5,118 research outputs found

    Neuro-Fuzzy Based Intelligent Approaches to Nonlinear System Identification and Forecasting

    Get PDF
    Nearly three decades back nonlinear system identification consisted of several ad-hoc approaches, which were restricted to a very limited class of systems. However, with the advent of the various soft computing methodologies like neural networks and the fuzzy logic combined with optimization techniques, a wider class of systems can be handled at present. Complex systems may be of diverse characteristics and nature. These systems may be linear or nonlinear, continuous or discrete, time varying or time invariant, static or dynamic, short term or long term, central or distributed, predictable or unpredictable, ill or well defined. Neurofuzzy hybrid modelling approaches have been developed as an ideal technique for utilising linguistic values and numerical data. This Thesis is focused on the development of advanced neurofuzzy modelling architectures and their application to real case studies. Three potential requirements have been identified as desirable characteristics for such design: A model needs to have minimum number of rules; a model needs to be generic acting either as Multi-Input-Single-Output (MISO) or Multi-Input-Multi-Output (MIMO) identification model; a model needs to have a versatile nonlinear membership function. Initially, a MIMO Adaptive Fuzzy Logic System (AFLS) model which incorporates a prototype defuzzification scheme, while utilising an efficient, compared to the Takagi–Sugeno–Kang (TSK) based systems, fuzzification layer has been developed for the detection of meat spoilage using Fourier transform infrared (FTIR) spectroscopy. The identification strategy involved not only the classification of beef fillet samples in their respective quality class (i.e. fresh, semi-fresh and spoiled), but also the simultaneous prediction of their associated microbiological population directly from FTIR spectra. In the case of AFLS, the number of memberships for each input variable was directly associated to the number of rules, hence, the “curse of dimensionality” problem was significantly reduced. Results confirmed the advantage of the proposed scheme against Adaptive Neurofuzzy Inference System (ANFIS), Multilayer Perceptron (MLP) and Partial Least Squares (PLS) techniques used in the same case study. In the case of MISO systems, the TSK based structure, has been utilized in many neurofuzzy systems, like ANFIS. At the next stage of research, an Adaptive Fuzzy Inference Neural Network (AFINN) has been developed for the monitoring the spoilage of minced beef utilising multispectral imaging information. This model, which follows the TSK structure, incorporates a clustering pre-processing stage for the definition of fuzzy rules, while its final fuzzy rule base is determined by competitive learning. In this specific case study, AFINN model was also able to predict for the first time in the literature, the beef’s temperature directly from imaging information. Results again proved the superiority of the adopted model. By extending the line of research and adopting specific design concepts from the previous case studies, the Asymmetric Gaussian Fuzzy Inference Neural Network (AGFINN) architecture has been developed. This architecture has been designed based on the above design principles. A clustering preprocessing scheme has been applied to minimise the number of fuzzy rules. AGFINN incorporates features from the AFLS concept, by having the same number of rules as well as fuzzy memberships. In spite of the extensive use of the standard symmetric Gaussian membership functions, AGFINN utilizes an asymmetric function acting as input linguistic node. Since the asymmetric Gaussian membership function’s variability and flexibility are higher than the traditional one, it can partition the input space more effectively. AGFINN can be built either as an MISO or as an MIMO system. In the MISO case, a TSK defuzzification scheme has been implemented, while two different learning algorithms have been implemented. AGFINN has been tested on real datasets related to electricity price forecasting for the ISO New England Power Distribution System. Its performance was compared against a number of alternative models, including ANFIS, AFLS, MLP and Wavelet Neural Network (WNN), and proved to be superior. The concept of asymmetric functions proved to be a valid hypothesis and certainly it can find application to other architectures, such as in Fuzzy Wavelet Neural Network models, by designing a suitable flexible wavelet membership function. AGFINN’s MIMO characteristics also make the proposed architecture suitable for a larger range of applications/problems

    Estimation of flexible fuzzy GARCH models for conditional density estimation

    Get PDF
    In this work we introduce a new flexible fuzzy GARCH model for conditional density estimation. The model combines two different types of uncertainty, namely fuzziness or linguistic vagueness, and probabilistic uncertainty. The probabilistic uncertainty is modeled through a GARCH model while the fuzziness or linguistic vagueness is present in the antecedent and combination of the rule base system. The fuzzy GARCH model under study allows for a linguistic interpretation of the gradual changes in the output density, providing a simple understanding of the process. Such a system can capture different properties of data, such as fat tails, skewness and multimodality in one single model. This type of models can be useful in many fields such as macroeconomic analysis, quantitative finance and risk management. The relation to existing similar models is discussed, while the properties, interpretation and estimation of the proposed model are provided. The model performance is illustrated in simulated time series data exhibiting complex behavior and a real data application of volatility forecasting for the S&P 500 daily returns series

    DEA-Based Incentive Regimes in Health-Care Provision

    Get PDF
    A major challenge to legislators, insurance providers and municipalities will be how to manage the reimbursement of health-care on partially open markets under increasing fiscal pressure and an aging population. Although efficiency theoretically can be obtained by private solutions using fixed-payment schemes, the informational rents and production distortions may limit their implementation. The healthcare agency problem is characterized by (i) a complex multi-input multi-output technology, (ii) information uncertainty and asymmetry, and (iii) fuzzy social preferences. First, the technology, inherently nonlinear and with externalities between factors, yield parametric estimation difficult. However, the flexible production structure in Data Envelopment Analysis (DEA) offers a solution that allows for the gradual and successive refinement of potentially nonconvex technologies. Second, the information structure of healthcare suggests a context of considerable asymmetric information and considerable uncertainty about the underlying technology, but limited uncertainty or noise in the registration of the outcome. Again, we shall argue that the DEA dynamic yardsticks (Bogetoft, 1994, 1997, Agrell and Bogetoft, 2001) are suitable for such contexts. A third important characteristic of the health sector is the somewhat fuzzy social priorities and the numerous potential conflicts between the stakeholders in the health system. Social preferences are likely dynamic and contingent on the disclosed information. Similarly, there are several potential hidden action (moral hazard) and hidden information (adverse selection) conflicts between the different agents in the health system. The flexible and transparent response to preferential ambiguity is one of the strongest justifications for a DEA-approach. DEA yardstick regimes have been successfully implemented in other sectors (electricity distribution) and we present an operalization of the power-parameter p in an pseudo-competitive setting that both limits the informational rents and incites the truthful revelation of information. Recent work (Agrell and Bogetoft, 2002) on strategic implementation of DEA yardsticks is commented in the healthcare context, where social priorities change the tradeoff between the motivation and coordination functions of the yardstick. The paper is closed with policy recommendations and some areas of further work.Data Envelopment Analysis, regulation, health care systems, efficiency, Health Economics and Policy,

    Navigation and Control of Automated Guided Vehicle using Fuzzy Inference System and Neural Network Technique

    Get PDF
    Automatic motion planning and navigation is the primary task of an Automated Guided Vehicle (AGV) or mobile robot. All such navigation systems consist of a data collection system, a decision making system and a hardware control system. Artificial Intelligence based decision making systems have become increasingly more successful as they are capable of handling large complex calculations and have a good performance under unpredictable and imprecise environments. This research focuses on developing Fuzzy Logic and Neural Network based implementations for the navigation of an AGV by using heading angle and obstacle distances as inputs to generate the velocity and steering angle as output. The Gaussian, Triangular and Trapezoidal membership functions for the Fuzzy Inference System and the Feed forward back propagation were developed, modelled and simulated on MATLAB. The reserach presents an evaluation of the four different decision making systems and a study has been conducted to compare their performances. The hardware control for an AGV should be robust and precise. For practical implementation a prototype, that functions via DC servo motors and a gear systems, was constructed and installed on a commercial vehicle

    Recent advances in directional statistics

    Get PDF
    Mainstream statistical methodology is generally applicable to data observed in Euclidean space. There are, however, numerous contexts of considerable scientific interest in which the natural supports for the data under consideration are Riemannian manifolds like the unit circle, torus, sphere and their extensions. Typically, such data can be represented using one or more directions, and directional statistics is the branch of statistics that deals with their analysis. In this paper we provide a review of the many recent developments in the field since the publication of Mardia and Jupp (1999), still the most comprehensive text on directional statistics. Many of those developments have been stimulated by interesting applications in fields as diverse as astronomy, medicine, genetics, neurology, aeronautics, acoustics, image analysis, text mining, environmetrics, and machine learning. We begin by considering developments for the exploratory analysis of directional data before progressing to distributional models, general approaches to inference, hypothesis testing, regression, nonparametric curve estimation, methods for dimension reduction, classification and clustering, and the modelling of time series, spatial and spatio-temporal data. An overview of currently available software for analysing directional data is also provided, and potential future developments discussed.Comment: 61 page

    Fuzzy Pattern Recognition Based Fault Diagnosis

    No full text
    International audienceIn order to avoid catastrophic situations when the dynamics of a physical system (entity in Multi Agent System architecture) are evolving toward an undesirable operating mode, particular and quick safety actions have to be programmed in the control design. Classic control (PID and even state model based methods) becomes powerless for complex plants (nonlinear, MIMO and ill-defined systems). A more efficient diagnosis requires an artificial intelligence approach. We propose in this paper the design of a Fuzzy Pattern Recognition System (FPRS) that solves, in real time, the main following problems: 1) Identification of an actual state; 2) Identification of an eventual evolution towards a failure state; 3) Diagnosis and decision-making. Simulations have been carried for a fictive complex process plant with the objective to evaluate the consistency and the performance of the proposed diagnosis philosophy. The obtained results seem to be encouraging and very promising for application to fault diagnosis of a real and complex plant process
    corecore