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Abstract

In this work we introduce a new flexible fuzzy GARCH model for condi-
tional density estimation. The model combines two different types of uncer-
tainty, namely fuzziness or linguistic vagueness, and probabilistic uncertainty.
The probabilistic uncertainty is modeled through a GARCH model while the
fuzziness or linguistic vagueness is present in the antecedent and combina-
tion of the rule base system. The fuzzy GARCH model under study allows
for a linguistic interpretation of the gradual changes in the output density,
providing a simple understanding of the process. Such a system can capture
different properties of data, such as fat tails, skewness and multimodality
in one single model. This type of models can be useful in many fields such
as macroeconomic analysis, quantitative finance and risk management. The
relation to existing similar models is discussed, while the properties, inter-
pretation and estimation of the proposed model are provided. The model
performance is illustrated in simulated time series data exhibiting complex
behavior and a real data application of volatility forecasting for the S&P 500
daily returns series.
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1. Introduction

The conditional density of a random variable is an estimate of the proba-
bility distribution of the current value of that variable, given its past values
or other variables. Conditional density estimation has an important role in
many fields such as quantitative finance and risk management for two main
reasons. First, most financial return series appear to be uncorrelated over
time, but to be dependent through their higher moments such as the con-
ditional variance [1]. Traditional models aiming at point forecasts cannot
capture such dependency and the need to estimate the full conditional den-
sity arises. Second, investors are not only interested in the expected return
from an asset but also in the risk involved in the asset. This risk factor
can be calculated using statistical quantiles of the estimated returns distri-
bution, such as Value-at-Risk or Expected Shortfall [2], and it cannot be
assessed from models providing point forecasts.

Estimating an accurate model for the distribution of financial returns
is not a simple task since financial time-series typically possess non-trivial
statistical properties, such as fat tails, asymmetric distributions and chang-
ing variation over time. For this reason, several methods are proposed to
estimate the density of returns, conditional on past information, or other
macroeconomic variables. A popular approach where volatility, and hence
the return distribution, changes dynamically is the Generalized Autoregres-
sive Heteroskedasticity (GARCH) model [1]. In this model, the variation in
returns is explained by past returns and past variations in returns. Extended
GARCH models are proposed in the literature to capture different aspects
of data behavior, such as the GJR-GARCH [3] models to capture skewness
and Student–t GARCH models to capture fat tails [4].

The existence of different types of GARCH models led to the introduction
of models which can encompass different GARCH specifications and differ-
ent return distribution properties. In terms of purely probabilistic mod-
els, smooth transition GARCH models [5] and regime-switching GARCH
models [6] are proposed. Despite the generality of these model structures,
estimation of these models is not trivial [7] and it is impossible to apply
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standard maximum likelihood estimation, due to the recursive structure of
conditional volatility [8, 9]. Artificial neural networks [10] and fuzzy sys-
tems have also been combined with GARCH models in different forms. In
[11, 12, 13, 14, 15, 16, 17], fuzzy GARCH models are presented in the form
of fuzzy rule base systems, where each rule corresponds to an individual
GARCH model. Different types of GARCH models were also combined us-
ing adaptive neuro-fuzzy inference systems [18, 19, 20], and rough-set based
neuro-fuzzy systems [21], although in these cases the models are used to
approximate either the return series [19, 20] or realized volatility [18, 21],
which is the sum of squared intra-daily (e.g. 5 minutes data) returns. The
class of models and objective functions used to estimate realized volatility
are different from the models used to estimate conditional distribution of
financial returns, since realized volatility is a point estimation, while return
volatility considers the estimation of the whole conditional distribution of
financial returns 1. A GARCH model with fuzzy coefficients is presented in
[28] and [29], where the error term is modelled using a set of fuzzy rules.
These models combine fuzzy systems with a statistical model. A similar ap-
proach that combines different types of uncertainty is the probabilistic fuzzy
system [30, 30], also used to estimate conditional volatility of returns [31, 32].

In previous work, we introduced key ideas for a new flexible fuzzy GARCH
model for conditional density estimation [33], but a formal description and
analysis of this type of systems still needs to be made. The model combines
two different types of uncertainty, namely fuzziness or linguistic vagueness,
and probabilistic uncertainty. The properties, estimation issues and interpre-
tation, which were not considered in [33], are studied in detail in this paper.
Furthermore, an overview of the differences with previous fuzzy GARCH
models is given. The presented model is more general than the previously
studied fuzzy rule base GARCH models and can capture different properties
of data, such as fat tails, skewness and multimodality in one single model.
The conditional distribution of the data can vary smoothly over time in mean

1Forecasting return volatility can be seen as equivalent to forecasting realized volatility
[22, 23, 24], under the assumptions that high-quality intraday return data are available
(noisy intraday data has a detrimental impact on forecast accuracy [25]) and the (log)
return series is a continuous semimartingale process [26]. For the case of discrete time
process, such as GARCH, the assumption of homoskedasticity (all random variables have
the same finite variance) must hold [27]. If these assumptions are not fulfilled, the point
estimation of return volatility will be biased.
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and variance, where the smooth changes are related to linguistic descriptors.
Previous fuzzy GARCH models [11, 12, 13, 14, 15, 16, 17] only allowed for
unimodal and symmetric distributions, hence this type of systems could only
model fat tail distributions, not skewed or multimodal distributions.

An interpretation of the proposed fuzzy GARCH models, from both sta-
tistical and fuzzy linguistic points of view is provided in this paper. The
proposed fuzzy GARCH model provides a linguistic interpretation of the
gradual changes in return density, providing a simple understanding of the
underlying changes. The output of the proposed fuzzy GARCH model is
similar to the output of regime-switching and smooth transition GARCH
models since the obtained return distribution can have a nonstandard func-
tional form. An advantage of the proposed model is the tractable form of the
likelihood function, which in turn does not suffer from the estimation issues
reported in pure probabilistic flexible GARCH models [5, 6].

The performance and estimation issues of the proposed model are exam-
ined using simulated data and a real data application on S&P 500 return
series. It is shown that the proposed model captures the conditional volatil-
ity of the data in all examples considered. The proposed model is suitable for
analysis of the returns distribution. The main focus in analyzing the returns
distribution is not to consider a single model and the parameters, e.g. to
draw policy conclusions, but rather to estimate the expected gains and losses
from investing in an asset and to use the latest information in the market
for investment decisions. The reason for the proposed model to successfully
capture such interesting values is two fold. First, the flexible functional form
allows to approximate a nonstandard returns density. Second, possibly com-
plex effects of current market information on future returns is explained using
simple linguistic descriptors and with a well studied GARCH-type rule base
system.

The outline of the paper is as follows. Section 2 gives an overview of
previously studied probabilistic and fuzzy GARCH models. Special attention
is given to inconsistencies in the explanation of estimation in existing fuzzy
GARCH models. The proposed new fuzzy GARCH model is presented in
Section 3 and compared to other fuzzy and probabilistic GARCH models. An
interpretation of the model is given, from the point of view of its probabilistic
output as well as from a linguistic perspective. We show that all model
parameters can be estimated using a maximum likelihood approach, in which
the objective function includes the whole output density. Examples of this
estimation are given in Section 4, where we also show that the proposed
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model can successfully capture existing fuzzy GARCH models. In Section 5
we present a real world application of the new fuzzy GARCH model for
conditional density estimation, and finally, Section 6 concludes the paper.

2. GARCH Model and extensions

GARCH models are used to capture the time varying behaviour of vari-
ance. These models relate the unobserved volatility/variance of data to the
past variance and past observations. Hence, the conditional density of the
data is a normal distribution, but the occurrence of positive or negative
extreme data values depends on the past observations together with past
volatility. The standard GARCH (p, q) model for t = 1, . . . , T observations
is defined as:

yt =
√

ht ϵt ∼ NID(0, ht) (1a)

ht = α0 +

q∑
i=1

αiy
2
t−i +

p∑
j=1

βjht−j (1b)

ϵt ∼ NID (0, 1) (1c)

where yt is the data with a conditional normal distribution and NID(µ, σ2)
denotes the normal and independently distribution with mean µ and variance
σ2. Scalars p and q are, respectively, the lag order for past returns and past
conditional volatility in the GARCH model and (α0, αi, βj) for i = 1, . . . , q
and j = 1, . . . , p are GARCH model parameters. At each period, the con-
ditional volatility, ht, is assumed to move around the constant unconditional
volatility h. In the long run, the local volatility reverts to its overall mean
value. This property is known as ‘mean reversion’. The residual variance
is fixed to 1 since both ht and ϵt in (1) are unobserved. This model is not
identified unless the residual variance is fixed. When βj = 0, ∀j, the model
simplifies to an ARCH(q) model [34] which relates the data variance only
on its observed past values. The long run (unconditional) volatility can be
written in terms of the model parameters:

h = α0/

(
1−

q∑
i=1

αi −
p∑

j=1

βj

)
(2)
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Sufficient conditions for positive variance ht at every period are:

α0 > 0, αi ≥ 0, βj ≥ 0,

q∑
i=1

αi +

p∑
j=1

βj < 1, i = 1, . . . , q, j = 1, . . . , p, (3)

where these restrictions also ensure a stationary variance process and the
existence of a finite mean and variance of ht.

For the GARCH model, max (p, q) is the number of observations to leave
out as the past information is not available fully for these observations. The
actual observations to use in the model starts from: t⋆ = max (p+ q) + 1.
Initial observations y1, . . . , yq can be obtained from the data or set as the
unconditional mean of the data. The initial unobserved variances h1, . . . , hp

can be set as the unconditional variance of the data. Conditional on these
initial values, the likelihood of a single observation is:

ℓ(yt | It−1) = ℓ(yt | ht) = ϕ(yt; 0, ht) (4)

for t ∈ {t⋆, . . . , T}, where It−1 = {y1, . . . , yt−1, h1, . . . , ht−1} denotes the in-
formation set at time t− 1, and ϕ(.;µ, σ2) is the probability density function
(pdf) of a normal distribution with mean µ and variance σ2.

Using the independence assumption in (1), the likelihood of the whole
sample is obtained by multiplying (4) for all t:

ℓ(y) =
T∏

t=t⋆

ℓ(yt | It−1) =
T∏

t=t⋆

ℓ(yt | ht) =
T∏

t=t⋆

ϕ(yt; 0, ht), (5)

where y = {yt⋆ , . . . , yT} and the variance term ht is obtained recursively
using the equality in (1b). Note that explanatory variables can be added
in (1) and the likelihood formulation in (5) is still valid, albeit with minor
changes (see e.g.[35]).

In order to obtain the parameter estimates, the likelihood in (5) is often
maximized using gradient search methods. Despite the simplicity of the
likelihood formulation, maximizing this function can be cumbersome due
to the nonlinearities in the model structure, and hence the possibility of
local maxima and multiple modes [36]. A common practice is to get robust
estimates using several starting values for the algorithm.

Extensions of the standard GARCH model are proposed in order to cap-
ture different dynamics of the observed series. In particular for the stock
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returns series, the normality assumption in (1) is found to be restrictive.
The normal conditional density of returns may fail to account for observa-
tions in the tails of the distribution and skewness in the observed series char-
acterized by asymmetric effects of positive and negative past observations
on current variance [36]. Two commonly used extensions are the Student-t
GARCH model [4] and the GJR GARCH model [3], which account for fat
tails and asymmetric distributions, respectively. Despite several extended
GARCH models, proposing a unifying one that can capture all dynamics of
the observed series is often impossible.

Another extension of the models is the regime switching GARCH models.
Such models are proposed since the relationship between the current return
distribution and past returns’ mean and variance can be complex [37], com-
pared to the linear variance model assumed by the GARCH model [6, 38].
Introducing such a complex relationship using the Markov-switching struc-
ture ensures that the estimated volatility reacts quickly to changes in the
volatility levels, and the forecast performance of the original GARCH model
is improved [39]. These models propose K separate GARCH models:

yt =
√
htϵt ∼ NID(0, ht),

ht = ht,k, if st = k, k = 1, . . . , K,
ht,k = α0,k +

∑q
i=1 αi,ky

2
t−i +

∑p
j=1 βj,kht−j, for k = 1, . . . , K,

ϵt ∼ NID (0, 1) ,

(6)

where st denotes the realization of the state at time t, and is characterized
by a Markov process. Despite the flexibility of allowing different GARCH
models in different time periods, regime switching GARCH models can still
be restrictive, as each observation is assumed to belong to a single regime at
each period in time. The proposed fuzzy GARCH model does not have this
constraint.

Apart from the above mentioned fully probabilistic extensions of the
GARCH model, we focus our attention on fuzzy GARCH models as pre-
sented in [11, 13, 14, 16, 17]. These type of models consist of a set of if-then
rules, where the antecedent of each rule are fuzzy sets and the consequents
are GARCH models, consisting of l-th rules [11, 13, 14, 16, 17]:

Rl : If x is Fl then ht,l = α0,l +

q∑
i=1

αi,ly
2
t−i +

p∑
j=1

βj,lht−j , (7)

where x ∈ Rn is an input vector, Fl : X −→ [0, 1] is a multidimensional fuzzy
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set defined on a continuous sample space X. The output of this fuzzy model
is presented as

yt =
√

htϵt , (8a)

ht =
L∑
l=1

gt,lht,l , (8b)

where gt,l = ut,l/
∑L

l=1 ut,l are normalized membership functions with

ut,l ≥ 0 for l = 1, . . . , L,
∑L

l=1 ut,l > 0, and by definition gt,l ≥ 0 and∑L
l=1 gt,l = 1. The inference used for the output (8a) and (8b) is similar

to the inference of a Takagi-Sugeno fuzzy model [40]. Although not clear in
[13, 14, 16, 17], we assume that like in [11], when x is n-dimensional, ut,l is de-
termined as a conjunction of the individual memberships in the antecedents
computed by a suitable t-norm, i.e. ,

ut,l(x) = uFl1
(x1) ◦ · · · ◦ uFln

(xn), (9)

where xn is the n-th component of x and ◦ denotes a t-norm.
In our analysis of this model, we note that the combination of ht,l in (7)

provides the unobserved conditional variance ht. The density of output yt is
based on ht:

yt | ht, xt ∼ NID(µ, ht) . (10)

In [11], the parameters of the model in (7) were estimated in a two step ap-
proach. First the antecedents were obtained using a fuzzy clustering heuris-
tic, followed by the estimation of the GARCH parameters using maximum
likelihood estimation. The chosen explanatory variable was the return at
the previous period, yt−1. For a simulated nonlinear GARCH model, good
results are reported using as variance term ht,l in (7) a GARCH(3,3) model
or by constraint of βj = 0 using a GARCH(0,5) model. For the real data
example [11], the conditional variance is not given by a GARCH model but
it is considered to be constant over time ht,l = hl,∀t, which gives

Rl : If yt−1 is Fl then ht,l = hl. (11)

In [13, 14], the parameters of the fuzzy GARCH model are obtained
using a genetic algorithm, while in [16] particle swarm optimization is used.
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The objective function E1 is defined as the mean squared error between the
estimated output density y∗t =

√
ht ϵt and observation yt, as

E1 =
T∑
t=1

(y∗t − yt)
2 . (12)

To the best of our knowledge, the calculation of this objective function as a
difference between a density function and a point is not possible. We further
note that the same objective function is used in [15], although the rule base
model is different. Furthermore, in [17] a similar objective function, based
on the squared returns, is defined:

E2 =
T∑
t=1

(y∗2t − y2t )
2 , (13)

where the difference between the square of the implied density of returns
y∗2t and the point squared returns y2t is again not possible. We further note
that using squared daily returns as a comparison to a model is not appropri-
ate, because squared daily returns provide a poor approximation of realized
daily volatility [41]. More accurate results can be obtained using the sum of
squared intraday results [22, 23, 24, 25].

Despite the aforementioned issues regarding the explanation for the pa-
rameter estimation of these fuzzy GARCH models in the literature, the gen-
eral idea of these models is very appealing. They possess the advantage
of the linguistic interpretation of the rules and the possibility to explain
the conditional data distribution with antecedent variables x. Despite this
general modeling idea, the model output as defined in (10) is restricted to a
normal conditional distribution with zero mean. This restriction may not ac-
commodate documented dynamics of data, such as the existence of extreme
observations or skewness in several stock returns series. For this reason,
we propose a more flexible fuzzy GARCH model in Section 3 which can be
estimated using a maximum likelihood approach.

3. Proposed Fuzzy GARCH model

In this paper we present a new flexible fuzzy GARCH model [33], named
FGARCH(L,p,q) where the output yt and conditional variance ht are defined
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by each of l-th fuzzy rule

Rl : If x is Fl then yt,l | xt, ht,l ∼ NID(µl, ht,l) , (14a)

with ht,l = α0,l +

q∑
i=1

αi,ly
2
t−i +

p∑
j=1

βj,lht−j , (14b)

where ht is given by (8b) and the fuzzy sets Fl are defined by membership
functions ut,l as function of the antecedent variable xt.

For the l-th fuzzy rule, the output consequents are defined by a GARCH(p,q)
model which has a normal distribution with mean µl and variance ht,l, with
parameters given by:

yt,l =
√

ht,l ϵt ,

ht,l = α0,l +

q∑
i=1

αi,ly
2
t−i +

p∑
j=1

βj,lht−j ,

ht−j =
L∑
l=1

gt−j,lht−j,l , for j = 1 . . . , p .

(15)

where gt,l = ut,l/
∑L

l=1 ut,l is the normalized membership function.
The output of this FGARCH model is:

yt | ht, xt ∼
L∑
l=1

gt,lNID(µl, ht,l) , (16)

which can be interpreted as a fuzzy combination of normal densities. De-
pending on the normalized membership functions gt,l, the output has several
distributional forms, such as a normal density, a skewed density or a bimodal
density. Comparing the output of (16) and the output (8), it is clear that the
outputs follow different inference mechanisms. In (8) the output is a proba-
bilistic normal distribution with zero mean and the variance modelled with a
fuzzy system. Conversely, the output (16) combines probabilistic and fuzzy
uncertainty, resulting in a combination of normal distributions dependant on
a set of fuzzy rules. The model defines the whole output density including
the mean and variance.

The output of the proposed model has a proper conditional distribution,
similar to a finite mixture of normal densities, under the condition that mem-
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bership values satisfy

gt,l ≥ 0, ∀l, t (17a)

L∑
l=1

gt,l = 1, ∀t . (17b)

These conditions ensure that the probability density, hence the likelihood
of observation t can be written conditional on past observations and past
variance.

A second concern in the proposed FGARCH(L,p,q) model is to obtain
positivity and stationarity conditions ht,l for every rule and at every time
period, since the output of the rules in (14a) are not defined otherwise.
A sufficient condition for this is to incorporate standard GARCH model
conditions for each rule l = 1, . . . , L in the model:

α0,l > 0, αi,l ≥ 0, βj,l ≥ 0,

q∑
i=1

αi,l +

p∑
j=1

βj,l < 1, i = 1, . . . , q, j = 1, . . . , p,

(18)

Note that these conditions should also hold for the fuzzy GARCH models
proposed in the literature [11, 13, 14, 16, 17], although they have not been
explicitly considered.

3.1. Interpretation of the model

Intuitively, the conditional distribution of the proposed model in (16) is
a smooth combination of normal distributions. This combined density is
similar to a finite mixture of normal densities, with combinations relying on
the antecedent variables. The estimation of the proposed model, however, is
more straightforward and the linguistic interpretation provided by this model
is unique.

In relation to the previous fuzzy GARCH models in the literature, the
proposed model is more general and can capture several different dynamics of
data: In (14a) and (14b), output y shows a smooth transition between normal
densities, with possible different mean and variances. Hence the density of
each observation might be multimodal or skewed, while in the previous fuzzy
GARCH models the output density in (10) is a unimodal and symmetric
normal density. In the proposed model, the combination of normal densities
in the rule output can lead to unimodal or skewed distributions depending
on model parameters:
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Figure 1: Conditional distributions of simulated data from fuzzy GARCH models.
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(b) Model proposed in [11, 14].

1. If µl = µl⋆ for all l, l⋆ ∈ {1, . . . , L}, output y comes from a normal
distribution and conditional variance h changes over time. This case
leads to the previous fuzzy GARCH models as defined in (10).

2. If mean parameters µl are relatively different and ht,l are relatively
small and similar across l = {1, . . . , L}, output distribution is likely to
be multimodal.

3. If mean parameters µl are relatively close to each other and ht,l are
relatively different across l = {1, . . . , L}, output distribution is likely
to be skewed.

We illustrate the difference between the fuzzy GARCH model defined
in [11, 14] and the proposed FGARCH(L,p,q), using simulated data. Fig-
ure 1 shows the conditional density of output y for simulated data from
the proposed model (14a) and model (7). In this example, both models
have two rules with Gaussian membership parameters {c1,1, s21,1, c1,2, s21,2} =
{−2.3, 2.5, 1, 1} defined in (20) and GARCH parameters defined for each rule
{α0,1, α1,1, β1,1, α0,2, α1,2, β1,2} = {0.5, 0.25, 0.17, 1.0, 0.50, 0.33}. In the previ-
ous fuzzy GARCH model [11, 14] µ = 0, while in the FGARCH(2,1,1) model
(µ1, µ2) = (−6, 6).

The model in (7) leads to unimodal and symmetric conditional densities
while simulated data from the proposed model has a more complex behavior
with skewed, asymmetric and bimodal conditional densities.

The proposed FGARCH model makes a clear distinction between lin-
guistic and probabilistic uncertainty. The fuzziness or linguistic vagueness
is present in the antecedent of each rule and their combination. By using
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fuzzy sets to represent linguistic vagueness, the output density is allowed to
vary smoothly, in mean and variance, over time. These smooth changes are
related to linguistic labels [42], belonging to one or several fuzzy sets at the
same time. The linguistic labels can be used to explain complex systems,
such as financial markets [43], with imprecise descriptions of phenomena in
a similar way humans do it. Following the concept of granularity [44, 45], a
fuzzy linguistic label can be viewed as a set of observation values grouped
according to some criteria, in an environment of imprecision, uncertainty and
partial truth [46], where each linguistic label has a degree of validity. The
probabilistic uncertainty can be captured by the GARCH model. In this
extensively studied and good performing model [27], the conditional density
of the data is a normal distribution with time varying variance depending on
past variance and past observations.

Fuzzy GARCH models can be related to finite mixture of GARCH mod-
els. Standard mixture of GARCH models allocate each observation to one
GARCH model at a time and the probability of each GARCH model is fixed.
More general mixture GARCH models can have smoothly varying regime
probabilities [47]. In these models, each observation is allocated to different
GARCHmodels, depending on the regime probabilities explained by explana-
tory variables. The fuzzy GARCH model also uses such antecedent variables,
but in this case the uncertainty is modelled using fuzzy sets, relaxing the re-
striction of realizing one state at each observation. Even if the mathematical
formulation is similar, the interpretation and underlying modeling of uncer-
tainty (fuzzy and probabilistic) is different from mixture GARCH models
(probabilistic only).

3.2. Parameter estimation

It is possible to estimate the model in (14a) using the maximum likelihood
method, given that x is predetermined with respect to y, i.e. input xt is
included in the information set at time t − 1. More specifically, xt can for
instance take past y values or can be an exogenous variable.

Given that the type and number of membership functions gt,l are known,
the log-likelihood of data y = {yt⋆ , . . . , yT} is:

ln ℓ(y | It−1) = ln
T∏

t=t⋆

ℓ(yt | xt, ht) =
T∑

t=t⋆

ln

(
L∑
l=1

gt,lϕ(yt;µl, ht,l)

)
, (19)
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where ht is calculated from (14b), t⋆ = max (p+ q) + 1 and initial variances
{h1, . . . , ht⋆−1} are assumed to be known. In practice, {h1, . . . , ht⋆−1} can be
set as the unconditional data variance.

In order to calculate the likelihood in (19) it is necessary to specify suit-
able membership functions, that satisfy conditions (17a) and (17b). In this
work, the FGARCH models considered use Gaussian membership functions
of the form:

ut,l = ut,l(xt) =
n∏

k=1

exp

(
−1

2

(xkt − ck,l)
2

s2k,l

)
. (20)

These membership functions were chosen because they naturally satisfy con-
ditions (17a) and (17b) since gt,l = ut,l/

∑L
l=1 ut,l, ut,l ≥ 0 for l = 1, . . . , L,∑L

l=1 ut,l > 0. This reduces the need for additional parameter constraints in
the gradient search optimization of the maximum log-likelihood estimation
(21).

The parameter estimates can be obtained by maximizing the log-likelihood
in (19), using gradient search methods. We maximize the log-likelihood with
respect to the GARCH parameters θg,l = {α0,l, α1,l, . . . , αq,l, β1,l, . . . , βp,l},
the output mean for each rule µl and the membership function parameters
θu,l, simultaneously. The optimization problem can be defined as:

minimize
µl,θg,l,θu,l

− log ℓ(y | It−1) = −
T∑

t=t⋆

ln

(
L∑
l=1

gt,lϕ(yt;µl, ht,l)

)
subject to α0,l > 0, αi,l ≥ 0, βj,l ≥ 0, i = 1, . . . , q, j = 1, . . . , p,

q∑
i=1

αi,l +

p∑
j=1

βj,l < 1, i = 1, . . . , q, j = 1, . . . , p,

cl ≤ cl+1, l = 1, . . . , L− 1,

(21)

The first two restrictions ensure a positive variance at each time period, while
the last restriction ensures that the membership functions cannot permute
labels. The optimization method chosen approximates the whole output
density instead of a proxy for the density, such as the mean or variance of
the process, lending itself to density estimation. This is also the conventional
method to obtain standard GARCH and mixture GARCH models’ parameter
estimates. We constrain the search space to solutions satisfying the positive
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variance condition and membership functions that cover the universe of the
input variables in the antecedent space.

We acknowledge that the proposed maximum likelihood estimation of the
FGARCH(L,p,q) parameters has a possible disadvantage of local maxima,
similar to standard and extended GARCH models. The problem of local
optima is often more pronounced in highly parametrized models. For this
reason, we concentrate on a FGARCH(L,1,1) model in the remaining of this
paper. The simple parametrization of the underlying GARCH model is also
based on the findings that a GARCH(1,1) model is very hard to beat in
practice [27]. One exception to this is the asymmetric GARCH models [26]
which are naturally considered in a FGARCH(L,1,1) model.

4. Examples: Synthetic data parameter estimation

In this section we illustrate the performance of the proposed FGARCH
model and discuss the estimation issues using a known data generating pro-
cess to simulate data. Doing so, allows us to study the approximation ca-
pabilities of the FGARCH model, i.e. recover the same density function. It
also shows the sensitivity to the initialization of the maximum likelihood
estimation procedure, as explained in Section 3.2, on the FGARCH model.

We consider two sets of simulated datasets. First, we consider data sim-
ulated from the previously studied fuzzy GARCH models defined by (7) and
(8), which restricts the output density to a normal conditional distribution
with zero mean, used e.g. in [16]. We show that the FGARCH model pro-
posed in this paper can correctly capture the properties of this data. Second,
we consider simulated data from the proposed FGARCH model defined by
(14a) and (14b). In both cases, we simulate 3000 data points from the model
considered for L = 2 and L = 3 rules. We maximize the log-likelihoods with
respect to the GARCH parameters θg,l = {α0,l, α1,l, . . . , αq,l, β1,l, . . . , βp,l},
the output mean for each rule µl, and the Gaussian membership parameters
θu,l = {cl, s2l } for l = 1, . . . , L, simultaneously, as defined in (21).

Given the number of model parameters, a straightforward approach to
decrease the possibility of obtaining local optimum is to consider several ini-
tializations for parameter estimation and choose the best model. This will
also show the sensitivity of the optimization procedure on the proposed fuzzy
GARCH model to the initialization. For all estimations considered, we esti-
mate model parameters starting from 100 random initial points. From these
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Table 1: Simulated FGARCH model data with constant mean: percentage of observations
in respective distribution tails.
Simulated data from FGARCH(2,1,1) model

τ(1%) τ(5%) τ(10%) τ(20%) τ(40%)
mean 0.010 0.047 0.098 0.201 0.397
90% (0.009, 0.013) (0.045, 0.047) (0.090, 0.100) (0.194, 0.202) (0.388, 0.399)

Simulated data from FGARCH(3,1,1) model
τ(1%) τ(5%) τ(10%) τ(20%) τ(40%)

mean 0.010 0.047 0.104 0.206 0.394
90% (0.008, 0.011) (0.044, 0.049) (0.102, 0.106) (0.203, 0.209) (0.389, 0.399)

repetitions, the estimation providing the highest likelihood value is consid-
ered the global maximum and labelled as ‘best’. To provide an indication of
different local minima and its effect in models’ performance, we report the
average estimates, for both the model parameters and distribution tails, as
well as the 90% interval of the estimates around the average value.

4.1. Fuzzy GARCH data with constant mean

In this section, we use a FGARCH model, where the output density
is restricted to a normal conditional distribution with zero mean, as the
data generating process. This model is equivalent to the previously studied
fuzzy GARCH models defined by (7) and (8). We estimate the parameters
of the proposed FGARCH model defined by (14a) and (14b), without any
restrictions to the output mean and distribution.

To study the approximation capabilities of the FGARCH model we com-
pare the true and estimated data densities. The fuzzy GARCH model pro-
vides an estimated output density. We compare the quantiles of this esti-
mated density and the percentage of simulated data points corresponding to
each quantile. For a good approximation of the output density, the quan-
tiles of this estimated density should match with the quantiles of the data,
e.g. 5% of the actual observations should fall in the 5% tail of the output
density. The mean estimates and 90% intervals of the quantiles τ̂(c) for
c = 1%, 5%, 10%, 20%, 40% for the simulated datasets are reported in Ta-
ble 1, for FGARCH(2,1,1) and FGARCH(3,1,1) models.

Table 1 shows that the percentage of observations in estimated tails of
the data distribution are close to the theoretical values, although for some
quantiles the percentage of observations in some tails are smaller than the
theoretical value. This may be a consequence of estimating this model with

16



Table 2: Parameter estimates and true values for simulated data from a FGARCH(L,1,1)
models restricted to a normal conditional distribution with zero mean. 90% intervals from
100 random initializations are given in parentheses.
FGARCH(2,1,1)

l = 1 l = 2
value estimate value estimate

µ 0.00 0.03 (-0.02, 0.04) 0.00 -0.02 (-0.03, 0.02)
α0 0.50 0.47 (0.42, 0.66) 1.00 1.00 (0.62, 1.01)
α1 0.25 0.29 (0.26, 0.53) 0.50 0.58 (0.41, 0.65)
β1 0.17 0.13 (0.13, 0.31) 0.33 0.34 (0.16, 0.34)
c -3.40 -0.60 (-1.28, 0.12) 3.20 1.21 (0.31, 2.11)
s2 1.00 0.54 (0.00, 0.82) 1.00 0.48 (0.19, 0.77)

FGARCH(3,1,1)
l = 1 l = 2 l = 3

value estimate value estimate value estimate
µ 0.00 -0.02 (-1.09, 0.80) 0.00 -0.09 (-0.82, 0.63) 0.00 0.03 (-0.46, 0.53)
α0 0.50 0.57 (0.00, 1.09) 1.00 0.79 (0.37, 1.23) 1.50 0.86 (0.40, 1.18)
α1 0.17 0.32 (0.00, 0.69) 0.33 0.38 (0.18, 0.62) 0.50 0.29 (0.15, 0.43)
β1 0.11 0.23 (0.00, 0.56) 0.22 0.18 (0.00, 0.51) 0.33 0.21 (0.03, 0.50)
c -3.40 -1.07 (-2.59, -0.02) 0.01 -0.20 (-0.60, 0.27) 3.20 0.51 (-0.44 2.95)
s2 1.00 0.48 (0.00, 0.98) 1.00 0.52 (0.09, 0.76) 1.00 0.67 (0.15, 1.43)

only 3000 data points, which may not be enough to represent the true dis-
tribution. A detailed analysis of the effect of the number of observations on
the true and estimated tails of the density is left for future research.

Table 2 presents the true parameter values, together with mean estimates
and 90% interval of parameter estimates (in parentheses) from 100 parameter
estimates with different starting values for optimization.

As Table 2 shows, the effect of the initial points on parameter estimation
are not negligible. Estimates of the GARCH parameters (α0, α1, β1) and rule
output means µl are close to the true parameter values and the 90% interval
regardless of the initial points. Estimates of the membership parameters c, s2

on the other hand, deviate much more from the original values and are more
affected by their initialization. It is interesting to note that the overall fit
of the FGARCH model is not substantially affected with completely random
initializations of all parameters, as the 90% intervals show in Table 1.

Since the output distribution from the FGARCH is a combination of
GARCH models with different means, through a set of fuzzy rules, the out-
put variance is jointly captured by the unobserved (estimated) variance and
the fuzzy antecedents. The obtained models are highly nonlinear and the
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Figure 2: FGARCH model with 0 mean: Log-likelihood values form different starting
values, and 90% lower band for obtained log-likelihood
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optimization method includes constraints on GARCH parameters, hence ob-
taining a local maximum is likely. Local maxima is less problematic for the
GARCH model parameters since this part of the model has a structure to
explain part of the unobserved variances, given by the fuzzy antecedent. Due
to this model structure, different parameter values typically lead to very dif-
ferent unobserved variances and the estimation of these parameters is not
affected severely by the initial points. We note that other GARCH models
also suffers from similar initialization issues. The fuzzy parameters, on the
other hand, are more susceptible to random initialization. In the FGARCH
model it is possible that different fuzzy membership parameters lead to sim-
ilar output density approximations. Hence the optimization of the fuzzy
membership parameters are more sensitive to the initial points for optimiza-
tion.

Fig. 2 shows the optimal log-likelihood values for the 100 different estima-
tions performed, together with the 90% lower bound for these values. We ob-
serve that for the FGARCH(2,1,1) model, approximately the same maximum
log-likelihood value is obtained in most of the estimations, despite the differ-
ences in parameter estimates, caused by the random initialization. For this
case, the maximum variation of the log-likelihood is approximately 2.48%. A
similar result can be observed for the FGARCH(3,1,1) model. The max vari-
ation for the log-likelihood is approximately 0.09%, but the variation around
the maximum log-likelihood value is smaller for the FGARCH(2,1,1). Hence
the local optima issue, particularly in the fuzzy membership parameters,
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Table 3: Simulated FGARCH model data with time varying mean: percentage of obser-
vations in respective distribution tails.
Simulated data from FGARCH(2,1,1) model

τ(1%) τ(5%) τ(10%) τ(20%) τ(40%)
mean 0.010 0.047 0.098 0.201 0.397
90% (0.009, 0.013) (0.045, 0.047) (0.090, 0.100) (0.194, 0.202) (0.388, 0.399)

Simulated data from FGARCH(3,1,1) model
τ(1%) τ(5%) τ(10%) τ(20%) τ(40%)

mean 0.011 0.046 0.100 0.198 0.391
90% (0.009, 0.012) (0.042, 0.049) (0.096, 0.105) (0.191, 0.207) (0.384, 0.407)

does not substantially affect the maximized likelihood. We conjecture that
the smaller maximum variation of the log-likelihood for the FGARCH(3,1,1),
when compared with the FGARCH(2,1,1) model, stems from the higher num-
ber of rules and consequent overlap between them, that leads to the almost
same result.

4.2. Fuzzy GARCH data with general time varying mean

In this section, we simulate data from FGARCH(2,1,1) and FGARCH(3,1,1)
models without any restrictions on the output density and perform 100 es-
timations with different starting values for optimization. Table 3 shows the
mean estimates and 90% intervals of the quantiles τ̂(c) and Table 4 presents
the true parameter values, together with mean estimates and 90% interval
of parameter estimates (in parentheses).

Similar to the results in Section 4.1, we observe that the estimated output
densities capture the tails of the distribution, as Table 3 shows. Furthermore,
as it is presented in Table 4, parameter estimates of the GARCH model are
less affected by initialization compared to the estimated fuzzy membership
parameters. Nonetheless, we note that there is a larger variation in the ob-
tained 90% intervals for the parameter estimates than obtained in Section 4.1.
The initial points have a bigger effect in the parameter estimates, although,
like previously, the overall fit of the FGARCH model is similar throughout
the experiments. This difference is expected, since the FGARCH models is
now capturing more complex data properties, such as time-varying mean and
variance, skewness and bimodality. In this experiment, the parameters of the
FGARCH(3,1,1) model vary more with the initialization than those of the
FGARCH(2,1,1) model, as the 90% intervals shown in Table 4 indicate.

The problem of local optima can be a more severe problem when the
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Table 4: Parameter estimates and true values for simulated data from a FGARCH(L,1,1)
models with L = 2 and L = 3 rules for time varying mean. 90% intervals from 100 random
initializations are given in parentheses.
FGARCH(2,1,1)

l = 1 l = 2
value estimate value estimate

µ -2.00 -0.51 (-1.65, 1.71) 2.00 0.67 (-1.86, 1.71)
α0 0.50 0.70 (0.60, 1.05) 1.00 0.89 (0.61, 0.86)
α1 0.25 0.28 (0.19, 0.45) 0.50 0.37 (0.15, 0.45)
β1 0.17 0.23 (0.18, 0.36) 0.33 0.29 (0.10, 0.36)
c -3.40 -1.84 (-3.73, -0.30) 3.20 1.31 (-1.20, 3.84)
s2 1.00 0.76 (0.15, 1.93) 1.00 0.49 (0.14, 0.89)

FGARCH(3,1,1)
l = 1 l = 2 l = 3

value estimate value estimate value estimate
µ -2.00 -0.19 (-1.18, 1.14) 0.00 -0.05 (-0.82 0.97) 2.00 0.72 (-0.45 1.64)
α0 0.50 0.49 (0.00, 0.82) 1.00 0.73 (0.15, 0.87) 1.50 0.70 (0.50, 0.90)
α1 0.17 0.24 (0.10, 0.50) 0.33 0.29 (0.19, 0.43) 0.50 0.24 (0.13, 0.38)
β1 0.11 0.19 (0.00, 0.47) 0.22 0.20 (0.00, 0.34) 0.33 0.23 (0.14, 0.34)
c -3.40 -1.12 (-3.05, 0.55) 0.01 0.04 (-0.84, 0.81) 3.20 1.29 (-0.59, 3.81)
s2 1.00 0.39 (0.00, 0.80) 1.00 0.46 (0.02, 0.77) 1.00 0.60 (0.19, 1.01)

number of parameters (e.g. the number of fuzzy rules or parameters p, q of
GARCH models) increases. Nonetheless, the FGARCH model proposed in
this paper achieves good approximation properties, as Table 1 and Table 3
show, even with a small number of parameters, as the models described in
these experiments.

5. Application: Conditional density estimation of S&P500 returns

In this section, we apply the proposed fuzzy GARCH model to build a
conditional density model of S&P 500 returns. This stock market index is
based on the market capitalizations of 500 companies publicly traded in the
U.S. stock market, as determined by Standard & Poor’s. It is considered
as an indicator of U.S. equities reflecting the risk and return characteristics
of the large capital universe. Conditional density estimation used to study
financial market volatility has an important role in financial economics and
is at the heart of several subjects, including asset allocation, market timing,
risk management, the pricing of assets and portfolio management [48]. Many
statistical quantiles such as Value-at-Risk or Expected Shortfall, which are
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directly linked to the tail of the return distribution of a portfolio of financial
assets, are widely accepted financial risk management tools [2].

In this paper, the proposed FGARCH model is applied to 3718 obser-
vations of S&P 500 returns from February 18, 1997 to November 23, 2011,
calculated as percentage changes of daily closing prices. The training and
forecast samples are the first 3218 and the last 500 observations (approxi-
mately 2 trading years) and are presented in Fig. 3. In the period considered,
it is possible to observe periods of volatility changes and extreme returns, in-
dicating non-trivial statistical properties, such as asymmetric distributions
and non-constant variability of returns.

We consider conditional density estimation models for one period ahead
forecasts. The proposed FGARCH models approximate the distribution of
returns at time t + 1 conditional on the returns at time t, through the
GARCH-type relation and antecedent membership functions. This choice
of the fuzzy rule antecedents provides a more complex and non-linear re-
lationship between current returns and past returns than it is assumed by
GARCH model. This antecedent variable allows for a linguistic interpreta-
tion of different data dynamics on the current returns’ conditional density.
By using this variable as antecedent, the FGARCH model allows the anal-
ysis of other stylized facts, such as volatility clustering and leverage effects.
Volatility clustering [49] is considered as the tendency of large changes to be
followed by large changes, of either sign, and small changes to be followed
by small changes. The leverage effect [50] refers to the asymmetric relation
between lagged unexpected returns and volatility, where it is observed that
negative return tends to increase subsequent volatility much more than a
positive return of the same magnitude. FGARCH(L,1,1) models with L = 2
and L = 3 rules are estimated, and the results are compared with a standard
GARCH(1,1) model. Model performances are assessed by comparing the
quantiles τ̂(c) of the estimated distribution with the theoretical distribution
quantiles τ(c). Each model estimation was repeated 100 times with different
initial points. This method allows us to choose the best parameter estimates,
which lead to the maximum likelihood value from different initializations.

Table 5 presents the estimated quantiles τ̂(c) of the training and forecast
samples for the GARCH and FGARCH models. In this table we report the
percentage of observations that are included in each τ(c) quantile, best and
average quantile estimates and the 99% intervals (in parentheses). The best
estimates are based on the estimation providing the highest log-likelihood
value. This can be seen as the estimation providing the global optimum.

21



Figure 3: S&P 500 returns in percentages
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Figure 4 shows the forecast sample and the estimated conditional density
quantiles from the GARCH and FGARCH models.

Table 5 shows that the percentage of observations in the respective tails
of the returns distribution are close to the true values in most cases. The
three models we consider lead to different conditional density estimates. For
the distribution quantiles τ(c) with c = 10%, 20%, 40%, FGARCH models
perform better than the GARCH model, as the estimated values are closer
to the theoretical values. The difference between the FGARCH(2,1,1) and
FGARCH(3,1,1) is very small. From the results obtained in Section 4, this
small difference is expected since the FGARCH model can capture complex
data structures with a small number of rules. For the quantile τ(c) with c =
1%, 5% level, all models overestimate this quantile, specially in the forecast
sample. This may indicate that the estimated models capture the extreme
returns in the training set, thus resulting in more conservative models. For
the FGARCH model, a more complex antecedent set including information
on past returns and other variables may overcome this issue [51, 52, 32]. This
topic is left for future research. Despite this overestimation in the tails, by
visually inspecting Fig. 4, we can observe that the FGARCH models’ density
estimation quickly adapts to changes in the returns. This can be observed,
for instance in periods of low returns, where the conditional density obtained
by the FGARCH model is closer to the observed returns than those of the
GARCH model, indicating a decrease in market risk. The added value of the
fuzzy GARCH models are clear in periods of sudden decrease of volatility,
for example around October 2010. The standard GARCH model cannot
capture these low volatility periods as good as the fuzzy GARCH models.
These results are in line with the findings of [30, 32], who show that the
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Table 5: Estimated quantiles for the S&P500 data. From 100 estimations with random
starting values, we report the percentage of observations at each tail of the distribution
according to the average - best estimation and 99% confidence intervals (in parentheses)
are reported for each model.

Standard GARCH(1,1)⋆

sample τ(1%) τ(5%) τ(10%) τ(20%) τ(40%)
training 1.6 5.0 9.6 18.3 36.3

(1.6, 1.6) (5.0, 5.0) (9.6, 9.6) (18.3, 18.3) (36.3, 36.3)
forecast 2.4 6.4 9.8 17.0 32.4

(2.4, 2.4) (6.4, 6.4) (9.8, 9.8) (17.0, 17.0) (32.4, 32.4)

FGARCH(2,1,1)
sample τ(1%) τ(5%) τ(10%) τ(20%) τ(40%)
training 1.5 - 1.3b 5.4 - 5.9b 10.1 - 10.6b 18.7 - 19.4b 36.9 - 37.5b

(1.3, 1.7) (5.0, 6.0) (9.6, 10.7) (18.3, 19.4) (36.4, 37.6)
forecast 2.5 - 2.6b 6.6 - 7.0b 10.0 - 9.4b 17.1 - 17.4b 33.5 - 34.6b

(2.2, 3.0) (6.2, 7.2) (9.6, 11.0) (16.8, 17.6) (32.6, 34.6)

FGARCH(3,1,1)
sample τ(1%) τ(5%) τ(10%) τ(20%) τ(40%)
training 1.5 - 1.5b 5.6 - 5.9b 10.2 - 10.6b 18.8 - 19.5b 37.1 - 37.3b

(1.3, 1.7) (5.2, 6.0) (9.8, 10.7) (18.3, 19.7) (36.5, 38.5)
forecast 2.6 - 2.2b 6.5 - 7.2b 10.3 - 9.8b 17.1 - 17.4b 33.9 - 34.4b

(2.2, 3.2) (6.0, 7.4) (9.8, 11.4) (16.6, 18.0) (32.8, 35.8)
⋆ The differences in estimated values are negligible, with the reported digits.
b Best estimation providing the highest log-likelihood value.

standard GARCH model cannot capture such complex behavior.
The proposed FGARCH model provides a linguistic interpretation of the

gradual changes in return density, producing a simple understanding of the
underlying changes. From the 100 estimations with random starting values,
the ‘best’ estimation result providing the highest log-likelihood value were
selected to illustrate the model interpretation. In order to see the behavior
of each individual GARCH model, we also report the unconditional stan-
dard deviation, calculated as the square root of (2). The rule-based of the
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Figure 4: Quantile estimates for S&P 500 data, using the GARCH(1,1) model and
FGARCH(L,1,1) models with L = 2 and L = 3 rules
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(b) FGARCH(2,1,1)
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(c) FGARCH(3,1,1)

FGARCH(2,1,1) is given by

R1 : If yt−1 is F1 then yt,1 | yt−1, ht,1 ∼ N(−0.255, ht,1)

with ht,1 = 3.247 + 0.029y2t−1 + 0.970ht−1 ,
√
h̄1 = 54.2645 ,

and c1 = −4.936, s21 = 1.565,
R2 : If yt−1 is F2 then yt,2 | yt−1, ht,2 ∼ N(0.016, ht,2)

with ht,2 = 0.000 + 0.000y2t−1 + 0.922ht−1 ,
√
h̄2 = 0.0007

and c2 = 0.083, s22 = 3.306.

(22)
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Figure 5: Membership functions for S&P 500 data, using the GARCH(1,1) model and
FGARCH(L,1,1) models with L = 2 and L = 3 rules
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(b) FGARCH(3,1,1)

The rule-base model for the FGARCH(3,1,1) model is given by

R1 : If yt−1 is F1 then yt,1 | yt−1, ht,1 ∼ N(−0.102, ht,1) ,

with ht,1 = 2.768 + 0.019y2t−1 + 0.981ht−1 ,
√
h̄1 = 199.9176

and c1 = −3.916, s21 = 1.234,
R2 : If yt−1 is F2 then yt,2 | yt−1, ht,2 ∼ N(0.104, ht,2) ,

with ht,2 = 0.002 + 0.000y2t−1 + 1.000ht−1 ,
√
h̄2 = 6.9384 ,

and c2 = −2.010, s22 = 1.489,
R3 : If yt−1 is F3 then yt,3 | yt−1, ht,3 ∼ N(−0.034, ht,3)

with ht,3 = 0.002 + 0.000y2t−1 + 0.887ht−1 ,
√
h̄3 = 0.1421

and c3 = 1.920, s23 = 2.293.

(23)

The estimated membership values for both models are presented in Fig. 5.
For comparison purposes, the GARCH(1,1) is given by

yt | yt−1, ht ∼ N(0.005, ht) ,

with ht = 0.013 + 0.077y2t−2 + 0.917ht−1 , and
√
h̄ = 1.433 .

(24)

The GARCH(1,1) model defines a normal distribution with changing
variances for the return series, while the FGARCH models define sepa-
rate GARCH models combined using the fuzzy antecedents. The stan-
dard GARCH model in (24) leads to a mean around 0 and an uncondi-
tional standard deviation of 1.433 for returns. The FGARCH(2,1,1) and
FGARCH(3,1,1) models provide different means and unconditional standard
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deviations for each rule, as well as volatility structure given by the each rules
GARCH parameters.

In each rule, the different fuzzy sets combined with the unconditional
volatility provides a clear indication of the presence of leverage effects. For
the FGARCH(2,1,1) presented in (22), rule 1 shows that the unconditional
volatility after negative returns is very high. This indicates that the effect of
negative returns on variance is very high. This does not seem to be the case
for positive returns, since the unconditional volatility of rule 2 is very low. As
Fig. 5 shows, for values above 0 the effect of rule 2 is almost exclusive. For the
FGARCH(3,1,1) rule 3 indicates that the effect of positive returns above 2 is
the smallest one, while the unconditional volatility of very negative returns
is very high. In both models, the GARCH parameter α1 is lower than in the
GARCH(1,1) model presented in (24), since the effect of the past returns in
variance is already modeled by the fuzzy antecedents in the rule-base model.
These results are in line with the findings [37].

An indication of the existence of volatility clustering and volatility per-
sistence [22] can be related to the effect of past conditional volatility, β1,l in
each GARCH model. For both FGARCH models it is possible to observe that
the effect of conditional volatility is larger than in the GARCH model (24),
except for rule 3 of FGARCH(3,1,1). This rule indicates that after returns
above 2 reduce the volatility in the next period. Rule 1 of FGARCH(3,1,1)
model (23) captures extreme negative events followed by very high volatility
the next day. Mean returns in these volatile days is also negative. Rule 2
of this model is very interesting, since it shows an almost absolute persis-
tence in volatility, but as the fuzzy antecedents show in Fig. 5, this rule is
always combined with the other two rules. Rule 1 of the FGARCH(2,1,1)
model presented in (22), shows that low returns lead to a persistent effect
in volatility. Rule 2 of this model, indicates a high effect of past volatility
for returns above 0 but the persistence is lower than in rule 1. Although
both models show good conditional density approximation capabilities, they
provide different linguistic interpretations. Thus, for the considered applica-
tion, the choice between models will depend on the desired level of linguistic
interpretation.

It is interesting to note that in the above analysis of the FGARCH mod-
els, each rule was analyzed independently, providing different interpretations
of the conditional density evolution. Despite the simple structure of the
FGARCH model, the long run behavior indicates that the system will alter-
nate between rules, leading to a complex non-linear dynamic behavior. In
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the long run, the local volatility of the GARCH models defined in each rule
will revert to its unconditional volatility. The FGARCH model, on the other
hand, due to the fuzzy antecedents and the unconditional volatility defined
by the GARCH structure, will not convergence to a single unconditional
volatility level, but instead vary between the unconditional volatility of each
rule.

6. Conclusion

This paper studies the properties, estimation issues and interpretation
of a new flexible fuzzy GARCH model for conditional density estimation.
These models provide linguistic interpretation of the rules and the possibil-
ity to explain the conditional data distribution with antecedent variables x.
Furthermore, the use of GARCH models in rule outputs, allows the system
to capture time dependency in the conditional distributions in a flexible way.
Previous fuzzy GARCH models were restricted to a normal conditional dis-
tribution. This restriction may not accommodate the documented dynamics
of data, such as the existence of extreme observations or skewness in sev-
eral stock returns series. For this reason, we propose a more flexible fuzzy
GARCH model. In this model, the distribution of the returns are allowed to
vary in mean and variance smoothly over time, where the smooth changes
are related to linguistic descriptors. We relate this model with existing fuzzy
and probabilistic GARCH models and provide an interpretation of the model,
from a statistical and fuzzy linguistic point of view. These models have the
advantage that they can be estimated by maximizing a tractable likelihood
function, which in turn overcomes the estimation issues appearing in pure
probabilistic flexible GARCH models. Another advantage is that the model
provides a linguistic interpretation of the smooth changes in return density,
providing another view for understanding of the underlying changes. We
illustrate the model capabilities using synthetic datasets exhibiting different
data properties and real data on S&P 500 returns. We show that the pro-
posed model is suitable for analysis of the returns distribution, as it captures
the underlying data distribution in all cases we consider. In future work, we
plan to extend the proposed model to include multiple outputs to capture
the joint conditional distribution of several variables.
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