multiple objects observed by multiple cameras, validating our qualitative models. Finally, we present a unifying framework for object association across multiple cameras and for estimating inter-camera homographies between (spatially and temporally) overlapping and non-overlapping cameras, whether they are moving or non-moving. By making use of explicit polynomial models for the kinematics of objects, we present algorithms to estimate inter-frame homographies. Under an appropriate measurement noise model, an EM algorithm is applied for the maximum likelihood estimation of the inter-camera homographies and kinematic parameters. Rather than fit curves locally (in each camera) and match them across views, we present an approach that simultaneously refines the estimates of inter-camera homographies and curve coefficients globally. We demonstrate the efficacy of the approach on a number of real sequences taken from aerial cameras, and report quantitative performance during simulations

    Algorithms for trajectory integration in multiple views

    Get PDF
    PhDThis thesis addresses the problem of deriving a coherent and accurate localization of moving objects from partial visual information when data are generated by cameras placed in di erent view angles with respect to the scene. The framework is built around applications of scene monitoring with multiple cameras. Firstly, we demonstrate how a geometric-based solution exploits the relationships between corresponding feature points across views and improves accuracy in object location. Then, we improve the estimation of objects location with geometric transformations that account for lens distortions. Additionally, we study the integration of the partial visual information generated by each individual sensor and their combination into one single frame of observation that considers object association and data fusion. Our approach is fully image-based, only relies on 2D constructs and does not require any complex computation in 3D space. We exploit the continuity and coherence in objects' motion when crossing cameras' elds of view. Additionally, we work under the assumption of planar ground plane and wide baseline (i.e. cameras' viewpoints are far apart). The main contributions are: i) the development of a framework for distributed visual sensing that accounts for inaccuracies in the geometry of multiple views; ii) the reduction of trajectory mapping errors using a statistical-based homography estimation; iii) the integration of a polynomial method for correcting inaccuracies caused by the cameras' lens distortion; iv) a global trajectory reconstruction algorithm that associates and integrates fragments of trajectories generated by each camera

    Principal axis-based correspondence between multiple cameras for people tracking

    Full text link

    Tracking across multiple cameras with disjoint views

    Full text link

    Introdução à Análise de Movimento usando Visão Computacional

    Get PDF
    Pretende-se com este trabalho fazer uma introdução ao que tem vindo a ser realizado no domínio do seguimento e análise de movimento recorrendo a visão computacional.Assim no primeiro capítulo deste relatório faremos referência aos vários tipos de movimento e analisaremos as fases que compõem um sistema comum de captura e análise de movimento, descrevendo sucintamente alguns trabalhos realizados nesta área.Seguidamente, no segundo capítulo, faremos uma apresentação mais detalhada da área do seguimento e análise de movimento humano de corpo inteiro; nomeadamente, no reconhecimento da pose e do reconhecimento do andar e de gestos.Finalmente, no terceiro e último capítulo, daremos ênfase à análise de imagem médica e exemplificaremos, sumariamente, algumas das suas aplicações.With this work we intend to introduce what has been done in the domain of tracking and motion analysis by using computational vision.Therefore in the first chapter of this report we will refer the various types of motion, and analyse the steps that compose a general system of movement capture and analysis, by succinctly describing some works done in this field.Then, in the second chapter we will do a more detailed study about the area of human entire body tracking and motion analysis; namely, in pose recognition and in the recognition of gait and gestures.Finally, in the third and last chapter, emphasis will be given to the medical images analysis and we will summarily exemplify some of its applications

    Audio-Based Visualization of Expressive Body Movements in Music Performance: An Evaluation of Methodology in Three Electroacoustic Compositions

    Get PDF
    An increase in collaboration amongst visual artists, performance artists, musicians, and programmers has given rise to the exploration of multimedia performance arts. A methodology for audio-based visualization has been created that integrates the information of sound with the visualization of physical expressions, with the goal of magnifying the expressiveness of the performance. The emphasis is placed on exalting the music by using the audio to affect and enhance the video processing, while the video does not affect the audio at all. In this sense the music is considered to be autonomous of the video. The audio-based visualization can provide the audience with a deeper appreciation of the music. Unique implementations of the methodology have been created for three compositions. A qualitative analysis of each implementation is employed to evaluate both the technological and aesthetic merits for each composition

    Accurate fusion of robot, camera and wireless sensors for surveillance applications

    Full text link
    corecore