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Abstract

This thesis addresses the problem of deriving a coherent and accurate localiza-

tion of moving objects from partial visual information when data are generated by cameras

placed in different view angles with respect to the scene. The framework is built around

applications of scene monitoring with multiple cameras. Firstly, we demonstrate how a

geometric-based solution exploits the relationships between corresponding feature points

across views and improves accuracy in object location. Then, we improve the estima-

tion of objects location with geometric transformations that account for lens distortions.

Additionally, we study the integration of the partial visual information generated by each

individual sensor and their combination into one single frame of observation that considers

object association and data fusion. Our approach is fully image-based, only relies on 2D

constructs and does not require any complex computation in 3D space. We exploit the

continuity and coherence in objects’ motion when crossing cameras’ fields of view. Ad-

ditionally, we work under the assumption of planar ground plane and wide baseline (i.e.

cameras’ viewpoints are far apart). The main contributions are: i) the development of a

framework for distributed visual sensing that accounts for inaccuracies in the geometry

of multiple views; ii) the reduction of trajectory mapping errors using a statistical-based

homography estimation; iii) the integration of a polynomial method for correcting in-

accuracies caused by the cameras’ lens distortion; iv) a global trajectory reconstruction

algorithm that associates and integrates fragments of trajectories generated by each cam-

era.
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Chapter 1

Introduction

1.1 Motivation

Enabling a computer with the capability to perform vision tasks is a remarkably

challenging problem. Geometry plays an important role in this context by providing the

laws that govern and model the relationship between multiple images of a given scene. Any

vision system is intrinsically connected to geometry and thus it is natural that a domain

of computer vision makes considerations about geometric viewangle approaches. The

application of projective geometry transformations to the fundamental elements of a 2D

image (the pixels), for vision task purpose, gives the general context of the area of research

the present work belongs to. By and large, these tasks include various domains such as

image synthesis, camera calibration, remote sensing, autonomous or aided-navigation and

surveillance. Monitoring large areas such as airports, underground stations and sensitive

facilities requires a set of distributed cameras. Figure 1.1 is an illustration of such a

situation. The station floor is imaged in four cameras, each of them viewing a different

portion of the area. These cameras are endowed with a capability to capture common

patterns of activities and detect unusual events or anomalous behaviours. The integration

of information across the cameras, essential to a complete understanding of the scene,

8
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(View 1 ) (View 2 )

(View 3 ) (View 4 )

Figure 1.1: Multi-camera system to monitor a train station. Each camera provides a
partial view of the scene. The integration of the information passes through object cor-
respondence across cameras. (Copyright ISCAPS consortium. Permission of the PETS
2006 workshop.)

requires the ability to relate the four views in one single global frame of observation. An

example of a centralised multiple view system is illustrated by Fig. 1.3. Such systems

will recover the visual information and perform automatic scene analysis [2, 3]. The

aforementioned situations often include occlusion (objects’ visibility being partially or

totally hidden by another object or a structure in the scene) and require the estimation of

accurate locations in challenging environments. Throughout this thesis, we consider the

widely used pinhole camera model [4]. The choice of this model in these works is due to the

characteristics of the cameras themselves and the type of information being considered.

The pinhole model is simple and sufficient to model the most commonly used cameras in

surveillance and monitoring [5]. This model represents the camera’s image plane by the

projective plane π = P 2, which is defined as the real Euclidean plane augmented by the line
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Figure 1.2: The projective camera model. Here π represents the projective plane, P is a
generic point in the Euclidean space and p is its representation on the image plane.

at infinity (Fig. 1.2). Geometric points in a projective space are defined by homogeneous

coordinates, which means, they are defined up to a non-zero scale factor. Figure 1.2 is an

illustration of the aforementioned model. π is the image plane, located at distance Z = `

from the camera centre O. The line from the camera centre, perpendicular to the image is

the principal axis. Under this model, a point P = (X,Y, Z)T in the Euclidean space <3, is

mapped to the point p = (`X/Z, `Y/Z)T on the image plane. This latter is the Euclidean

space <2, augmented with the line to infinity [6]. The projective nature of visual sensors,

in a context of multi-view monitoring, raises several challenges in the field of Computer

Vision and its numerous applications. Surveillance, robot vision, intelligent transportation

and video summarization to name a few, require the development of algorithms to perform

tasks such as object detection and tracking, object reconstruction and recognition. For

the multi-view set, the mutual knowledge of cameras’ individual output and the geometry

of the ensemble is crucial for an effective maximization of the information collected and

processed.

A set of cameras often presents overlapping views that prove to be useful in
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Figure 1.3: Example of a multiple views object tracking system. Data from each camera is
integrated into one single framework describing the global visual information of the scene.
Adapted from [1]

(View 1) (View 2)

Figure 1.4: Redundancy in multiple view sensing contributes to solve the occlusion occur-
ring in View 1 by the integration of the information provided by View 2.

providing selective observations of specific parts of a scene and delivering elements of

redundancy. This will help minimise ambiguities of occlusions (Fig. 1.4), increase accuracy

over the position estimate of objects, and extend a site coverage (Fig. 1.5).

The geometry of the scene and the individual configuration of each sensor raise
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(front) (corridor)

Figure 1.5: The monitoring of a shop entrance (left) is extended with the addition of a
corridor view (right).

the issues of:

• how to combine the observations from each sensor into one consistent view.

• how to perform scene understanding based on features extracted from the views.

This thesis is to be placed within the context of issues related to the first category.

In this thesis, we address the problem of visual sensing from multiple views by answering

the following questions:

• How to relate partial and concurrent information generated by sensors monitoring a

scene from different viewpoints?

• How to reduce errors in the information mutually conveyed by sensors to enhance

accuracy in object localization and correspondence across views?

1.2 Main contributions

The main contributions of this thesis are as summarised below.

• We have created a framework for distributed visual sensing that accounts for inac-

curacies in the geometry of multiple views [C3, C2]. The reduction of the trajectory

mapping errors is achieved by applying a statistical-based homography estimation [7]

on points sampled from objects’ trajectories, as opposed to linear-based methods [8].
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• We have integrated a polynomial method for correcting inaccuracies caused by the

lens distortion in the homography-based image-to-image correspondence and thus

lowered registration errors in trajectory mapping [J1].

• We have proposed a global trajectory reconstruction algorithm that associates and

integrates fragments of trajectories generated by each camera monitoring different

portions of a scene [C1]. Our approach is fully image-based, only relies on 2D con-

structs and does not require any complex computation in 3D.

1.3 Outline of the thesis

This thesis focuses on the use of multiple view relations and the sensors’ accuracy

in achieving a global objects’ location. The contributions mentioned above are presented

in Chapter 3 preceded by an analysis of the state-of-the-art and followed by conclusions

and directions for future work.

Chapter 2 describes both monocular and multiple views approaches. Motion

segmentation as well as pure single view approaches to object tracking are presented. The

limitations of these approaches are discussed. Next, multiple view-based algorithms are

introduced and their solutions to overcome the limitations of single-view techniques are

presented. Finally, a discussion on limitations of conventional multiple views approaches

is presented.

Chapter 3 elaborates on the proposed approach, detailing planar homographic

constructs, particularly in the case of overlapping fields of view. Two aspects involving ac-

curacy in the correspondence across views are expanded: first, the statistical homography

estimation technique and then the embedded lens distortion correction.

Chapter 4 describes the dataset used and the metrics adopted and presents the

experiments using surveillance and sport scenarios and discusses results. An evaluation of

the proposed approach is also presented.
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In Chapter 5 we comment on and summarize the achievements of this thesis

and we discuss possible extensions of this work.



Chapter 2

State of the art

2.1 Introduction

In this chapter, we present existing approaches in object tracking to describe the

context of the present thesis. The first stage in visual sensing can be characterised by

object detection that consists in extracting objects and performing motion segmentation

over time. However, because this is not part of the current study, we refer the reader to the

body of research presented in [2, 9, 10]. Once objects of interest have been extracted, there

is need to track them over time. We highlight the limits of single-view methods, and then

we discuss different solutions based on multiple view approaches to overcome these limits.

Multi-camera algorithms involved in object tracking can be classified into three main

categories: appearance-based, geometry-based and hybrid approaches. These categories

are related to the type of features extracted from images to establish the correspondences

between objects across views and, build and integrate complementary information in a

coherent fashion.

15
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(a) (b)

(c) (d)

Figure 2.1: Examples of object tracking in different scenarios

2.2 Single-view object tracking

Following the detection of objects of interest, there is need to estimate a global

spatio-temporal record of their locations (object tracking, Fig.2.1 and 2.2). An overview

on object tracking is presented by Yilmaz’s work [11]. Tracking is often hampered by

changes in appearance, irregular and discontinuous motion and occlusions. In this section,

we group the different methods according to their underlying characteristics: deterministic

or statistical or the type of features used.
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Figure 2.2: Object tracking: spatio-temporal information over time.

2.2.1 Feature point-based approaches

An object is represented by one or more support points that are being tracked

along images of the sequence. This point can represent, for example: the centre of gravity,

the ground location or the top of the head in the case of humans. These approaches work

under the assumption of the availability of this feature at every instant of time and a

correspondence is computed between the different observations. The drawback of these

methods is that the observations can be affected by noise and corrupt the measurements.

The occurrence of occlusion between features can generate a partial or total loss of some

feature points.

Deterministic techniques

These methods exploit the idea of temporal continuity constraint to maintain and

connect object’s tracks and tackle occlusion. An approach consisting of global trajectory
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optimization is presented in [12, 13]. The first uses the tensor voting methodology and

the second uses dynamic programming to follow individual trajectories. However, these

approaches only deal with a limited number of simultaneous trajectories with occluding

objects. In order to tackle the issue of occlusion in single-view methods, several techniques

have been proposed. A typical approach would detect the occurrence of occlusion by a blob

merger [2, 14]. Feng et al. [15] propose a graph-based object representation and use SIFT

features to describe the object. Features are related as edges in a graph. The computation

of likelihood is expressed as a graph matching problem and they use relaxation labelling

as a solution. Although this method handles relevant variations of an object’s appearance,

pose and occlusion, it is heavily dependent on the feature stability and the performance

can dramatically decrease if features are not stable. In the graph matching algorithm [16],

objects are treated as nodes of a bi-partitioned digraph (i.e., a directional graph), whereas

edges are determined by all possible object combinations in adjacent frames and weighted

using multiple object features namely position, direction and size. The graph is formed by

iteratively creating new edges from the detected targets. Edges represent all possible track

hypotheses, including miss-detections and occlusions. The best set of tracks is generated

by computing the maximum weight path cover of the graph. Given that the gain function

is dependent on the backward correspondences (i.e., the speed at the previous step), a

greedy suboptimal version of the graph matching algorithm is used. Since graph matching

links nodes based on the highest weights, to avoid connecting two trajectory points far

from each other, a gating window is used [16].

Statistical techniques

A probabilistic approach is adopted by Brostow [17] et al who propose a proba-

bilistic framework in which they cluster feature points in the trajectories to detect individ-

ual pedestrians in a crowd. Other similar approaches [18, 19, 20, 21] rely on appearance

models that are actually trained for specific unoccluded views of their respective objects
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in the monitored scenes. Therefore, they fail in the case of full occlusion and appearance

changes. Wu et al [22] incorporate an additional hidden process for occlusion into a dy-

namic Bayesian network and rely on the statistical inference of the hidden process to reveal

occlusion relations. Senior et al. [23] use appearance models to localize objects and use am-

biguous pixels to resolve their depth ordering when objects occlude each other. However,

this algorithm does not maintain the subject’s identity after the occurrence of occlusion.

Other works [24, 25] have used Expectation Maximization to derive object’s appearance

and motion, having initially modeled videos as a layered composition of objects.

Hybrid techniques

Okuma et al. adopt a synergy of different techniques [26]. They combine both

Adaboost, to extract foreground objects and successively, a particle filter to perform

multiple-object tracking. This approach reduces the algorithm failures as compared to

either one on its own. Additionally, their framework addresses both detection and con-

sistent building of object’s tracks in a comprehensive way. A two-stage algorithm has

been presented by Perera et al [27], which first establishes a one-to-one correspondence

and then a split and merge module to maintain object identities and connect trajectories’

parts, segmented by occlusions.

2.2.2 Region-based approaches

These approaches either track boundaries of objects or the appearance of the

area within these boundaries. The first category focuses on the shape of the objects while

the second operates on models of appearance features.

Contour

A curve fitting is used to detect features of a region by means of energy minimiza-

tion functions. These functions pull the curves towards the detected features. Ricquebourg
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et al. [28] exploit the spatio-temporal slices from the image sequence volume to track hu-

man motion. Later works propose tracking techniques exploiting object’s contours [29, 30]

and appearances [31, 22]. They use hidden variables of depth ordering of objects toward

the camera, to describe and estimate occlusion relationships between moving objects.

Appearance

In this direction, Zhao et al [32, 33] proposed a method where they used articu-

lated ellipsoids to model contour of bodies, colour histograms to model their appearance,

and an augmented Gaussian distribution to model the background for segmentation. Once

moving head pixels are detected as foreground objects, a principled MCMC approach is

used to maximize the posterior probability of a multi-person configuration. Another exam-

ple is given by the BraMBLe system [34]. It is a multi-blob tracker where the likelihood of

each blob is generated using an available background model and the appearance models of

the objects in the scene. However, this tracker’s performance decreases in situations where

several objects, because they are located in each other’s vicinity, merge into one blob. To

overcome this limit, other methods have considered maintaining the object’s state. The

object’s spatio-temporal location, the dynamics of its motion as well as features related

to its appearance (e.g., colour), are constantly maintained and updated.

2.2.3 Graph Matching algorithm

Tracking can be performed by applying a Graph Matching (GM) algorithm on

the detected objects [16]. Objects are treated as nodes of a bi-partitioned digraph (i.e., a

directional graph), whereas edges are determined by all possible object combinations (track

hypotheses) in adjacent frames and weighted using multiple object features, namely po-

sition, direction and size. The graph is formed by iteratively creating new edges from

the detected targets. The optimal set of tracks is generated by computing the maximum

weight path cover of the graph. Since graph matching links nodes based on the highest
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Figure 2.3: Example of detection and tracking results in multiple views from the PETS
dataset. (Top) camera1. (Bottom) camera2. (Left) frame 331. (Right) frame 351.

weights, a gating window is used to avoid connecting two trajectory points far from each

other. Figure 2.3 shows an example of object detection and tracking results using GM

algorithm. Foreground segmentation is performed by a statistical colour change detec-

tor [35]: a model-based algorithm that assumes additive white Gaussian noise on each

frame. The noise amplitude is estimated for each colour channel. Important local illumi-

nation changes are dealt with by performing an edge-based post-processing using selective

morphology that filters out misclassified foreground regions by dilating strong foreground

edges and eroding weak foreground edges. Next, 8-neighbour connected components anal-

ysis is performed to generate a foreground mask. The frequent local illumination changes

in real-world sequences affect the estimation of an object shape. A model-based shadow

removal approach is employed that assumes that shadows are cast on the ground. The
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result of the object detection step is a bounding box for each blob. The next step is to

associate subsequent detections of the same object over time, as explained in the next

section. Data association has to be verified throughout several frames to validate the cor-

rectness of the tracks.Data association is a challenging problem due to track management

issues such as the appearance and disappearance of objects, occlusions and false detections

due to clutter and noisy measurements.

2.2.4 Limitations

Single-view based approaches often rely on partial observations from spatially re-

stricted views, resulting in difficulties to handle full occlusions. To deal with occlusion, the

aforementioned approaches assume small and consistent motions to allow the prediction

of objects’ motion patterns. However, that assumption results in problems when dealing

with extended periods of occlusions of an object under unpredictable motions. Therefore,

it clearly appears that single view approaches are still nonetheless limited in their ability

to deal with coherent global scene observation. In fact, despite the remarkable progress

made, there are difficulties in handling situations where multiple objects occlude each

other because the single view-angle platform is intrinsically unable to observe the hidden

regions.

Occlusion is a phenomenon that occurs in dynamic scenes when the visibility of

an object is partially or totally covered by other moving or static objects, considered as

foreground or part of the background.

• Dynamic occlusions

These occur when, during a given interval of time, a second object that entered the

field of view of a camera, finds itself in the line of sight between the camera centre

and the first object. The blobs of two objects merge and are consequently segmented

as one single object. In the case where the occlusion occurs after the two objects
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were initially distinguishable, mechanism of occlusions detection can be used to solve

it. However, it is difficult to identify the event of occlusion in a single-view sensing if

the two objects were occluded from the time they start being visible on the camera.

Crowds, movements of pedestrians and team-sports are cases where occlusion are

very frequent and difficult to solve with one view only.

• Static occlusions

These take place when an object is hidden from a camera by an object that is part of

the background. This includes a building, a tree or any static structure in the scene.

The visibility of the object simply ceases and the decision on whether the object is

still present or not is made difficult from one view only.

In conclusion, because of the ambiguity generated by changes in the object’s appearances,

the coverage of a site being limited by a single camera’s field of view and the monitoring

of groups being hindered by occlusions, it appears that there is need for a wider multiple

view approach to overcome these limits.

2.3 Multi-view object tracking

The use of multiple sensors turns out to be a necessity for systems aiming to

accurately detect and track multiple objects in real life scenarios. Visual sensing using

multiple cameras has been the subject of increasing interest in computer vision in recent

years. On the ground, the idea also meets practical requirements. Since conventional

cameras have limited fields of view but are getting cheaper, the use of lower resolution

commercial off-the-shelf cameras, deployed in a networked system, would achieve the flex-

ibility and scalability that would otherwise be more costly with high-resolution cameras

with wide fields of view [36]. Research in this field has spawned different approaches, in

different environments to demonstrate the large range of applications and the advantages

of cooperative sensing.
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A multi-sensor environment is not just a collection of devices that perform their

respective tasks independently. Indeed, there is the opportunity to coordinate and inte-

grate information on activities across all cameras in order to improve the performance of

the overall system. Multiple view approaches require, in general, the consideration of the

relationship between the devices to obtain a global understanding of scene dynamics. Data

originating from individual cameras can be brought into one coherent common frame of

observation so that the automated surveillance system can infer a global analysis to under-

stand the scene and accordingly allow appropriate decisions. For example, it is important

to know whether an object, simultaneously visible in two views, is the same or not and to

reconstruct the path followed by the object across cameras’ fields of view without ambi-

guity. The reconstruction of trajectories generated by objects moving across cameras can

allow the extraction of information on their global behaviour for various applications, such

as sport events analysis, remote sensing, surveillance and monitoring. Multi-view tracking

methods also aim to decrease the hidden regions by providing large coverage of moni-

tored areas. This is achieved by exploiting the redundant information in the scene and,

representing objects of interest from different viewpoints [37, 38, 39, 40, 41, 42, 43, 44].

The model of projective cameras brings new challenges for information integra-

tion in multiple views. Real world constraints are exploited to tackle issues related to

creating a coherent and consistent framework for multiple views:

• The existence of a planar surface, the ground plane, on which objects move.

• The temporal continuity of motion across cameras.

• The appearance properties of objects.

Figure 1.1 shows an example of a multiple-view monitored site. The station floor

is visible in four cameras, each of them viewing a different portion of it. The integration

of information across the cameras, essential to a complete understanding of the scene,

requires the ability to relate the four views in one single global frame of observation.
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The use of multiple cameras raises several issues, enumerated by Weiming [3]:

1. Image registration: the process concerns the alignment of corresponding images of

the same scene, observed from different viewpoints [45, 46, 9, 47, 48, 1].

2. Data Fusion: integration of features from the different sensors [49, 50].

3. Camera calibration: determines cameras’ intrinsic and extrinsic parameters. It esti-

mates those parameters by using projected images of planar calibration patterns [51,

52, 53].

4. Camera switching: finding the camera that gives the best view of an object that enters

and exits different fields of view. The system should minimise the switching [54, 55].

5. Data association: finding correspondences between the objects in different image

sequences from different cameras [46, 54, 1, 44].

6. Camera installation: optimum coverage of a scene with minimum number of cam-

eras [56].

We can categorize multiple view approaches in two groups, namely non-overlapping

and overlapping configurations.

2.3.1 Non-overlapping fields of view

These methods perform object tracking in areas that are not fully covered by

cameras’ fields of view. This raises several issues, including: the difficulty to use spatio-

temporal proximity given that observations can be widely a part; the high variance in the

object’s appearance due to difference in pose with respect to two different sensors, different

exposure to light and camera properties. Javed et al. [57] propose a method that uses the

most commonly followed paths of objects to establish correspondences and learn the inter-

camera relationships as multivariate probability density distributions of space and time

variables using kernel density estimation. They solve the variation in objects’ appearances

across views, in object matching, by resorting to the principal subspace of brightness
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transfer functions that is learned by using principal component analysis. The work by

Rahimi et al. [58] aims to reconstruct an object’s global trajectory across views with

unobservable regions, in order to derive the ground plane calibration of the sensors. The

objects’ dynamics are modelled as Markovian process and, using a non-linear minimization

method, they extract the most likely path taken by the object. Kettnaker et al. [59]

transform the Bayesian problem of trajectory reconstruction, into a linear program to

solve the matching between objects across views. However, their method requires the

manual input of the paths that are allowed. Therefore, this approach fails to deal with

changes in the objects’ usual paths. Quaritsch et al. present a method for decentralized

handover mechanisms between neighbouring cameras [60] where there is no need for a

centralised coordination. A single view tracking is initiated and trackers use Camshift

algorithm to follow supervised objects across views. The camera handoff is achieved by

using a mobile agent system available on the intelligent camera network.

2.3.2 Overlapping fields of view

The relationships between cameras may be extracted in two main ways: using

a prior information on knowledge about the scene static features, either through camera

calibration or by extracting corresponding points in areas of overlap. Camera calibration

makes use of the relative positions of static features. They present a high level of accuracy.

However, particularly in cases of wide baseline and outdoors scenes, this often implies the

use of sophisticated equipment such as GPS devices or geodetically aligned elevation maps

of the ground. Calibration can also be a daunting task as a slight change in one device will

require the entire process to be repeated. Other methods are those based on video data

and extract feature points from objects’ trajectories. According to the degree of overlap,

there exist two cases, the small baseline and the wide baseline.
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Small baseline

They present small perspective distortion hence linear methods are applicable

to matching process. Feature based cross-correlation methods easily find correspondences

between the images. However, in the case of significant repetitions of structures of fea-

tures, there is the risk of high numbers of false positives. When it comes to monitoring

large areas, configurations that use small baselines would be impractical as they would

require a considerable number of devices. Several works have addressed the problem of

stereo matching in multiple view by proposing the integration of stereo pairs as the main

approach. In their work, Krumm et al. [61] utilise stereo cameras and integrate visual

data from several stereo cameras in the world coordinate system. First, a background

subtraction is carried out and then the detection of people’s shapes is performed in 3D

space. They model each individual with a colour histogram which is successively used to

identify and track people across views. In the same fashion, Mittal et al. [62] propose to

integrate information from a stereo image pair. They consider areas in the image pair and

compare them with each other. The back projection into world coordinates is conducted

so that corresponding 3D points eventually lie inside the object.

Wide baseline

The process of matching features across views, particularly static features, is

made difficult by the large perspective deformation. Automatic matching processes often

rely on dynamic features. Cai et al. [54] extend a monocular tracking system and start by

a single view tracking and then perform a camera handoff when the algorithm anticipates

that the current sensor is about to stop presenting a good view of the moving object.

The matching process is conducted by computing the Euclidean distance between a point

and its corresponding epipolar line. Khan et al. propose a method for object correspon-

dence with multiple cameras [63]. A homography between views is calculated and, for the
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correspondence, a training phase is conducted during which one person enters and exits

cameras fields of view. A limitation of this approach is presented by scenarios in which a

person enters from the bottom of the image. The ground location cannot be simply com-

puted by taking the bottom point of a detected blob. Since the ground location of objects

is extracted at the camera handoff, such a scenario will generate false correspondences

because the second assumption of the method is not verified anymore.

2.3.3 Appearance-based approaches

They use colour to match objects across cameras. Kang et al. [42] use colour in-

formation and a joint probability data association filter for tracking football players. Num-

miaro et al. [40] propose a coloured-based object tracking approach with a particle filter

implementation in a multi-camera environment. Kim et al. [64] use TV-broadcasted im-

ages and a tracking method based on template matching and on histogram back-projection

to solve the occlusion problem. Orwell et al. [65] propose a multiple object tracking al-

gorithm in multiple views using appearance models (colour). In their approach, they

connects blobs extracted with background subtraction based on colour histogram tech-

niques and use these blobs to match and track objects across views. Appearance-based

methods generally suffer from illumination variations that undermine colour effectiveness

as a cue. Also, colour information alone does not suffice to disambiguate elements of a

group such as members of a team in a sport scene

2.3.4 Geometry-based approaches

These methods establish correspondences between objects appearing simultane-

ously in different views. These approaches generally exploit epipolar geometry, homogra-

phy and camera calibration. Junejo et al. [66] propose a method that rectifies trajectories

and models people’s paths. Using a non-linear approach, cameras are calibrated during

an unsupervised training and trajectories are rectified. Prototype path models are built
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from these trajectories and a similarity measure is used to match input trajectories to path

models. Iwase et al. [67] use eight cameras covering the penalty area and integrate the

tracking data of football players from multiple cameras by using homography and a virtual

ground image. An extension of point distribution models is proposed by Meneses et al.

[68] to analyse object’s motion in their temporal, spatial and spatio-temporal dimensions.

Motions are expressed in terms of modes and associated to particular behaviour. Methods

based on pure geometric constraints rely heavily on the accuracy during the correspon-

dence process. For example, epipolar geometry suffers from ambiguity generated by the

point-to-line correspondence [6].

Other works have adopted geometric approaches in object correspondence by

using homographic transformations or epipolar geometry. Particularly, techniques using

grids of space occupancy have recently been the object of a series of works [69, 62, 12, 70,

71]. Although these approaches rely on strong geometric constraints, thus allowing more

accuracy, they are limited by the need for camera calibration because the information

fusion takes place in 3D space.

In their work, Khan et al. [72] propose a homographic-based technique to fuse

data from multiple sources and address the occlusion problem by localizing humans on

multiple scenes. Basically, they localize, on every image plane, the locations of points

that are likely to be occupied by objects. Successively, the locations found are used to

solve occluded scenes. The advantage of this method resides in its synergetic approach

where evidence is gathered from all cameras into one framework and only then detection

and tracking is performed simultaneously. The results of these processes are then back-

projected to each view. However, this approach fails when a human does not belong to the

high foreground likelihood areas in the image plane (single view) as this situation causes

missed detections (false negatives). One typical case is that of a static occlusion where a

person is occluded by a part of the background itself (a building or a tree for example).

A second case is when a region of the scene is occluded in all views by moving objects,
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resulting in false positives. A dramatic drop of performance is noticed with an increased

number of people in the scene. This approach then has difficulties in handling cases of

merges and splits and would require a higher number of views to detect the empty spaces

between people.

Kelly et al. use voxels to build a 3D environment model [73]. People are modelled

as collections of voxels to handle the camera-handoff problem. Jain et al. [74] resort to cal-

ibrated cameras to extract objects’ 3D locations in an environment model for the Multiple

Perspective Interactive Video. These works, like [75], characteristically use environment

models and calibrated cameras.

2.3.5 Hybrid methods

These methods use multiple features to integrate the information in the camera

network. Sheikh et al. [38] present a statistical approach to associate trajectories across

multiple views from airborne cameras. They assume the availability of a ground plane

and a minimum duration during which at least one object is observed by two cameras.

Taking as input the timestamped trajectories from each view, the algorithm estimates

the inter-camera transformations, the objects’ associations across views and the canonical

trajectories. These are considered to be the best estimates in the maximum likelihood

sense. Figueroa et al. [76] present a multi-camera tracking algorithm that uses a graph

representation to find the positions of the football players on the pitch. Misu et al. [77]

propose the integration of multiple features from multiple views (e.g texture, colour, region

and motion). The trajectories are updated by back-projecting the 2D observations of the

features and weighting them adaptively to their self-evaluated reliability. An algorithm

that combines particle filtering and belief propagation in a unified framework is presented

by Wei et al. [78]. Local particle filtering trackers interact with each other via belief

propagation and compensate for poor individual observations. This algorithm is restricted

to overlapping areas and relatively short time duration of occlusions. Busnell et al. [79]
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investigate multiple object tracking and associate trajectories in a deterministic way. The

distributed environment is built as a sparse connected graph and each vertex is a binary

sensor. The connection between two nodes, hence the presence of an edge between two

sensors, is established if an object can pass from one sensed area to another without

triggering the activation of any other remaining sensor. Kim et al. [80] adopt both the

appearance and homography approach to segment and track multiple persons. They use

humans’ centre vertical axes to recover their ground location. They solve the increase in

state space, they incorporate an iterative segmentation-searching into a particle-filtering

framework. However, occurrences of occlusions and similarity in the appearances of the

people involved are difficult to handle.

Nakazawa et al.build a state transition map linking areas that belong to one

or more sensors’ field of view, along with a set of action rules to integrate information

between different cameras. In their work [42], Kang et al.propose an approach where the

tracking algorithm is performed in both image plane and the top view scene in a synergy

of appearance and motion models.

Eshel et al. present a multi-view tracking in dense crowd [81]. They detect

people’s heads and the tracking is performed using assumptions on consistency of motion

direction and velocity. The support point candidates are detected by plane image align-

ment with homography and intensity correlation. However, this method fails with the

growing size of the crowd.

Other approaches use Bayesian networks to deal with object detection and track-

ing in multiple views. Chang’s work [82] adopts a hybrid approach using Bayesian networks

that combine a purely geometric approach (epipolar geometry, planar homographies and

scene landmarks) with appearance (height and appearance) based modalities to match

objects across different views. Falling in the same category of Bayesian networks, Dock-

stader et al.[50] propose an object tracking method that resolves occlusions across multiple

calibrated cameras.
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2.4 Homography estimation

Several applications have used homographic transformations to solve the inte-

gration of information from multiple views. Park et al. [83, 84] propose a framework that

combines multiple view information with contextual domain knowledge with the purpose

of analysis and query of person and vehicle interactions. This is applied to intelligent

transportation to enhance pedestrian safety and situation awareness. Other applications

are listed below:

• Object Tracking and Event Detection with multiple cameras: homography is used to

infer transformations between planes to tackle occlusion, obtain an extended field of

view and increase accuracy measurements [42, 44, 2, 46].

• Metric Rectification: homography is applied to obtain the fronto-parallel view of

objects from a projectively distorted image. This relates to applications in modelling

structured environments and recognition of road billboards with known patterns [85].

• 3D reconstruction: in this application, a projective reconstruction of the imaging

geometry is obtained by applying projective transformation [86].

• Image registration and mosaicing: this applications involves creating a large view

from images aligned by a homography [87].

• Automotive: these applications include vision-based control for cars in driving as-

sistance and visual servoing. These involve computing the relative positions of ve-

hicles with respect to a fixed object or a leading moving car. A camera captures

the transformed image of the perimeter contour of a road sign. The homography

relates a known contour in template image to the same contour in the captured

image [88, 89, 90].

• Automatic system in disaster prevention: the activities and interactions of people

and vehicles are analysed for situational awareness. These applications exploit planar

homography constraints to extract footage area and objects velocity [91].
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Algorithm 1 Homography estimation from textural information
Goal : Compute the homography between the two transformed views of the same planar texture.

1: Compute the DFT of both images.
2: Transform the images to the αβ space.
3: Recover the translation by looking for an impulse in the inverse Fourier Transform of the two

cross power spectrum of the logαβ space representation of the two images which gives us the
non-linear scale factors ψ1 and ψ2

4: In the Fourier domain recover the upper 2× 2 minor of H−1 in a linear least squares manner.
5: Recover the translation component from the location of the impulse in the inverse Fourier

transform of the cross power spectrum of the original image f (.) and gt (.).
6: Use the Levenberg-Marquardt algorithm to compute the projective components of H.

To estimate homography, algorithms are mainly categorized in two methods [92].

Namely, texture-based and geometric approaches.

2.4.1 Texture-based methods

The texture-based approach [93, 94, 95] exploits the image intensities and works

in the Fourier domain to compute the image-to-image transformation. The identification,

selection and extraction of corresponding primitives in two images limits the applicability

of spatial-based approach [96]. Instead, texture-based methods make use of image intensi-

ties for computing the image-to-image transformation and therefore present the advantage

of exploiting the information over the whole image. However, the drawback is that most

methods related to this last group are often limited to affine transformations or do not

operate on wide baseline views.

Texture-based methods transform an image into the frequency domain and have

the advantage of exploiting information provided in the intensities of the whole image.

Unlike their spatial counterparts, they do not require an explicit point-to-point correspon-

dence. Therefore, they avoid the critical issue of primitives identification and extraction in

the corresponding images. Images are transformed to the Fourier domain and represented

in a coordinate system where the homography is reduced to an anisotropic scaling. These

methods work under the hypothesis of homographies being approximated by a subgroup

of affine transformations, as illustrated by Algoritm 1. This subgroup present in-plane
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rotation, translation and scaling. Most texture-based techniques are limited to this case

of similarity transformations. Kruger et al. [96] perform image registration using multires-

olution approach under affine transformations. They use the Fourier Transform of image

patches and apply affine transformation while performing minimal line correspondences

and affine homographies. Lucchese et al. present an affine transformation between images

from a planar scene [93, 95]. They make use of radial projections of the energy and then to

estimate the transformations, they resort to a series of non-linear optimizations techniques.

In techniques that are based on tonal information in corresponding views, the anisotropic

scale factors that characterize subgroup of affine transformations are computed using cross

correlation methods. The algorithms work backwards from these methods until the entire

affine transformation is computed. The relationship between textures is used to recover

planar homographies since it only depends on the matching points and their effect in the

frequency domain.

2.4.2 Geometric-based methods

These methods ([7, 97, 98]) are represented by the spatial-based approach. Tech-

niques related to this approach solve the problem of correspondence by extracting and

matching primitives (points, lines, conics or algebraic curves) across views.

The homography between two views is defined up to scale and can be estimated

by finding sufficient constraints to fix the degrees of freedom that determines the trans-

formation matrix. Homography is estimated by identifying and extracting geometrical

primitives (points, lines, conics or algebraic curves) or conics present in corresponding

views. Most methods make use of the Direct Linear Transformation (DLT) or other sim-

ilar algorithms [6, 99]. The renormalization technique [100, 101, 102] is proposed as a

step forward to enhance the numerical stability since most linear methods are particularly

sensitive to the accuracy of the correspondence as well as to the condition numbers of

the matrices. Robustness is also introduced by using standard techniques like Maximum
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Likelihood Estimates and RANSAC [6]. These statistical methods improve the robustness

of those algorithms against noise in the correspondence process. Techniques based on

geometrical primitives such as polygons are also used [103, 104]. They employ projective

invariants such as cross-ratios to approximate a contour by growing a polygon that is

identified in two corresponding views. The polygonal approximation is then used in order

to estimate the homography. Here below are reported some techniques that resort to the

spatial approach and is followed by applications in related works:

• Points

Algorithm 2 Direct Linear Transformation on points correspondence

Goal : Given n ≥ 4 2D-to-2D point correspondences xi ↔ x
′

i, determine H the 2D homography

matrix such that x
′

i = Hxi.

1: For each correspondence xi ↔ x
′

i compute Li Only two first rows needed.
2: Assemble n 2x9 matrices Li into a single 2nx9 matrix Li

3: Obtain SVD of L as UDV T diagonal with positive diagonal entries, arranged in descending
order down the diagonal, then h is last column of V .

4: Determine H from h.

Homography is recovered as a relationship on point features. This method is applied

to recover homography induced by the plane using at least four corresponding points

to fix eight degrees of freedom. It uses simple and fundamental features such as points

representing objects’ ground location or the tip of pedestrians’ heads. The method,

illustrated in Algorithm 2, is subject to inaccuracies due to noise [6, 7, 105].

• Points with additional cues

This methods use weak calibration and employ projective transformation. They need

additional transformation (Fundamental Matrix) that in turn needs correspondence

in its estimation [6]

• Lines

Similarly to algorithms on points, these methods solve linear equations by numerical

methods to perform projective transformation (DLT algorithm). They require four
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Algorithm 3 Direct Linear Transformation on Lines correspondence

Goal : Given 4 or more corresponding lines li ↔ l
′

i, determine H the 2D homography matrix such

that l
′

i =
(
H−1

)T
li.

1: For each correspondence li ↔ l
′

i compute Li. Only two first rows needed.
2: Assemble n 2x9 matrices Li into a single 2nx9 matrix Li

3: Obtain SVD of L as UDV T diagonal with positive diagonal entries, arranged in descending
order down the diagonal, then h is last column of V .

4: Determine H from h.

line correspondences to be found, thereby solving eight degrees of freedom. The

advantage of this approach is that lines are easier to detect than points [6] and more

robust to noise than points. However, it should be pointed out that the performance

of these approaches depends on the image coordinate system. Particularly, situations

where a detected line is located close to the origin of the selected image coordinate

system, tend to generate instability in the homography estimation. Conversely, a

point-based estimation still performs well in those cases. Algorithm 3 illustrates

the line correspondence method.

• Mixture Points and Lines

Algorithm 4 Direct Linear Transformation of Points and Lines

Goal : Given 4 or more corresponding elements (points or lines) compute the homography between
the two images.

1: For each correspondence li ↔ l
′

i or xi ↔ x
′

i compute Li. Only two first rows needed.
2: Assemble n 2x9 matrices Li into a single 2nx9 matrix Li

3: Obtain SVD of L. Solution for h is last column of V .
4: Determine H from h.

These methods solve linear equations by numerical techniques in projective transfor-

mation (DLT algorithm). The homography is computed from three points and one

line or three lines and one point, thereby solving eight degrees of freedom. The draw-

back is that these methods require a high level of accuracy in the correspondence.

However, they allow more flexibility in feature extraction. It is noteworthy to point

out that a two lines and two points combination leads to a degenerate case [6, 105].

This approach is shown in Algorithm 4
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• Conics

Algorithm 5 Homography from pair of conics
Goal : Given 2 corresponding conics, compute the homography between the two images.

1: Obtain the equations of the conics in both views.
2: Rectify both views assuming that the conics are images of circles. The results are correct even

if this is not so. Let H1 and H2 be the rectifying homographies.
3: Calculate the similarity transform Hs between the two rectified views using two point corre-

spondences obtained by finding the centers of the two circles.
4: The homography between the two views is obtained as H1HsH

−1
2

This approach uses projective invariants. The homographic transformation can be

computed from two pairs of corresponding conics as shown in algorithm 5 by

presenting additional geometric constraints, making the correspondence more ro-

bust [106, 104, 103].

• Planar Algebraic curves

To compute the homography, first the intersection between the curves with the Hes-

sian curve is computed. This latter is given by the determinant H:

H =

∣∣∣∣ ∂2f

∂xi∂xj

∣∣∣∣ = 0, (2.1)

where f(x1, x2, x3) = 0 is the equation of the curve. Solutions are normalised and

points minimising the Hausdorff distance are selected as presented in algorithm 6.

Particularly useful in scenes rich with man-made objects [107]

Algorithm 6 Homography from algebraic curves
Goal : Given a pair of cubic or higher order curves, compute the homography between them.

1: Compute the Hessian curves in both images following Eq.2.1.
2: Compute the intersection of the curve with its Hessian in both images. The output is the set

of inflexion and singular points.
3: Discriminate between inflexion and singular points by the additional constraint for each singular

point ∇f (a).
4: Separate the real points from the complex points.
5: Find the solution to H that makes S the closest to zero or minimizes the Hausdorff distance

between the sets of points.

• Non-algebraic curves
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Algorithm 7 Homography from non-algebraic curves
Goal : Estimates the homography between 2 views given the Fundamental Matrix and the
perspective images of the plane curve and single corresponding image points.

1: Compute curvature and tangents at x and x
′
.

2: Compute the one-parameter family of the homography by the tangents of the curve at x and
x

′
.

3: Choose A =
[
e
′
]
× F .

4: The parameter µ can be determined using the curvature at points x and x
′

and A
5: Compute H.

Algorithm 7 shows the estimation of homographic relationship from non-planar

curves. The Euclidean curvature is mapped by a homography. The transformation

is uniquely defined from corresponding tangents and curvature at one point. The

method requires the use of epipoles and can present two types of degenerate cases:

epilolar tangents and inflections [108, 109].

2.4.3 Trajectory mapping using homography transformation

The homography maps trajectory points lying on a plane in one view onto points

on the same plane imaged on another view, from a set of known corresponding control

points in the two images. Based on these correspondences, the homography matrix H, is

estimated as

x′ = Hx, (2.2)

where x = (x, y, 1) is a point in the first view in homogeneous coordinates and x′ =

(x′, y′, 1) is the corresponding point in the second view. Eq. (2.2) can therefore be expressed

as 
x′ = h11x+h12y+h13

h31x+h32y+h33

y′ = h21x+h22y+h23
h31x+h32y+h33

, (2.3)
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where the unknown, hij , are entries of the matrix

H =


h11 h12 h13

h21 h22 h23

h31 h32 h33

 . (2.4)

H is therefore the matrix whose parameters are to be estimated from the set of corre-

sponding control points xi ↔ x′i in two images. Most works [8, 110, 63] compute H

using linear methods using the Direct Linear Transformation (DLT), a widely used linear

method based on Algorithm 2. To derive a linear solution for H, Eq. (2.2) is rewritten

under a vector cross product form as

x′ ×Hx = 0, (2.5)

If the j-th row of the matrix H is indicated as hjT then

Hxi =


h1T xi

h2T xi

h3T xi

 . (2.6)

The superscript T indicates the transpose. Writing x
′
i = (x

′
i, y

′
i, z

′
i)
T , the cross-product

can be written as

x′ ×Hx =


y′ih

3T xi − h2T xi

h1T xi − x′ih3T xi

x′ih
2T xi − y′ih1T xi

 . (2.7)

Because hjT xi = xTi hj for j = 1, ..., 3, this yields a set of three equations in the
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parameters of H, that can be expressed as


0T −xTi y′ix

T
i

xTi 0T −x′ix
T
i

−y′ix
T
i x′ix

T
i 0T




h1

h2

h3

 = 0. (2.8)

These equations presents the form Aih = 0. The key idea in this method is that given

pairs of corresponding pixels, Aih = 0 is linear in the unknown h, whereas the entries of

Ai are quadratic in the known coordinates of the points. This means that given enough

equations, it is possible to implement linear algebra methods to compute the coefficients

of H. Ai is a 3x9 matrix defined up to a scale with 8 degree of freedom and h is a

9-vector made up of entries of H. Each point corresponding pair xi,x
′
i account for two

constraints because for every xi in the first image the two degrees of freedom of the point

in the second image has to correspond to the transformed point Hxi. A point on the plane

has two degrees of freedoom that correspond to its components, (x, y). Despite Eq. 2.8

presents three equations, only two among them are linearly independent. That is because

the third row is obtained, up to a scale, from the sum of x
′
i times the first row and y

′
i times

the second). Therefore, every corresponding pair generates two equations in the entries of

H. In estimating H, the third row can be omitted and the set of equations in 2.8 is then

written as  0T −xTi y′ix
T
i

xTi 0T −x′ix
T
i




h1

h2

h3

 = 0. (2.9)

Now, Ai in the Aih = 0, is a 2x9 matrix in Eq. 2.9. Each corresponding pair generates

two equations in the entries of H. With a set of four corresponding pairs, we have a set

of equations Ah = 0. A is the matrix of equations coefficients built from the matrix rows

Ai contributed from every correspondence. h the vector of unknown entries of H such as
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
h1

h2

h3

 (2.10)

In general, more than 4 four corresponding pairs are used to estimate the transformation

matrix and this leads to the expression Ah = 0 being an over-determined system. In

the event of the location of the corresponding points being exact, then A is of rank 8, a

1-dimensional space and there exists an exact solution for h. However, there is no exact

solution, when the measurement of the image coordinates is not exact, that is, noisy.

Therefore, instead of an exact solution, solving for h will lead to an approximated solution

that minimises a appropriate cost function. The goal is to determine a non-zero solution

h up to a scale factor. In order to avoid the null solution, linear estimation methods based

on DLT algorithm add an additional constraint on the norm by setting ‖h‖ = 1. However,

because there is no exact solution to Ah = 0, the norm ‖Ah‖ is minimised instead of

the constraint ‖h‖. Research [6, 111] showed that this yields to the same as minimising

the algebraic residuals in the expression ‖Ah‖ / ‖h‖. The solution is the unit eigenvector

corresponding to the smallest eigenvalue of AT A. This eigenvector can be obtained directly

by the Singular Value Decomposition (SVD) of A. If the vector ξ = Ah is the residual

vector, then its components are derived from the individual correspondences that generate

Algorithm 8 Homography estimation using the Direct Linear Transformation (DLT)
algorithm

Goal : Given n ≥ 4 2D point correspondences xi ↔ x′i, determine the 2D homography
matrix H such that x′i = Hxi.

1: For each correspondence xi ↔ x′i, compute the matrix Ai. Only the first two rows
need to be used, in general.

2: Assemble the n 2 x 9 matrices Ai into a single 2n x 9 matrix A .
3: Obtain the SVD of A. The unit singular vector corresponding to the smallest singular

value is the solution h.
4: The matrix H is determined from h.
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each row of A. Each correspondence xi ↔ x′i contributes a partial error vector ξi (algebraic

error vector), toward the full error vector ξ, whose norm is the algebraic distance.

Although the DLT algorithm (Algorithm 8), based on SVD, has the advantage

of easy implementations, due to its linearity and simplicity, it is quite sensitive to noise.

Additionally, one other cause of error in the matrix computation lies in the value being

minimized as it does not account for the noise in the geometry of the corresponding points.

2.5 Summary

Despite considerable efforts in addressing problems related to object tracking,

single-view approaches show limits in tackling occlusion, maintaining continuity of trajec-

tories and achieving accuracy in the measurements of objects’ spatial location. Multiple

view approaches may help overcome these limitations. However, these approaches still

suffer from other hindrances: they heavily rely on features such as shapes and appearance

templates, whose integrity is not always preserved during the various stages of extraction

processes. Cases where, for example, subjects wear similar colours tend to confuse these

algorithms. The use of objects’ appearance (shape, contour or colour distributions) can

produce poor segmentation and detection. Additionally, the main idea behind occlusion

solving techniques is essentially built upon the assumption of temporal consistency of the

adopted motion model, namely, Kalman filtering or the family of Markov models. Geo-

metric approaches, exploiting the relationship between objects’ trajectories from multiple

views, rely on the spatio-temporal constraints that remain more stable than the features

extracted in appearance-based models. However, the linear method, commonly used in

estimating the homographic transformations between trajectories presents limitations. Al-

though this method yields non-iterative computation methods that are easy to implement

using linear algebra packages, it is found to be sensitive to noise even with numerous

corresponding points [4]. To address this issue, we present in the next chapter, a robust
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algorithm that transforms trajectories from multiple views into one common global view,

while reducing homography errors.



Chapter 3

Multi-view trajectory

transformation and fusion

3.1 Introduction

In this chapter, we present the proposed approach and demonstrate the different

techniques we use to generate the final integrated information on one global view. This

latter is the synthesis of the partial information provided by the cameras. The proposed

approach is presented here in its main parts which constitutes the contribution of the

present work:

• The generation of control points obtained by sampling the time series consisting of

the spatio-temporal locations of objects on the image plane of each camera.

• The trajectory transformation and the embedded lens distortion correction that map

the trajectory points into the common view.

• The trajectory reconstruction that gives the final complete tracks of moving objects

across the different views.

Hereinafter, we assume the availability of the motion segmentation results from

the video sequences. To this end, we use background subtraction [112] to extract fore-

44
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Figure 3.1: An object of interest is observed in two cameras. The ground location is
calculated and the mapped into a top view scene by homographic transformations.

Figure 3.2: Example of a homography-based transformation on real data in an under-
ground scene. The red dots indicate people’s spatial locations on a scene top view.

ground objects and then graph matching [16] to obtain the related tracks.

3.2 2D homography-based trajectory transformations

3.2.1 Control points extraction for homography estimation

The algorithm of trajectory transformation from an image plane to a common

view, considers planar homographies as presented in the previous chapter (Sect. 2.4). In

this work, we assume a wide baseline multi-view set-up (typical in surveillance and sport

scenes scenarios) and suppose the distance between moving objects and cameras is far

enough to assume that the objects move on a dominant plane. This is often the case

in surveillance systems and moreover in sports scenes where the dominant plane is the
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(a) (b)

Figure 3.3: Example of the mapping of an object ground location being affected by off-
plane errors due to faulty object detection. (a) Correspondence that satisfies homography
constraint; (b) off-plane error in the correspondence due to errors in computing the object’s
ground location.

ground plane; the football pitch on which players move is approximated with a geometric

plane. When an object lying on that plane is simultaneously visible from multiple views,

these views are related by a unique homographic transformation. Figure 3.1 sketches a

scene where the ground location of a human (red dot), is represented as a pixel which we

consider as a geometric point on the planar surface the object is moving on. The object is

observed in two different cameras and its ground location is mapped onto an image model

of the scene top view by homographic transformations. An example of this mapping, on

a real data, is shown in Fig. 3.2 which shows an underground scene with three people on

a platform. Their positions are mapped onto a scene top view. In practice, the primitives

detected in images are likely to be too noisy to get good solutions when only using the

strict minimum numbers indicated. It is often necessary to obtain a larger number of

features in order to make the solution more robust [6]. Additionally, the mapping of an

object’s ground location is often affected by off-plane errors due to faulty object detection

as sketched in Fig. 3.3. Ideally, the ground location from the two cameras should match

as in Fig.3.3(a). However, as shown in Fig.3.3(b), the ground location computed from

each camera image plane can lead to misalignment after mapping on a common view.

One problem remaining is to determine the control points from which to estimate the
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(a)

(b)

Figure 3.4: Example of corresponding views with no landmarks in the overlapping area.

homographies. These are corresponding points across multiple views -minimum number

of four- and are used as parameters in the homography estimation. There are two cate-

gories of algorithms in feature extraction for homography estimation: static and dynamic

feature-based. The first category includes methods which extract features such as Harris

Corners [113], SIFT [114], or MOPS [115]. Features from the first image are matched

to features from the second image and methods like Ransac [116], are used to select the
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(a)

(b)

Figure 3.5: Example of corresponding views with wide baseline. The use of SIFT fails in
this case.

inliers before fitting a homography. However, one main problem with these approaches is

that while they are applicable to rotation, translation, small perspective distortions and in

general with small baseline. They fail in the case of cameras with a wide baseline and ac-

centuated perspective distortions. Additionally, the exhaustive search to find all possible

corresponding pairs with Ransac can lead to high computational costs because of the brute

force approach. Figures 3.4 and 3.5 are examples where static feature-based algorithms

fail to extract control points. Figure 3.4 presents no easily detectable landmark on the

ground plane, making difficult the process of extracting static features. Figure 3.5 instead

presents wide baseline views and the use of SIFT fails in this case. To circumvent these
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Figure 3.6: Control points from objects’ trajectories in multiple views.

limitations, the second category of algorithms [117, 118] uses dynamic features. That is,

extracting features that form the set of control points, from the objects’ trajectories.

Our method is closely related to this last category and uses time line constraint to

obtain the control points. The control points are extracted from the rich set of information

provided by the positions of the moving objects over time. To achieve this, we assume

constant the frame rates of the video sequences and consider the trajectory of one object

simultaneously visible in the multiple views.

The steps that describe the method we proposed for control points extraction

are summarised as follows:

• We determine the segment of trajectories which belong to the overlapping area. If

a1a2 and b1b2 are the trajectories of an object visible in two views (Fig. 3.6), where

the subscripts indicate the ends of the segments. We extract atmatn and btmbtn , the

sub-segments of a1a2 and b1b2, respectively. For each segment, the first subscript

represents the time at which the object appears in the overlapping area of the images

and the second is when it disappears from it.

• We subsample points from the segments of the trajectories above to avoid collinear-

ity in the set of control points as this might lead to a degenerate case during the

homography estimation.
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(a) (b)

Figure 3.7: Examples of control points extraction in ETISEO dataset. The control points
are sampled from the object’s trajectory points in the overlap between (a) view1 (yellow)
and (b) view2 (red).

3.2.2 Homography estimation

As pointed out in Chap. 2, Sect. 2.4.3, the widely used linear methods of esti-

mating homography transformation suffers from two main hindrances [7, 4]:

• it is quite sensitive to noise

• the value being minimized in the matrix computation does not account for the noise

in the geometry of the corresponding points. In fact, it does not have any geometric

interpretation.

To overcome these problems, we use the theory behind the renormalization tech-

nique to attain the theoretical accuracy bound in geometry fitting [119]. In fact, it is

demonstrated that higher order errors give more accurate estimates [119].

Control points uncertainty

We start by considering the trajectory points as random variables. The uncer-

tainty of data points (xα, yα) and (x′α, y
′
α) is described by their covariance matrices Σα and
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Σ
′
α. It follows that the vectors xα and x

′
α have the following singular covariance matrices:

V [xα] =
1

f2

 Σα 0

0T 0

 (3.1)

and

V
[
x′α
]

=
1

f2

 Σ
′
α 0

0T 0

 , (3.2)

where f is a scale factor. Because it is difficult to predict the uncertainty of every single

point in advance, let us assume only the relative tendency of noise occurrences is known.

This means, the covariance matrices are known up to a scale such that V [xα] = ε2Vo [xα]

and V [x′α] = ε2Vo [x′α], where ε is the noise level. The normalized covariance matrices

Vo [xα] and Vo [x′α] indicate the relative dependence of noise occurrence on positions and

orientations. Assuming isotropy and homogeneity leads to the default values Vo [xα] =

Vo [x′α] = diag (1, 1, 0). Let Ĥ be an estimate of the homography matrix and H̄ the true

value. Therefore, we can measure the covariance tensor that describes the uncertainty of

the estimate Ĥ by

V
[
Ĥ
]

= E
[
T
((
Ĥ − H̄

)
⊗
(
Ĥ − H̄

))
T T
]
, (3.3)

where E [.] indicates the expectation, T is the tensor and ⊗ the tensor product. The

homography matrix, made of 9 elements, is normalised to have unit norm and therefore

can be represented as a point lying on a sphere S8 of dimension 8 in the 9-dimensional

parameter space R9. The tensor T projects the deviation Ĥ − H̄ onto the tangent space

TgH̄(S8) at H̄. The (ijkl) element of tensor T is Tijkl = δikδjl − ĤijĤkl, where δij is the

Kronecker delta. The root mean error erms, (0 ≤ erms ≤ 1), over the estimation of Ĥ is

0 ≤ erms
(
Ĥ
)

=

√
E

[∥∥∥T (Ĥ − H̄)∥∥∥2
]
≤ 1. (3.4)
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Theoretical bounds in the homography estimation

The problem can be now formulated as estimating H such that

x̄′α ×Hx̄α = 0 (3.5)

from noisy control points {x̄α} and {x̄′α} .

By modeling the uncertainties in geometric inference suggested in [7], the theo-

retical accuracy bound is obtained as:

V
[
Ĥ
]
� ε2

 N∑
α=1

3∑
k,l=1

W̄ (kl)
α

(
e(k) × x̄′α

)
⊗ x̄α⊗

(
e(k) × x̄′α

)
⊗ x̄α

)−
8
, (3.6)

W̄α =
(
x̄′α × H̄Vo [xα] H̄T × x̄′α +

(
H̄x̄α

)
× Vo [xα] × ×

(
H̄x̄α

))−
2
. (3.7)

In Eq. (3.6), S � C indicates that S − C is a positive semi-definite symmetric tensor.

The operator (.)−q denotes the Moore-Penrose generalized inverse of rank q. The product

u×M× u, where u is a vector u = ui and M a matrix M = Mij , is a matrix whose

elements are mij =
∑3

k,l,m,n=1 εiklεjmnakamMln. εijk is the Eddington espilon and equals

1 or −1 if (ijk) is an even or odd permutation of (123) and 0 otherwise. The vectors

e(s) are defined as e(1) = (1, 0, 0)T , e(2) = (0, 1, 0)T and e(3) = (0, 0, 1)T . The erms in the

estimation is bounded by erms

(
Ĥ
)
≥
√
trV

[
Ĥ
]
, where tr denotes the tensor trace.

Maximum likelihood in homography estimation

The optimal method, in the statistical sense of “maximum likelihood” attains

the theoretical accuracy bound in its first order by minimising the squared Mahalanobis
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Algorithm 9 Homography estimation with renormalization

Goal : Given two overlapping views, find the homography that attains the accuracy
bounds derived from image noise model.

1: c← 0
2: Wα ← I; α = 1, . . . , N .
3: Compute the tensor M

M =
1

N

N∑
α=1

3∑
k,l=1

W (kl)
α

(
e(k) × x′α

)
⊗ xα ⊗

(
e(l) × x′α

)
⊗ xα. (3.8)

4: Compute the tensor N = Nijkl as:

Nijkl =
1

N

N∑
α=1

3∑
m,n,p,q=1

εimpεknqW
(mn)
α

(
Vo [xα]jl x

′
α(p)x

′
α(q) + Vo

[
x′α
]
jl

xα(j)xα(l)

)
(3.9)

5: Compute the 9 eigenvalues, λ1 ≥ . . . ≥ λ9, related to tensor M̂ = M − cN and the
corresponding orthonormal system of eigenmatrices H1, . . . ,H9 of unit norm.

6: if λ9 ≈ 0 then
7: stop
8: else
9: c← c+ λ9

(H9;NH9) and

Wα ← x′α ×H9Vo [xα]HT
9 × x′α + (H9xα)× Vo

[
x′α
]
× Vo

[
x′α
]
× (9xα) (3.10)

10: end if
11: Back to step 3.

distance

J =
∑(

xα − x̄α, Vo [xα]−2 (xα − x̄α)
)

+
∑(

x′α − x̄′α, Vo
[
x′α
]−
2

(
x′α − x̄′α

))
, (3.11)

subject to the constraint Eq. (3.3). Using the Lagrange multipliers and retaining the first

order approximation yields:

J =
∑(

x′α ×Hx,Wα

(
x′α ×Hxα

))
, (3.12)
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where Wα denotes the matrix

Wα =
(
x′α ×HVo [xα]HT × x′α + (Hxα)× Vo [xα] × × (Hxα))−2 . (3.13)

Let U denote the eigenmatrix of the resulting covariance tensor V
[
Ĥ
]

for the maximum

eigenvector λ. U shows the orientation in the 9D space in which the error is most likely

to occur. The solution H is perturbed along U in both directions such that


H+ = N

[
Ĥ +

√
λU
]

H− = N
[
Ĥ −

√
λU
]
.

(3.14)

Equation (3.14) indicates the deviation pair associated to the homography matrix H,

where N [.] is the normalization operator to a unit norm. The overall renormalization

procedure is illustrated in Algorithm 9.

To visualise an application of the above algorithm, we generate the mosaics from

overlapping views and create a larger cameras’ field of view that represents the common

coordinate frame where we map the objects’ trajectories (Fig. 3.8). A mosaic allows

uninterrupted observations of objects that enter and exit individual camera’s fields of

view. We proceed in a pairwise mode by first aligning the two images then by applying

image stitching to composite the two images [120]. The alignment is obtained by warping

one image onto the other, considered as reference view, using the estimated homography

transformation. Although aligned, a simple juxtaposition of the two images would create

visible photometric artifacts such as inconsistencies in pixel colours in the resulting mosaic.

We apply image stitching by pixel selection and center-weighting [120]. We blend a pixel’s

colours in the overlapping area by interpolating the pixels’ intensities in that region. Since

we pursue a seamless merging, the colours of the pixels in the overlapping areas are

weighted through averaging. For this purpose, we calculate the centers of the images and

use them as coefficients to weight pixels’ intensities in the overlap. Let I1 and I2 represent
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(a) (b)

(c)

Figure 3.8: (a)-(b) Corresponding views with control points on overlapping area; (c) mosaic
generated after homography estimation.

the pixel intensity in the first and the second image, respectively. Furthermore, let a1

be the Euclidean distance between the center of the first image to the pixel [121]. The

same computation is carried out for a2 with respect to the second image. The intensities

of pixels in the overlapping area are weighted through averaging. The resulting pixel

intensity, I, of the composed image is given by

I =

(
a1

a1 + a2

)
I1 +

(
a2

a1 + a2

)
I2, (3.15)

An example of homography estimation and the resulting mosaic after image alignment

and stitching is shown in Fig. 3.8. The view illustrated in Fig. 3.8(b) is warped onto

Fig. 3.8(a) which is the reference view. Colors in the overlap are blended and the mosaic

is shown in Fig. 3.8(c).
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Figure 3.9: Examples of radial lens distortions, where the image peripheries are particu-
larly affected.

3.2.3 Homography estimation with lens distortion correction

The geometric constraints in the homography estimation presented in the section

above, are valid when the model considered is the linear pinhole camera (Section 3.1).

However, lens distortions represent a hindrance in computer vision applications because

they introduce nonlinearity in the pinhole camera models. An extensive review on these

distortions is presented by Slama [122]. There are different types of distortions, mainly

the tangential and the radial distortion [123]. Radial distortion is the severest one for

most cameras [124, 125]. Although the phenomenon does not impact on the quality of the

image itself, it has however, an influence on the image geometry. Figure 3.9 illustrates

this phenomenon.

In multiple views, matching control points across views to estimate homography

can be undermined by lens distortions, in particular at the image periphery [105]. To solve

this problem, some works on online distortion estimation (plumb line) often use straight
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lines in the scenes to provide constraints on the distortion parameters [123, 126]. These

methods assume the availability of such lines in the scene. In cases of unstructured scenes,

or lines that are not easy to detect in a scene, the application of the aforementioned ap-

proach is difficult. Such methods work under the assumption that a straight edge, bent

by lens distortion, will deviate from a fitted segment. An optimization is performed on

the distortion parameters to minimise the deviation of edges from straight lines. A caveat

for this method is the presence of real-world curves in the scene that might be wrongly

straightened. Unlike this approach, Stein [127] requires neither the 3D location of points

nor the camera calibration and uses point correspondences in multiple views to recover

epipoles and epipolar lines considering lens distortion. A cost function, defined as the

root mean square of the distances, is computed from the feature points to the epipolar

lines. Zhang [128] describes the epipolar geometry between two images with lens distor-

tions by matching a point to its correspondent on the other image. The corresponding

point is considered as lying on a curve rather than a straight line as it is the case in a

distortion-free camera. Swaminathan et al. [124] derive a metric to measure distortions in

multi-viewpoint images, but this method requires scene priors such as spheres, cylinders

or planes to be defined. Tardif et al. propose a calibration method [125] that estimates

the distortion centre, opening angles of viewing cones and the optical centres. They adopt

a double approach, using geometric constraints in linking viewing cones with calibration

planes, and a homography-based method. However, their method requires a prior knowl-

edge of the scene’s Euclidean structure. Radial lens distortion can be a significant factor

introducing errors typically in the range of 10-100 pixels at the edges of the image [127].

To overcome this problem, we take into account the radial distortion introduced by the

camera lenses when estimating the point-to-point correspondence between views. The gen-

eral mathematical formulation we adopted is the division model for distortion presented

by Fitzgibbon [105]. As shown by [4], when more than one view is available, it is possible

to use the homographic multi-view constraints on the corresponding pairs to recover the
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Figure 3.10: Three-view of a chessboard affected by radial lens distortion (top row). Images
after distortion correction (bottom row).

distortion.

The estimation of the homography as presented in Sect. 3.2.2 does not remove

lens distortions. Therefore, we propose to augment this model with a correction factor. Let

an undistorted image point (xu, yu, 1) be subject to a radial distortion and let (xd, yd, 1) be

the resulting distorted point. Generally, the lens distortion model is described by infinite

series as follows: 
xu = xd + xd(k1r

2 + k2r
4 + k3r

6 + ...)

yu = yd + yd(k1r
2 + k2r

4 + k3r
6 + ...)

, (3.16)

where r =
√

(xd)2 + (yd)2 and ki are coefficients of the radial distortion. It has been

demonstrated that approximating this series with its low order elements corrects for more

than 90% the radial distortion on the image [124]. As including more coefficient increases

the risk of numerical stability in the distortion model, we consider only the first term of

the radial distortion. We embed the division distortion model [105] in the correspondence

algorithm. The geometric constraints in the homography matrix estimation (Eq. (2.2 in
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Algorithm 10 Undistorted homography estimation

Goal : Given corresponding points in two views, estimate the homography relating the
undistorted images.

1: Compute the set of distorted corresponding control points pairs Xd ↔ X ′d.
2: Scale the control points by subtracting the center and then normalizing by the sum of

the image width and height.
3: Compute [V,A−1] = polyeig(DT

1 D3, D
T
1 D2, D

T
1 D1), where V is the matrix of eigen-

vectors and A−1 the corresponding inverse eigenvalues.
4: Discard imaginary and null eigenvalues and select the median value from the above

remaining eigenvalues.
5: Compute corresponding pairs of undistorted control points Xu ↔ X

′
u.

6: Minimise the squared Mahalanobis distance J :

J =
∑(

(x′α)u ×Hxu,Wα

(
(x′α)u ×H(xα)u

))
(3.20)

updating Wα using the renormalization technique.
7: Obtain the estimated homography H and the deviation pair H(+), H(−) from above.

Chap. 2, Sect. 2.2) is augmented to include the first term, k1, of the radial lens distortion


xu

yu

1

 =


xd

yd

1 + k1

(
xd

2 + yd
2
)

 , (3.17)

where P = (xu, yu, 1) is the distortion-free point, X = (xd, yd, 1) the distorted point and

k1 the distortion parameter. Thus

P =X +k1Z, (3.18)

where Z =
(
0, 0,

(
x2
d + y2

d

))
. The homography constraint in Eq. (2.2) (Chap. 2, Sect. 2.2,

can be expressed in terms of vector cross product for each corresponding pair (Pi, P
′
i ) as

P′ ×HP = 0. (3.19)

Considering the distorted point as in Eq. (3.18) yields to
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Figure 3.11: Example of radial lens distortions on a two-view scene. The distortions are
particularly visible on the image periphery (left column) as compared to corrected images
(right column).

(x′d + k1Z
′
)×H(xd + k1Z) = 0, (3.21)

which is quadratic in k1 and linear in H. Expanding with the coordinates we obtain

(D1 + k1D2 + k2
1D3)h = 0, (3.22)
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where h is the vector in Eq. (2.5) and the coefficients Dr are such that

D1 =

 0 0 0 −x′d −y′d −1 ydx
′
d ydy

′
d yd

x′d yd 1 0 0 0 −xdx′d −xdy′d −xd



D2 =

 0 0 0 −rx′d −ry′d −r − r
′

0 0 ydr
′

rx′d ry
′
d r

′
+ r 0 0 0 0 0 −xdr

′



D3 =

 0 0 0 0 0 −r′r 0 0 0

0 0 r
′
r 0 0 0 0 0 0

 .

Equation (3.22) is a Quadratic Eigenvalue Problem (QEP). The solution of this equation

yields 4-6 non-imaginary, non-null values. The best values of k1 have been determined as

corresponding to the median value of the set of solutions. Figure 3.11 shows an example

of the application of the algorithm embedding lens distortion correction in homography

estimation.

The method we proposed is now illustrated in Fig. 3.12 where each single module

Bi, in Fig. 3.12(a), gives a simplified view of the mapping from one view to the second that

represents the image reference. Corresponding pairs are used in a homographic constraint,

first to compute the lens distortion correction parameter , then to estimate the homogaphic

transformation itself. Figure 3.12(b) shows the overall block diagram where the segments

of trajectories are transformed onto the common ground plane and the global trajectories

reconstructed from the segments generated in each initial view.
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Figure 3.12: Block diagram of the proposed homography estimation with lens distortion
correction. (a) Each module Bi describes the image-to-image homography; (b) complete
general block diagram considering all the cameras.
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Figure 3.13: Fragments of trajectories after transformation of local tracks generated by
individual cameras.

3.3 Trajectory integration on a common view

After object detection and the homography-based transformation onto a common

view as shown in Fig. 3.13, the trajectories of objects are still represented by the fragments

generated by the partial information from each individual camera. Additionally, there are

gaps in objects’ trajectories due to interruptions in tracking and occlusions. In areas of

overlap, multiple traces of object’s trajectories exist due to the simultaneous observations.

Therefore, there is need to reconstruct complete objects’ trajectories as they move across

the multiple views. To this effect, given several trajectories generated in one camera, we

perform object association, fusion of tracks in overlapping areas and linking the trajectory

segments to obtain complete tracks.

Let C = {C1, ..., CN} be a set of N cameras that observe K moving objects. Let

Oim(x, y, t) and Oin(x, y, t) be the trajectories of the ith object, Oi, imaged in Cm and Cn,

respectively with (x, y, t) indicating the two spatial coordinates and time. Let T im(x′, y′, t)

and T in(x′, y′, t) be the trajectories on the ground plane G after the image-to-ground plane

homographic transformations Hm and Hn, respectively. We aim at reconstructing the

global trajectories T i(x′, y′, t) for object Oi on G.
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We express the problem of trajectory integration as the generation of the global

trajectory from its fragments and break it into the following subproblems:

• to estimate object trajectories, Oim, on each camera plane (local trajectories); i =

{1, . . . ,K} and m = {1, . . . , N}

• to transform the estimated trajectories onto a common frame coordinate, the ground

plane G, using the homographies Hk (k = 1, 2, . . . , N).

• to associate concurrent observations T im(x′, y′, t) and T jn(x′, y′, t) on G, generated by

the same object Oi in overlapping areas. The trajectories are modeled as polygonal

line in 2D + t.

• to fuse the associated trajectory fragments T im(x′, y′, t) and T in(x′, y′, t) into a single

one:

T im,n(x′, y′, t) = F
(
T jm, T

k
n

)
, (3.23)

where F the fusion function.

• to link the fused fragments by connecting them across G.

The first two subproblems have been treated in the preceding sections and the next will

focus on the association, fusion and segment linkage across the scene top view.

3.3.1 Trajectory association and fusion

After having the transformed trajectories ( T im(x′, y′, t) ), the next step is to

compute their relative pair-wise similarities for association and fusion in order to have a

single trajectory corresponding to an object across the entire field. We make the following

assumption for association and fusion: i) two trajectories that are close in space and time

and ii) having similar shape are considered to be generated from the same object observed

by two cameras. It is noteworthy that two cameras mounted at different positions and

having different orientations may force an affine transformation onto the object trajectory.
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(a)

(b) (c)

Figure 3.14: Example of trajectory association and fusion on the ground plane. (a) The
red trace shows the fused segments of trajectories. (b)-(c) Close-ups on segments.

In order to diminish this effect the input trajectories are first transformed by subtracting

the first moments, i.e., for T jm the transformation is done as


cx′ =

∑Lj

i=1 (x′i/Lj)

cy′ =
∑Lj

i=1 (y′i/Lj)

(3.24)

T jm(x′, y′, t) =
{(
x′1 − cx′ , y′1 − cy′ , t

)
, . . . . . . ,

(
x′Lj
− cx′ , y′Lj

− cy′ , t
)}

(3.25)

where m = 1, . . . , N ; Lj is the total number of trajectory points in T jm. Next, both

model-based and spatial features are computed. For model-based features, models of the

trajectory parameters are learned using polynomial regressions. The matrix notation for
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the model estimation T̃ jm(y), is written as:

T̃ jm(y) =

(
1 T jm(x) T jm(x)2 . . . T jm(x)P

)


β0

β1

...

βP


+ ψ, (3.26)

where, the first term in the product on the right is a LjxP matrix and the second is Px1

vector and last a Ljx1 vector. The resulting vector is also Lx1 dimension. The goal here is

to find the optimal values of βi that minimises ψ = |T j
′
m(y)−T jm(y)|. The process requires

an inherent trade-off between accuracy and efficiency. As the degree of the polynomial

increases, the fit grows in accuracy (up to a point), but the time and space needed increases

as well. We find the appropriate degree by starting with a first degree (linear) polynomial

and continuously monitoring the fit to see whether the degree needs to be increased. If

so, the regression is restarted with the degree incremented by one. We fixed P = 2 as

in our experiments, increasing P does not effect the overall accuracy. We use the initial

and final positions as spatial information. The length of each trajectory thus obtained by

taking absolute difference between the spatial coordinates of starting and final positions

of the object trajectory:

αjm,n = |T jm(x1, y1)− T jm(xLj , yLj )|, (3.27)

where the first and the second term indicates the initial and final coordinates, respectively,

in the overlapping area Ωm,n. The final feature vector form is:

V j
m,n = [β0, β1, β2, α

j
m,n, t]

T , (3.28)
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Figure 3.15: Linkage of segments across the ground plane. C1 : Orange, C2 : Blue,
C3 : Pink, C4 : V iolet, C5 : Green, C6 : Y ellow. The dashed line is the complete
trajectory.

where the upscript T denotes the transpose vector. The time dimension, t, is dropped

for simplicity. Because of its robustness to the scale variation, we use cross correlation as

similarity measure. For T jm and T kn in Ωm,n the correlation matrix is calculated as:

ζj,km,n = C(V j
m,n, V

k
m,n) k = 1, ...,K; (3.29)

where, C is the correlation function. The final trajectory T im,n is estimated by fusing the

trajectories (T jm, T kn ), when ζj,km,n > ζj,im,n ∀k 6= i. The fusion is computed as the average

of the associated pair T jm and T kn coordinates (Fig. 3.14).

3.3.2 Segment linkage

After fusing the trajectories generated by an object Oi on the ground plane,

the challenge we face here is to bridge gaps between fragments and link the pieces of

trajectories into long spatio-temporal trajectories. This is trivial when gaps are brief

and the tracks are spaced from each other. Figure 3.15 shows an example of trajectory

linkage where a chain process that uses objects’ attributes is carried out to reconstruct

a complete trajectory on the entire field. The object trajectory starts from Ω5,6. The
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connection between Ω5,6 and A3,5 can be established by utilizing the object’s attribute

related to T i5 (Green). Further, the connection to Ω3,4 is established by using T i3(Pink)

segment. Next, connection of fragments between Ω3,4 and A2,4 is made by using T i4

(V iolet). Finally, T i2(Blue) is used to connect A2,4 to Ω1,2. The dashed line is the final

trajectory constructed after association, fusion and linking.

The main steps of the method we propose in this work for trajectory integration

is summarized in the following steps:

1. Control points extraction

• We use the trajectory of an object moving across the multiple views and extract

the corresponding segments that belong to the region of overlap.

• We subsample points from the segments of the trajectories above to avoid collinear-

ity in the set of control points as this might lead to a degenerate case during the

homography estimation.

2. Lens distortion correction

• The control points are put in a homographic correspondence

• The parameter that corrects the lens distortion is computed

3. Homography estimation

• The control points are corrected

• The homography is estimated from the set of control points

4. Trajectory transformation

All the trajectories are transformed and mapped into a common plane using the

estimated homography.

5. Trajectory association

The multiple traces generated by the same object in the overlapping areas are asso-

ciated using their polinomial representation and fused to generate one segment.
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6. Segment linkage

Objects’ fused traces in the overlapping areas are linked to segments generated by

the same object in other regions across the views and we obtain the global trajectory.

3.4 Summary

We presented an algorithm for trajectory transformation for wide-baseline multi-

camera scene analysis with embedded lens distortion correction. Using the transfer errors,

we have demonstrated an improvement of trajectory transformation in terms of accuracy

and a reduced error in the trajectory transformation compared to the traditional linear

(SVD) and non linear (LSM) techniques. Moreover, we have demonstrated that this

approach is more robust to errors in the estimation of the control points and that the

perturbation in the trajectory transformation is smaller than that of traditional approaches

using linear (SVD) or non–linear (LMS) homography estimation. We have also shown the

benefits of the embedded lens distortion correction in the proposed algorithm by comparing

the undistorted and distorted mosaics and transformed trajectories. Additionally, we have

presented an algorithm for trajectory reconstruction in multi-view ensemble and applied it

to the complex case of sport sequences. The proposed approach uses a trajectory generated

by one single object visible in the cameras’ overlapping area to estimate the homography.

We use time constraint to extract the set of control points from the trajectory. Then, the

trajectories generated by each camera are transformed and mapped onto the ground plane.

We perform trajectory association and fusion using a similarity metric that identifies,

within overlapping regions, fragments of transformed trajectories generated by a same

object. These fragments are fused and connected across the field of view using temporal

consistency and object identity.
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Results

4.1 Introdution

In order to evaluate the proposed approach, we conduct different sets of experi-

ments using available data in five different multi-view scenarios that are described in the

sections that follow. These scenarios vary from each other in terms of:

• the multiple view topology: the number of cameras ranges from two to six-views,

their relative configuration from random to symmetrical, with different degrees of

overlap between the different fields of view.

• the illumination and stability of the background in both indoor and outdoor settings:

some scenarios have a stable background while others present changing daylight illu-

mination, swaying leaves or a particularly noisy environment.

• the complexity of the scene: this ranges from scenes with one person only to scenarios

with crowds.

The experiments cover the different aspects investigated in the present work.

The cameras are synchronized and the objects are assumed to be moving on a ground

plane and their relative positions on the image expressed as the mid-point of the bottom

segment line of the bounding box (Fig. 4.1). Objects’ trajectories are transformed with

70
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Figure 4.1: Left: example of a frame with moving object; right: the detected object. The
object’s location is assumed to be the middle point of the bounding box bottom segment.

statistical estimation of homography and a comparison is made against existing methods.

The experiments on estimating homography while correcting the radial lens distortion

are presented, a comparison is performed against uncorrected images and a discussion on

the impact of lens distortion is made. Trajectories extracted from objects in a crowd are

transformed onto the scene top-view and reconstructed to recover the global tracks across

the views. Additionally, we present a section that analyses the performance of the proposed

algorithm in two ways: i) by comparison against existing state-of-the-art methods; ii)

by measuring the discrepancies between the results from real data and the ground truth

process. We conduct an extensive series of experiments to quantify tracking and trajectory

mapping errors over a large amount of data. We highlight the most significant results and

discuss them in the light of the underlying processes and methods provided by the proposed

approach. We use the Euclidean distance as a reliable measure for trajectory distances

against the ground truth, as suggested by Fu and Zhang in [129, 130].

4.2 Datasets

The following data were used in the evaluation of the proposed approach:

• ISSIA dataset1 This is a six-view football scene (Fig. 4.2) acquired by six Full-

1Raw videos courtesy of Institute on Intelligent Systems for Automation - C.N.R., Bari, Italy.
http://www.issia.cnr.it
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Figure 4.2: Example from the ISSIA dataset. This provides a six-view of a footbal scene.
The middle illustration shows the locations of the six cameras.

Figure 4.3: Example from the Pets01 dataset (a two-view scene of a campus).

HD DALSA 25-2M30 cameras, three for each major side of the playing-field, at

25 fps. The six real footages are made of 18000 frames (1920 x 1088) describing a

football game captured from 6 viewpoints symmetrically arranged in two rows of three

cameras facing each other. The dataset is quite challenging with scenes presenting

an increasing level of complexity. This includes various situations ranging from idle

players moving at a slow pace to very dynamic scenes with building-up of groups

of players with entangled trajectories. Additionally, the targets’ motion is erratic,

highly non-linear due to the nature of the game.
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Figure 4.4: Example from the ETISEO dataset (a multiple view scene of an airport
runway).

• Pets012 This standard surveillance dataset describes different scenarios featuring

isolated pedestrians or small groups moving along regular motion paths. PETS2001

represents a two-view monitoring of a campus site (Fig. 4.3). The level of illumination

between the two views is different in the original images.

• Synthetic dataset We also use a simulated environment that generates synthetic

trajectories originating from a multiple camera setup. The setup consists of four

cameras whose fields of view present overlapping areas. We test the trajectory asso-

ciation and linkage algorithms on synthetic data generated by cameras placed on a

perfect top view perspective. Therefore, the main axis of the camera is perpendicular

2http://peipa.essex.ac.uk/ipa/pix/pets/PETS2001/
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Figure 4.5: Example from the CREDS dataset (a two-view scene of an underground).

to the plane on which objects are moving and therefore no perspective distortion is

involved.

• Etiseo3 The ETISEO dataset depicts an airport scene taken from cameras whose

images are affected by radial lens distortion. It depicts scenes on an airport tarmac

with vehicles and pedestrians (Fig. 4.4). These images contain accentuated distor-

tions and we apply the proposed approach to remove distortion while computing

homographies.

• CREDS The Challenge for Real-time Events Detection Solutions CREDS dataset

describes scenes in a metropolitan station (Fig. 4.5). It includes several scenarios

such as people crossing rails, walking on the platform, passengers wedged in the train

door and such like. It is a three-camera set-up but for the sake of simplicity we will

not be using the third one. This dataset presents relevant disturbances due to noise

and poor illumination conditions as well as low contrast between the objects and the

background.

• Pets06 4 describes a multiple-camera system to monitor a train station (Fig. 1.1).

The resolution of these videos (PAL standard) is of 768 x 576 pixels and 25 frames

3http://www.silogic.fr/etiseo/index.html
4Copyright ISCAPS consortium. Permission of the PETS 2006 workshop
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Transfer errors of transformation of target1’s trajectory when estimating ho-
mography from target2’s trajectory. The results we show of sampling trajectory points at
different intervals (10, 15, 20, 40, 120 and 150 frames) to form sets of control points. A
low interval means a high number of extracted features and vice-versa.

per second. Images are compressed as JPEG with approximately 90 % quality.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Transfer errors of transformation of target1’s trajectory when estimating ho-
mography from target3’s trajectory. The results we show of sampling trajectory points at
different intervals (10, 15, 20, 40, 120 and 150 frames) to form sets of control points. A
low interval means a high number of extracted features and vice-versa.

4.3 Trajectory mapping to one common view

We apply the control points extraction method and estimate homographies from

objects’ trajectories. In the following example, we use the trajectory of an object moving
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Transfer errors of transformation of target2’s trajectory when estimating ho-
mography from target3’s trajectory. The results we show of sampling trajectory points at
different intervals (10, 15, 20, 40, 120 and 150 frames) to form sets of control points. A
low interval means a high number of extracted features and vice-versa.

across the image in the two-view scene (Fig. 3.7). The homography obtained with this

method is then used to transform other objects’ trajectories. We study the accuracy of

the transformation while varying the number of features (control points) and their dis-

tribution across the image. Figures 4.6 and 4.7 and 4.8 are an example from ETISEO

dataset and illustrate the impact of the increasing density of control points on the trans-

formation accuracy. This accuracy is measured as transfer error on trajectories other than

the one used to estimate the homography. Higher sampling rates indicate lower number of
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features and vice-versa. We see that the accuracy decreases while the number of control

points decreases too. Large numbers of control points provide better estimation of the

homography. However, very large numbers of control points seem to lead to a drop of ac-

curacy. This is because when more features are added, more noise is consequently added

to the homographic geometric constraints. When on the other hand there is only a small

number of points, there are insufficient constraints to enable the homography fitting over

the entire image. The main observation remains that the accuracy of the transformation

is less sensitive to the number of points than their distribution across the image. This set

of experiments consists of extracting objects’ trajectories in multiple views, transforming

and mapping them onto one integrating view. This view is either represented by a mosaic

or a scene top view. We use scenarios featuring pedestrians from a standard surveillance

dataset, PETS2001, and for clarity we show examples for three targets P1, P2 and P3.

The experiments are organised as follow: first, we extract a set of control points from each

image. These corresponding points are used to estimate the plane-to-plane homography.

One image is warped onto the second (reference image), using the estimated homographic

transformation and then both are composed to generate a mosaic of the scene. The

performance assessment is conducted by a visual and a quantitative evaluation. The first

visualises the estimated trajectories against their expected spatial location (ground truth).

The second measures the transfer errors and computes the robustness of the transforma-

tion against noise. The evaluation is conducted by comparing the proposed approach with

state-of-the-art methods that use linear (SVD) and non linear (LMS) homography esti-

mation [6]. For the quantitative evaluation we use the transfer error, etr, that computes

the displacement of a point transferred by a homography with respect to its ground truth

position as follows:

etr = d
(
x

′
i, Hxi

)
, (4.1)
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(a) (b)

(c)

(d)

Figure 4.9: Comparison of trajectory transformations for two targets, (a) P1 and (b) P2,
on the image mosaic of Fig. 3.8; (c)-(d) zoom on the transformed trajectories: ground
truth (white), proposed approach (red), SVD (yellow) and LMS (blue).

where x
′
i is the ground truth and Hxi the estimated value. d (.) is the Euclidean dis-

tance. Figure 4.9 compares the trajectories of two targets, superimposed on the mosaic

generated with 3 different methods: the proposed algorithm, the SVD-based and the

LMS-based algorithm [6]. Figures 4.9(c)-(d) show a close-up on the targets’ transformed

trajectories, illustrating the displacement between the expected location (ground-truth) of

the target and their actual measurements after transformation. The linear SVD method

presents higher errors than both LMS and the proposed approach. The linear estimation

performs well as long as the targets are moving close to control points as in the case of
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Table 4.1: Trajectory transfer error with and without renormalization. µ and σ indicate
the mean and the standard deviation of the resulting transfer errors

Without renormalization With renormalization
SVD LMS Proposed approach

Target µ σ µ σ µ σ

P1 5.97 3.11 3.86 2.49 3.05 2.12

P2 4.51 1.99 2.87 1.86 2.29 1.01

target P2 (Fig. 4.9(d)). While getting further from the control points, the drift between

the measured and the expected location becomes more and more important (target P1 in

Fig. 4.9(c)). The main reason behind the errors in the mapping using linear transforma-

tion resides in the way SVD estimates the homography transformation. Indeed, its linear

estimation consists of a pure algebraic solution to the geometric problem of fitting noisy

corresponding points in a homography relationship. The absence of additional geometric

constraints to relate to the corresponding points is likely to degrade the homography in

those remote areas. Table 4.1 reports the transfer errors for the aforementioned cases

and shows the improvements in the trajectory mapping accuracy when using the renor-

malization technique as opposed to SVD and LMS, which do not use renormalization.

The reported values are expressed as mean values, with their corresponding variances.

We compare the robustness of the three approaches against noise and report the

mean values of the variation of the transfer errors for the targets P1 and P2 in Table 4.2.

The robustness test is performed by corrupting the selected control points with varying

magnitudes of Gaussian noise N and by then estimating the subsequent transfer error

on the transformed trajectories. Figure 4.11 shows examples of computed transfer error

for target P1 and target P2 and confirms this performance. The results show a smaller

increase in the transfer error for the proposed approach than for the SVD-based and in

LMS-based methods. This is due to the fact that the renormalization accounts for the

geometric noise in the point-to-point correspondence. We use the paired student’s t-test to

verify the statistical significance of the differences in performance observed in the results

presented above. Results present p values less than p < 10−3 for targets P1 and P2 and
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Table 4.2: Influence of noise on the trajectory transfer error. N indicates the noise am-
plitude (Gaussian) used to corrupt the control points; µ and σ denote the mean and the
standard deviation of the resulting transfer errors for target P1 and target P2.

SVD LMS Proposed approach
N µ σ µ σ µ σ

P1

1 6.85 4.24 4.16 2.59 3.65 2.19
2 7.69 5.32 5.35 2.98 4.08 2.31
4 8.94 6.37 5.96 3.81 4.57 2.75
5 9.35 5.92 6.66 4.41 5.38 2.93
7 13.38 7.03 7.49 4.57 6.01 3.18
8 14.84 7.19 9.01 5.05 6.72 4.01
10 17.27 8.25 12.11 5.45 8.12 4.37
12 19.97 9.33 13.89 5.88 9.25 4.49
15 21.91 10.39 16.41 7.09 11.36 6.28

P2

1 5.98 3.97 3.49 2.20 2.73 1.46
2 6.71 4.56 3.89 2.25 2.97 1.80
4 8.85 5.90 4.97 2.91 4.13 2.34
5 11.34 6.90 6.92 3.53 5.37 2.93
7 15.27 8.94 7.72 3.79 6.35 3.45
8 19.97 10.66 10.17 4.66 7.64 3.95
10 20.03 11.50 11.84 5.42 8.39 4.41
12 20.89 12.18 13.91 5.95 9.44 5.06
15 23.29 14.15 15.31 7.10 12.26 6.62

p = 10−3 for target P3. The p-value associated with these measurements is low (p < 0.05),

thus we have evidence that there is a difference in means across the paired observations

LMS versus proposed approach and SVD versus the proposed approach. Figure 4.10 il-

lustrates an example of histograms of transfer errors (target P3). SVD has a noticeable

wider spread (larger errors) than LMS and the proposed approach (lower magnitude of

errors). When comparing the proposed approach to the LMS method, the difference in

performance is reduced. LMS presents a better fitting than SVD due to the introduction

of a geometric cost function that minimizes the transfer error. However, one disadvantage

of this model is that it requires an additional phase in the homography estimation that

consists of an initialisation with the linearly estimated homography matrix. Besides, LMS

assumes that the entire data can be interpreted by only one parameter vector of a given

model and even when the data contains only one bad datum, LMS estimates may be

completely perturbed [4]. Figure 4.12 shows an example of the trajectory transformation
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(a)

(b)

(c)

Figure 4.10: Comparison of transfer errors distribution for the trajectory transformation
of target P3: (a) Proposed approach; (b) LMS; (c) SVD.
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(a) (b)

Figure 4.11: Comparison of computed positions of control points altered with Gaussian
noise. Mean transfer error measured on the transformed trajectories ((a)P1; (b)P2) while
increasing the noise magnitude.

(target P2) superimposed on the generated mosaic. The landmarks (see white patches) in

Fig. 4.12(a)-(b)) on the ground plane show the image location of the control points used

to estimate the homography. The target enclosed in the bounding box is moving across

the two cameras’ fields of view. The final decision on the target’s location (red dots on

the mosaic on Fig. 4.12(c)) is based on camera switching that selects the closest location

in case of concurrent observations. Since there are concurrent object observations in areas

corresponding to overlapping field of views, a decision is taken that results in a single ob-

servation on the mosaic [121]. We assume that the most reliable measurement of an object

spatial location is given by the observation from the closest camera (camera switching).

At a time t, given a detected object located at spatial co-ordinates
(
xt1, y

t
1

)
in camera 1

and
(
xt2, y

t
2

)
in camera 2, the closest camera is the one whose object’s y co-ordinate is

closer to the bottom of the image plane. Although the proposed approach improves the

trajectory transformation, there are some misalignment residuals due to the image seg-

mentation process that equally affects all transformation methods. A faulty segmentation

in one camera generates a truncated blob that in turn undermines the computation of

an object’s ground location. Since the image-to-image homography requires point copla-

narity, one consequence of a wrong ground location computation is a displacement of the

transformed trajectory point. Besides, a wrong ground location computation in one view
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(a) (b)

(c)

Figure 4.12: Final object trajectory on the mosaic; (a)-(b) a pedestrian is tracked; (c) the
red dots indicate the resulting final on the ground plane.

leads to a wrong point-to-point correspondence between views. A solution to this problem

could consist of improving the estimation of blobs’ ground locations.

4.4 Lens distortion correction in multiple view

We demonstrate the proposed approach for trajectory transformation with lens

distortion correction on the ETISEO dataset and compare the results with those of SVD

and LMS. We analyze examples of resulting object detection and tracking across multiple

views and of trajectory mapping on mosaics whose distorted images have been corrected.

Four sequences of 110, 300, 100 and 170 frames (the image size is 720×576 pixels) with

moving pedestrians have been used. For fairness of comparison, the same distortion cor-

rection is applied to all methods. Figure 4.13 shows examples of object segmentation and

tracking of targets E1, E2, E3 and E4.

Figure 4.14 visualizes the benefits of the correction of radial lens distortion on

image mosaics. A mosaic from two views with overlapping areas is shown with and with-
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(a) (b)

(c) (d)

Figure 4.13: Sample targets from the ETISEO dataset. (a) Target E1; (b) Target E2; (c)
Target E3; (d) Target E4.

out lens distortion correction. Because of the radial distortion, residual misalignments are

visible on Fig. 4.14(a) (before lens distortion correction), particularly with the white and

yellow lines located near the borders of the image. A significant improvement is obtained

after correction as illustrated by the alignment in Fig. 4.14(b). Similarly, Fig. 4.17 shows

the distortion correction on a two-view scene of a chessboard with both significant per-

spective and radial lens distortion. Aligning the two original images (left column) results

in residual errors, particularly visible at the bottom of the image. These errors are reduced

on the mosaic generated with the proposed approach (bottom right). Figure 4.15 shows

the correction of two objects’ trajectories (target E1 and target E2). Note the difference

between the distorted (red) and corrected (blue) trajectory when the target moves closer
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to the image periphery. With lens distortion correction, we rectify the trajectory points

location with distances that reach 10 pixels for E1, 45 pixels for E2, 62 pixels for E3, 88

pixels for E4. These quantities measure the differences between the trajectory points be-

fore and after lens distortion correction. Figure 4.16 illustrates an example of the variation

of the transfer errors over time for two of the ETISEO targets.
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(a)

(b)

(c) (d)

Figure 4.14: Distortion correction on mosaics. (a) Mosaic without distortion correction;
(b) image mosaic after lens distortion correction; (c) and (d) refer to areas enclosed by
the red rectangles in (a) and (b). Note the different in residual misalignments between (c)
before and (d) after lens distortion correction.
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(a)

(b)

Figure 4.15: Example of distorted trajectory (in red) and corrected (in blue) on the mosaic.
(a) target E1; (b) target E2.
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Figure 4.16: Comparison of transfer errors over time for (a) target E3 and (b) target E4.
The distortion correction is applied to all 3 methods.
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Figure 4.17: Two-view of a chessboard (first and second row). The red dots indicate
control points. Radial lens distortion affecting the images (left) and distortion correction
(right). Mosaics of images with (left) and without lens distortion correction (right). Note
the residual misalignments on the mosaic from the uncorrected images.
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Figure 4.18: Top-view of camera fields of view for the synthetically generated trajectories.
Si is the non-overlapping region imaged in camera i only whereas Rij show overlapping
areas viewed by cameras indicated in the subscript.

4.5 Trajectory reconstruction from multiple views

Tests on the algorithm presented have been performed on synthetic data and

real data from football footage. In the first series of experiments, we simulate trajectories

originating from a multiple camera setup whose configuration is illustrated in Fig. 4.18.

The setup consists of four cameras whose fields of view present overlapping areas. In the

figure, Si represents a non-overlapping area and Rij the region commonly monitored by

camera Ci and Cj . We test the trajectory association and linkage algorithms on synthetic

data generated by cameras placed on a perfect top view perspective. This means that

Table 4.3: Comparison of trajectory association Precision (P) and Recall (R) for the
methods under analysis on synthetic data.

S12 S13 S14 S24 S34
Algorithm R P R P R P R P R P

Proposed approach 0.94 1.00 0.78 1.00 0.86 1.00 0.70 1.00 0.86 1.00

KNN-interpolated 0.89 0.94 0.71 0.68 0.84 0.78 0.76 0.82 0.78 0.80

KNN-LCSS 0.90 0.94 0.72 0.69 0.85 0.80 0.70 0.80 0.79 0.80
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(a)

(b)

Figure 4.19: Global trajectory with overlapping cameras on synthetic data: (a) input
trajectories; (b) corresponding fused trajectories.

the main axis of the camera is perpendicular to the plane on which objects are moving

and therefore no perspective distortion is involved. Fig. 4.19(a) shows the initial and

Fig. 4.19(b) the final (fused) trajectories. To evaluate the proposed approach, we compute

two measures, the precision P and the recall R defined as


R = |G

⋂
E|

|G|

P = |G
⋂
E|

|E|

, (4.2)
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where G and E indicate the set of manually constructed pairs of concurrent trajectories

and the matching results from the proposed approach, respectively. We compare the

proposed approach with interpolated and LCSS KNN algorithms. Table 4.3 reports higher

scores with the proposed approach in terms of precision and recall measures. The second

series of experiments were conducted on the ISSIA dataset that consists of footage of

3000 frames, describing a football scene simultaneously recorded by 6 cameras located at

different viewpoints. There are 22 players and 1 referee on the pitch and 2 linesmen. When

acquiring the sequences, no constraints were imposed on players’ trajectories. Unlike

the first series of experiments, the oblique camera principal axis induces a perspective

distortion. The homography is computed to obtain the top view observation of the scene.

The process of mapping trajectories onto the ground plane carries errors reflected by the

discrepancy between observations in an overlapping area. We expect the reconstruction of

trajectories to be affected by the proximity of moving objects’ tracks, the gaps caused by

discontinuity in field of view borders and faulty object extraction. Figure 4.21(a) presents

results obtained after reconstruction of global trajectories on G. The proposed approach is

able to reconstruct global trajectories across G. Nevertheless, the reconstruction of global

trajectories is still difficult, particularly in areas of high density (regions of the image in the

centre of the pitch). In the crowded scene, blobs splitting undermines the reconstruction

as it causes the generation of several tracks of one object, all moving close to each other

and with similar motion. This spatio-temporal proximity with tracks generated by the

corresponding object on another view causes ambiguity in track associations. This in turn

affects the segment linkage in the global reconstruction phase.

Table 4.4 report results on trajectory association for C3 and C4. We have achieved

the highest Recall and Precision score on segment 1 whereas segment 4 presents the lowest

score. The matching performance is related to the segment length which in turn is related

to tracking performance and ground plane transformation as it can affect the accuracy

of objects’ attributes (Fig. 4.20). Segment 1 contained longer trajectories compared to
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Table 4.4: Performance evaluation of the trajectory association using Precision (P) and
Recall (R) on real data.

Segment no. Fragment time interval P R
(number of frames)

1 230 0.80 0.90

2 230 0.60 0.80

3 139 0.80 0.80

4 249 0.50 0.60

5 290 0.67 0.70

6 360 0.64 0.65

7 130 0.71 0.70

8 400 0.62 0.80

‘

segments 4 and 6 and they were close in the spatio-temporal domain. Conversely, segments

4 and 6 showed isolated and short trajectories that hampered the association process.

These singularities are mainly due to tracking failures and transformation errors. The

results from the association process can be further improved by enhancing these two

components of the proposed approach.

4.6 Performance Evaluation

We conduct a series of experiments over a large amount of data and under various

scenarios to bring to light critical situations, crucial to the understanding of the behaviour

of the proposed approach under critical tracking situations and test its limits. These

situations, illustrated in Fig 4.22, include objects’ interactions such as multiple objects

crossing paths and causing occlusions, crowds and abrupt motion variations. We compare

the performance of tracking and trajectory transformation modules of the proposed ap-

proach against that of another algorithm, based on linear estimation of the homography

(hereinafter named LE). The two algorithms (Fig. 4.23 and 3.12) are tested on ISSIA

dataset [43] and the output measured in terms of the drift of trajectory points with re-

spect to the ideal position of the ground truth data. The errors are computed at each

instant for each object in the image plane as the Euclidean distance between the object’s
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trajectory point in the automatic detection and the ground truth. Additionally, we com-

pute a stability score that estimates the object’s identity switches along their trajectories

and compare the outcome for the two algorithms. The ground truth has been generated

manually with Viper tool [131].

The main differences in the performance of the two algorithms are due to the

approach used in object tracking and the estimation of the homographic transformation.

Because of its linear prediction and blob split/merge mechanisms, LE handles the crucial

aspect of blob assignment to objects in a more efficient way than the proposed approach.

On the other hand, because its estimation of the object’s localization is solely based

on detection, the proposed approach is more responsive than LE to abrupt changes in

object’s motion. Therefore, the proposed approach tends to be more accurate than LE,

in absence of partial or total occlusion. Interactions between different objects (partial

or full occlusion) usually give rise to a sudden increase in errors. This happens because

when coming close to each other, blobs can temporarily merge, causing errors in blobs’

assignment hence object’s localization. Likewise, faulty detections can cause blob split.

Figure 4.24 show examples of typical errors related to those cases. Sharp rises are reported

at instants of sudden change in either the speed or the direction of motion. Interactions

between more objects trigger sharp rises in the tracking errors for both algorithms. These

errors occur at instants of blob merging/splitting for which it is difficult for the algorithms

to assign to each object an accurate estimation of its location.

Figure 4.25 illustrates examples related to the occurrence of a split. There is no

split detection mechanism in the tracking algorithm (GM) of the proposed approach. A

small piece created by the splitting of a blob initially associated to one object is identified as

a new object and this triggers the initialization of a new track. This means the association

of the various pieces of blobs to one tracked object is made difficult by the one-to-one

assignment policy in the GM algorithm. GM associates one of the new tracks to the

old ones depending on the position and velocity of the new detected object. Conversely,
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because LE uses a HMM whose hidden state includes information about the location,

velocity, acceleration and importantly the single bounding box, this strategy allows a

detection of the split occurrence. The various parts of a blob resulting from a split are

assigned to one object.

Figure 4.26(a)-(c) illustrates the case of object’s trajectory crossing and gener-

ating a merging blobs event. The corresponding evaluation of the LE and the proposed

algorithms against ground-truth shows increasing errors. Figure 4.26(d) shows a peak of

errors around frame200 at the occurrence of blob merge with tracking errors lower in LE

than in the proposed approach. By estimating the multi-person configuration dynamics

and the blob observation likelihood, LE procedures are capable of describing the temporal

behaviour of the target configuration. This includes the targets’ position changes, entrance

and exit from scene, occlusion and blob merging. The probability of having blobs merging

between two consecutive frames is estimated based on the blob distances, velocities and

dimensions. The maintenance of the state vectors for solved blobs in merge blobs allows

the recognition of splitting situations.

Figure 4.27 shows an example of final trajectories on the ground plane computed

with the two algorithms. The resulting tracks from the proposed approach (red) is closer

to the ground truth (black) than the LE (green). This is due to the lower registration

errors in trajectory mapping with the proposed approach and likewise to the accuracy in

object location by the GE tracking algorithm. Both approaches are using simple averaging

to compute the fused location of the object.

To evaluate the stability of LE and GM compute a stability score as the ratio

between the occurrences of a successful tracking for given object and its actual occurrences

in the scene (GT). Values range between 0 and 1 and those close to 1 show better tracking

stability and conversely those close to 0 a poor performance. Table 4.28 reports the

stability measurements for a sample of 50 objects. The mean and variance for LE and

GM algorithm’s tracking stability are respectively (0.7019, 0.218) and (0.5861, 0.252).The
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tracking stability for target P18 in sequence camera1 is 0.096, which is below the average,

due to GM difficulty in handling sudden and speed and direction changes [16]. P115

and P119 both LE and GM present noticeably lower values than the average due to

identity switches in cases where several objects are interacting. Other noticeable values

are reported in bold in Table 4.28 to show either particularly very low, high or considerable

differences of performances between the two algorithms. These results show that the

absence in the proposed approach of a mechanism that handles the merging/split of blobs

is critical and undermines its performances. However, under all other situations, the

tracking procedure in the proposed approach tends to achieves higher stability than LE

algorithm.
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frame 130

frame 244

frame 284

Figure 4.20: Sample tracking results on the image plane, with an example of tracking error.
The goalkeeper’s identity switches between 22 in frame 130, 100 in frame 244 and 132 in
frame 284 (the identity switch is highlighted by the different colour of the corresponding
bounding box).
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(a)

(b)

(c)

Figure 4.21: Reconstructed global trajectories on the ground plane. (a) Final trajectories.
(b)-(c) Sample reconstructed trajectories.
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frame50 frame65 frame95

frame130 frame139 frame186

frame1180 frame1195 frame1218

Figure 4.22: Examples of different interactions between objects in the examined scenes.
Two players (first row); object-ball (second row); several objects (third row).
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Figure 4.23: block diagrams of the LE algorithm.
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single
object

two
objects

three
objects

target
and
ball

Transient:
Interactions:

Figure 4.24: Example of typical tracking errors when objects enter each other’s vicinity.
The bar with different patterns highlights these interactions and show rises at moments
of sudden change in speed or direction of motion.
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(a) (b) (c)

(e)

Figure 4.25: Example of blob split (target P18, frame 55−70) and resulting tracking errors.
(a), (b) and (c) blob split; (d) errors.
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(a) (b) (c)

(e)

Figure 4.26: Example of blob merge (target P11, frame 40 − 240) and resulting tracking
errors. (a), (b) and (c) blob merge; (d) errors.
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(a) (b)

(c)

Figure 4.27: Example of trajectory fusion on the ground plane. (a) Example of frame
from View 1 and View 2; (c) Fused trajectories on the ground plane.
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LE Proposed algorithm
Object ID Occurrencesdetection ID

switches
stability detection ID

switches
stability

PC1
18 2882 2867 7 0.952 2857 172 0.096
PC1
11 448 436 3 0.975 444 2 0.993
PC1
12 145 135 7 0.486 132 9 0.336
PC1
13 358 351 2 0.981 357 1 1
PC1
14 148 148 2 0.940 147 8 0.631
PC1
15 253 246 3 0.969 187 7 0.654
PC1
16 90 77 2 0.879 89 2 0.945
PC1
17 369 358 5 0.919 368 4 0.627
PC1
19 53 44 3 0.815 52 1 1
PC1
110 210 192 5 0.673 198 3 0.607
PC1
111 19 12 3 0.600 16 3 0.550
PC1
112 28 18 2 0.621 26 4 0.690
PC1
113 347 328 2 0.966 344 20 0.724
PC1
114 78 63 2 0.797 78 1 1
PC1
115 781 719 19 0.327 744 9 0.285
PC1
116 83 67 3 0.798 82 2 0.976
PC1
117 25 2 2 0.885 24 3 0.808
PC1
118 766 728 11 0.494 495 10 0.412
PC1
119 604 515 22 0.207 500 43 0.210
PC1
120 700 673 8 0.524 695 6 0.522
PC1
121 584 359 4 0.793 579 15 0.346
PC1
122 652 631 6 0.580 588 8 0.588
PC1
123 736 721 14 0.259 723 36 0.374
PC1
124 560 542 8 0.533 522 5 0.446
PC1
125 477 422 10 0.588 469 32 0.289
PC1
126 513 505 4 0.529 511 7 0.508
PC1
127 540 531 6 0.640 533 4 0.636
PC1
128 463 445 10 0.448 315 10 0.386
PC1
129 306 301 5 0.893 303 4 0.687
PC1
130 228 215 4 0.755 220 24 0.624
PC1
131 260 247 4 0.686 255 7 0.563
PC1
132 149 137 3 0.927 148 3 0.967
PC1
133 101 98 2 0.931 95 7 0.441
PC1
134 87 87 2 0.898 79 2 0.977
PC1
135 109 108 2 0.909 100 2 0.982
PC3
11 477 465 3 0.749 340 39 0.377
PC3
12 434 397 8 0.554 274 5 0.543
PC3
13 411 299 7 0.497 256 17 0.398
PC3
14 374 356 10 0.448 361 29 0.184
PC3
15 423 416 3 0.892 418 3 0.877
PC3
16 424 414 6 0.951 418 9 0.468
PC3
17 391 376 9 0.367 339 9 0.474
PC3
18 386 374 10 0.517 383 5 0.555
PC3
19 372 363 11 0.609 293 28 0.252
PC3
110 141 137 4 0.560 139 3 0.500
PC3
111 141 137 2 0.972 139 11 0.451

Figure 4.28: Tracking stability of the LE and the proposed algorithm. Here, the stability
in object tracking represents the number of times this object’s ID has changed.



Chapter 4: Results 105

4.7 Summary

Results for trajectory transformation show a reduction in errors - the difference

between the expected and measured positions of transformed trajectory points - in the

object tracking when using statistical technique in homography estimation [132] as op-

posed to linear methods [133]. The proposed approach allows the recovery of a complete

trajectory across views, in sport scenes, where objects’ paths often happen to cross and are

being interrupted. The integration of statistical homography estimation and the correction

of radial distortion in camera lenses enhances accuracy in objects’ correspondence across

views whilst achieving lower residuals in image alignment [134]. The absence of mecha-

nisms that detect blobs’ merging/split generates erratic positions in object’s localization

and undermines accuracy of the proposed approach in situations of occlusion. The analy-

sis suggests that respective blocks in the two algorithms can either be combined, dropped

or augmented to obviate to problems encountered. The proposed approach presents a

noticeable advantage in terms of accuracy in object location because it is detection-based.

However, in LE, the prediction in object’s localization can improve smoothing the trajec-

tories. There is improvement when detections are combined with predictions. The blob

split and merge block is an important block that is present in LE and needs to be inte-

grated into the framework of a future tracking algorithm. This will allow the improvement

of tracking stability and reduce the object identity switches.
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Conclusions

5.1 Summary of achievements

We have presented an algorithm for the integration of trajectories of objects

that are simultaneously viewed in multiple cameras. The proposed approach performs a

homography-based trajectory transformation onto a common view whilst reducing reg-

istration errors. We operate in the context of a wide baseline configuration and static

cameras. Using the transfer errors, we have demonstrated an improvement of trajectory

transformation in terms of accuracy as compared to the traditional linear (SVD) and non

linear (LSM) techniques. Further reductions of errors were achieved by embeddeding lens

distortion correction in the algorithm for trajectory transformation. The proposed ap-

proach estimates homography from multiple overlapping uncalibrated cameras and then

blends them to generate mosaics on which object trajectories are registered. Alternatively,

the estimated homographic transformation is used to map trajectories on a scene top view.

To obtain objects’ complete trajectories across views, from the segments generated in each

camera, we have proposed a trajectory association and fusion that operates on a scene

ground plane. The association is based on a similarity metric that, within overlapping

regions, identifies fragments of transformed trajectories generated by each object. These

106
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fragments are fused and connected across the fields of view using temporal consistency

and object identity. We have presented an estimation of tracking errors in terms of the

Euclidean distance between the expected results from ground truth and those measured

with real data. From the analysis of these errors, we have identified the limitations of the

proposed approach and proposed enhancing mechanisms to overcome them.

The proposed algorithm is suitable for use as either a stand-alone application

for multiple view analysis or a geometric cue to be integrated into an object tracking

algorithm for multiple cameras.

5.2 Future work

In the light of discussions on the experiments, we propose three main directions

for further works:

• Use of a feedback loop

To insert a two-level feedback process that allows the detection of a drifting process

in object tracking and simultaneously, the collaboration between the cameras in a

distributed system. At the local level, the output of the tracking module will be

fed-back to that of the motion segmentation to ascertain the coherence of objects’

tracks. At the global level, the final position of an object will be back-projected onto

the corresponding image planes sources. This latter feed-back loop aims at exploit-

ing the multiple camera set by reinforcing the detection/tracking output between

corresponding areas across views.

• Use of spatial uncertainty in 2D location

The proposed approach in this thesis relies on noisy feature points extracted from ob-

ject tracking and on the trajectory transformation that is subject to strong collinear-

ity constraint. Therefore, it is important in future to consider an estimate over the

uncertainty with which the trajectory data is known. The nature of the fluctuation
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of measurements giving object’s position is noted in Douxchamps’s work [52]. We

suggest, for future works, an initial training phase that collects data and estimates

tracking errors on the image plane. Additionally, a map that estimates the magni-

tude of perspective distortion in the common view (scene top view or image mosaic)

will be stored in order to estimate the expected homographic errors in all the area of

the common view. These two pieces of information model the relative reliability of

each source when computing the objects’ final position.

• Distributed sensing

Another relevant direction to explore is the protocols of transmission of information

between the cameras themselves, and between the cameras and a central server of

camera networks [135, 136]. This research will simulate the transmission of meta-

data in a network, study the impact of delays and losses at destination with regards

to the information on objects’ spatio-temporal localization. The goal is to quantify

the results of the differences between centralised and distributed configurations in

multiple view object tracking.
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