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l)CONDITIONAL DENSITY MODELS INTEGRATING FUZZY AND PROBABILISTIC
REPRESENTATIONS OF UNCERTAINTY

Conditional density estimation is an important problem in a variety of areas such as
system identification, machine learning, artificial intelligence, empirical economics, macro -
economic analysis, quantitative finance and risk management.

This work considers the general problem of conditional density estimation, i.e.,
estimating and predicting the density of a response variable as a function of covariates.
The semi-parametric models proposed and developed in this work combine fuzzy and
probabilistic representations of uncertainty, while making very few assumptions regarding
the functional form of the response variable's density or changes of the functional form
across the space of covariates. These models possess sufficient generalization power to
approximate a non-standard density and the ability to describe the underlying process
using simple linguistic descriptors despite the complexity and possible non-linearity of this
process. 

These novel models are applied to real world quantitative finance and risk manage -
ment problems by analyzing financial time-series data containing non-trivial statistical
proper  ties, such as fat tails, asymmetric distributions and changing variation over time.

The Erasmus Research Institute of Management (ERIM) is the Research School (Onder -
zoek school) in the field of management of the Erasmus University Rotterdam. The founding
participants of ERIM are the Rotterdam School of Management (RSM), and the Erasmus
School of Econo mics (ESE). ERIM was founded in 1999 and is officially accre dited by the
Royal Netherlands Academy of Arts and Sciences (KNAW). The research under taken by
ERIM is focused on the management of the firm in its environment, its intra- and interfirm
relations, and its busi ness processes in their interdependent connections. 

The objective of ERIM is to carry out first rate research in manage ment, and to offer an
ad vanced doctoral pro gramme in Research in Management. Within ERIM, over three
hundred senior researchers and PhD candidates are active in the different research pro -
grammes. From a variety of acade mic backgrounds and expertises, the ERIM commu nity is
united in striving for excellence and working at the fore front of creating new business
knowledge.
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Chapter 1

Introduction

“It is better to be vaguely right than exactly wrong.”

– Carveth Read,Logic, deductive and inductive (1898), p. 351

CONDITIONAL density estimation is an important problem in many areas such as sys-

tem identification and machine learning, where the predicted density is typically highly

non-linear and multimodal (Bishop, 2006), artificial intelligence (John and Langley, 1995), em-

pirical economics (Li et al., 2010), macroeconomic analysis (Diebold et al., 1998), quantitative

finance and risk management (Glosten et al., 1993), where financial time-series typically pos-

sess non-trivial statistical properties, such as fat tails, asymmetric distributions and changing

variation over time (Villani et al., 2009).

This work considers the general problem of conditional density estimation,i.e. estimat-

ing and predicting the density of the response variable as a function of covariates. The semi-

parametric models studied and developed in this work combine fuzzy and probabilistic repre-

sentations of uncertainty, while making very few assumptions regarding the functional form of

the estimated density or changes across the space of covariates. These models possess sufficient

generalization power to approximate a non-standard density and ability to describe the underly-

ing process using simple linguistic descriptors despite the complexity and possible non-linearity

of these processes.

1.1 Conditional density estimation

Conditional density estimation is an approximation of the probability densityf̂(y|x) of a stochas-

tic output variabley given an observed vector of attribute valuex. A conditional density esti-

mator provides an entire density function for the target variable, while a regression estimator

provides a deterministic prediction, the expectationE[y|x]. Regression analysis will not ade-
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quately portrait a system if the conditional distribution possess non-trivial statistical properties,

such as multimodality, asymmetry, or heteroskedastic noise. In these cases the estimate of the

conditional distribution contains more information. The full output distribution allows several

quantities of interest to be extracted, including the expectation, modes, moments and outlier

boundaries. Furthermore, conditional density estimation makes it possible to quantify and vi-

sualize the prediction intervals that contain the target variable with a specified probability.

The estimation of conditional distributions is an important problem in empirical economics,

such as macroeconomic and financial applications. It is often desirable to estimate not only the

expected inflation levels conditional on covariates but also the complete inflation density since

it can be used to obtain an estimated range for inflation. Based on these predictions, a central

bank can adjust the monetary policy instruments accurately (Diebold et al., 1998). A similar

reasoning applies in the approximation of financial returns’ distribution where investors are not

only interested in the expected return from an asset but also in the risk involved in the asset. This

risk factor can be calculated using left-tail quantiles of the estimated returns distribution, such

as Value-at-Risk or Expected Shortfall (Jorion, 2006), and it cannot be assessed from models

providing point forecasts.

Different methods can be used to estimate conditional densities, conditional on past infor-

mation, or other macroeconomic variables. A popular approach where volatility, and hence the

return distribution, changes dynamically based on distribution assumptions is the Generalized

Autoregressive Heteroskedasticity (GARCH) model (Bollerslev, 1986). The existence of differ-

ent types of GARCH models led to the introduction of models which can encompass different

GARCH specifications and different return distribution properties such as smooth transition

GARCH models (González-Rivera, 1998) and regime-switching GARCH models (Haas et al.,

2004). In time series settings, non-parametric estimation of conditional densities is often desir-

able for forecasting, as knowledge of true distribution rarely exists (Yatchew, 1998; Fan, 2005).

Semi- and non-parametric methods, such as quantile regression (Koenker and Hallock, 2001;

Koenker, 2005), kernel density estimation (Fan et al., 1996; Bashtannyk and Hyndman, 2001),

are widely used in econometrics.

This thesis proposes semi-parametric conditional density estimation models, that can incor-

porate possible non-linear relations between variables, while allowing for a parsimonious and

interpretable description of the dynamic behaviour of the system.

1.2 Fuzzy and probabilistic representations of uncertainty

An important aspect of the models considered in this thesis is the combination of different

representations of uncertainty. Many researchers have argued that fuzziness and randomness
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are actually describing the same phenomena or at least they presume that fuzzy set theory is

a generalization of probability theory or the other way around (Thomas, 1995; Goodman and

Nguyen, 2002). However the concepts behind fuzzy set theory and probability theory are dif-

ferent (Zadeh, 1968, 1995; Bertoluzza et al., 2002). The concepts behind fuzzy set theory and

probability theory need a suitable practical interpretation in order to be used meaningfully. In

the following sections the concepts of fuzzy sets and probability are explained.

1.2.1 Fuzzy systems

As a mathematical notion, a fuzzy setF on a finite universeU is unambiguously defined by a

membership functionuF : U → [0, 1]. The mathematical object representing the fuzzy set is

the membership functionuF (x) indicating the grade of membership of element ofx ∈ U in F .

The elicitation of membership grades and interpretation of fuzzy sets, membership grades

and fuzzy rules is the base of much confusion and negative comments. Recently, there has been

an effort to clarify the different meanings of fuzzy sets (Dubois and Prade, 1997), membership

grades (Dubois and Prade, 2012) and fuzzy rules (Dubois and Prade, 1996).

Fuzzy sets are usually related to vagueness. This vagueness is not defined as uncertainty of

meaning but instead as the standard definition of vagueness with the possession of borderline

cases (Sorensen, 2013), (see Dubois et al. (2005) for a detailed discussion on this subject). In

the literature, fuzzy sets are used to represent three different concepts: gradualness, epistemic

uncertainty and more recently bipolarity (Dubois and Prade, 1997, 2012). These basic con-

cepts of fuzzy sets differ greatly from each other (Dubois and Prade, 2012) and they can be

summarized as

Gradualness Refers to the original idea of Zadeh (1965) that many categories in natural lan-

guage are a matter of degree, including truth. The fuzzy set is used as representing some

precise gradual entity consisting of a collection of items. Such fuzzy sets are conjunctive

and can be called ontic fuzzy sets1. The gradualness is indicated through membership.

The transition between membership and non-membership is “gradual rather than abrupt”

(Zadeh, 1965). The gradualness can be linked to different situations:

1. The boundaries of the set are precisely known, but it is not possible to measure it (or

indicate it) precisely. An example is the definition of a meaningful area (e.g.forest

zone) in a grey level image. Inherently, the boundary of this zone is gradual.

2. It is possible to measure each element of the set precisely (e.g.position of the trees),

the boundaries of the set are known, but a (crisp) definition of its boundaries is not
1This description follows the ideas presented in Dubois and Prade (2012) where ontic sets and epistemic sets

follow an analogy with ontic and epistemic actions in cognitive robotics (Herzig, 2003).
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precise. Following the above example, the gradualness in this case is a result of the

density of trees slowly decreasing in peripheral zones.

3. The uncertainty is linked to a fuzzy predicate referring to a gradual concept (e.g.

“dense” forest zone). In this case the boundaries are known (even if fuzzy), the

measure of each element is precise, but the fuzzy predicate indicates gradualness.

Epistemic uncertainty Refers to the idea of partial or incomplete information. The base is that

sets are epistemic constructions and represent incomplete information about the world.

As such it is described by a set of possible values of some quantity of interest, one of

which is the right one, while elements outside this set are considered impossible. This

idea is the basis of possibility theory (Zadeh, 1978). An example is that an agent only has

a rough idea of the sizes of a forest zone, and provides an interval[a, b] as containing

the right value ofs. Such an interval is the disjunction of mutually exclusive elements.

The interval itself is subjective (it is the knowledge of the agent), but has no intrinsic

existence, even if it refers to a real fact.

Bipolarity This recent interpretation by Dubois and Prade (2012) refers to the idea that infor-

mation can be described by distinguishing between positive and negative sides, possibly

handled separately, as it seems to be the case in the human brain. In this case the mem-

bership scale of a fuzzy set is a univariate bipolar scale (Dubois and Prade, 2012).

Following the different interpretations of fuzzy sets, the degree of membershipuF (x) of an

elementx in a fuzzy setF can be used to express degree of similarity, degree of preferences

(in utility functions) and degree of uncertainty (Dubois and Prade, 1997). These interpretations

can be summarized as:

Degree of similarity The membership degreeuF (x) represents the degree of proximity ofx to

prototype elements ofF . This view is used in clustering analysis and regression analy-

sis, where the problem is representing a set of data by the proximity between pieces of

information. It is also at used in fuzzy rule-based control techniques, where the similarity

degrees between prototype situations described in the condition parts of the rules and the

current one are the basis for the interpolation mechanism between the conclusions. A sim-

ple example (Dubois and Prade, 1997) is the classification of cars of known dimensions

in categories ofF = {big cars, regular cars, small cars}. If the prototype of the category

big carsis aMercedes Class S, then we can construct a measure of distance between any

car to this prototype, where the distance is a measure of similarity.

Degree of preferenceThe membership degreeuF (x) represents an intensity of preference of

objectx, to a setF of preferred objects. Alternatively,F represents a set of values of a
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decision variablex′ anduF (x) represents the feasibility of selectingx as a value ofx′.

This view of fuzzy sets as criteria or flexible constraints is used in fuzzy optimization and

decision analysis. An example is an agent buying a big car. In this case the membership

degree will reflect the degree of satisfaction of cars chosen by the agent to the class ofbig

cars, according to the criterionsize. In this case the membership indicates the preference

of the agent.

Degree of uncertainty The membership degreeuF (x) represents the degree of possibility that

a parameterp has a valuex given that all that is known is thatp isF . This view is used in

possibility theory and is applied in expert systems, and artificial intelligence. An example

is when an agent says that he saw a big car. The variable whose value is the name of

the big car is uncertain, all we know is that size is big. In this situation the membership

grade of a given car (which can be measure precisely) to the class of big cars reflects our

degree of possibility that this kind of car is the same as the one seen by the person. When

this membership degree is high, we are still uncertain about which particular large car the

agent saw. If the membership degree is low then any large car can be rejected as a very

implausible candidate.

1.2.2 Probability theories

In mathematical terms a probabilistic measurePr2 of an experimentǫ yet to be performed, is

a mapping2U → [0, 1] that assigns a numberPr(A) of eventA to each subset ofU , satisfying

the Kolmogorov axioms.Pr(A) is the probability that a generic outcome ofǫ, an ill-known

single-valued variablex, hits setA. If the outcome ofǫ is such thatx ∈ A, then we we say that

eventA as occurred. In this case there is uncertainty about the occurrence of any particularx

and consequently of eventA. This uncertainty is described byPr(A). All probability theories

generalize the “law of the excluded middle”, where an element either belongs to a (well-defined)

setA, its complementAc, but not both.

There are several interpretations ofPr(A). Although the semantics of probability theory

are clear and well understood, they are not unique, leading to differing views on the semantics

of probabilities (de Finetti, 1974; Hesse, 1975; Khrennikov, 1999). The concept of numerical

probability emerged around the 17th century (Hacking, 1975), related to games of chance and

reliability of testimonies. Classical probability theory is based on symmetry arguments (e.g.six

outcomes in a normal looking die), while frequentist probabilities represents a physical random

phenomenon over long-run frequencies and accounts for variability of (precise) observations.

2In this work we follow de Finetti notation of ’Pr’ which referred to probability, price and prevision, inter-
changeably.
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Following a different perspective, a subjective probability represents the epistemic state of an

agent, assuming degrees of belief, related to a status of uncertainty. It can be equated to ex-

changeable betting rates. Bayes’ theorem is the logical tool to update the probability in the light

of new pieces of information.

It is important to note that subjective probability theory does not possess a single formalism

on how to obtain a particularPr(A), which may be non-numerical (de Finetti, 1972). Unifor-

mity of judgements between individuals can occur with respect to games of chance (impres-

sions of symmetry) or where statistical historical data (frequencies) are available. Nonetheless

the degree of difference between individuals subjective probabilities will depend on the partic-

ular circumstances under which these judgements are elicited,i.e. the initial probabilities are

the opinions of the individual expressing a judgement (de Finetti, 1972). The theory of im-

precise probability was proposed as a solution for the difficulty of consistently accounting for

incomplete information using a single subjective probability (Walley, 1991).

1.3 Do probability and fuzzy sets exist?

This question was already answered negatively by de Finetti (1974) and Dubois and Prade

(2012). The general idea is that probability as a numerical measure does not exist independently

of the human mind and may be subjective regarding an individual, similarly to the epistemic

view of fuzzy sets (Dubois and Prade, 2012). The objective of this section is not to try to answer

this question but instead discuss other aspects of modeling that arise from this question and are

used in this thesis.

In this thesis we follow the approach presented in Nau (2001), where this ‘non-existence’ is

not a problem for statistical inference, decision analysis or economic modeling. Both concepts

are useful to model different aspects of uncertainty. Furthermore, this work follows Zadeh’s idea

that “probability theory and fuzzy logic are complementary rather than competitive” (Zadeh,

1995). This cooperation can take the form of theoretical developments (Baldwin et al., 1996;

Singpurwalla and Booker, 2004; Coppi et al., 2006; Coletti and Scozzafava, 2006) or of new

models containing fuzzy sets and probabilities (Meghdadi and Akbarzadeh-T., 2001; Liu and Li,

2005; Zhang and Li, 2010, 2012) or the ones presented in this work. Claims on the superiority

of a certain theory as a superior representation of uncertainty (e.g. Klir, 1994), which appear to

be caused by misunderstandings (Dubois and Prade, 1993), are not addressed in this work. All

theories discussed in this work are rigorous approaches for modeling uncertainty from different

perspectives, particularly uncertainty represented by fuzzy sets and probability theory, leading

to a deeper understanding of the concept of uncertainty.
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In economics uncertainty is commonly modelled using probabilities. In some cases the use

of the calculus of probability appears as if there was no question whatsoever about the validity

of such use (Rudra, 1966). Probability theory is based on a rigorous mathematical construct, has

proved useful in many applications and has clear semantics, although not unique as explained

in Section 1.2.2. Furthermore, historically, there are several theories in economics which are

intrinsically connected with the calculus of probability. An example is the classical theory of

consumer decision making (von Neumann and Morgenstern, 1944), which is based in a set of

axioms stated in the language of probabilities for maximization of expected utility. Economet-

rics encompasses a vast array of mathematical models used in empirical economics, macroe-

conomic analysis, quantitative finance and risk management, where the goal of the analysis is

often the left tail of a probability density. Fuzzy systems are typically used for approximat-

ing deterministic functions, in which the stochastic uncertainty is ignored. The models studied

in this thesis are used to produce a simplified and imperfect substitute of reality as observed

via precise data modelled using fuzzy sets, and have as output a probability density function,

which makes them suitable for the aforementioned analysis. In this work these fuzzy sets were

interpreted with their relation to gradualness although other interpretations are possible. Inter-

estingly, the elicitation of these sets has a similar problem to that of elicitation of subjective

probabilities: they depend on the individual. As chapter 5 and chapter 6 show, the models

studied are robust and can adapt to different elicitations of the input fuzzy sets.

An important issue with economic modelling is that the considered variables should have a

relation to the problem under study, based on economic theory or empirical evidence. This rela-

tion may not be direct or linear, due to the inherited complexity or impossibility of performing

direct measures. To solve this problem, proxies are used in different economic problems:

• When exchange-traded derivatives for jet fuel are not available, futures contracts on com-

modities related with jet fuel, such as crude and heating oil are used instead (Hull, 2000).

• The GDP per capita is used as a proxy of quality of life in a country (Montgomery et al.,

2000; Becker et al., 2005)

• Proxy variables, such as market-to-book assets ratio are used for a firm’s investment op-

portunity set (Adam and Goyal, 2008).

Fuzzy systems lend themselves to this type of modelling using proxy variables. They have

been successfully adopted in many domains and used extensively in commercial products used

daily such as microwaves and washing machines. These types of systems have the advantage

that they can be used to describe knowledge of the process in the form of rules, without very

strict assumptions, which is very natural for human to understand. Furthermore, these type of
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models can have a well understood parsimonious structuree.g.autoregressive-moving-average

(da Costa Sousa and Kaymak, 2002).

In summary, this work presents conditional density models which integrate fuzzy and prob-

abilistic representations of uncertainty. The concepts behind fuzzy set theory and probability

theory are based on rigorous mathematical constructs and, although not unique, well understood

semantics, which have been useful in many applications. The combination of these concepts

leads to models that can deal with the concept of gradualness or epistemic uncertainty and also

the concept of stochastic uncertainty. In this thesis, these models are shown to be useful to

model non-linear relations without strict assumptions where regression density estimation is

the goal of the analysis.

1.4 Research goal

The purpose of this thesis is to develop new models capable of flexible estimation of conditional

densities without strict distribution assumptions. Such models aim to incorporate possible non-

linear relations between variables, while allowing for a parsimonious and interpretable descrip-

tion of the dynamic behaviour of the system. Keeping this approach in mind the research goals

of this thesis are threefold:

1. Establishing different models that encompass fuzzy and probabilistic representations of

uncertainty capable of conditional density estimation. Such models aim to incorporate

possible non-linear relations between variables, steaming from actual non-linearities in

the system or caused by the use of proxy variables. Furthermore, these models allow for

a parsimonious and linguistic description of the dynamic behaviour of the system.

2. Providing a formal description and analysis of these models, considering their different

parts and elements. Furthermore, studying the properties, estimation issues, model inter-

pretation, and differences with other similar models.

3. Application of these models combining fuzzy systems and probabilities to financial prob-

lems following well studied economic relations. Comparing the findings from these ap-

plications to previous work on similar financial problems.
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1.5 Contributions of this thesis

The contributions presented include the development and study of models that integrate fuzzy

and probabilistic representations of uncertainty for conditional density estimation as well as

their application to real world financial analyses. These contributions can be summarized as:

• Development of two new systems, namely the fuzzy GARCH and probabilistic fuzzy

systems (PFS), for conditional density estimation, that combine fuzzy and probabilistic

representations of uncertainty. Such systems can capture different properties of data, such

as fat tails, skewness and multimodality in one single model.

• Formal description of probabilistic fuzzy systems. Two possible and equivalent reasoning

mechanisms are presented, which lead to two different interpretations of this type of

systems.

• Analysis of the necessary conditions for a probabilistic fuzzy systems, such that the es-

timated output density is a proper probability density function and subsequent higher

moments derived from this density exist.

• Description of the relation of probabilistic fuzzy system with different types of non-linear

deterministic systems that have universal approximation capability, such as fuzzy systems

and radial basis functions.

• Analysis and explanation of the parameters of PFS, as well as approximation capabilities

of these systems in synthetic examples for function approximation and conditional density

estimation.

• Application of PFS in multi-horizon estimation of quarterly U.S. inflation where point

estimates and the density estimates of inflation are relevant for a comprehensive analysis

of volatility and mean changes, and for policy making.

• Application of different PFS in the estimation of Value-at-Risk using multi-covariate and

seasonal models. Particular relevance is given to the interpretation of PFS and its use in

the study of stylized facts, such as seasonality and volatility clustering.

• Proposal and formal description of fuzzy GARCH model for conditional density estima-

tion.

• Discussion of properties, estimation, relation to similar models and different interpreta-

tion of the proposed fuzzy GARCH model.
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• Application of the fuzzy GARCH model for density forecast of the S&P 500 daily re-

turns series. Possibly complex effects of current market information on future returns

are explained using simple linguistic descriptors in combination with the well studied

GARCH-type rule base system.

1.6 Thesis outline

1.6.1 Work developed in this thesis

This thesis presents two systems to estimate conditional densities, making very few assumptions

regarding the functional form of the estimated density or changes across the space of covari-

ates. An important aspect of these semi-parametric models is that they combine fuzzy sets

and probabilistic uncertainty, making them quite simple to estimate and understand. Nonethe-

less, as the practical applications presented show, these models possess sufficient generalization

power despite the complexity and possible non-linearity of the modelled processes. Multi-

horizon, multi-covariate and seasonal models are considered. Although these models possess

good approximation capabilities, they provide a simple interpretation essential for process un-

derstanding. Special attention is given to the interpretation of the models such that they can be

useful in many fields such as macroeconomic analysis, quantitative finance and risk manage-

ment. The bulk of the work presented in this thesis is on the formal description, analysis and

practical applications of probabilistic fuzzy systems. The last chapter refers to the combina-

tion of fuzzy systems and the Generalized Autoregressive Heteroskedasticity (GARCH) model

where the latter is widely used in empirical economics.

In chapter 2 we consider conditional density approximation by fuzzy systems. Fuzzy sys-

tems are typically used for approximating deterministic functions, in which the stochastic un-

certainty is ignored. We propose probabilistic fuzzy systems (PFS) in which the probabilistic

nature of uncertainty is taken into account. These systems take also fuzzy uncertainty into ac-

count by their fuzzy partitioning of input and output spaces. We discuss an additive reasoning

scheme for probabilistic fuzzy systems that leads to the estimation of conditional probability

densities, and prove how such fuzzy systems compute the expected value of this conditional

density function. We show that some of the most commonly used fuzzy systems can compute

the same expected output value and we derive how their parameters should be selected in order

to achieve this goal.

Chapter 3 analyses different aspects of probabilistic fuzzy systems in the context of func-

tion approximation and conditional density estimation. We analyse the necessary conditions

for a PFS, such that the estimated output density is a proper probability density function and
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subsequent higher moments derived from this density exist. These conditions relax the previ-

ous assumption of well-formed output space and are not very restrictive or consider a particular

definition of conditional probability of fuzzy systems. We consider the relation of probabilistic

fuzzy system with different types of deterministic systems that have universal approximation

capability. This relation indicates that a PFS is also suitable for problems of function approx-

imation. Furthermore we analyse a PFS as a fuzzy additive system and how a PFS can be

obtained from this fuzzy additive system. A practical relevance of the functional equivalence

result is that learning algorithms, optimization techniques and design issues can be transferred

to PFS, while providing understanding of different aspects of a probabilistic fuzzy system. We

analyse the parameters of PFS in synthetic data for function approximation and conditional

density estimation. Finally we show that a PFS is suitable to estimate and predict quarterly US

inflation. In this problem both the point estimates and the density estimates of inflation are rel-

evant for a comprehensive analysis and for policy making. We show that PFS provides accurate

density estimates for this data.

In chapter 4 we consider Value-at-Risk estimation by using probabilistic fuzzy systems. A

PFS provides the potential to adapt estimations of probability density to the linguistic frame-

work of the modeller. We study two approaches to designing probabilistic fuzzy VaR models

and compare their performance with the performance of a GARCH model. In the first approach,

a Mamdani-type probabilistic fuzzy system (Kaymak et al., 2003) is used for estimating the

VaR. The model parameters are obtained by a sequential approach in which the location of

the antecedent membership functions is determined by using fuzzy clustering and maximum

likelihood parameter estimation is used for determining the probability parameters of the PFS.

The output membership functions are scaled by using a single scaling parameter. In the second

approach, an alternative representation of a PFS as a fuzzy histogram is considered. In this

case, the membership functions are obtained from the modeler and the conditional probability

parameters of the model are then estimated by minimising the test statistic of a back testing

method by using a constrained evolutionary optimisation algorithm.

Conditional densities and Value at risk (VaR) values for financial returns have been suc-

cessfully estimated using single covariate probabilistic fuzzy systems (PFS) as presented in

chapter 4. Chapter 5 considers conditional density and VaR estimation based on a PFS model

for density forecast of a continuous response variable conditional on a high-dimensional set of

covariates. The proposed model is a multi-covariate multi-output PFS model which provides

the conditional density forecasts of returns for one day ahead and one month ahead periods.

Furthermore, this model allows to analyse seasonal patterns in returns. The additional infor-

mation and process understanding provided by the different interpretations of the PFS model is

illustrated and the model parameters are estimated by a novel two–step process. The proposed
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Table 1.1: Chapters that contain some overlap. Bold face indicates detailed overview.

Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6
PFS Sec. 2.3 Sec. 3.2 Sec. 4.3 Sec. 5.2
Multi-Output PFS Sec. 3.2.5 Sec. 5.2.4
VaR Models Sec. 4.2 Sec. 5.3
GARCH Sec. 4.2.2 Sec. 5.3.2 Sec. 6.2

model is applied to daily S&P500 stock returns. Properties of the estimated conditional density

for the S&P 500 index are reported and the performance of the proposed model is compared

to the performance of a GARCH model for VaR estimation of the S&P 500 index. It is shown

that the validity tests for GARCH models are sometimes rejected, while those of PFS models

of VaR are never rejected. Additionally, the PFS model captures both instant volatility changes

and periods of high volatility, and leads to less conservative models. It is found that the pro-

posed model indicates seasonal patterns in short and longer horizons as well as conservative

VaR in long term forecasts.

In chapter 6 we introduce a new flexible fuzzy GARCH model for conditional density esti-

mation. The model combines two different types of uncertainty, namely fuzziness or linguistic

vagueness, and probabilistic uncertainty. The probabilistic uncertainty is modelled through a

GARCH model while the fuzziness or linguistic vagueness is present in the antecedent and

combination of the rule base system. The conditional distribution of the data can vary smoothly

over time in mean and variance, where the smooth changes are related to linguistic descriptors,

providing a simple understanding of the process. Such a system can capture different proper-

ties of data, such as fat tails, skewness and multimodality in one single model. This type of

models can be useful in many fields such as macroeconomic analysis, quantitative finance and

risk management. The relation to existing similar models is discussed, while the properties,

interpretation and estimation of the proposed model are provided. The model performance is

illustrated in simulated time series data exhibiting complex behavior and a real data application

of volatility forecasting for the S&P 500 daily returns series.

1.6.2 Thesis organization

This thesis is a collection of studies on models that encompass fuzzy and probabilistic rep-

resentations of uncertainty capable of conditional density estimation. Each chapter contains

sufficient information to be read independently. Since most of this thesis verses on probabilistic

fuzzy systems, some degree of overlap exists between chapters. This overlap is clearly illus-

trated in Table 1.1.
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This thesis is organized as follows. Chapter 2 presents a formal description of probabilistic

fuzzy systems for conditional density approximation. In these systems the probabilistic nature

and fuzzy uncertainty are taken into account. Probabilistic fuzzy systems are further analysed in

chapter 3 in the context of function approximation and conditional density estimation. Furthe-

more this chapter discusses the application of PFS in the estimation and prediction of quarterly

US inflation. Chapter 4 presents two approaches to the design of probabilistic fuzzy systems for

Value-at-Risk estimation of multiple stocks. Chapter 5 builds upon the previous approaches and

presents a conditional density and Value-at-Risk estimation based on a multi-output PFS model

for density forecast of a continuous response variable conditional on a high-dimensional set of

covariates. The additional information and process understanding provided by the different in-

terpretations of the PFS model is illustrated, where special attention is given to the interpretation

of the models in terms of stylized facts, such as seasonality and volatility clustering. Finally,

chapter 6 proposes the combination of the well understood GARCH model with fuzziness or

linguistic vagueness in a rule base model.

Alternatively, the reader can follow the chronological order of these studies. The main ideas

of probabilistic fuzzy systems were discussed in different applications to real world problems,

(e.g. van den Berg et al., 2002a, 2004; Xu and Kaymak, 2008) and (Almeida and Kaymak,

2009a,b) presented in chapter 4, but a formal description and analysis of this type of system was

yet to be provided. This definition is provided in chapter 2. The successful application of PFS

in conditional density estimation and associated left tail measures of risk, such as Value-at-risk,

are presented in chapter 5. Special attention is given to the interpretation of the models in terms

of stylized facts, such as seasonality and volatility clustering. Encouraged by this successful

application, different aspects of PFS required further analysis. This analysis is presented in

chapter 3. Since probabilistic fuzzy systems were only able to outperform GARCH models

in some situations (Almeida and Kaymak, 2009a; Almeida et al., 2012a), it was interesting

to investigate if this widely used, well understood and simple econometric model could be

combined in a meaningful way with fuzzy systems. The resulting model is the fuzzy GARCH

model presented in chapter 6.
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Chapter 2

Conditional density estimation using

probabilistic fuzzy systems1

2.1 Introduction

A PPROXIMATION of unknown functions from sampled data is an important activity in

modern modelling and systems theory. With the advent of modern computer systems,

the costs of data collection and storage have been reduced significantly. However, it has be-

come equally important to develop models from the data, which have sufficient generalization

power and can describe the underlying process with accuracy despite the non-linearity and the

complexity of these processes. The machine learning community has responded to this need by

developing various methods such as neural networks (Bishop, 1995), support vector machines

(Cristianini and Shawe-Taylor, 2000) and fuzzy systems (Klir and Yuan, 1995), which can be

used for non-linear function approximation.

Amongst the systems that have universal approximation capability, fuzzy systems have at-

tracted particular interest due to their ability to provide linguistic descriptions of the modelled

process. Encouraged by their success in practical applications, fuzzy sets community has pro-

posed various rule base structures and reasoning mechanisms for fuzzy systems (Mamdani and

Gaines, 1981; Takagi and Sugeno, 1985, e.g.), putting the emphasis on the modelling of the

linguistic uncertainty and the interpolation capability of fuzzy systems. Some researchers out-

side the fuzzy set community, however, have felt uneasy about the success of fuzzy systems

for function approximation, partly because the connection of these systems to the probabilis-

tic nature of uncertainty in many data sets was unclear (see e.g. the panel discussion by the

representatives of three European Networks of Excellence on fields related to computational in-

1Parts of this chapter have been published in van den Berg, Kaymak, and Almeida (2012, 2013).
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telligence in CoIL2000). Fuzzy systems have thus been seen as being heuristic systems without

clear connections to probability theory.

Since fuzzy systems are known to be universal approximators (Kosko, 1994), it is reasonable

to assume that they lend themselves for probabilistic analysis, just like other universal approx-

imators known from the literature. The question that needs to be answered is whether fuzzy

systems are able to estimate conditional probability density functions (pdf’s), and in particular,

whether they are able to estimate the conditional expected output values for a given system. If

the answer is positive, this can explain the success of fuzzy systems for function approximation

in the presence of probabilistic uncertainty.

Various researchers have studied the relation between probabilistic and fuzzy systems, and

more generally, between probabilistic and fuzzy modelling (see e.g. Bertoluzza et al. (2002);

Grzegorzewski et al. (2002); Thomas (1995) for a collection of papers on these topics). In his

perception-based theory of probabilistic reasoning Zadeh (2002) introduces a set of inference

schemes for answering all kinds of ‘every day questions’ where both numerical (measurement-

based) and linguistic (perception-based) information are processed. Dubois and Prade have

studied the relation between the possibility theory and the probability theory (Dubois and

Prade, 2002). However, fuzzy systems forfunction approximationserve another goal than a

perception-based analysis and they are also not rooted in the possibilistic interpretation of fuzzy

sets.

Kosko has analysed the relation of such fuzzy systems to probabilistic systems (Kosko,

1997). He finds a connection between fuzzy systems and probabilistic systems, but his argu-

ment is mainly based on the mathematical similarity of center-of-gravity defuzzification (Klir

and Yuan, 1995) to the computation of an expected value in probability theory: normalized

membership functions are simply said to define a (discrete) probability density function (Kosko,

1997, pp. 53). Similarly, many researchers have argued that fuzziness and randomness are

actually describing the same phenomena or at least they presume that fuzzy set theory is a

generalization of probability theory or the other way around. For example, Thomas strongly

advocates the proposition that a fuzzy subset is actually a likelihood function (Thomas, 1995),

while Goodman and Nguyen extensively discuss the random set representation of membership

functions based upon results of so-calledα-level sets (Goodman and Nguyen, 2002).

However, fuzzy systems research has shown that the concept of membership and the con-

cept of probability are different (Zadeh, 1968, 1995; Bertoluzza et al., 2002). In the last decade,

studies where fuzzy rule-based systems also have probabilistic features that allows them to han-

dle randomness, have received much interest. For example, in Meghdadi and Akbarzadeh-T.

(2001); Liu and Li (2005, 2009); Zhang and Li (2010, 2012) probabilistic fuzzy sets are used

instead of the regular fuzzy sets, where it is considered that the fuzzy membership grade is a
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random variable with a certain probabilistic distribution function. This type of systems is sim-

ilar to type-2 fuzzy systems (Karnik et al., 1999), where the primary membership function is

fuzzy and the secondary function is a probabilistic density function. The combination of these

two functions is able to express both fuzzy and stochastic information. This type of models was

also combined with neural networks (Li and Liu, 2008) to improve time varying stochastic un-

certainty. A similar approach was presented in Hengjie et al. (2011) where a probabilistic fuzzy

neural network is introduced. The probabilistic information is incorporated in the antecedent

part of fuzzy rules and its impact quantified on the consequent part. In Abonyi and Szeifert

(2001); Lee et al. (2008) a fuzzy rule base classification model is obtained through an iterative

learning process, where the consequent part of each rule is defined as the probabilities that a

given rule represents. Thus, each rule can represent more than one class with different proba-

bilities. Following the concept of random fuzzy variable (Colubi et al., 2002), fuzzy models are

developed from the probabilistic and statistical point of view (Zmeškal, 2001). In Hong et al.

(2009) a Takagi–Sugeno model combined with probabilistic noise explicitly, is presented. Spe-

cial focus is placed on density estimation in Helin and Koivisto (2011a), using a GARCH model

where the error distribution is obtained from fuzzy rules. The universal-function-approximation

capability of fuzzy systems with consideration of probability distributions over possible conse-

quences of an action, have also been used for reinforcement learning (Hinojosa et al., 2011).

In this chapter, we follow an idea similar to van den Eijkel (1999); Meghdadi and Akbarzadeh-

T. (2001); Liu and Li (2005); Zhang and Li (2010, 2012) where fuzziness and randomness can

co-occur, but following a different approach. The approach used in this chapter has previously

been applied to real world problems, (van den Berg et al., 2002a, 2004; Almeida and Kaymak,

2009b; Xu and Kaymak, 2008, e.g.), but a formal description and analysis of this type of systems

still needs to be given. In this work we consider the relation of fuzzy systems for conditional

density estimation to the probabilistic uncertainty in the data within a framework of probabilistic

fuzzy systems, which deal explicitly and simultaneously with two complementary types of un-

certainty (fuzziness or linguistic uncertainty and probabilistic uncertainty) based on probability

measures for fuzzy events. We show that probabilistic fuzzy systems, as defined in this chapter,

estimate conditional pdf’s for the output variable, given the inputs to the system. We provide

an additive reasoning mechanism for this purpose. We derive expressions for computing the

expected output of a probabilistic fuzzy system both in cases where we know the probability

distribution in advance and in cases where we need to assess the relevant probabilistic quantities

from the data. We further show that a zero-order Takagi–Sugeno (TS) deterministic fuzzy sys-

tem uses the same expressions for reasoning. Hence, its parameters can be selected such that its

output is equal to the conditional expected value of the identified probability density function.
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Note that a deterministic function approximator ofn variables can be used to generate a

given distribution, provided it learns the appropriate mapping and its inputs are augmented to

n+1 variables by the addition of a uniformly distributed variabler (Werbos, 2009). The appli-

cation of this idea in fuzzy systems can be found in Kreinovich and Nguyen (2009); Kreinovich

et al. (2010). Our approach is related, but different in that we do not consider an additional

random input to the system. This new approach has the advantage that it can deal explicitly

and simultaneously with fuzziness or linguistic uncertainty and probabilistic uncertainty. This

model can estimate a probability density function of a non-linear system while keeping a lin-

guistic link between variables. Besides the information provided by the linguistic interpretation

of the rules, the probabilistic fuzzy model proposed allows to gain more information and pro-

cess understanding given by the different reasoning mechanisms analyzed in this chapter. These

advantages are illustrated in a financial application of conditional density estimation.

The outline of the chapter is as follows. In Section 2.2, we give an overview of the concept

of probability of fuzzy events, which is at the basis of probabilistic fuzzy systems. In addition,

we present some statistical theory of fuzzy events, most notably concerning the notion of fuzzy

histogram. We introduce probabilistic fuzzy systems in Section 2.3 and we discuss how rea-

soning can be made with these systems. An additive reasoning mechanism is introduced. It

is explained how conditional expected outputs of such systems can be computed within proba-

bilistic and statistical approaches. In Section 2.4, the relation of probabilistic fuzzy systems to

deterministic fuzzy systems is considered. It is shown that the output of both systems can be

equivalent in certain cases. We discuss in Section 2.5 several issues related to our findings, and

conclude the chapter in Section 2.6.

2.2 Probability and statistics of fuzzy events

Probabilistic fuzzy systems are based on the concept of the probability of a fuzzy event, as

defined by Zadeh (1968). In the following subsection 2.2.1, we give a brief introduction to the

theory of probability measures of fuzzy events. In the next subsection 2.2.2, we present several

results concerning the statistics of fuzzy events that we will need later on.

2.2.1 Probability of fuzzy events

The material in this section assumes a random scalar variablex defined on a continuous sample

spaceX. The results for discrete variables and vector variables are analogous.
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Figure 2.1: The pdff(x) of the height of Dutch women, the membership functionu(x) defining

tallness, and the ‘fuzzy pdf’u(x)f(x).

A compact subsetΓ of X defines an event, and its probabilityPr(Γ) is found by integrating

the probability density function (pdf)f(x) as

Pr(Γ) =

∫

x∈Γ

f(x)dx =

∫ ∞

−∞

χΓ(x)f(x)dx , (2.1)

whereχΓ(x) is the binary characteristic function for the eventΓ such thatχΓ(x) = 1 ⇔ x ∈ Γ

andχΓ(x) = 0 otherwise. In other words, the probability of an event is given by the expectation

of its characteristic function.

By replacing the characteristic function in (2.1) with a membership functionu(x) : X →
[0, 1], the probability measure for crisp events can be extended to a probability measure for

fuzzy events. In this case, the probability of a fuzzy eventA is found by taking the expectation

of the membership function as (Zadeh, 1968)

Pr(A) =

∫ ∞

−∞

uA(x)f(x)dx = E(uA(x)) . (2.2)

Equation (2.2) is illustrated in Fig. 2.1. The heightx of the population of Dutch women

is assumed to be a stochastic variable with a pdf, sayf(x), while the fuzzy notion of tallness

is defined by a membership function, sayu(x). The productu(x)f(x) can be termed a ‘fuzzy

pdf’ which is used to calculate the probability that a Dutch woman is tall according to (2.2).

Note that this calculation takes both the probabilistic uncertainty and the fuzzy uncertainty of

the notion of tallness into account.
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Below we shall consider sample spaces that are fuzzily partitioned in a finite set of fuzzy

sets. The reason for this is expressed by the following theorem (Ruspini, 1969; van den Berg

et al., 2001):

Theorem 2.1 Let fuzzy eventsA1, A2, .. , AJ form a proper fuzzy partition (Klir and Yuan,

1995) in sample spaceX implying that

∀x :

J
∑

j=1

uAj
(x) = 1 . (2.3)

Then, the sum of the probabilities of the fuzzy events equals one or, in mathematical terms,

J
∑

j=1

Pr(Aj) = 1 . (2.4)

Fuzzily partitioned sample spaces having property (2.4) will be termed ‘well-defined’.

In Section 2.3, we will also need to deal with conditional fuzzy probabilities, i.e., the prob-

ability of a fuzzy event given the occurrence of another fuzzy event. The underlying definition

used is the following one

Pr(A|B) =
Pr(A ∩B)

Pr(B)
=

∫∞

−∞
uA ∩ B(x)f(x)dx

∫∞

−∞
uB(x)f(x)dx

=

∫∞

−∞
uA(x)uB(x)f(x)dx
∫∞

−∞
uB(x)f(x)dx

, (2.5)

where the intersection of two fuzzy events is modelled by the product t-norm (Klir and Yuan,

1995). It is easy to prove (van den Berg et al., 2002a) that definition (2.5) guarantees that

theorem 2.1 also holds for conditional probabilities, i.e,

J
∑

j=1

Pr(Aj |B) = 1 . (2.6)

2.2.2 Statistical issues

The result described by (2.2) allows us to assess the probability of a fuzzy event from sampled

data by using standard expectation estimators such as the arithmetic mean (Kruse, 1982; van

den Eijkel, 1999; van den Berg et al., 2001). According to this approach, the probability for
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fuzzy eventA can be estimated using

P̂r(A) =
1

P

P
∑

p=1

uA(xp) , (2.7)

whenP samplesxp are available. The following theorem shows that the estimateP̂r(A) has the

properties described in theorem 2.1.

Theorem 2.2 Let fuzzy eventsA1, A2, . . . , AJ form a proper fuzzy partition in sample space

X. Then, the sum of the estimated probabilities of the fuzzy events(2.7) equals one or, in

mathematical terms,
J
∑

j=1

P̂r(Aj) = 1. (2.8)

Proof: Using the sample space property of being well-defined, i.e. (2.3) holds, we con-

clude that

J
∑

j=1

P̂r(Aj) =
J
∑

j=1

1

P

P
∑

p=1

uAj
(xp) =

1

P

P
∑

p=1

J
∑

j=1

uAj
(xp)

=
1

P

P
∑

p=1

1 =
1

P
P = 1.

Conditional probabilities for a fuzzy eventA, given another fuzzy eventB, can be estimated

in a similar way. Inspired by (2.5), such a conditional probabilityPr(A|B) is found by (van den

Eijkel, 1999; van den Berg et al., 2001)

Pr(A|B) =
Pr(A ∩B)

Pr(B)
,

and can be estimated as

P̂r(A|B) =

∑P
p=1 uA(xp)uB(xp)
∑P

p=1 uB(xp)
. (2.9)

In classical probability theory, we can approximate a probability density function with a finite

support by scaling the characteristic functions of crisp events for a disjoint cover of the support.

Such an approximation is called a histogram. Assuming we partition the support into disjoint

setsΓj , j = 1, . . . , J , the probability density functionf(x) is approximated bŷf(x)

f̂(x) =
J
∑

j=1

Πj =
J
∑

j=1

P̂r(Γj)χΓj
(x)

∫∞

−∞
χΓj

(x)dx
,
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Figure 2.2: A crisp interval and a fuzzy interval of the same size since
∫∞

−∞
χΓj

(x)dx =
∫∞

−∞
uAj

(x)dx = 3.

whereΠj represents thejth column of the histogram and where the normalization factor
∫∞

−∞
χΓj

(x)dx

equals the size (in the one-dimensional case, the length) of the set (interval)Γj . Similarly, one

can approximate the probability density function by scaling the membership functions of fuzzy

events that form a proper fuzzy partition of the support as (van den Berg et al., 2001)

f̂(x) =
J
∑

j=1

Λj =
J
∑

j=1

P̂r(Aj)uAj
(x)

∫∞

−∞
uAj

(x)dx
, (2.10)

where each

Λj =
P̂r(Aj)uAj

(x)
∫∞

−∞
uAj

(x)dx
(2.11)

represents a ‘fuzzified column’. Note that in (2.10) and (2.11), the normalization factor

∫ ∞

−∞

uAj
(x)dx (2.12)

of the jth fuzzified column equals the the ‘fuzzy length’ of the setAj . We illustrate this ap-

proach in Fig. 2.2 showing both a crisp and a fuzzy interval of equal size indicated by equal

area under the respective membership functions.

We further make the important observation that (2.10) can also be considered as a weighted

additive fuzzy reasoning scheme where the fuzzy membership functionsuAj
(x), j = 1, 2, . . . , J

are combined to one fuzzy membership functionuA(x) using the factorŝPr(Aj)/
∫∞

−∞
uAj

(x)dx

as weights:

uA(x) =
J
∑

j=1

P̂r(Aj)
∫∞

−∞
uAj

(x)dx
uAj

(x) . (2.13)

Like in the fuzzy histogram interpretation (2.11), we use the normalization factors (2.12) also

here, since we want to compensate for different sizes
∫∞

−∞
uAj

(x)dx.
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Figure 2.3: A fuzzy histogram better approximates a pdf than a crisp histogram.

Theorem 2.3 Let X be a well-defined sample space partitioned intoJ fuzzy setsAj , j =

1, . . . , J . Then the approximated density functionf̂(x) has the (desired) property

∫ ∞

−∞

f̂(x)dx = 1 .

Proof: Note that for a well-defined sample space, (2.8) holds. Then, by also using (2.10),

we conclude that

∫ ∞

−∞

f̂(x) =

∫ ∞

−∞

J
∑

j=1

P̂r(Aj)uAj
(x)

∫∞

−∞
uAj

(x)dx
dx

=
J
∑

j=1

P̂r(Aj)

∫∞

−∞
uAj

(x)dx
∫∞

−∞
uAj

(x)dx
= 1 .

Because of overlapping membership functions, fuzzy histograms have a high level of statis-

tical efficiency, better than crisp ones. We show this in Fig. 2.3 where the probability density

function (pdf) of the standard normal distribution is approximated by a classical and by a fuzzy

histogram using in both cases a partitioning in seven classes. For more details we refer to van

den Berg et al. (2004). Besides a high level of statistical efficiency, several classes of fuzzy his-

tograms also have a high level of computational efficiency. An example of such type of fuzzy

histogram is one that uses triangular membership functions (Waltman et al., 2005a).
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2.3 Probabilistic fuzzy systems

2.3.1 Outline

Probabilistic fuzzy systems combine two different types of uncertainty, namely fuzziness or

linguistic vagueness, and probabilistic uncertainty. In previous works, we have presented var-

ious types of probabilistic fuzzy systems with the corresponding reasoning schemes (van den

Berg et al., 2002a, 2004; Kaymak et al., 2003; van den Berg et al., 2002b). In this chapter,

we present a more general formulation where the consequent of each rule is a conditional pdf,

given the fuzzy antecedent of the rule. Our probabilistic fuzzy system consists of the rulesRq,

q = 1, . . . , Q, of the type

Rq : If x isAq thenf(y) is f(y|Aq) , (2.14)

wherex ∈ R
n is an input vector,Aq : X −→ [0, 1] is a fuzzy set defined onX andf(y|Aq) is the

conditional pdf of the stochastic output variabley given the fuzzy eventAq. The interpretation

is as follows: if fuzzy antecedentAq is fully valid (x ∈ core(Aq)), theny is a sample value from

the probability distribution with conditional pdff(y|Aq).

If Aq had been crisp events, then only one of the rules would fire and hence only one of the

conditional pdf’s would be used. The system output can then be written as

f(y|x) =
Q
∑

q=1

χq(x) f(y|Aq) .

In case of fuzzy events, multiple rules may fire and it is more appropriate to take an additive

combination of rule outputs.We propose a reasoning mechanism that determines the output of

fuzzy system as

f(y|x) =
∑Q

q=1 uAq
(x)f(y|Aq)

∑Q
q=1 uAq

(x)
=

Q
∑

q=1

βq(x)f(y|Aq) , (2.15)

whereβq(x) = uAq
(x)/

∑Q
q=1 uAq

(x) represents the normalized degree of fulfillment of rule

Rq or, in other words,
Q
∑

q=1

βq(x) = 1 . (2.16)
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Whenx is n-dimensional,uAq
is determined as a conjunction of the individual memberships in

the antecedents computed by a suitable t-norm,i.e.,

uAq
(x) = uAq1

(x1) ◦ · · · ◦ uAqn
(xn),

wherexn is then-th component ofx and◦ denotes a t-norm. The following theorem shows that

the reasoning (2.15) returns a proper pdf.

Theorem 2.4 LetR = ∪Q
q=1Rq be a fuzzy rule base consisting of the rules of type(2.14). Then,

the reasoning scheme(2.15)computes a pdf, i.e.

∫ ∞

−∞

f(y|x)dy = 1 .

Proof: Taking the integral over the left-hand side of equation (2.15), we immediately

derive the result:

∫ ∞

−∞

f(y|x)dy =
∫ ∞

−∞

∑Q
q=1 uAq

(x)f(y|Aq)
∑Q

q=1 uAq
(x)

=

∑Q

q=1 uAq
(x)
∫∞

−∞
f(y|Aq)dy

∑Q

q=1 uAq
(x)

= 1.

Therefore, if we know the pdf for each rule output, we can calculate the conditional pdf for

any input vectorx. This formulation is akin to a mixture model, whereby the weights of the

mixture are determined by the membership value to the rule antecedents.

For the purpose of function approximation, it is possible to calculate a crisp output for

each input vectorx from a conditional probability distribution. To do so, we take a regression

approach. The regression hyperplane ofy onX is defined (Kecman, 2001) as the location of

the mathematical expectationsE(y|x) conform

ηy|x = E(y|x) =
∫ ∞

−∞

yf(y|x)dy . (2.17)

An interesting characteristic of probabilistic fuzzy system is that besides calculating the ex-

pected output, it is also possible to estimate the mode, conditional variance and quantiles, all

based on the obtained output probability distribution function. The conditional varianceσ2
y|x of

the output can be calculated conform

σ2
y|x = Var(y|x) = E(y2|x)− (E(y|x))2 . (2.18)
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The expected conditional output and conditional variance of the probabilistic fuzzy system is

given by the following theorem.

Theorem 2.5 The expected output of the probabilistic fuzzy system with rule base(2.14) is

given by the weighted average of the expected output of each rule, i.e.,

ηy|x = E(y|x) =
Q
∑

q=1

βq(x)E(y|Aq) ,

and its conditional variance is

σ2
y|x =

Q
∑

q=1

βq(x)E(y
2|Aq)− η2y|x ,

Proof: Using (2.17), (2.15) and

E(y|Aq) =

∫ ∞

−∞

yf(y|Aq)dy , (2.19)

we conclude

E(y|x) =
∫ ∞

−∞

y

[

Q
∑

q=1

βq(x)f(y|Aq)

]

dy =

Q
∑

q=1

βq(x)

∫ ∞

−∞

yf(y|Aq)dy

=

Q
∑

q=1

βq(x)E(y|Aq) .

Similarly, using (2.18), (2.17), (2.15) and (2.19)

σ2
y|x =

∫ ∞

−∞

y2

[

Q
∑

q=1

βq(x)f(y|Aq)

]

dy − (E(y|x))2 =
Q
∑

q=1

βq(x)

∫ ∞

−∞

y2f(y|Aq)dy − η2y|x

=

Q
∑

q=1

βq(x)E(y
2|Aq)− η2y|x .

2.3.2 Reasoning

In general, the pdf’s in the rule consequents are not available, and they must be estimated from

the data. We present two equivalent elaborations. In both cases, we suppose thatJ fuzzy classes

Cj form a fuzzy partition of the compact output spaceY .
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The fuzzy histogram approach

In the first approach, we replace in each rule of (2.14) the true pdff(y|Aq) by its fuzzy approx-

imation (fuzzy histogram)̂f(y|Aq) yielding the rule set̂Rq, q = 1, . . . , Q defined as

R̂q : If x isAq thenf(y) is f̂(y|Aq) , (2.20)

wheref̂(y|Aq) is defined in line with equation (2.10) conform

f̂(y|Aq) =
J
∑

j=1

P̂r(Cj|Aq)uCj
(y)

∫∞

−∞
uCj

(y)dy
. (2.21)

In effect, we are using a histogram based on fuzzy events, instead of a usual histogram, to

represent the pdf in the rule consequent. A diagram depicting the reasoning of this approach is

shown in Fig. 2.4. For any givenx1 we compute estimatêf(y|x1) of the conditional probability

density function based on a fuzzy histogram̂f(y|Aq). In the figure, only one rule fires for

the selectedx1. The crisp system output̂ηy|x is computed for allx, as the expectation of the

estimated conditional probability density function, as it will be presented in Theorem 2.6.

Using the same line of thought as used in subsection 2.3.1, we can calculate an approxi-

mation of the expected conditional output of the probabilistic fuzzy output. The corresponding

theorem, is the following one.

Theorem 2.6 The estimated expected output of the probabilistic fuzzy system with rule base

(2.20)is given by the weighted average of the estimated expected output of each rule according

to

η̂y|x = Ê(y|x) =
Q
∑

q=1

βq(x)Ê(y|Aq) =

Q
∑

q=1

J
∑

j=1

βq(x)P̂r(Cj|Aq)z1,j , (2.22)

and the estimated conditional variance is

σ̂2
y|x = Ê(y2|x)− (Ê(y|x))2 =

Q
∑

q=1

βq(x)Ê(y|x)− η̂2y|x

=

Q
∑

q=1

J
∑

j=1

βq(x)P̂r(Cj|Aq)z2,j − η̂2y|x , (2.23)
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whereÊ(y|Aq) is the estimated expected output of each rule,(Ê(y|Aq))
2 is the estimated vari-

ance of the output of each rule,z1,j is the centroid of thejth output fuzzy set defined by

z1,j =

∫∞

−∞
yuCj

(y)dy
∫∞

−∞
uCj

(y)dy
. (2.24)

andz2,j is defined as

z2,j =

∫∞

−∞
y2uCj

(y)dy
∫∞

−∞
uCj

(y)dy
. (2.25)

Proof: Using (2.17) withf(y|Aq) replaced by the estimated̂f(y|Aq), and using (2.15)

and (2.21), we derive that

Ê(y|x) =
∫ ∞

−∞

yf̂(y|x)dy =
∫ ∞

−∞

y

Q
∑

q=1

βq(x)f̂(y|Aq)dy

=

Q
∑

q=1

βq(x)

∫ ∞

−∞

y
J
∑

j=1

P̂r(Cj |Aq)uCj
(y)

∫∞

−∞
uCj

(y)dy
dy

=

Q
∑

q=1

βq(x)
J
∑

j=1

P̂r(Cj|Aq)

∫∞

−∞
yuCj

(y)dy
∫∞

−∞
uCj

(y)dy

=

Q
∑

q=1

J
∑

j=1

βq(x)P̂r(Cj|Aq)z1,j , (2.26)

where z1,j is the centroid of the fuzzy setCj . The estimated expected conditional output

Ê(y|Aq) of each ruleR̂q is defined as

Ê(y|Aq) =

J
∑

j=1

P̂r(Cj|Aq)z1,j (2.27)

By substituting (2.27) in (2.26), we immediately find equation (2.22).
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Figure 2.4: Diagram of the fuzzy histogram approach for PFS. The output of the model is a

fuzzy histogramf̂(y|Aq) from which the crisp system outputη̂y|x is computed.

In the same manner, using (2.18) withf(y|Aq) replaced by the estimated̂f(y|Aq), and using

(2.15) and (2.21), we derive that

σ̂2
y|x =

∫ ∞

−∞

y2f̂(y|x)dy − (Ê(y|Aq))
2

=

∫ ∞

−∞

y

Q
∑

q=1

βq(x)f̂(y|Aq)dy − (Ê(y|Aq))
2

=

Q
∑

q=1

βq(x)

∫ ∞

−∞

y2
J
∑

j=1

P̂r(Cj |Aq)uCj
(y)

∫∞

−∞
uCj

(y)dy
dy − η̂2y|x

=

Q
∑

q=1

βq(x)

J
∑

j=1

P̂r(Cj|Aq)

∫∞

−∞
y2uCj

(y)dy
∫∞

−∞
uCj

(y)dy
− η̂2y|x

=

Q
∑

q=1

J
∑

j=1

βq(x)P̂r(Cj|Aq)z2,j − η̂2y|x ,

wherez2,j is defined by (2.25).

For modelling purposes, the parametersP̂r(Cj|Aq) andz1,j can be computed once offline.

The evaluation of the expected output then requires the evaluation ofβq(x) for a givenx and

the evaluation of (2.22), which can be very fast.
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Figure 2.5: Diagram of the probability fuzzy output approach for PFS. Given the occurrence of

fuzzy antecedentAq, the fuzzy output eventsCj are weighted with the conditional probability

P̂r(Cj |Aq).

Note further that the proof of theorem 2.6 involves both an averaging step to deal with the

probabilistic uncertainty as present in the pdf and a defuzzification step to handle the fuzzy

uncertainty as present in the membership functions used. These two separate steps are needed

to let the output of the fuzzy system be a crisp value.

The probabilistic fuzzy output approach

In the second approach, we decompose each rule (2.14) to provide a stochastic mapping between

its fuzzy antecedents and its fuzzy consequents. The rules are written in the following form.

RuleR̂q: If x isAq theny isC1 with P̂r(C1|Aq) and

. . .

y isCJ with P̂r(CJ |Aq). (2.28)

The interpretation is depicted in Fig. 2.5 and can be summarized as follows. Ifx1 belongs to the

fuzzy antecedentAq, the fuzzy output eventCj occurs with an associated probabilitŷPr(Cj|Aq).

For each individual rule, the expected output of each fuzzy ruleuC(y|Aq) is calculated by

scaling the fuzzy outputCj and then aggregated them intouC(y|x). Forx1 the scaled output sets

Cj(y|x1), are depicted in Fig. 2.5. The crisp outputη̂y|x is obtained by defuzzifying the obtained
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expected conditional fuzzy outputuC(y|x). All the calculations are presented in Theorem 2.7.

The advantage of using the rule base (2.28) instead of (2.20) is its transparency: the output of

each rule is formulated in linguistic terms (namelyC1, C2, . . . , andCJ ) instead of probability

density functions. The link to the linguistic knowledge of experts is then clearer.

Although the fuzzy rule bases (2.20) and (2.28) are different, we can prove the following

theorem expressing that, under certain conditions, the two corresponding probabilistic fuzzy

systems implement the same crisp input-output mapping.

Theorem 2.7 Consider the probabilistic fuzzy system with rule base(2.28) and let the fuzzy

additive reasoning scheme(2.13) be used to calculate its expected fuzzy output. Then, the

expected output of the probabilistic fuzzy system with rule base(2.20) equals the defuzzified

output of the probabilistic fuzzy system with rule base(2.28).

Proof: Consider the system with the probabilistic fuzzy rule base (2.28). We first calcu-

late the conditional expected fuzzy outputuC(y|Aq) of each individual rule, i.e., the expected

fuzzy membership function given the occurrence ofAq. By applying (2.13), we can write in

this conditional case

uC(y|Aq) =
J
∑

j=1

P̂r(Cj|Aq)
∫∞

−∞
uCj

(y)dy
uCj

(y) . (2.29)

Using additive fuzzy reasoning (2.15) and substituting (2.29), we find the expected fuzzy mem-

bership function given the occurrence ofx, i.e.,

uC(y|x) =
∑Q

q=1 uAq
(x)uC(y|Aq)

∑Q
q=1 uAq

(x)
=

Q
∑

q=1

βq(x)

J
∑

j=1

P̂r(Cj |Aq)
∫∞

−∞
uCj

(y)dy
uCj

(y) . (2.30)

From this we first conclude, using (2.6), (2.8) and (2.16), that

∫ ∞

−∞

uC(y|x)dy =
Q
∑

q=1

βq(x)
J
∑

j=1

P̂r(Cj|Aq)
∫∞

−∞
uCj

(y)dy
∫∞

−∞
uCj

(y)dy

=

Q
∑

q=1

βq(x)
J
∑

j=1

P̂r(Cj |Aq) = 1 . (2.31)
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Having done all these preparations, we can now calculate the crisp outputÊ(y|x) for eachx by

defuzzifyinguC(y|x) as given by (2.30) while using the last result (2.31) and definition (2.24):

Ê(y|x) =
∫∞

−∞
yuC(y|x)dy

∫∞

−∞
uC(y|x)dy

=

∫ ∞

−∞

yuC(y|x)dy

=

Q
∑

q=1

βq(x)
J
∑

j=1

P̂r(Cj|Aq)
∫∞

−∞
uCj

(y)ydy
∫∞

−∞
uC(y|x)dy

=

Q
∑

q=1

J
∑

j=1

βq(x)P̂r(Cj |Aq)z1,j . (2.32)

Comparing (2.22) to (2.32) shows that both expressions are equal.

The proofs of theorems 2.6 and 2.7 show a lot of similarities. However, looking carefully,

we observe differences in the interpretation. In the proof of Theorem 2.6, we compute first an

estimatef̂(y|x) of the conditional probability density functionf(y|x). This estimate is based

on a fuzzy histogram. Then, the crisp system output is computed as the expectation of the

estimated conditional probability density function. In the proof of Theorem 2.7, however, the

crisp system output is computed by defuzzifying the expected conditional fuzzy outputuC(y|x).
The expected conditional fuzzy output is computed by first calculating the expected output of

each fuzzy ruleuC(y|Aq) and then aggregating them intouC(y|x). Note that the same type

of fuzzy additive reasoning is applied in both schemes which eventually yields the same crisp

input-output mapping.

Note further that (2.30) in the proof of Theorem 2.7 shows that - within the probabilistic

fuzzy output interpretation - probabilistic fuzzy systems are an example of the additive fuzzy

systems discussed in Kosko (1994). Using the notation of this chapter, additive fuzzy reasoning

according to equation (1) of Kosko (1994) can be written as

uC(y|x) =
∑

q=1

wjuC(y|Aq). (2.33)

If we choose for the weightswj in (2.33)

wj =
uAq

(x)
∑Q

q=1 uAq
(x)

,

then we obtain (2.30) of this chapter, which makes clear that the probabilistic fuzzy systems

as presented in this chapter have universal approximation capabilities according the theory as

provided in Kosko (1994).
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We finally note here that re-arranging (2.22) or (2.32) results into

Ê(y|x) =
J
∑

j=1

z1,j

Q
∑

q=1

βq(x)P̂r(Cj|Aq) =
J
∑

j=1

P̂r(Cj|x)z1,j ,

where again fuzzy additive reasoning in line with definition (2.15) has been applied. The lat-

ter result shows that the expected system output is equal to the conditional expectation of the

defuzzified fuzzy sets.

2.4 Relation to deterministic fuzzy systems

In this section, we consider the relation of the probabilistic fuzzy system described in Sec-

tion 2.3 to deterministic fuzzy systems. In particular, we are interested in the relation between

the expected output of a probabilistic fuzzy system and the deterministic output of a zero-order

Takagi–Sugeno system (Takagi and Sugeno, 1985).

Theorem 2.8 A zero-order Takagi–Sugeno fuzzy system withQ rules, antecedent fuzzy setsAq

and consequent parametersbq computes the expected value of the conditional pdf provided that

the parametersbq are equal to the expected defuzzified output of the probabilistic fuzzy system,

i.e. provided that

bq =
J
∑

j=1

P̂r(Cj|Aq)z1,j . (2.34)

Proof: The proof is provided by re-arranging (2.22) and comparing it to the output of

a zero-order Takagi–Sugeno system. The output of a zero-order deterministic Takagi–Sugeno

system is given by

γ(x) =

Q
∑

q=1

βq(x)bq .

Re-arranging (2.22) gives

Ê(y|x) =
Q
∑

q=1

βq(x)

J
∑

j=1

P̂r(Cj|Aq)z1,j =

Q
∑

q=1

βq(x)bq ,

with

bq =

J
∑

j=1

P̂r(Cj|Aq)z1,j .
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Therefore, by selecting the consequent parameters of the TS model in a specific way, one

can approximate the expected output of the underlying system that has generated the data. Note

that in many cases the parameters of TS fuzzy systems are optimized to minimize an error

function, and hence optimality can be achieved in practical situations. This can explain the

success of TS fuzzy systems for function approximation.

2.5 Discussion

The previous sections have shown that probabilistic fuzzy systems with an additive fuzzy rea-

soning scheme are able to approximate the conditional output pdf’s for function approximation.

This same input-output mapping is found by defuzzification of the expected fuzzy output of a

probabilistic fuzzy system having a rule base with probabilistic fuzzy consequents.

We further found that the expected output of the probabilistic fuzzy systems discussed is

equal to the output of deterministic zero-order TS fuzzy systems, provided that the consequent

parameters are selected according to (2.34). This property provides motivation for the success

of additive fuzzy systems for function approximation. Note that in addition to the probabilistic

nature of the data, probabilistic fuzzy systems let the analyst explicitly model linguistic concepts

through the use of antecedent fuzzy setsAq and the consequent fuzzy setsCj: see the rule base

(2.28). This allows the model to estimate the underlying probabilistic structure from the data,

while the model is calibrated to the linguistic description of the user. The other way around, is

also possible to design the fuzzy system in an expert-driven manner. In that case, the calibration

can be data-driven and be based on the estimation of the statistical quantities.

In addition to regular pdf’s and conditional pdf’s, probabilistic fuzzy models allow one to

answer questions such as “what is the probability that the output is large given that the input

is small” (P̂r(Cj |Aq)) or “what is the probability that the output is medium given a particular

input” (P̂r(Cj |x)). Analyzing answers to these questions can provide additional information

in a particular problem (van den Berg et al., 2004, e.g.). Another advantage of probabilistic

fuzzy systems over conventional fuzzy systems is that besides estimating a crisp output, it is

also possible to estimate probabilistic confidence bounds.

Although we have discussed that the probabilistic fuzzy systems can approximate condi-

tional pdf’s, we have not analyzed the accuracy of this approximation. In general, the accuracy

of the approximation of the conditional pdf’s can be increased by increasing the number of

consequent fuzzy setsCj on the output domain, by choosing a better fuzzy partitioning of the

input or output space, or by selecting better-shaped membership functions. The latter selection

problem resembles that of finding adequate basis functions when applying radial basis func-

tions networks (Bishop, 1995) for kernel regression. We already mentioned that using a fuzzy
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partition already improves the approximation of the conditional pdf significantly (van den Berg

et al., 2004). Similarly, increasing the number of rules will improve the accuracy of interpo-

lation between the rules. On the other hand, the danger that the resulting system overfits the

(normally noisy) data (Bishop, 1995) should be dealt with as well.

A related issue that we have not discussed in this chapter is that of optimal design. Although

the probabilistic fuzzy system approximates conditional pdf’s, the resulting fuzzy system need

not be optimal in terms of the number of rules, the definition of antecedent membership func-

tions and consequent membership functions. Particular choices can provide better interpolation

for different data sets. For example, in Almeida and Kaymak (2009a); Xu and Kaymak (2008)

the influence of the location of output membership functions was investigated. The distribution

of the membership functions can be uniform over the universe of discourse, or it can be varying

with more membership functions placed towards the origin (Xu and Kaymak, 2008) or towards

the edges of the universe of discourse (Almeida and Kaymak, 2009a). This varying placement

allows to better capture the variability in regions with more membership functions. The design

of a PFS is an issue that needs to be studied closely in the future. Furthermore, we have ignored

a priori distribution of the data in this chapter. This information can be incorporated in proba-

bilistic fuzzy systems through rule weighting, as discussed, for instance in van den Berg et al.

(2002a).

In conjunction with defining the number of rules, antecedent and consequent membership

functions, it is also necessary to estimate the conditional probabilities in a probabilistic fuzzy

system. The calculation of conditional probabilities using (2.9) does not maximize the likeli-

hood of the data set and may lead to biased results (Waltman et al., 2005b). Assuming that the

samples in the data set are independent of one another and that the membership functions in

the rule antecedentAq and the rule consequentCj have been defined, the probability parame-

tersP̂r(Cj|Aq) that maximize the likelihood of the data set can be obtained by maximizing the

function

L =

P
∑

p=1

ln (Pr(yp|xp)) , (2.35)

whereP is the number of samples in the data set (Waltman et al., 2005b). A suitable initialisa-

tion for iterative optimisation for maximum likelihood estimation is given by direct estimation

from the data by using (2.9). Other search heuristics can be used to estimate the probability pa-

rametersP̂r(Cj|Aq), such as genetic algorithms (Almeida and Kaymak, 2009b). In this work,

although the results were satisfactory, the authors noted that the objective function chosen was

a problem with multiple minima. Thus the solution could converge to local optimums.

In this chapter, we have concentrated on the results for the expected output of probabilistic

fuzzy systems and their equivalence to deterministic fuzzy systems. However, it is also impor-
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tant to consider the higher moments in the estimations, since these will be influenced by the

choice of the membership functions and other parameters. In addition, it is interesting to look

at possibilities to develop statistical inference procedures for fuzzy quantities like fuzzy events.

Finally, the precise relation of the probabilistic-fuzzy framework proposed here to that of ra-

dial basis function networks and that of kernel estimation require a deeper study. We leave this

important work for future research.

2.6 Conclusions

Probabilistic fuzzy systems are able to approximate conditional pdf’s, while at the same time

calibrating the model to the linguistic conceptualization of the model maker. As such, they deal

explicitly with both the fuzziness in the linguistic descriptions and the probabilistic uncertainty.

We have proposed an additive reasoning scheme for probabilistic fuzzy systems. The expected

output of these fuzzy systems is shown to be computable where both a defuzzification and an

averaging step are needed to get rid of both uncertainties and to terminate in a crisp output. The

complete reasoning is based on the possibility to calculate (a) the probability of a consequent

fuzzy event given an antecedent fuzzy event, (b) the centroid points of the consequent fuzzy

sets, and (c) the degree of fulfillment of the fuzzy rules. A zero-order TS fuzzy system can

produce the same output as the expected output of a probabilistic fuzzy system, provided that

its consequent parameters are selected as the conditional expectation of the defuzzified output

membership functions. Our results provide insight why additive deterministic fuzzy systems

such as TS systems have proven to be so successful for function approximation purposes.
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Analysing probabilistic fuzzy systems1

3.1 Introduction

PROBABILISTIC fuzzy systems (PFS) can deal explicitly and simultaneously with fuzzi-

ness or linguistic uncertainty and probabilistic uncertainty. A probabilistic fuzzy system

follows an idea similar to van den Eijkel (1999); Meghdadi and Akbarzadeh-T. (2001); Liu and

Li (2005); Zhang and Li (2010, 2012) where the different concepts (Zadeh, 1968, 1995; Dubois

and Prade, 1997; Bertoluzza et al., 2002) of fuzziness and randomness can co-occur. This model

can estimate a probability density function or provide an approximation of a non-linear system

from sampled data while keeping a linguistic link between input and output variables. Besides

the information provided by the linguistic interpretation of the rules, the probabilistic fuzzy

model proposed allows to gain information and process understanding on the approximated

system given by two different reasoning mechanisms.

A probabilistic fuzzy system, as it was formally defined in van den Berg et al. (2013), is

based on the probability of a fuzzy event and estimates conditional probability density func-

tions for the output variable, given the inputs to the system. Two equivalent additive reasoning

mechanisms have been proposed, one based on the concept of fuzzy histograms and another

based on the stochastic mapping between fuzzy antecedents and fuzzy consequents. This type

of models has been applied to real world problems, (van den Berg et al., 2002a, 2004; Almeida

and Kaymak, 2009b; Xu and Kaymak, 2008; Almeida et al., 2012a, e.g.) and a framework to

develop PFS from data has been proposed in Tang et al. (2012). The proposed framework uses a

heuristic method to partition the input and output spaces into a determined number of fuzzy sets

and the probability parameters are estimated based on a definition of conditional probability of

fuzzy events which has been show to be biased and inconsistent (Waltman et al., 2005b).

1Parts of this chapter have been published in Almeida, Verbeek, Kaymak, and Costa Sousa (2014c).
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In this work we analyse different aspects of probabilistic fuzzy systems in the context of

function approximation and conditional density estimation. We derive several higher moments

of the conditional probability density function (pdf) estimated using a PFS. The role of higher

moments has become increasingly important in risk management since traditional measures of

risk, such as the variance, do not fully capture the distributions of stock market returns. Other

measures of distributional shape such as higher moments can be useful in obtaining a better

description of risk. Furthermore, even though two different portfolios may share the same

variance, investors may be more interested in skewed portfolios that match their risk profile.

Conventional measures of skewness and kurtosis are essentially based on sample averages, and

thus also sensitive to outliers. In this work we show that higher moments can be derived from

the output conditional probability density of a PFS. Furthermore, we analyze the necessary

conditions for a PFS, such that the estimated output density is a proper pdf and subsequent

higher moments derived from this density exist. These conditions relax the previous assumption

of well-formed output space and are not very restrictive or consider a particular definition of

conditional probability of fuzzy systems.

We analyse probabilistic fuzzy system in relation to other different types of systems that

have universal approximation capability, but usually estimate only a deterministic output, not

a full density. This analysis allows to gain a different insight into PFS. Special attention is

given to the relation of PFS with fuzzy additive systems, such as Mamdani fuzzy system with

weighted output or a fuzzy relational model, and how a PFS can be obtained from this fuzzy

additive system. Furthermore, this relation indicates that a PFS is also suitable for problems of

function approximation, although this type of application has received very little attention.

A practical relevance of the functional equivalence result is that learning algorithms, opti-

mization techniques and design issues can be transferred to PFS, while providing understanding

of different aspects of a probabilistic fuzzy system. The analysis of the parameters of PFS are

further extended for function approximation and conditional density estimation, while sugges-

tions on how to obtain PFS models from sampled data are provided. In this work, the effect

of different optimization techniques and designs of PFS on function approximation and condi-

tional density estimation are illustrated using simulated data. Using simulated data we show

that PFS provides accurate density approximations and conditional density estimates, and how

the number of input and output memberships, choice of the PFS membership functions and es-

timation methods affect the performance of PFS. Finally, we apply the PFS model for function

approximation and conditional density estimation of the quarterly US inflation data and report

the obtained results using different PFS parametrization and optimization techniques. The es-

timation and forecast of the complete inflation density is a major concern for macroeconomic

policy makers and financial institutions. This analysis shows that slowly changing patterns in
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inflation are accurately captured by the PFS model. The PFS model performs well in one quarter

ahead and 1 year ahead forecasts of inflation.

This chapter is organized as follows. In Section 3.2 we summarize the two possible and

equivalent reasoning mechanisms of PFS presented in van den Berg et al. (2013) and extend it

to the multiple output case. We show that higher moments, such as skewness and kurtosis, of

the output conditional probability density can be derived for a PFS. Furthermore, we analyse

the necessary conditions for a PFS, such that the estimated output density is a proper pdf and

subsequent higher moments of this density exist. This analysis is not based on the probability

of a fuzzy event (Zadeh, 1968) and as such relaxes the previous assumption of a well-formed

output space. The relation to systems with deterministic output that have universal approxima-

tion capability is presented in Section 3.3. A practical relevance of the functional equivalence

result is that learning algorithms, optimization techniques and design issues can be transferred

to PFS. Furthermore, we analyse a PFS as a fuzzy additive system and discuss how a PFS can

be obtained from this fuzzy additive system. Section 3.4 presents an analysis of the parameters

of a PFS for function approximation or density approximation. Several suggestions on how to

obtain these parameters are provided. The influence of these parameters on the accuracy of a

PFS are further discussed in Section 3.5 for simulated data. Finally, Section 3.6 presents a real-

world example of point and density estimates of quarterly US inflation. Conclusion and future

work are presented in Section 3.7.

3.2 Probabilistic fuzzy systems revisited

Probabilistic fuzzy systems combine two different types of uncertainty, namely fuzziness or

linguistic vagueness, and probabilistic uncertainty. In this work we consider that the probabilis-

tic uncertainty relate to aleatoric variability, while fuzziness or linguistic vagueness relate to

epistemic uncertainty or to the concept of gradualness (Dubois and Prade, 1997, 2012).

In mathematical terms a fuzzy setF on a finite universeU is defined by a membership

functionuF : U → [0, 1] anduF (x) is the grade of membership of element ofx ∈ U in F . A

probabilistic measureP is a mapping2U → [0, 1] that assigns a numberP (A) of eventA to

each subset ofU , satisfying the Kolmogorov axioms.P (A) is the probability that an ill-known

single-valued variablex hits setA. At the mathematical level the domain of the mappingP is

the Boolean algebra2U while the set of fuzzy sets is[0, 1]U (Dubois and Prade, 1993).

The PFS consists of a set of rules whose antecedents are fuzzy conditions and whose conse-

quents are probability distributions. Assuming that the input space is a subset ofR
n and that the

rule consequents are defined on a finite domainY ⊆ R, a probabilistic fuzzy system consists of
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a system of rulesRq, q = 1, . . . , Q, of the type (van den Berg et al., 2013)

Rq : If x isAq thenf(y) is f(y|Aq) , (3.1)

wherex ∈ R
n is an input vector,Aq : X −→ [0, 1] is a fuzzy set defined onX andf(y|Aq) is the

conditional pdf of the stochastic output variabley given the fuzzy eventAq. The interpretation is

as follows: if fuzzy antecedentAq is fully valid (x ∈ core(Aq)), wherecore(A) = {x|uA(x) =
1} theny is a sample value from the probability distribution with conditional pdff(y|Aq).

For the purpose of this study, we consider two possible and equivalent reasoning mech-

anisms of PFS, namely the fuzzy histogram approach and the probabilistic fuzzy output ap-

proach (van den Berg et al., 2013). In both cases, we suppose thatJ fuzzy classesCj form a

fuzzy partition of the compact output spaceY .

3.2.1 Fuzzy histogram model

In the fuzzy histogram approach, we replace in each rule of (3.1) the true pdff(y|Aq) by its

fuzzy approximation (fuzzy histogram)̂f(y|Aq) yielding the rule set̂Rq, q = 1, . . . , Q defined

as (van den Berg et al., 2013)

R̂q : If x isAq thenf(y) is f̂(y|Aq) , (3.2)

wheref̂(y|Aq) is a fuzzy histogram conform (van den Berg et al., 2001)

f̂(y|Aq) =

J
∑

j=1

P̂r(Cj|Aq)uCj
(y)

∫∞

−∞
uCj

(y)dy
. (3.3)

The numerator in (3.3) describes a superposition of fuzzy events described by their membership

functionsuCj
(y), weighted by the probabilitŷPr(Cj|Aq) of the fuzzy event. The denominator

of (3.3) is a scaling factor representing the fuzzified size of classCj. Because of overlapping

membership functions, fuzzy histograms have a high level of statistical efficiency, compared to

crisp ones. We show this in Fig. 3.1 where the probability density function (pdf) of the standard

normal distribution is approximated by a classical and by a fuzzy histogram using in both cases

a partitioning in seven classes. For more details we refer to van den Berg et al. (2004). Besides

a high level of statistical efficiency, several classes of fuzzy histograms also have a high level of

computational efficiency. An example of such type of fuzzy histogram is one that uses triangular

membership functions (Waltman et al., 2005a).
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Figure 3.1: A fuzzy histogram approximates a pdf better than a crisp histogram.

Using the definition of fuzzy histogram, the unconditional probability density function of a

probabilistic fuzzy system is given by

f̂(y) =
J
∑

j=1

P̂r(Cj)uCj
(y)

∫∞

−∞
uCj

(y)dy
. (3.4)

The interpretation of this type of reasoning is as follows. Given the occurrence of a (multi-

dimensional) antecedent fuzzy eventAq, which is a conjunction of the fuzzy conditions defined

on input variables, an estimate of the conditional probability density function based on a fuzzy

histogramf̂(y|Aq) is calculated.

3.2.2 Probabilistic fuzzy output model

In the probabilistic fuzzy output approach, sometimes also referred to as Mamdani PFS (Kay-

mak et al., 2003; Xu and Kaymak, 2008; Almeida and Kaymak, 2009b), we decompose each

rule (3.1) to provide a stochastic mapping between its fuzzy antecedents and its fuzzy conse-

quents. The rules are written in the following form (van den Berg et al., 2013):

RuleR̂q: If x isAq theny isC1 with P̂r(C1|Aq) and

. . .

y isCJ with P̂r(CJ |Aq). (3.5)

These rules specify a probability distribution over a collection of fuzzy sets that partition the

output domain. The rules of a PFS also express linguistic information and they can be used to
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explain the model behaviour by a set of linguistic rules. This way, the system deals both with

linguistic uncertainty as well as probabilistic uncertainty.

The interpretation for the probabilistic fuzzy output approach is as follows. Given the oc-

currence of a (multidimensional) antecedent fuzzy eventAq, which is a conjunction of the fuzzy

conditions defined on input variables, each of the consequent fuzzy eventsCj is likely to occur.

The selection of consequent fuzzy events is done proportionally to the conditional probabilities

P̂r(Cj |Aq), j = 1, 2, . . . , J . This applies for all the rulesRq, q = 1, 2, . . . , Q.

3.2.3 Outputs of probabilistic fuzzy system

Although the fuzzy rule bases (3.2) and (3.5) are different, under certain conditions, the two

corresponding probabilistic fuzzy systems implement the same crisp input-output mapping (van

den Berg et al., 2013). The output of the fuzzy rules (3.5) is the same as in the rules (3.2), if an

additive reasoning scheme is used with multiplicative aggregation of the rule antecedents (van

den Berg et al., 2004).

Given an input vectorx, the output of a probabilistic fuzzy system is a conditional density

function which can be computed as

f̂(y|x) =
J
∑

j=1

Q
∑

q=1

βq(x)P̂r(Cj|Aq)
uCj

(y)
∫∞

−∞
uCj

(y)dy
, (3.6)

where

βq(x) =
uAq

(x)
∑Q

q′=1 uAq′
(x)

(3.7)

is the normalised degree of fulfillment of ruleRq anduAq
is the degree of fulfillment of ruleRq.

Whenx is n-dimensional,uAq
is determined as a conjunction of the individual memberships in

the antecedents computed by a suitable t-norm,i.e.,

uAq
(x) = uAq1

(x1) ◦ · · · ◦ uAqn
(xn), (3.8)

wherexi, i = 1, . . . , n is thei-th component ofx and◦ denotes a t-norm. A t-norm is a binary

operation on the interval[0, 1] that satisfies at least the following axioms∀a, b, c ∈ [0, 1] (Klir
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and Yuan, 1995):

a ◦ 1 = a, boundary condition (3.9a)

b ≤ c⇒ a ◦ b ≤ a ◦ c, monotonicity (3.9b)

a ◦ b = b ◦ a, commutativity (3.9c)

a ◦ (b ◦ c) = (a ◦ b) ◦ c, associativity (3.9d)

Some commonly used t-norms are the min, product or Łukasiewicz. Since the premise part

of each PFS if-then rule does not necessarily include conditions on every element of the input

vector,x may include only elements of the input vector which are conditioned in the premise

of rule q, i.e.xq ⊂ x. Without loss of generality, to alleviate a cumbersome notation, we will

always use the generalx except where necessary for clarity of explanation.

An interesting characteristic of probabilistic fuzzy system is that based on the obtained

conditional output probability distribution function̂f(y|x) it is possible to calculate central

moments of this distribution of a random variable about the random variable’s mean, such as

variance, or standardized moments such as skewness and kurtosis. The various moments form

one set of values by which the properties of a probability distribution can be usefully charac-

terised. Before we define central moments of the output probability distribution function of a

probabilistic fuzzy system, it is necessary to introduce the necessary mathematical formulation.

Let g(y) be a real-valued function of a continuous random variabley with distribution func-

tion fy(y). The mathematical expectation ofg(y) is denoted byE(g(y)) and defined as

E(g(y)) =

∫ ∞

−∞

g(y)fy(y)dy (3.10)

For a continuous univariate probability distributionfy(y) the oth moment, witho ∈ N
+, is

defined as

mo,y = E(yo) =

∫ ∞

−∞

yofy(y)dy. (3.11)

and theoth central moment about the meanη

µo,y = E((y − η)o) =

∫ ∞

−∞

(y − η)ofy(y)dy. (3.12)
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The first four moments and central moments of a continuous random variabley are

m1,y = ηy, µ1,y = 0 (3.13)

m1,y =E(y
2), µ2,y = E((y − ηy)

2) = E(y2)− η2y = σ2
y (3.14)

m3,y =E(y
3), µ3,y = E((y − ηy)

3) = E(y3)− 3ηyσ
2
y − η3y (3.15)

m4,y =E(y
4), µ4,y,1= E((y − ηy)

4)

= E(y4)− 4ηyE(y
3) + 2η2yE(y

2) + 4η2yσ
2
y + η4y (3.16)

The first momentmy,1 of y is the meanηy and is a measure of centrality, while the second central

momentµ2,y is the varianceσ2
y . Skewness is defined in relation to the third central moment as

γ1,y =
µ3,y

σ3
y

. (3.17)

and kurtosis is defined with relation to the fourth central moment

ψ2,y =
µ4,y

σ4
y

(3.18)

and the excess kurtosis is defined as

γ2,y =
µ4,y

σ4
y

− 3. (3.19)

In the case of a probabilistic fuzzy system with rule base (3.2) and (3.5) with conditional

output probability distribution function̂f(y|x) the estimated expected output is given by the

weighted average of the estimated expected output of each rule according to (van den Berg

et al., 2013)

η̂y|x = µ̂1,y|x = Ê(y|x) =
Q
∑

q=1

βq(x)Ê(y|Aq) =

Q
∑

q=1

J
∑

j=1

βq(x)P̂r(Cj|Aq)z1,j , (3.20)

whereÊ(y|Aq) is the estimated expected output of each rule andzo,j is defined as

zo,j =

∫∞

−∞
y0uCj

(y)dy
∫∞

−∞
uCj

(y)dy
. (3.21)

For the case ofo = 1, (3.21) is the centroid of thejth output fuzzy set.
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The estimated conditional varianceσ̂2
y|x, can be calculated as (van den Berg et al., 2013)

σ̂2
y|x = µ̂2,y|x = Ê(y2|x)− (Ê(y|x))2 =

Q
∑

q=1

βq(x)Ê(y
2|Aq)− η̂2y|x

=

Q
∑

q=1

J
∑

j=1

βq(x)P̂r(Cj|Aq)z2,j − η̂2y|x (3.22)

where(Ê(y|Aq))
2 is the estimated variance of the output of each rule. Similarly, based on the

third and fourth standardized moments, the standardized moments skewness and kurtosis of the

conditional density output of a PFS is given by

γ̂1,y|x =
µ̂3,y|x

σ̂3
y|x

=

(

Q
∑

q=1

βq(x)Ê(y
3|Aq)− 3

Q
∑

q=1

βq(x)Ê(y|Aq)σ̂
2
y|x − η̂3y|x

)

(σ̂3
y|x)

−1

=

(

Q
∑

q=1

J
∑

j=1

βq(x)P̂r(Cj |Aq)z3,j

−3

Q
∑

q=1

J
∑

j=1

βq(x)P̂r(Cj|Aq)z1,j(η̂y|xσ̂
2
y|x)− η̂3y|x

)

(σ̂3
y|x)

−1

=

(

Q
∑

q=1

J
∑

j=1

βq(x)P̂r(Cj |Aq)
(

z3,j − 3z1,j η̂y|xσ̂
2
y|x

)

− η̂3y|x

)

(σ̂3
y|x)

−1 , (3.23)

and the kurtosis is

ψ2,y|x =
µ̂4,y|x

σ̂4
y|x

=

(

Q
∑

q=1

βq(x)Ê(y
4|Aq)− 4η̂y|x

Q
∑

q=1

βq(x)Ê(y
3|Aq)

+ 2η̂2y|x

Q
∑

q=1

βq(x)Ê(y
2|Aq) + 4η̂2y|xσ̂

2
y|x + η̂4y|x

)

(σ̂4
y|x)

−1

=

(

Q
∑

q=1

J
∑

j=1

βq(x)P̂r(Cj|Aq)
(

z4,j − 4z3,j + 2η̂2y|xz2,j

)

+ 4η̂2y|xσ̂
2
y|x + η̂4y|x

)

(σ̂4
y|x)

−1 , (3.24)

whereÊ(y|Aq) is the estimated expected output of each rule,(Ê(y|Aq))
2 is the estimated vari-

ance of the output of each rule.
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3.2.4 Necessary conditions for probabilistic fuzzy systems

There are conditions that a probabilistic fuzzy system has to follow such that the system out-

put will be a proper probability density function̂f(y|x) and the crisp outputs, expected value

Ê(y|x) and conditional variancêE(y2|x), exist. The necessary conditions are summarized in

the following theorem.

Theorem 3.1 LetR = ∪Q
q=1Rq be a fuzzy rule base consisting of the rules of type(3.1). The

necessary conditions for the output of a probabilistic fuzzy system of the form(3.2)or (3.5), with

an input spaceX partitioned inq = 1, . . . , Q fuzzy setsAq and output spaceY partitioned in

j = 1, . . . , J fuzzy setsCj, to be a proper probability distribution functioni.e.
∫∞

−∞
f(y|x)dy =

1 and that the four moments defined by(3.20), (3.22), (3.23)and (3.24)exist are:

J
∑

j=1

P̂r(Cj|Aq) = 1 (3.25)

P̂r(Cj|Aq) ≥ 0 (3.26)

uAq
(x) > 0 (3.27)

uCj
(x) > 0 (3.28)

Q
∑

q=1

βq(x) = 1 (3.29)

∫ ∞

−∞

uCj
(y)dy <∞ j = 1, . . . , J (3.30)

Proof: Condition (3.25) and (3.26) are regular conditions that probabilities should sat-

isfy, while conditions (3.27) and (3.28) are regular conditions that membership values should

satisfy. Conditions (3.25), (3.29) and (3.30) ensure that the output of the system is a proper pdf,

∫ ∞

−∞

f̂(y|x)dy =
∫ ∞

−∞

βq(x)f̂(y|Aq)dy

=

∫ ∞

−∞

Q
∑

q=1

βq(x)

∑J
j=1 P̂r(Cj|Aq)uCj

(y)
∫∞

−∞
uCj

(y)dy
dy

=
J
∑

j=1

Q
∑

q=1

βq(x)P̂r(Cj|Aq)

∫∞

−∞
uCj

(y)dy
∫∞

−∞
uCj

(y)dy
= 1. (3.31)

Condition (3.30) also ensures that the four moments defined by (3.20), (3.22), (3.23) and (3.24),

as well as other higher moments exist. Given that all moments
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m̂1,y|Aq
= E(yn|Aq) =

∫ ∞

−∞

ynf̂(y|Aq)dy (3.32)

and central moments

µ̂n,y|Aq
= Ê((y|Aq − η)n) =

∫ ∞

−∞

(y − η)nf̂(y|Aq)dy. (3.33)

depend on fuzzy histogram (3.3)

f̂(y|Aq) =

J
∑

j=1

P̂r(Cj|Aq)uCj
(y)

∫∞

−∞
uCj

(y)dy
<∞ . (3.34)

We note that (3.25) and (3.26) are functions defined on the set of conditional events, without

assuming any given algebraic structure. Examples of definitions of conditional probabilities of

fuzzy events that satisfy the classical axioms of conditional probabilities as given by de Finetti

(1949) and Popper (1959) can be found in Coletti and Scozzafava (2006) and Baldwin et al.

(1996).

Although not strictly necessary, a desirable characteristic of a probabilistic fuzzy system

may be that the sum of the probabilities of the fuzzy consequents equals one. For this it is

necessary to ensure that the output space is well-formed,i.e. the output membership values

satisfy (van den Berg et al., 2004)

J
∑

j=1

uCj
(y) = 1, ∀y ∈ Y. (3.35)

This condition limits the output of a probabilistic fuzzy system as Section 3.4.2 shows.

3.2.5 Probabilistic fuzzy systems with multiple outputs

The results presented in the previous sections can be extended for the case of multiple out-

puts, following the distinction between fuzzy input and conditional density output of (3.2) and

stochastic mapping between fuzzy antecedents and fuzzy consequents of (3.5). The basic idea

is that each one of thed outputs will have an independent probability density function condi-

tional on the same input variablesx, making the output of each PFS rule is defined by multiple
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densities. The fuzzy histogram model rules can be written as

Rq : If x isAq thenf1(y) is f1(y1|Aq)andf2(y) is f2(y2|Aq) . . .andfd(y) is fd(yd|Aq) , (3.36)

and the probabilistic fuzzy output rules are

R̂q: If x isAq theny1 isC1,1 with P̂r(C1,1|Aq) and. . . yd isCd,1 with P̂r(Cd,1|Aq) and

. . .

y1 isC1,J with P̂r(C1,J |Aq) and. . . yd isCd,J with P̂r(Cd,J |Aq). (3.37)

For all d outputs,P̂r(Cd,J |Aq) must satisfy necessary conditions (3.25) and (3.26), whileCd,J

must satisfy (3.28) and (3.30).

If conditional probability parameters are obtained by maximizing the likelihood function as

explained in Section 3.4.2, the likelihood function should take into account the multiple out-

put densities defined by each rule, and combine these densities when deriving the likelihood

function. If the multiple outputs of each rule output are assumed to be independent of each

other, derivation of the likelihood is straightforward,i.e. one only has to multiply the condi-

tional densities obtained in each rule output. This assumption is not very restrictive, since the

independence only implies that the ‘unexplained’ part of the output is independent, given the

relation with antecedent variables.

The second method of obtaining parameter estimates described in Section 3.4.2 is based on

minimizing the mean squared error. This optimization does not require an explicit assumption

on the independence of multiple outputs of each rule. However, since the objective function

is the average of squared errors, each squared error has the same weight in the objective func-

tion. Possible dependency between these errors is not incorporated in this objective function.

Therefore minimizing the mean squared error is implicitly similar to maximizing the likelihood

function which is based on independent errors.

3.3 Function equivalence to systems with deterministic out-

put

In this section, we consider the function equivalence of the probabilistic fuzzy system described

in Section 3.2 to systems with deterministic output. In particular, we are interested in the rela-

tion between probabilistic fuzzy systems and Takagi–Sugeno (TS) fuzzy systems (Takagi and

Sugeno, 1985), Mamdani fuzzy systems (Mamdani and Gaines, 1981) and radial basis func-

tion network (Broomhead and Lowe, 1988; Moody and Darken, 1989). The relation between
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these systems is well known (Hunt et al., 1996), but the relation with probabilistic fuzzy system

helps to explain its success for function approximation. A practical relevance of the functional

equivalence result is that learning algorithms, optimization techniques and design issues can be

transferred across different paradigms. Furthermore, it also allows to interpret models trans-

versely across different modeling paradigms.

The results presented in this section allow to analyse and understand different aspects of a

probabilistic fuzzy system, for the purpose of designing such systems.

3.3.1 Additive fuzzy models

In addition to the probabilistic reasoning presented in Section 3.2.2, in this section we depar-

ture from this definition and instead derive a probabilistic fuzzy system from an additive fuzzy

system. This deterministic fuzzy system has rule base multiplicative implication and additive

aggregation, where the crisp model output is obtained using the center of gravity defuzzification

method.

LetR = ∪Q
q=1Rq be a rule base for a additive fuzzy system of the type

RuleR̂q: If x isAq then y isC1 with w(Aq, C1) and

. . .

y isCJ with w(Aq, CJ) ,

(3.38)

wherew(Aq, Cj) ∈ R≥0 are non-negative weights. The system defined by (3.38) is similar

to the standard additive model (Kosko, 1997, 1998) but in the former, the consequents are not

directly dependent onx.

Although the fuzzy rule base system defined by (3.38) can be obtained by replacing the

conditional probabilitiesP̂r(Cj|Aq) by non-negative weightsw(Aq, Cj) ∈ R≥0 in the fuzzy

rule system (3.5), the crisp output of both systems is different, as the following theorem shows.

Theorem 3.2 LetR = ∪Q
q=1Rq be a fuzzy rule base as defined by(3.38)such thatuAq

(x) >

0, ∀q and the output space follows(3.35), and the rule base uses multiplicative implication

and additive aggregation. Then the crisp model outputy∗ obtained using the center of gravity

defuzzification method is

y∗ =

∑Q

q=1

∑J

j=1 βq(x)w(Aq, Cj)v1,jz1,j
∑Q

q=1

∑J
j=1 βq(x)w(Aq, Cj)v1,j

, (3.39)
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wherez1,j is given by(3.21)andv1,j is the area of thejth output fuzzy set defined by

v1,j =

∫ ∞

−∞

uCj
(y)dy . (3.40)

Proof The center of gravity defuzzification method is given by

y∗ =

∫∞

−∞
yχ(x, y)dy

∫∞

−∞
χ(x, y)dy

, (3.41)

whereχ(x, y) is the output of the fuzzy system under consideration. For the case of the additive

fuzzy system (3.38) using with multiplicative implication and additive aggregation the output is

χ(x, y) =

Q
∑

q=1

J
∑

j=1

βq(x)w(Aq, Cj)uCj
(y) . (3.42)

Substituting (3.42) into (3.41) we obtain

y∗=

∫∞

−∞
y
∑Q

q=1

∑J

j=1 βq(x)w(Aq, Cj)uCj
(y)dy

∫∞

−∞

∑Q
q=1

∑J
j=1 βq(x)w(Aq, Cj)uCj

(y)dy

=

∑Q
q=1

∑J
j=1 βq(x)w(Aq, Cj)

∫∞

−∞
yuCj

(y)dy
∑Q

q=1

∑J

j=1 βq(x)w(Aq, Cj)
∫∞

−∞
uCj

(y)dy

=

∑Q

q=1

∑J

j=1 βq(x)w(Aq, Cj)
∫∞

−∞
uCj

(y)dy
∫
∞

−∞
yuCj

(y)dy
∫
∞

−∞
uCj

(y)dy

∑Q

q=1

∑J

j=1 βq(x)w(Aq, Cj)
∫∞

−∞
uCj

(y)dy

=

∑Q
q=1

∑J
j=1 βq(x)w(Aq, Cj)v1,jz1,j

∑Q

q=1

∑J

j=1 βq(x)w(Aq, Cj)v1,j
. (3.43)

�

Starting from an additive fuzzy system defined in (3.38), it is possible to obtain a proba-

bilistic fuzzy system. Before formalizing this result we introduce the following definition of a

probability kernel.

Definition 3.3 A kernel is a mappingK : X ×Y → R≥0 from the measurable space(X,X ) to

the measurable space(Y,Y). The kernelK is a probability kernel if it is defined as a probability

measure on(Y,Y).

Given this definition we can now prove that a probabilistic fuzzy system can be obtained starting

from the fuzzy system defined in (3.38).
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Theorem 3.4 If the mappingw(Aq, Cj) is defined as a probability kernel and each output con-

sequentCj are functions defined on a random variable space then the output of the PFS is a

conditional probability density fory givenx. Under this definition, the fuzzy rule base in(3.38)

has a functional equivalent to the PFS in(3.5) and the crisp output(3.39) has a functional

equivalent to the conditional output of the PFS in(3.6).

Proof The defined non-negative weightsw(Aq, Cj) : (X × Y ) → R≥0 form a kernel on the

measurable space(Rn × R). If w(Aq, Cj) is also defined as a probability measure on(Y,Y),

such that
∑J

j=1w(Aq, Cj) = 1, ∀q = 1, . . . , Q then according to Definition 3.3,w(Aq, Cj) is a

probability kernel. We recall that using (3.7) we obtain
∑Q

q=1 βq(x) = 1. Furthermore, since

the output fuzzy setsCj are admissible functions for defining random variables then they are

limited to those for which a probability distribution exists. A simple form to ensure this is to

normalize them

u
C

′

j
=

uCj
(y)

∫∞

−∞
uCj

(y)dy
. (3.44)

The output of the fuzzy systemχ(x, y) in (3.41) is then a conditional density function forY

givenX such that:

∫ ∞

−∞

χ(x, y)dy=

∫ ∞

−∞

Q
∑

q=1

J
∑

j=1

βq(x)w(Aq, Cj)uC′

j
dy

=

Q
∑

q=1

J
∑

j=1

βq(x)w(Aq, Cj)

∫∞

−∞
uCj

(y)
∫∞

−∞
uCj

(y)dy
= 1 . (3.45)

In the case thatw(Aq, Cj) is defined as a probability kernel, the additive fuzzy system de-

fined by the rule base (3.38) is a probabilistic fuzzy system as presented in (3.5). Furthermore,

the center of gravity output (3.39) of the additive fuzzy system has a functional equivalent to

the expectation of the conditional output of the PFS (3.6)

y∗=

∑Q

q=1

∑J

j=1 βq(x)w(Aq, Cj)v1,jz1,j
∑Q

q=1

∑J
j=1 βq(x)w(Aq, Cj)v1,j

=

Q
∑

q=1

J
∑

j=1

βq(x)w(Aq, Cj)z1,j . (3.46)

Sincew(Aq, Cj) is a probability kernel, (3.46) is equivalent to (3.20).

�

As a result of theorem 3.2 and theorem 3.4, a Mamdani fuzzy model can be regarded as a

special case of the fuzzy system defined in (3.38), or equivalently the system defined by (3.5).
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A Mamdani fuzzy model is recovered when the system is purely deterministic by setting setting

for all q = 1, . . . , Q, ∃κ ∈ {1 . . . , J} such thatP̂r(Cκ|Aq) = 1 andP̂r(Cj|Aq) = 0, j 6= κ i.e.,

only one of the possible consequents is certain for each ruleQ.

The previous results have shown that a probabilistic fuzzy system defined by (3.5) can be ob-

tained starting from a additive fuzzy system (3.38). An important aspect is that sincew(Aq, Cj)

is defined as a probability kernel then it has a functional equivalent toPr(Cj|Aq) in (3.5), im-

plying that
∑J

j=1 P̂r(Cj|Aq) = 1 andP̂r(Cj|Aq) ≥ 0. In this chapter we do not assume any

particular algebraic structure for the conditional probability of fuzzy events. There are several

examples of definitions of conditional probabilities of fuzzy events that satisfy the classical

axioms of conditional probabilities as given by de Finetti (1949) and Popper (1959) that can

be found in Coletti and Scozzafava (2006); Baldwin et al. (1996); Singpurwalla and Booker

(2004). This is an important issue that needs to be studied closely in the future.

It is also interesting to note that the system defined by (3.38) can be transformed in a fuzzy

relational model (Pedrycz, 1985) whenw(Aq, Cj) is replaced by the fuzzy relationu(Aq, Cj).

Similarly to a fuzzy relational model, a probabilistic fuzzy system can also be fine tuned by

modifying the probability parameterŝPr(Cj|Aq), while maintaining the fuzzy input and fuzzy

output space constant. We stress that a fuzzy relational model and a probabilistic fuzzy system

have different interpretations, based on the nature of the uncertainty of the relation and output

being modelled, as described in Section 3.1. In a fuzzy relational model the elements of the

relation represent the strength of association between the fuzzy sets, while in the case of a

fuzzy probabilistic model they are a stochastic mapping between fuzzy sets. Furthermore, the

output fuzzy sets of a probabilistic fuzzy system are defined in the space of a stochastic variable

y. These differences leads to different nature of outputs, albeit under certain circumstances,

there is a functional equivalence between both models crisp output. In the general case that

w(Aq, Cj) are non-negative weights, or in the case of a fuzzy relational modelu(Aq, Cj) are

fuzzy relations, the output of such a system is not a proper probability density function.

3.3.2 Zero-order Takagi-Sugeno fuzzy models

The relation between the deterministic output of a zero-order Takagi–Sugeno (TS) system (Tak-

agi and Sugeno, 1985) and the expected output of a probabilistic fuzzy system, was previously

studied in van den Berg et al. (2013). In this section we show the main result. A zero-order

Takagi–Sugeno fuzzy system withQ rules, antecedent fuzzy setsAq and consequent parameters
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bq has the same output of a probabilistic fuzzy system, provided that (van den Berg et al., 2013)

bq =

J
∑

j=1

P̂r(Cj |Aq)zj . (3.47)

This result suggests that the PFS as a deterministic system belongs to a general class of

general function approximators, called the basis functions expansion (Friedman, 1991) taking

the form

y =

Q
∑

q=1

φq(x)bq . (3.48)

Radial basis function networks also belong to this class of systems and are discussed in the

following section.

3.3.3 Radial basis function networks

The type of network under consideration is described by (Hunt et al., 1996; Figueiredo, 2000)

y = f(x) =

nθ
∑

q=1

θq(x)φq(xq) (3.49)

wherenθ is the number of nonlinear processing units (or radial basis function)φq(xq) where

each unit input vectorxq ⊂ x andθq(x) is the network weighting function. A normalized form

of the network is sometimes used and is described by

y = f(x) =

∑nθ

q=1 θq(x)φq(xq)
∑nθ

q=1 φq(xq)
. (3.50)

A common form of basis function is the radial Gaussian form described by

φq(xq) = exp [−(xq − λq)
′∆q(xq − λq)] , (3.51)

whereλq ∈ R
nxq are the center vector of the basis function,∆q ∈ R

nxq×nxq is a diagonal width

parameter matrix∆q = diag[δ−2
q1 . . . δ

−2
qnxq

] andδq is the width of each basis function.

The radial basis function described above is sometimes used in its standard form (Heimes

and van Heuveln, 1998; Bugmann, 1998). The standard Gaussian basis function applies the

same width parameter in each dimension,i.e.,∆q = diag[δ−2
q . . . δ−2

q ], each unit processes the
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whole input vector,i.e.,nxq
= nx andφq(xq) = φq(x), and the local models are constants,i.e.,

θq(x) = θq.

The functional equivalence between a probabilistic fuzzy system and a radial basis function

is presented in the following theorem.

Theorem 3.5 A generalized Gaussian radial basis function defined by(3.50)and(3.51)is func-

tionally equivalent to a probabilistic fuzzy system defined byR = ∪Q
q=1Rq rules of the form(3.2)

or (3.5)meeting conditions(3.25)-(3.30), if the following conditions are satisfied:

1. The number of radial basis function units is equal to the number of rules in the proba-

bilistic fuzzy system,i.e.,nθ = Q.

2. The output of each rule is the expected output of each rule fuzzy histogram,i.e.Ê(y|Aq) =
∫∞

−∞
yf̂(y|Aq)dy.

3. The local models of the radial basis function network are constants,i.e.,θq(x) = θq.

4. The membership functions within each rule are chosen as Gaussian functions.

5. The t-norm operator used to compute each rule’s firing strength is multiplication.

Proof: Under condition 4) each probabilistic fuzzy rule consists of the composition of

the univariate Gaussian functions which define the membership values in the premise part of

each rule. Each univariate membership function has the form

uAqi
(xqi) = exp

[

−(xqi − λqi)
2

δ2qi

]

, i = i, . . . , n (3.52)

and this defines theith membership value of theqth rule. Under condition 5) the firing strength

of each rule is given by

uAq
(xq) =

n
∏

i=1

uAqi
(xqi) (3.53)

with q = 1, . . . , Q because of condition 1). We then obtain

uAq
(xq) = exp

[

−(xq1 − λq1)
2

δ2q1
− . . .− (xqn − λqn)

2

δ2qn

]

= exp [−(xq − λq)
′∆q(xq − λq)] (3.54)
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with ∆q = diag[δ−2
q1 . . . δ

−2
qnxq

]. Under condition 2) the output of each rule of the probabilistic

fuzzy system is given by

Ê(y|Aq) =

∫ ∞

−∞

yf̂(y|Aq)dy =

∫ ∞

−∞

y

∑J
j=1 P̂r(Cj|Aq)uCj

(y)
∫∞

−∞
uCj

(y)dy
dy

=
J
∑

j=1

P̂r(Cj |Aq)zj = bq (3.55)

We can now write the expected output of a PFS by combining (3.7) and (3.55) as

Ê(y|x) = uAq
(x)

∑Q
q′=1 uAq′

(x)

J
∑

j=1

P̂r(Cj |Aq)z1,j =
uAq

(x)
∑Q

q′=1 uAq′
(x)

bq. (3.56)

Under condition 3) the normalized radial basis function (3.50) becomes

y = f(x) =

∑nθ

q=1 θqφq(xq)
∑nθ

q=1 φq(xq)
. (3.57)

Comparing (3.56) and (3.54) with (3.57) and (3.51) the functional equivalence is established

since the firing strength of each rule functionally equates to the activation of the radial basis

function,i.e.,uAq
(xq) = φq(xq) andbq = θq.

We again note that the premise part of each PFS if-then rule does not necessarily include

conditions on every element of the input vector. Thus,xq consists only of the elements of the

input vector which are conditioned in the premise of ruleq.

The kind of radial basis function which has a functional equivalent to PFS are not the stan-

dard Gaussian RBF because there are no restriction on the widths of the basis functions and

each unit in the network has as input only a subsetxq of the input vectorx, but it is necessary

to restrict the generalized Gaussian RBF such that weightsθq are constant. In this case, the

weightsθq can be seen as local models whose validity is defined by the activation valueφq(xq).

The network smoothly joins these local models together through interpolation to form the global

model. The basis function are defined on hyper-ellipsoids in the input space, indicating that the

univariate functions making up an RBF unit are less interdependent than if they were restricted.

The results presented in this section provide motivation for the success of probabilistic fuzzy

systems for function approximation. Although outside the scope of this chapter, the results pre-

sented in this section indicate that, similarly to all deterministic systems discussed, a probabilis-

tic fuzzy system will under certain conditions serve as an universal approximator of continuous

functions defined on compact domains with arbitrarily high approximation accuracy. We plan

to devote our attention to these conditions in a future study.
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3.4 Probabilistic fuzzy system parameters

A practical relevance of the functional equivalence described in the previous section is that

learning algorithms, optimization techniques and design issues can be transferred to probabilis-

tic fuzzy systems. Similar to Mamdani, relational, and zero order Takagi-Sugeno fuzzy models,

PFS have constant consequents and thus also similar interpolation properties. Therefore, the

method to construct the antecedent membership functions can be similar to one of these mod-

els.

Depending on whether the objective is function approximation or density approximation,

the parameters of a probabilistic fuzzy system can be estimated in different ways. Function

approximation relies on the interpolation between the antecedents and consequents. However,

for the case of density approximation, we may be interested in regions of the space with the

same local density model (Almeida and Kaymak, 2009a; Almeida et al., 2012a).

In this section we provide a possible way to obtain the probabilistic fuzzy system parameters

using supervised learning. Supervised learning is concerned with the prediction of a quantita-

tive measure of the output variabley, based on a vectorx = (x1, . . . , xn) of n observed input

variables. Letx be an arbitrary vector, andy the corresponding unknown output. In classical

regression literature, the objective is to determine the best mathematical expression describing

the functional relationship between one response and one or more independent variables. Fol-

lowing the nomenclature used, the problem is to obtain some information ony from the training

setL = {(xp, yp)}Pp=1 of P observations of the input and output variables.

In this chapter we do not consider the aspect of optimal design. Although the probabilis-

tic fuzzy system approximates conditional pdf’s and consequently crisp outputs, the resulting

fuzzy system need not be optimal in terms of the number of rules, the definition of antecedent

membership functions and consequent membership functions. Particular choices can provide

better interpolation for different data sets.

3.4.1 Antecedent membership functions

In this work we determine the parameters of the antecedent membership functions by using a

fuzzy clustering heuristic, that uses the fuzzy c-means (Bezdek, 1981) or the Gustafson-Kessel

clustering algorithm (Gustafson and Kessel, 1979), on the product space of the antecedent vari-

ables, to obtain a fuzzy partition matrixU = [uqp] for p = 1, . . . , P samples.
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Conditional density estimation

For the case of conditional density approximation, each cluster obtained by product-space clus-

tering of the identification data set can be regarded as an approximation of the regression density

distribution. The antecedent fuzzy setsAqi can be computed analytically in the antecedent prod-

uct space, or can be extracted from the fuzzy partition matrix by projections. In order to obtain

membership functions for the antecedent fuzzy setsAqi, the multidimensional fuzzy set defined

pointwise in theith row of the partition matrixU are projected onto the axes of the antecedent

variablesxn. This is expressed by the point-wise projection operator of the form:

uAqi
(xip) = proji(uqp). (3.58)

The point-wise defined fuzzy setsAqi are then approximated by appropriate parametric func-

tions, such as Gaussian membership functions

f(xq;λqi, δqi) = exp

(−(xqi − λqi)
2

2δ2qi

)

, (3.59)

uAqi
(xip) = f(xip; δ

1
qi, λ

1
qi, δ

2
qi, λ

2
qi) = f 1(xip; δ

1
qi, λ

1
qi)f

2(xip; δ
2
qi, λ

2
qi) (3.60)

where

f 1(xip; δ
1
qi, λ

1
qi) =







exp
(

−(xqi−λ1
qi)

2

2(δ1qi)
2

)

xqi ≤ λ1qi

1 otherwise
(3.61)

f 2(xip; δ
2
qi, λ

2
qi) =







exp
(

−(xqi−λ2
qi)

2

2(δ2qi)
2

)

xqi > λ2qi

1 otherwise
(3.62)

or triangular membership functions

f(xq; a
1
q , a

2
q, a

3
q) = max

(

min

(

xq − a1q
a2q − a1q

,
a3q − xq

a3q − a2q

)

, 0

)

. (3.63)

In general, it is considered that an advantage of this method over the multidimensional member-

ship functions is that the projected membership functions can always be approximated in such

a form that convex fuzzy sets are obtained.

The smoothness of the model output depends directly on the smoothness of the antecedent

membership functions. This restricts the choice of the type of the membership functions. For

instance, the trapezoidal membership functions result in nonsmooth outputs.
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Figure 3.2: Cores of triangular membership function are chosen at the intersection of adjacent

Gaussian memberhip functions and at the extreme points of the domain.

Function approximation

For the case of function approximation, the main idea is to construct a system such that the

linear submodel represented by one cluster is obtained by interpolation among linguistic fuzzy

rules. For this, a heuristic can be used to transform the local submodels such that they will

interpolate between rules (Babuška, 1998). Formally this transformation can be described as

follows. Consider the antecedents obtained in the previous section, where the fuzzy sets are

ordered such that

sup core(Aq) < inf core(Aq+1), q = 1, 2, . . . , Q− 1

wherecore(A) = {x|uA(x) = 1}.

This condition also ensures that the cores of the fuzzy setsAq are disjunct. DenoteA′ =

{a′q|q = 1, . . . , Q + 1} the set of the intersection points of the adjacent fuzzy setsAq and the

infimum and supremum of the domainX:

A′ = infX ∪ {core(norm(Aq ∩ Aq+1))|q = 1, . . . , Q− 1} ∪ supX,

wherenorm(A) denotes the normalization of a fuzzy set,i.e., A′ = norm(A) ⇔ uA′(x) =

uA(x)/ sup
x∈X

uA(x). Triangular membership functionsA′
q of the linguistic model can be con-

structed such that they form a partition and their cores are the pointsa′q, defined by:
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uA′

1
(x) = max

(

0,min

(

1,
a′2 − x

a′2 − a′1

))

, (3.64a)

uA′
q
(x) = max

(

0,min

(

x− a′q−1

a′q − a′q−1

,
a′q+1 − x

a′q+1 − a′q

))

, (3.64b)

uA′

Q+1
(x) = max

(

0,min

(

0,
x− a′Q

a′Q+1 − a′Q

))

. (3.64c)

This idea is illustrated in Fig. 3.2, where the core of five triangular membership functions, as

defined by (3.63), are chosen at the intersection of adjacent Gaussian memberhip functions

defined by (3.59) and at the extreme points of the domain. In the case of multidimensional

Aq the membership functions are derived per variablexi. To obtain a complete PFS model, it

remains to identify the rule consequents for all combinations of the antecedent fuzzy sets and

stochastic mapping between input and output fuzzy sets.

3.4.2 Consequent membership functions

The consequent membership functions are constrained according to condition (3.30). A simple

way to satisfy condition (3.30) is to define the consequent membership functions in a com-

pact space, for example using triangular membership functions with trapezoidal membership

functions at the edges of the domain to ensure that the domain is always covered by the fuzzy

partition. Alternatively, it is possible to use a membership function with infinitely large support,

such as the Guassian membership function.

Conditional density estimation

The accuracy of the approximation of the conditional probability density function depends on

the number of consequent fuzzy setsCj on the output domain, the fuzzy partitioning of the

output space (in conjunction with the input space), or on the shape of the membership functions.

The distribution of the membership functions can be uniform over the universe of discourse, or

it can be varying with more membership functions placed towards the origin (Xu and Kaymak,

2008) or towards the edges of the universe of discourse (Almeida and Kaymak, 2009a). This

varying placement allows to better capture the variability in regions with more membership

functions. The smoothness of the conditional probability density function depends directly on

the smoothness of the consequent membership functions. The output of a probabilistic fuzzy

system using Gaussian membership functions will have a smoother probability density function

than the equivalent system using triangular membership functions.
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We already mentioned that using a fuzzy partition already improves the approximation of

the conditional pdf significantly (van den Berg et al., 2004). Similarly, increasing the number

of rules will improve the accuracy of interpolation between the rules. Moreover, the danger that

the resulting system overfits the (normally noisy) data (Bishop, 1995) should be dealt with as

well.

Function approximation

Analysing (3.6) and (3.20), we note that the calculation of
uCj

(y)
∫
∞

−∞
uCj

(y)dy
andz1,j can be performed

off-line and these sets can be directly replaced by the defuzzified values. Furthermore, the shape

of the output fuzzy sets has no influence on the resulting crisp value given by (3.20), since only

centroids of these sets are considered. This indicates a high computational efficiency of these

models, after identification.

An advantage of a probabilistic fuzzy system is that the outcomes of the individual rules

are not restricted to the grid given by the centroids of the output fuzzy sets. This implies that

the outputs of a probabilistic fuzzy system as defined in Section 3.2.3 can be fine-tuned without

changing the consequent fuzzy setsCj using the conditional probability parametersPr(Cj|Aq).

A consequence of this additional degree of freedom is that there are more free parameters, which

poses problems in identification. This advantage is lost when using the definition of conditional

probability of fuzzy events as defined by Zadeh (1968) and used in Tang et al. (2012), since this

definition depends on the location of the antecedent and consequent fuzzy sets.

3.4.3 Conditional probability parameters

In conjunction with defining the number of rules, antecedent and consequent membership func-

tions, it is also necessary to estimate the conditional probabilities in a probabilistic fuzzy system.

Let P = {P̂ r(C1|A1), . . . , P̂ r(CJ |AQ)} be the parameters to be optimized which conform to

constraints (3.25) and (3.26). The type of estimation will vary according to the desired objec-

tive. For the case of functions approximation the purpose is to minimize the error between the

estimated model output and the data, while for the case of density approximation the objective

is to consider the estimation of the whole conditional distribution.

Conditional density estimation

Assuming that conditional random variablesyt | xt andyk | xk are independent fork 6= t with

t = 1, ..., T , the likelihood of the data can be written as a product of the conditional density of

all observed values. The probability parametersP̂r(Cj |Aq) that maximize the likelihood of the
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data set can be obtained by maximizing the non-linear function (Waltman et al., 2005b)

L(Y | X) =
T
∏

t=1

f(yt | xt) =
T
∏

t=1

Q
∑

q=1

βq(xt)f(yt | Aq)

=

T
∏

t=1

Q
∑

q=1

βq(xt)

J
∑

j=1

P̂ r(Cj | Aq)
uCj

(yt)
∫∞

−∞
uCj

(yt)dyt
(3.65)

whereY = {y1, ..., yT} andX = {x1, ..., xT} and constraints (3.25)–(3.26) are satisfied. Note

that since we are dealing with time series data in the empirical application, we index observa-

tions witht = 1, . . . , T for convenience. Similar to the case of least-mean squares estimation,

this function can be maximized using a gradient search algorithm. Since (3.65) is concave the

maximization problem is convex. Other search heuristics can be used to estimate the probability

parameterŝPr(Cj |Aq), such as genetic algorithms (Almeida and Kaymak, 2009b).

Function approximation

The objective function in this case is the squared sums of prediction error. The minimization of

this function can rely on minimizing the prediction error such that the difference between the

real output and the estimated expected output of a probabilistic fuzzy system are minimized.

For observationst = 1, . . . , T the problem can be defined as:

f(P) =
1

T

T
∑

t=1

ft(P) =
1

T

T
∑

t=1

(

Ê(yt|xt)− yt

)2

, (3.66)

where the expected output̂E(yt|xt) of a probabilistic fuzzy system given by (3.20) can be

written as:

Ê(yt|xt) =
Q
∑

q=1

βq(xt)
J
∑

j=1

Pr(Cj|Aq)zj

=

Q
∑

q=1

βq(xt)
J−1
∑

j=1

Pr(Cj|Aq)zj +

Q
∑

q=1

βq(xt)Pr(CJ |Aq)zJ

=

Q
∑

q=1

βq(xt)

(

J−1
∑

j=1

Pr(Cj|Aq)zj +

(

1−
J−1
∑

j=1

Pr(Cj|Aq)

)

zJ

)

(3.67)

such thatP = {Pr(C1|A1), . . . , P r(CJ−1|AQ)} are the parameters to be optimized which

conform to constraints (3.25) and (3.26). This is a concave problem as the following theorem

shows.
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Theorem 3.6 The mean square error functionf(P) given by(3.66)is convex.

Proof:

Since the sum of convex functions is convex, to prove the convexity of (3.66), it is sufficient

to prove thatft(P) is a convex function for allt. From (3.66), the first and the second derivatives

of ft(P) for j = 1, . . . , J − 1, j′ = 1, . . . , J − 1 q = 1, . . . , Q, q′ = 1, . . . , Q are:

∂ft(P)

∂P (Cj |Aq)
= 2etβq(xt) (zj − zJ) (3.68)

∂2ft(P)

∂P (Cj |Aq)∂P (Cj′|Aq′)
= 2βq(xt)βq′(xt) (zj − zJ) (zj′ − zJ ) (3.69)

whereet = Ê(yt|xt)− yt.

For q = q′ andj = j′, the second derivative (3.69) is non-negative:

∂2ft(P)

∂P (Cj|Aq)2
= 2βq(xt)

2 (zj − zJ)
2 ≥ 0 . (3.70)

Hence, the diagonal elements of the Hessian matrix are non-negative.

Let ∆M denote the determinant of the minors of the Hessian using the Laplace expansion,

given by theM ×M matrix of second derivatives:

∆M =
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(3.71)

For the case ofM = 2, using (3.69), the determinant of the2× 2 minor matrix is:

∆2 =

∣

∣

∣

∣

∣

∣

∂2ft(P)
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∣

∣

∣
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= βq1(xt)βq2(xt) (zj1 − zJ ) (zj2 − zJ)βq4(xt)βq3(xt) (zj3 − zJ) (zj4 − zJ)

−βq1(xt)βq3(xt) (zj1 − zJ) (zj4 − zJ) βq4(xt)βq2(xt) (zj3 − zJ) (zj2 − zJ )

= 0 ,

with q1, . . . , q4 ∈ {1, . . . , Q} such thatqm 6= qm′ for m 6= m′ andj1, . . . , j4 ∈ {1, . . . , J} such

thatjm 6= jm′ for m 6= m′.

Applying the Laplace determinant expansion, (3.72) implies also that∆M = 0 for any

M ≥ 2. From (3.70) and (3.72) we can conclude that the Hessian matrix is positive semidefinite.
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Sinceft(P) is a convex function for allt and the sum of convex functions is convex, the MSE

given by (3.66) is therefore also convex.

In the nonlinear programming problem of finding estimates of the probability paramenters in

a probabilistic fuzzy system, the functions in the constraints, given by (3.25)–(3.30), are linear,

from which it follows that these functions are convex. Since the objective function is concave,

the nonlinear programming problem is a convex programming problem. Convex programming

problems have the convenient property that each local optimum is also a global optimum.

3.5 Examples: Synthetic data parameter estimation

In this section we illustrate the performance of the probabilistic fuzzy system and discuss the

estimation issues using a known data generating processes to simulate data. Doing so, allows us

to study the approximation capabilities of the probabilistic fuzzy system,i.e. perform function

approximation and conditional density estimation. It will also serve to show the influence of the

different parameters of a probabilistic fuzzy system and estimation procedures, as explained in

Section 3.4.

In the following sections, the results displayed are only for one run. This is due to the fact

that we are using simple simulated functions, which are kept constant throughout the experi-

ments. Barring numerical problems, which were not detected during the experiments, the most

likely source of differing results would be the clustering heuristic for the antecedent space. To

solve this issue, all clustering algorithms optimization would stop when the error is less than108

and the staibility of the solutions was checked with multiple runs. The obtained output mem-

bership functions and probability parameters solutions are unique as discussed in Section 3.4.3.

3.5.1 Function approximation

In this section, we consider a simulated dataset from a non-linear system. To facilitate visuali-

sation, we choose a system of the form

y(x) = 0.01 sin(0.0007x2)x+ ǫx, ǫx ∼ NID(0, 0.04) , (3.72)

with x ∈ [0, 100]. We used a training setL = {(xp, yp)} with a uniform sample of size

P = 1981. To identify the antecedent membership functions parameters of a PFS we used a

fuzzy clustering heuristic as described in Section 3.4.1 on the regression hyperplane ofy in x.

The obtained antecedent membership functions are of the triangular form given by (3.63). As
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Figure 3.3: Function approximation: Diagram of a PFS with 6 input MF and 9 output MF.

discussed in Section 3.4.2, for function approximation, only the centroid of the output mem-

bership functions influences the expected output of a PFS. Thus, we settled on triangular mem-

bership functions, uniformly distributed between a minimum and maximum value. The prob-

ability parameters are obtained by minimizing the mean square error (3.66), as discussed in

Section 3.4.3.

To evaluate the obtained results, we use the mean square error between the estimated crisp

output of a PFŜηy|x and the observedy, defined as

MSE= η̂y|x − y . (3.73)

Note that for a large number of observations, the MSE should converge to the variance of

the error termǫx since the errors are NID. In the first experiment we are interested in performing

an empirical study of the influence of the number of input and output membership function of a

PFS on the obtained approximation error. For the output membership function only the number

varies. The overlap is the same irrespective of the number of membership functions such that

the output space is well formed between the minimum and maximum values of sampledy,

satisfying (3.35). The results obtained for a PFS derived with a FCM clustering heuristic are

shown in Table 3.1 while the results obtained for a PFS derived with a GK clustering heuristic

are shown in Table 3.2.

Table 3.1 and Table 3.2 show that as we increase the number or input membership functions

and output membership functions the mean square error decreases. For the considered exam-

ple, after a certain number of input and output membership functions,e.g.Q = 10, J = 7, a
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Table 3.1: MSE for different numbers of input and output MF using PFS (FCM clustering

heuristic) for function approximation of function (3.72).
Number Output MF (J)

3 4 5 6 7 8 9 10 11 12 13

N
um

be
rI

np
ut

M
F

(Q
)

3 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098
4 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103
5 0.045 0.039 0.036 0.035 0.035 0.035 0.034 0.039 0.038 0.037 0.036
6 0.020 0.014 0.013 0.012 0.011 0.011 0.010 0.014 0.010 0.013 0.013
7 0.019 0.012 0.010 0.009 0.008 0.008 0.007 0.007 0.007 0.007 0.010
8 0.011 0.007 0.006 0.006 0.005 0.005 0.005 0.005 0.005 0.006 0.006
9 0.008 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
10 0.008 0.005 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004
11 0.009 0.006 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004
12 0.009 0.006 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004
13 0.008 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

Table 3.2: MSE for different numbers of input and output MF using PFS (GK clustering heuris-

tic) for function approximation of function (3.72).
Number Output MF (J)

3 4 5 6 7 8 9 10 11 12 13

N
um

be
rI

np
ut

M
F

(Q
)

3 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
4 0.020 0.013 0.011 0.010 0.010 0.010 0.010 0.010 0.010 0.013 0.011
5 0.019 0.013 0.010 0.009 0.008 0.009 0.008 0.008 0.007 0.011 0.010
6 0.019 0.012 0.010 0.009 0.008 0.008 0.008 0.008 0.008 0.008 0.008
7 0.012 0.009 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006
8 0.008 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004
9 0.009 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004
10 0.009 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004
11 0.009 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004
12 0.008 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004
13 0.008 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

further increase of the number of input or output membership functions will not lead to a better

approximation, but it is possible to encounter identification problems. This was not the case in

this simple example. A diagram of a PFS system with 6 triangular input membership functions

and 9 triangular output membership functions is shown in Fig. 3.3

For comparison purposes with Tang et al. (2012), we estimate the conditional probability

parameterŝP (CJ |AQ) using the definition of conditional probability of two fuzzy eventsA and

B, given by (Zadeh, 1968)

Pr(A|B) =

∫∞

−∞
uA(x)uB(x)f(x)dx
∫∞

−∞
uB(x)f(x)dx

. (3.74)
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Table 3.3: MSE for different numbers of input and output MF using PFS (FCM clustering

heuristic withP̂ (CJ |AQ) estimated using (3.74)) for function approximation of function (3.72).
Number Output MF (J)

3 4 5 6 7 8 9 10 11 12 13

N
um

be
rI

np
ut

M
F

(Q
)

3 0.130 0.122 0.119 0.118 0.118 0.117 0.117 0.117 0.117 0.117 0.117
4 0.125 0.116 0.114 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113
5 0.087 0.073 0.068 0.066 0.064 0.064 0.063 0.063 0.063 0.063 0.063
6 0.069 0.052 0.047 0.044 0.043 0.042 0.042 0.041 0.041 0.041 0.041
7 0.060 0.043 0.037 0.035 0.033 0.033 0.032 0.032 0.032 0.032 0.032
8 0.053 0.035 0.030 0.027 0.026 0.025 0.025 0.025 0.025 0.025 0.025
9 0.047 0.029 0.024 0.022 0.021 0.020 0.020 0.019 0.019 0.019 0.019
10 0.043 0.025 0.020 0.018 0.016 0.016 0.016 0.015 0.015 0.015 0.015
11 0.040 0.022 0.017 0.015 0.014 0.013 0.013 0.013 0.012 0.012 0.012
12 0.037 0.019 0.015 0.013 0.012 0.011 0.011 0.011 0.010 0.010 0.010
13 0.035 0.017 0.013 0.011 0.010 0.009 0.009 0.009 0.009 0.009 0.009

Although the method to obtain the input and output membership function presented in Tang

et al. (2012) is different from the present work, we wish to highlight the influence of the esti-

mation of probability parameterŝP (CJ |AQ). The results obtained using a PFS derived with a

FCM clustering heuristic are shown in Table 3.3. We note that the input and output membership

functions are exactly the same as the ones used in Table 3.1.

Comparing Table 3.1 and Table 3.3 it is possible to observe that the former are always

lower than the latter. This result is not unexpected since (3.74) has been show to be biased and

inconsistent (Waltman et al., 2005b). Furthermore, by using (3.74), the PFS is dependent only

on the number, location and type of input and output membership functions. A PFS designed

using the methods discussed in Section 3.4.3 will also depend on the probability parameters.

For the same range and same number of output fuzzy sets, the amount of overlap between

fuzzy sets will influence the output of a PFS. To analyze this effect, we partition the output

space using membership functions of the same size, but varying the amount of overlap in terms

of percentage of the support of each fuzzy set. We consider a PFS obtained using the FCM

clustering heuristic. The results are shown in Table 3.4. As this table shows, for very low

or very high percentages of overlap the accuracy of the system decreases, while it has a good

approximation in the region of40% − 50%. One of the advantages of using fuzzy sets is that

an observation can belong to more than one set, with a certain degree. By lowering the amount

of overlap, the system becomes almost crisp. On the other hand, by increasing the amount of

overlap too much, the each observation will belong to several sets at the same time, and the

system becomes harder to identify.
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Table 3.4: MSE for different amount of overlap between output MF using PFS (FCM clustering

heuristic) with Q inputs MF and J output MF.
% Fuzzy set support overlap

M
S

E (Q,J) 1% 5% 10% 20% 30% 40% 50% 60% 70%
(5,5) 0.050 0.051 0.034 0.034 0.035 0.036 0.036 0.037 0.039
(5,6) 0.039 0.040 0.040 0.041 0.034 0.035 0.035 0.035 0.036
(5,8) 0.038 0.038 0.038 0.039 0.040 0.041 0.035 0.035 0.035
(6,7) 0.015 0.016 0.016 0.017 0.010 0.011 0.011 0.012 0.012
(8,5) 0.007 0.005 0.005 0.005 0.005 0.006 0.006 0.006 0.007
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Figure 3.4: Simulated dataset from a combination of log-normal distribution with sharp chang-

ing means and variances, following (3.75).

3.5.2 Conditional density approximation

In this section, we consider a simulated dataset from a combination of log-normal distribution

with sharp changing means and variances in different crisp regions. The data are simulated from

y(x) =































logNID(0, 0.13), if x ∈ [0, 8) ,

logNID(−0.2, 0.15), if x ∈ [8, 16) ,

logNID(−0.3, 0.22), if x ∈ [16, 24) ,

logNID(0, 0.20), if x ∈ [24, 32) ,

logNID(0.2, 0.15), if x ∈ [32, 40] ,

(3.75)

using a training setL = {(xp, yp)} with a uniform sample of sizeP = 5000. The obtained

dataset is asymmetric and has fat-tails and changing mean as Fig. 3.4 shows.
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Table 3.5: KLIC for different numbers of input and triangular output MF using PFS (FCM

clustering heuristic) for density approximation of function (3.75).
Number Output MF (J)

5 6 7 8 9 10 11 12 13

N
um

be
r

In
pu

tM
F

(Q
)

5 0.192 0.118 0.085 0.051 0.033 0.034 0.031 0.026 0.027
(0.01, 0.97) (0.02, 0.97) (0.02, 0.97)(0.03, 0.96)(0.04, 0.96) (0.04, 0.95) (0.04, 0.96) (0.04, 0.95) (0.05, 0.95)

6 0.216 0.159 0.126 0.100 0.085 0.084 0.083 0.081 0.080
(0.01, 0.97) (0.02, 0.97) (0.03, 0.96)(0.03, 0.95)(0.04, 0.95) (0.04, 0.95) (0.04, 0.95) (0.05, 0.95) (0.05, 0.95)

7 0.224 0.158 0.121 0.094 0.080 0.081 0.078 0.076 0.075
(0.01, 0.97) (0.02, 0.97) (0.03, 0.96)(0.04, 0.95)(0.04, 0.96) (0.04, 0.95) (0.04, 0.95) (0.05, 0.95) (0.05, 0.95)

8 0.213 0.148 0.115 0.089 0.072 0.071 0.069 0.070 0.068
(0.01, 0.97) (0.02, 0.97) (0.03, 0.96)(0.03, 0.95)(0.04, 0.95) (0.04, 0.95) (0.04, 0.95) (0.05, 0.95) (0.05, 0.95)

9 0.205 0.135 0.109 0.077 0.057 0.056 0.054 0.054 0.052
(0.01, 0.97) (0.02, 0.97) (0.02, 0.97)(0.03, 0.95)(0.04, 0.96) (0.04, 0.95) (0.04, 0.95) (0.04, 0.95) (0.05, 0.95)

10 0.193 0.121 0.089 0.056 0.037 0.036 0.036 0.032 0.032
(0.01, 0.97) (0.02, 0.97) (0.02, 0.97)(0.03, 0.95)(0.04, 0.96) (0.04, 0.95) (0.04, 0.95) (0.04, 0.95) (0.05, 0.95)

11 0.203 0.139 0.105 0.077 0.060 0.059 0.059 0.056 0.055
(0.01, 0.97) (0.02, 0.97) (0.02, 0.96)(0.03, 0.95)(0.04, 0.96) (0.04, 0.95) (0.04, 0.95) (0.04, 0.95) (0.05, 0.95)

12 0.201 0.129 0.095 0.065 0.051 0.050 0.049 0.046 0.045
(0.01, 0.97) (0.02, 0.97) (0.03, 0.96)(0.03, 0.95)(0.04, 0.95) (0.04, 0.95) (0.04, 0.95) (0.04, 0.95) (0.05, 0.95)

13 0.205 0.135 0.099 0.072 0.054 0.053 0.053 0.051 0.049
(0.01, 0.97) (0.02, 0.97) (0.03, 0.96)(0.03, 0.95)(0.04, 0.95) (0.04, 0.95) (0.04, 0.95) (0.04, 0.95) (0.05, 0.95)

To identify the antecedent membership functions parameters of a PFS we used a fuzzy

clustering heuristic as described in Section 3.4.1 using FCM on the regression hyperplane ofy

in x. The obtained antecedent membership functions are of the Gaussian form given by (3.60).

The Kullback-Leibler Information Criteria, (KLIC), also known as Kullback-Leibler dis-

tance, between the real densityfy|x and an estimated densitŷfy|x is given by (Kullback and

Leibler, 1951)

KLIC = E
(

ln fy|x − ln f̂y|x

)

. (3.76)

The KLIC can be consistently estimated by the average Kullback-Leibler distance in the sample

(Bao et al., 2007):

KLIC ≈ 1

P

P
∑

t=1

(

ln fy|x (yt)− ln f̂y|x (yt)
)

, (3.77)

To evaluate the density estimation results, we compare the real densityfy|x and an estimated

densityf̂y|x using KLIC and by comparing the quantiles of the estimated density and the per-

centage of simulated data points corresponding to each quantile. From the estimated conditional

probability distributionf̂(y|x), quantilesτ(c) can be calculated by solvingc =
∫ τ(c)

−∞
f̂(y|x)dy.

For a good approximation of the output density, the quantiles of this estimated density should
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Table 3.6: KLIC for different numbers of input and Gaussian output MF using PFS (FCM

clustering heuristic) for density approximation of function (3.75).
Number Output MF (J)

5 6 7 8 9 10 11 12 13

N
um

be
r

In
pu

tM
F

(Q
)

5 0.188 0.117 0.086 0.051 0.034 0.032 0.03 0.027 0.027
(0.01, 0.97) (0.02, 0.97) (0.03, 0.96)(0.04, 0.96)(0.04, 0.96) (0.04, 0.95) (0.04, 0.95) (0.04, 0.95) (0.05, 0.95)

6 0.212 0.157 0.13 0.099 0.085 0.084 0.082 0.081 0.08
(0.01, 0.96) (0.02, 0.97) (0.04, 0.96)(0.03, 0.95)(0.04, 0.95) (0.04, 0.95) (0.04, 0.95) (0.05, 0.95) (0.05, 0.95)

7 0.218 0.156 0.123 0.096 0.08 0.079 0.079 0.076 0.075
(0.01, 0.97) (0.02, 0.97) (0.03, 0.96)(0.04, 0.95)(0.04, 0.95) (0.04, 0.95) (0.04, 0.95) (0.04, 0.95) (0.05, 0.95)

8 0.212 0.146 0.116 0.088 0.072 0.07 0.072 0.068 0.068
(0.01, 0.96) (0.02, 0.97) (0.04, 0.96)(0.04, 0.95)(0.04, 0.95) (0.04, 0.95) (0.04, 0.95) (0.04, 0.95) (0.05, 0.95)

9 0.203 0.132 0.109 0.077 0.056 0.054 0.056 0.053 0.051
(0.01, 0.96) (0.02, 0.97) (0.03, 0.96)(0.04, 0.95)(0.05, 0.96) (0.04, 0.95) (0.04, 0.95) (0.04, 0.95) (0.05, 0.95)

10 0.188 0.115 0.091 0.054 0.036 0.036 0.035 0.031 0.031
(0.01, 0.97) (0.02, 0.97) (0.03, 0.96)(0.04, 0.95)(0.05, 0.95) (0.04, 0.95) (0.04, 0.95) (0.04, 0.95) (0.05, 0.95)

11 0.199 0.136 0.107 0.075 0.06 0.058 0.057 0.055 0.054
(0.01, 0.96) (0.03, 0.97) (0.03, 0.96)(0.04, 0.95)(0.05, 0.95) (0.04, 0.95) (0.04, 0.95) (0.05, 0.95) (0.05, 0.95)

12 0.195 0.123 0.097 0.065 0.05 0.048 0.048 0.044 0.044
(0.01, 0.96) (0.02, 0.97) (0.04, 0.96)(0.04, 0.95)(0.05, 0.95) (0.04, 0.95) (0.04, 0.95) (0.04, 0.95) (0.05, 0.95)

13 0.197 0.128 0.107 0.069 0.053 0.053 0.053 0.049 0.051
(0.01, 0.97) (0.02, 0.97) (0.04, 0.96)(0.04, 0.95)(0.04, 0.95) (0.04, 0.95) (0.04, 0.95) (0.04, 0.95) (0.05, 0.95)

match with the quantiles of the data,e.g.5% of the actual observations should fall in the 5% tail

of the output density.

As in the previous section, we analyze the influence of the number of input and output

membership function of a PFS on the obtained density approximation error. For the output

membership function only the number varies. Following the previous section definition, the

overlap is kept at50% for all experiments, such that the output space is well formed between

the minimum and maximum values of sampledy, satisfying (3.35). The KLIC andτ(c) for c =

5%, 95% for a PFS derived with a FCM clustering heuristic and triangular output membership

functions are shown in Table 3.5.

Table 3.5 shows that as we increase the number of input membership functions and output

membership functions the KLIC decreases and the5% and95% quantiles are closer to the real

one. The increase of input membership functions allows the system to better track changes in

the input space. For the case ofQ = 5, the results are very good, since the real data have 5

defined regions, while the increase of output membership functions allows the system to better

approximate the output densities. The same effect is observed on classical crisp histograms. As

the number of ‘bins’ increases so does the density approximation accuracy. As it was observed

in the function approximation examples, it is possible that as this number increases, identifica-

tion problems surface.
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Figure 3.5: Comparison of fuzzy histogramŝf(y|Aq) for each rule of PFS system with 5 rules.

A PFS as defined in Section 3.2 smoothly changes from a rule output density into another

rule density, and in certain regions of the space, combination of densities are possible. Crisp

or very abrupt changes are smoothly approximated by the fuzzy input membership functions.

Crisp changes can be modelled by replacing the fuzzy input membership functions with crisp

ones.

For density approximation, the smoothness of the estimated density output depends directly

on the smoothness of the consequent membership functions. For this reason, we compare the

results obtained using triangular consequent membership functions with the ones obtained using

Gaussian consequent membership functions, as defined in (3.59). For direct comparison with

Table 3.5, the location and overlap of both systems are exactly the same. The results are shown

in Table 3.6. As this table shows, the results are slightly better than for the case of output

triangular membership functions. In Fig. 3.5 we compare each rule fuzzy histogramf̂(y|Aq)

of PFS system with 5 rules with the 5 true densities as defined in (3.75). We can observe

that the obtained densities using Gaussian output membership functions are smoother than the

triangular counterpart. It is also possible to observe that for the obtained fuzzy histograms using

Gaussian output membership functions appear to be bi-modal in certain cases. This is an artefact

introduced when two or more membership functions have similar probabilities associated with

them. This selection problem resembles that of finding adequate basis functions when applying

radial basis functions networks (Bishop, 1995) for kernel regression or optimal bin width in

kernel density estimators (Bashtannyk and Hyndman, 2001).
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3.6 Application on US inflation data

Assessing the changes in prices, measured by inflation levels, is one of the central topics in eco-

nomic analysis. Most central banks aim to keep inflation levels within a defined range through

monetary policy instruments in order to stabilize price movements and to promote economic

growth (Galı́ and Gertler, 1999). In this context, estimating and forecasting the complete infla-

tion density is more adequate than performing point estimation since the former can be used to

obtain an estimated range for inflation. Based on these predictions, a central bank can adjust the

monetary policy instruments accurately. This interest in estimating and forecasting the complete

inflation density has led several institutions, such as the Bank of England and the Norges Bank

to report data on inflation density forecasts rather than point forecasts (Diebold et al., 1998).

The data set includes 209 observations for quarterly U.S. inflation over the period 1960

quarter II until 2012 quarter I. Inflation is defined as the growth rate of the implicit Gross Do-

mestic Product (GDP) deflator as in Galı́ and Gertler (1999). The data over the period between

1960 quarter I and 2001 quarter IV are set as the estimation sample. The remaining data until

2012 quarter I are kept for one quarter ahead forecast evaluations.

An intuitive measure that influences inflation levels is the state of inflation expectations

(Bernanke, 2007). People’s expectations of future inflation is expected to change their con-

sumption behavior, the overall price level, and hence inflation itself. A conventional measure

for people’s inflation expectations is the data set published by the University of Michigan In-

flation Expectation (MICH) (Thomson Reuters/University of Michigan) which is summarized

in Del Negro and Schorfheide (2013). In this survey, individuals are asked by how much they

expect the Consumer Price Index (CPI) to change over the next 12 months. Note that the survey

data are for CPI inflation expectations. The discrepancy between the CPI and GDP inflation

is solved by subtracting the average difference between CPI and GDP inflation from the sur-

vey data as in Del Negro and Schorfheide (2013); Baştürk et al. (2013). Furthermore, since

the survey data provide monthly four-steps-ahead (one-year) expectations, quarterly values are

achieved by using the reported expectations at the beginning of each quarter and then dividing

this data by four, assuming constant expectations over the year. Apart from the inflation expec-

tations, we additionally include the inflation level in the last quarter as an antecedent in the PFS

model for inflation. Past inflation is often used as an explanatory variable of current inflation

since the inflation series is quite persistent (Stock and Watson, 2010).

Despite the growing interest in estimating and forecasting the inflation density, obtaining

accurate results for these data is not straightforward since the data show different patterns over

time. Inflation volatility changes substantially over time, with a clear decrease after the early

1980s, marking the period of Great Moderation (McConnell and Perez-Quiros, 2000; Stock and
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Watson, 2007). Furthermore, during the recent economic crisis, a so-called distinct event of

deflation was also observed. It is therefore argued that models for inflation forecasting should

account for slowly changing patterns in inflation (Faust and Wright, 2012). Following these

observations, assuming a constant inflation level or a constant volatility for inflation may be too

restrictive. Hence the proposed PFS model, which can account for such complex time series

behavior, is suitable for analyzing inflation.

An important issue in forecasting inflation is the forecast horizon for the inflation density.

Relying on quarterly data, one can perform one quarter ahead forecasts for inflation. However,

inflation forecasts for longer horizons, such as one year or years ahead inflation, are also of

great importance since economic agents do not necessarily make their decisions on a quarterly

basis. A model designed for one quarter ahead forecasts may not perform well when the focus

is inflation forecasts at longer horizons. Hence the accuracy of the proposed model should also

be assessed at longer estimation and forecast horizons.

A further issue in the inflation analysis is the data limitation. Maximum likelihood estima-

tion, for which several analytical properties rely on large sample approximations, may not be

appropriate for the considered inflation data. Estimating the parameters under less restrictive

assumptions, such as minimizing the mean squared error in the sample, may therefore be more

appropriate.

In relation to the aforementioned issues in inflation estimation and forecasting, we first note

that the proposed model automatically provides density estimates for inflation together with

point estimates. Hence the desired inflation metrics such as the mean, variance and deflation

probabilities can be retrieved from the estimation results without additional computational bur-

den. Regarding the estimation method, we consider the results from the proposed model using

the maximum likelihood estimation method and also the results obtained by minimizing the

mean squared error. We further report multiple horizon inflation estimates for 1 quarter ahead,

4 quarters ahead and 8 quarters ahead estimation. Finally, we show that the complex inflation

behavior is well captured with the proposed model when one considers the 95% intervals for

inflation both in the estimation sample and in the forecast sample.

The PFS model derived in this section is of the form (3.36). Lety denote inflation andf1(y),

f4(y) andf8(y) denote the future 1, 4 and 8 quarters ahead inflation densities, respectively. Such

a system is defined by a system of rulesRq, q = 1, . . . , Q of the form

Rq : If Inf t isAq,1 and Expt+1 isAq,2 thenf1(y) is f1(y|Aq,1, Aq,2),

f4(y) is f4(y|Aq,1, Aq,2),

f8(y) is f8(y|Aq,1, Aq,2),
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Figure 3.6: Observed inflation and squared errors from minimizing mean squared errors and

maximum likelihood estimation.

where Inft is the inflation level at timet, and Expt+1 is the inflation expectation for timet + 1,

i.e. a one quarter ahead inflation expectation. For the inflation data, we apply the PFS model

in (3.78) withQ = 6 rules and9 output membership functions. The antecedent fuzzy sets are

obtained through a clustering heuristic using fuzzy-c means as described in Section 3.4.1 and

the fuzzy consequents are obtained by distributing the membership functions uniformly over

the universe of discourse.

3.6.1 Comparison of different estimation methods for the inflation model

In this subsection we consider two alternative estimation methods for the probability parame-

ters of the proposed model. The first alternative is the maximum likelihood estimation method

to obtain parameter estimates, which rely heavily on the exact conditional density of inflation

defined by the model. The second alternative is to obtain the parameter estimates by mini-

mizing the mean squared error of the observations, which to a large extent refrains from the

distributional assumptions in the model.

Figure 3.6 presents the data and the squared error for each observation in the estimation

sample, where the output of PFS is taken as the conditional mean at each period. The two

estimation methods do not differ substantially in terms of the mean squared error. Especially at

the end of the sample period, squared errors from both estimation methods are low, indicating

that the model captures inflation behavior accurately. An exceptional period in terms of the

squared errors is the high inflationary period beginning at the end of 1970s and ending in mid-

1980s, during which both models perform rather poorly. The relatively poor performance of

both models in this period can be explained by the large variation in observed inflation compared
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Table 3.7: Optimized probability parameters for inflation from two estimation methods.

Maximum likelihood estimation
Consequents

Rule 1 2 3 4 5 6 7 8 9
1 0.46 0.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.83 0.17 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.64 0.36 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.19 0.59 0.17 0.00 0.04 0.00 0.00
5 0.00 0.00 0.00 0.12 0.41 0.48 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.28 0.48 0.08 0.15

Minimizing the mean squared error
Consequents

Rule 1 2 3 4 5 6 7 8 9
1 0.51 0.42 0.07 0.00 0.00 0.00 0.00 0.00 0.00
2 0.07 0.63 0.26 0.04 0.00 0.00 0.00 0.00 0.00
3 0.00 0.18 0.45 0.30 0.07 0.00 0.00 0.00 0.00
4 0.00 0.03 0.25 0.37 0.27 0.06 0.03 0.00 0.00
5 0.00 0.00 0.01 0.15 0.53 0.25 0.06 0.01 0.00
6 0.00 0.00 0.00 0.00 0.06 0.27 0.33 0.13 0.21
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Figure 3.7: Antecedent membership functions for 1 quarter ahead inflation.

to the remaining periods. The average squared error from minimizing the mean squared error

and maximum likelihood estimation are 0.0653 and 0.0662, respectively. The obtained squared

error is naturally smaller when the objective function is defined as the mean squared error.

Figure 3.7 shows the antecedent membership functions for inflation in the last quarter and

expected inflation, which are common for the mean squared error minimization and maximum

likelihood estimation methods. Table 3.7 on the other hand provides the obtained probability

parameters for the PFS model for inflation obtained by minimizing the mean squared error and

by maximizing the likelihood. The exact probability estimates differ between the two estima-

tion methods. We relate this result to the extra assumptions made in the maximum likelihood

estimation method and acknowledge that these assumptions may be restrictive given the small

number of data points in this study. For this reason, results reported in the remaining analysis

are based on minimizing the mean squared error rather than the maximum likelihood estimation

method.
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Table 3.8:Properties for the output density from each rule from MSE minimization for 1 quarter

ahead inflation.

Rule
1 2 3 4 5 6

mean 0.463 0.651 1.020 1.389 1.671 1.591
variance 0.105 0.192 0.300 0.387 0.318 0.289
skewness0.381 1.788 1.110 0.573 -0.245 0.577
kurtosis 2.789 8.193 4.972 3.080 2.215 3.044
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Figure 3.8: Density of rule outputs from MSE minimization for 1 quarter ahead inflation.

3.6.2 Inflation patterns according to the rule outputs

Table 3.8 presents the properties of the output density from each PFS rule, where we focus

on the mean, variance, skewness and kurtosis of inflation. Obtained densities from each rule

are shown in Fig. 3.8 in detail. Rule 1 and rule 2 clearly define low levels of inflation with

relatively low variance compared to the remaining rules. These rules may capture the Great

Moderation period where inflation levels and volatility are substantially lower compared to the

remaining periods. These two rules may also capture deflationary pressures in the economy

since inflation levels below point0 have a positive probability mass according to these rules. In

contrast, rule 5 and rule 6 clearly define a high level of inflation accompanied by high volatility

in inflation. These rules may capture the high inflation and high volatility periods during 1980s.

The combination of the rule outputs, on the other hand, may identify the transition between

these periods with clear differences in inflation patterns.

Besides the observed variation of inflation levels and variances obtained from each rule, the

skewness and the kurtosis of the obtained densities also differ substantially across rules. Most
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Figure 3.9: Conditional density of inflation for 1975 quarter I and 2009 quarter III from MSE

minimization.

importantly, the skewness values are different from zero in all rules, and the kurtosis values are

relatively far from3, the normal density kurtosis value. Hence, assuming a normal distribution

for inflation may be too restrictive. This problem is also considered in Ascari et al. (2012);

Cúrdia et al. (2013) and the use of a student-t distribution instead of the conventional normal

distribution is advocated. The obtained densities in Fig. 3.8, however, show that the inflation

density is bimodal for some rules, particularly for rule 6. Furthermore, the combination of the

6 rules may lead to multiple modes in the inflation density even if the individual rule outputs

provide uni-modal densities. Hence the student-t density with a single mode is still restrictive

according to our results.

An important result in terms of inflation levels is the persistence in inflation, which can be

assessed using the probabilities for each rule output on the right panel in Table 3.7. We find a

positive relation between past inflation, inflation expectations and current inflation. Low values

of past inflation and expected inflation, represented in rule 1 and rule 2 of the PFS are likely

to lead to low inflation values since consequents 1, 2 and 3 are found to have high probability

values. Similarly, high values of past inflation and expected inflation, represented by rule 5

and rule 6, are likely to lead to relatively high inflation values, captured in consequents 7, 8

and 9. Note that ‘moderate’ inflation levels, in consequents 4, 5 and 6, have a positive average

probability for rules 5 and 6 compared to the zero average probability for rules 1 and 2. This

difference in probability values show that inflation values are less persistent if past inflation and

inflation expectations are high compared to the periods with a low level of past inflation and

inflation expectations.
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Figure 3.10: Mean and 95% interval for 1 quarter ahead inflation from MSE minimization for

the estimation sample and the forecast sample.

3.6.3 Density estimates of inflation

Density estimates of inflation are obtained as a combination of the densities obtained from each

rule output in the previous section. As noted earlier, even if the density obtained from each

rule output is a well-behaved density, the combined density may have complex features such

as non-zero skewness, fat tails or multiple modes. Two examples of such complex conditional

densities obtained for inflation are presented in Fig. 3.9 for an observation in the estimation

sample, inflation at 1975 quarter 1 and an observation in the forecast sample, inflation at 2009

quarter III. The obtained conditional densities are bimodal for both periods. Inflation density at

1975 quarter I clearly shows positive skewness as well.

Figure 3.10 presents the mean inflation levels and 95% interval estimates obtained from the

PFS model for the estimation sample, for 1 period ahead inflation values. Mean inflation values

obtained from the model track the observed inflation levels nicely. This result holds both for the

estimation sample and the forecast sample. More importantly, the obtained density estimates are

quite accurate. For the high inflationary period in 1980s, the interval estimates of inflation are

only slightly wider than the remaining periods. Hence this abrupt change in the inflation pattern

is captured accurately by the model. A similar result holds when we specifically consider the

estimated inflation intervals for the forecast period. Inflation levels are again captured nicely,

with a single observation outside the 95% interval. The estimated interval is not very wide,

hence the interval estimates are not too conservative.

A unique aspect of this data is the occurrence of deflation during the recent crisis, on 2009

quarter 3. The estimated inflation intervals capture this possibility of deflation, since the 95%

interval contains point0, although the exact inflation value at this quarter is outside the esti-



92

78 Analysing probabilistic fuzzy systems

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

inflation

de
ns

tit
y

 

 
R 1 R 2 R 3 R 4 R 5 R 6

(a) 4 quarter ahead inflation
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(b) 8 quarter ahead inflation

Figure 3.11: Density of rule outputs from MSE minimization for 4 and 8 quarter ahead infla-

tion.

mated interval. Furthermore, the model signals deflationary pressure in the economy in the

periods before deflation was actually observed. These periods where estimated inflation inter-

vals included point0 are the end of the training sample and at the beginning of the forecast

period and they cover the recent crisis period.

Note that the obtained 95% inflation interval includes point0 several observations in the

forecast sample, while actual disinflation occurred very rarely during the considered period.

Therefore the obtained inflation density may be considered ‘too wide’. It is possible to over-

come such lack of precision in inflation forecasts by including subjective experts’ forecasts as

mentioned in Faust and Wright (2012), but this topic is left for future research.

3.6.4 Inflation density estimates for multiple time periods

In this subsection we summarize the density estimates for 1 quarter ahead, 4 quarters (1 year)

ahead and 8 quarters (2 years) ahead inflation. We first note that the proposed model is capable

of incorporating these multiple period estimations or forecasts in a single model. Furthermore,

the model does not require explicit assumptions for the individual distributions of inflation in

different quarters, once past inflation and expected inflation are taken into account.

Conditional inflation densities obtained from each PFS rule are shown in Fig. 3.11 for 4 and

8 quarter ahead inflation levels. The density estimates are highly asymmetric and non-standard

according to these results, especially compared to the conditional densities for 1 quarter ahead

inflation shown in Fig. 3.8. This result is intuitive since the higher horizon inflation estimation

contains more ambiguity compared to the 1 quarter ahead estimates even if past inflation and

expected inflation are taken into account.
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Figure 3.12: Mean and 95% interval for multiple horizon forecasts from MSE minimization

for the estimation sample and the forecast sample.

We further analyze the mean inflation levels at multiple horizons according to the PFS model

where parameter estimates are obtained by minimizing the mean squared error. Figure 3.12

presents these inflation estimates for 1, 4 and 8 quarters ahead inflation for the estimation sam-

ple and for the forecast sample. Typically, mean inflation estimates are smoother for longer

time horizons. Hence, the longer time horizon inflation estimates provide a smooth long-run in-

flation information rather than signalling sudden changes in inflation. This result follows from

the information contained in the input variables. Given past inflation and inflation expectations,

sudden changes in the long run, for example after 8 quarters, cannot be captured accurately. De-

spite this property of long run inflation estimates, the overall inflation levels follow the smooth

changes in inflation patterns accurately.

3.7 Conclusions

In this work we present an analysis of the different aspects of probabilistic fuzzy systems in the

context of function approximation and conditional density estimation. We analyse the relation

of PFS with different types of systems with deterministic output that have universal approxi-

mation capability. We show that PFS is particularly similar to a Mamdami fuzzy system with

weighted output or a fuzzy relational model. Hence PFS is suitable for problems involving

function approximation.

Function approximation capabilities of PFS and quantitative measures of the shape of the

obtained density, such as moments, have not been analyzed in detail in the literature. In this

work we show that higher moments, such as skewness and kurtosis, of the conditional probabil-



94

80 Analysing probabilistic fuzzy systems

ity density of the output can be derived from the PFS. Furthermore, we analyze the necessary

conditions for a PFS, such that the estimated output density is a proper pdf and subsequent

higher moments of this density exist. These conditions relax the previous assumption of a well-

formed output space. They are not very restrictive and are not limited by a particular definition

of a conditional probability of fuzzy systems. Obtaining these quantitative measures, such as

higher moments, of the obtained density is particularly important in applications of PFS in risk

management since traditional measures of risk, such as the variance, do not fully capture the

distributions of most financial or macroeconomic data.

The performance of PFS in function approximation and conditional density estimation is

illustrated using simulated data and real data on quarterly US inflation. Using simulated data,

we show that PFS provides accurate density approximations and conditional density estimates

in general. Furthermore, we analyse the influence of the PFS parameters, namely the number of

input and output memberships, the choice of the PFS membership functions and the estimation

method for the conditional probability parameters, on the performance and accuracy. Our ap-

plication on the US inflation data shows that slowly changing patterns in inflation are accurately

captured by the PFS model. The PFS model performs well in one period ahead and 1 year ahead

forecasts of inflation. The model is also successful in capturing the deflationary pressure during

the recent crisis.
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Chapter 4

Probabilistic fuzzy systems in

Value-at-Risk estimation1

4.1 Introduction

DUE to the volatile nature of the financial markets, risk management is an important ac-

tivity for financial institutions that operate in these markets. As a result of risk manage-

ment, activities are undertaken to reduce the possibility of failure to an acceptable range. These

activities may include portfolio adjustment, hedging or insurance (Brealey and Myers, 2001;

Hull, 2000). Nowadays, the financial sector operates under strict guidelines, which have been

imposed through international agreements, partly due to various financial failures that have hap-

pened in 1990’s. For example, due to the Basel Agreement, the financial institutes must have

well documented procedures to manage the different kinds of risks that they are exposed to,

such as the market risk, the credit risk and the operational risk (Jorion, 2006).

Managing risk is strongly dependent on the information available. When the amount of

information grows beyond a specific level, there is a need for a concise representation of the

risk a company or institution is facing. Due to the complex nature of financial markets in

which many parties exchange information and interact through trading, the overall risk for a

company is influenced by many internal and external factors. Nevertheless, it is customary for

management to classify different types of risk and develop models for dealing with each type

of risk in order to keep the risk management problem tractable. One of the different types of

risk that a financial institution has to deal with is the market risk, which is the exposure to the

uncertain market value of a portfolio (Holton, 2003). Value-at-risk (VaR) is a way to quantify

the market risk. It is a single number for the senior management to express and summarise the

1Parts of this chapter have been published in Almeida and Kaymak (2009a,b).
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total market risk of a portfolio with financial assets. Value at Risk measures the worst expected

loss over a given horizon under normal market conditions at a given confidence level. Due to

regulations, large banks must nowadays base their market risk capital requirements on the VaR

estimate (Jorion, 2006). This drives the continued research into newer and better VaR models.

Simulation approaches or parametric approaches are usually used for VaR estimation. The

simulation approach makes assumptions about the distribution of portfolio returns, and then

applies Monte Carlo simulation to estimate the VaR. Because a large number of simulations is

needed, this approach is very costly in terms of computational time. Furthermore, the quality

of the results depends on the validity of the assumptions regarding the portfolio returns. In

the parametric approaches, the risk is quantified in terms of volatility, which is expressed as

the standard deviationσ of the portfolio. Normally, one measures the daily volatility that is

estimated from historical data. In order to estimate the VaR for a given horizon, the daily

volatility is scaled to multiple-day volatility (Hull, 2000). The simplest models of volatility

assume that it does not vary over time. More advanced models acknowledge that volatility varies

dynamically over time. The dynamic aspect of volatility could be modelled in various ways.

For example, a multivariate switching regime approach to VaR estimation has been discussed

in Billio and Pelizzon (2000). Another model where volatility changes dynamically in time is

the GARCH (Generalised Auto Regressive Heteroscedasticity) model (Bollerslev, 1986). For

the GARCH (1, 1) model, which is used quite often in practice, the variance is estimated using

a first-order autoregressive model of the squared returns.

The disadvantage of the parametric approach is that, due to the complexity of financial mar-

kets, the data usually do not follow the parametric distributions that are assumed for the data

generating process. For example, the returns are typically non-Gaussian, they have fat tails

and volatility clustering is often observed in financial markets (Cont, 2007, e.g.). Therefore,

flexible modelling approaches such as non-parametric modelling or semi-parametric modelling

are needed in which the models can adapt themselves into the underlying actual data distribu-

tion. In this context, neural network models for VaR estimation have been studied by various

researchers (Taylor, 2000; Chapados and Bengio, 2001; Jiang et al., 2004, e.g.) as well as fuzzy

set models (Zmeškal, 2005a; Cherubini and Della Lunga, 2001, e.g.).

A semi-parametric model in which the model structure and the model parameters can be

adapted to the underlying data distribution is the probabilistic fuzzy system (PFS). In a prob-

abilistic fuzzy system, a linguistic description of the system behaviour encoded by the fuzzy

rules is combined with the statistical properties of data. The probabilistic fuzzy model allows

the combination of both linguistic uncertainty and probabilistic uncertainty in the model. PFS

are suitable for estimating probability distributions. Since accurate VaR estimation is enabled

by estimating the probability distribution of the data, PFS could be used to estimate it.
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In this chapter, we consider two approaches to designing a PFS and compare their perfor-

mance in obtaining value-at-risk models. In the first approach, a Mamdani-type probabilistic

fuzzy system (Kaymak et al., 2003) is used for estimating the VaR. The model parameters are

obtained by a sequential approach in which the location of the antecedent membership func-

tions is determined by using fuzzy clustering and maximum likelihood parameter estimation is

used for determining the probability parameters of the PFS. The output membership functions

are scaled by using a single scaling parameter. In the second approach, an alternative repre-

sentation of a PFS as a fuzzy histogram is considered. This is an example of a conditional

volatility model in which the future volatility (and hence the associated risk of the portfolio)

is estimated by using a distribution function that is represented as a fuzzy histogram. In this

case, the membership functions are fixed according to the mental model of the modeler,i.e.

they are obtained from the modeler. The conditional probability parameters of the model are

then estimated by minimising the test statistic of a back testing method by using a constrained

evolutionary optimisation algorithm.

The proposed methodologies are applied to estimate the one-day VaR for six different

stocks. The validity of obtained VaR models are evaluated by using the Kupiec test based

on failure rates and compared to the performance of the GARCH models for VaR estimation. It

is found that the statistical back testing always accepts PFS models after tuning, while GARCH

models may be rejected.

The outline of this chapter is as follows. In Section 4.2, we give a brief introduction to

VaR modelling and VaR models. We discuss the basics of probabilistic fuzzy systems and the

concept of fuzzy histograms in Section 4.3. In Section 4.4, we introduce VaR modelling by

using probabilistic fuzzy systems. The experimental setup for the empirical study using six

different assets are given in Section 4.5, while the results are reported in Section 4.6. Finally,

conclusions are given in Section 4.7.

4.2 Value-at-Risk models

Value-at-risk (VaR) is a single number for the senior management to express and summarise the

market risk of a portfolio of financial assets. The VaR value of a portfolio is always calculated

over a time horizonh at a significance levelc. It indicates the maximum loss that a portfolio

of assets will suffer over a horizon ofh (days) with a confidence ofc under normal market

conditions. An overview of the mainstream value at risk estimation methods can be found in

Duffie and Pan (1997). Several methods are also discussed in Wiener (1999). Various building

blocks of VaR measurement, methods for model validation as well as the differences between

the parametric and nonparametric estimation approaches are discussed in Jorion (2006).
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4.2.1 Value-at-Risk

Assume that a portfolio has valueWt at timet. Let r denote the one period percentage return

of the portfolio. Iff(r) is the probability density function of the returns, definerv such that

1− c =

∫ rv

−∞

f(r)dr. (4.1)

The value at riskVt of the portfolio at timet is then defined as

Vt = −rvWt. (4.2)

Assuming that the returns are distributed normally, the key step in the value at risk estimation

can be formulated as determining the varianceσ2 of the returns distribution. This is also called

volatility estimation.

4.2.2 Volatility estimation

The simplest models of volatility assume that it does not vary over time. In that case, the

variance could be estimated by using the observations until periodt as

σ2
t =

∑T ∗

i=1 r
2
t−i

T ∗
. (4.3)

In (4.3),σ2
t denotes that the variance is re-estimated at every period and that there areT ∗ obser-

vations until periodt. Usually, however, the standard deviation of the returns varies over time.

For example, volatility clustering has been observed in the financial markets, which means that

there are periods of high variability followed by low variability. GARCH models are used to

capture the time varying behaviour of volatility. The general GARCH (p, p′) model calculates

the variance from the most recentp observations of returns and the most recentp′ estimates

of the variance rate. The most popular GARCH model used in practice is the GARCH (1, 1)

model in which the variance at periodt + 1 depends on the variance and the realised returns

at periodt. It is assumed that the returnsrt at each periodt are normally distributed with the

same mean, but different variance (local volatility). At each period, thelocal volatility σt is

assumed to move around the constantglobal volatilityσ, so in the long run, a GARCH model

recognises that the local volatility reverts to the overall mean value. This property is known as

‘mean reversion’. Each period, the local volatility estimate is updated by using

σ2
t+1 = γσ2 + αr2t + βσ2

t , (4.4)



99

4.2 Value-at-Risk models 85

whereα, β andγ are positive constants that satisfyα+ β + γ = 1. The optimal values of these

parameters can be determined from a data set by using maximum likelihood estimation.

4.2.3 Fuzzy VaR models

Usually, the assumptions of parametric models are not satisfied by real data. Therefore, semi-

parametric models such as fuzzy models have been proposed to adapt the VaR estimation to the

characteristics of the underlying data generation process. Fuzzy models have the additional ben-

efit that they can be used to deal with non-probabilistic forms of uncertainty, such as linguistic

uncertainty and vagueness.

In Zmeškal (2005a), a fuzzy stochastic approach is proposed to model value-at-risk. In this

approach, the inputs to the VaR model are described as fuzzy sets. The computations of the

model are done by representing the fuzzy sets as a collection of theirα-cuts and propagating

the fuzziness through the model. Eventually, a fuzzy VaR value is obtained, which the decision

maker can use to assess the influence of non-probabilistic uncertainty on his/her decisions. An

application of the same methodology for index portfolios is discussed in Zmeškal (2005b) and

it is shown that this approach can be interpreted as a generalised sensitivity approach. Another

approach to fuzzy VaR modelling has been proposed in Cherubini and Della Lunga (2001),

where the authors use a fuzzy measure model for pricing options. In this way, they are able to

deal with the cases where the distribution of the underlying asset is not known precisely, and

they can account for changes in market liquidity. The authors apply their method to an option-

based model of VaR and compute different VaR figures for long and short positions. In Bowden

(2006) a different approach to option VaR modelling based on fuzzy set theory is described.

The fuzzy modelling approach proposed in this chapter differs from the above approaches in

that we use a fuzzy system to explicitly approximate a probability density function. Hence, the

output of the system is essentially a conventional distribution function. However, the working

of the system can be described linguistically as a set of probabilistic fuzzy rules and it can be

adapted to the linguistic framework of the modeler. Hence, the proposed model links the lin-

guistic categories, which the modeler may define, to the numeric distributions that it estimates.

4.2.4 Model validation

Model validation for value-at-risk is the process of checking whether a VaR model performs

adequately, and can be done in various ways. One method is statistical back testing. Back

testing verifies within a statistical framework whether the projected losses are in line with the

actual losses (Hull, 2000; Jorion, 2006). This entails comparing systematically the history of
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VaR forecasts with the corresponding portfolio returns. For VaR users and risk managers, these

checks are essential to examine whether their model is well calibrated.

In this chapter, we considerexception based back testing. In VaR modelling, anexception

is said to occur when the actual loss in a period exceeds the VaR that the model predicts. In

exception based back testing, the number of exceptions in a given sample is determined and it is

tested statistically whether this number is within the range indicated by statistical tests, given a

certain confidence interval. With too many exceptions, the model underestimates the volatility.

With too few exceptions, the model is too conservative.

Kupiec (1995) has developed a statistical test for assessing the validity of a VaR model.

Kupiec confidence regions are defined by the tail point of the log-likelihood ratioLRuc

LRc = −2 ln
[

cT−N(1− c)N
]

+ 2 ln

{

[

1−
(

N

T

)]T−N (
N

T

)N
}

. (4.5)

In (4.5),N is the number of exceptions andT is the total number of observations. This ratio is

shown to be asymptoticallyχ2-distributed, with 1 degree of freedom, under the null hypothesis

that the VaR model is valid (Kupiec, 1995). Note that the Kupiec test statistic is two sided.

Hence, the model is rejected both when there are too few exceptions as well as when there

are too many exceptions. In this chapter, we apply the Kupiec test with 95%, 97.5% and 99%

confidence to assess the validity of the VaR models.

4.3 Probabilistic fuzzy systems

A probabilistic fuzzy system(PFS) consists of a set of rules whose antecedents are fuzzy condi-

tions and whose consequents are probability distributions. In this study, we consider Mamdani

PFS in which the rules have the following form (Kaymak et al., 2003).

RuleRq: If x isAq then

y isCq1 with Pr(Cq1|Aq) and

y isCq2 with Pr(Cq2|Aq) and. . . and

y isCqN with Pr(CqN |Aq). (4.6)

Hence, a Mamdani PFS is a generalisation of a Mamdani fuzzy system in which the determin-

istic fuzzy rules are replaced with probabilistic fuzzy rules. These rules specify a probability

distribution over a collection of fuzzy sets that partition the output domain. The interpretation

of the probabilistic fuzzy rules is as follows. Given the occurrence of a (multidimensional)
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antecedent fuzzy eventAq, which is a conjunction of the fuzzy conditions defined on input vari-

ables, each of the consequent fuzzy eventsCj is likely to occur with probabilityPr(Cj|Aq),

j = 1, 2, . . . , N . This applies for all the rulesRq, q = 1, 2, . . . , Q. Note that two conditional

probabilitiesPr(Cj |Aq) andPr(Cj |Aq′) will be different, in general.

Let

βq(x) =
uAq

(x)
∑Q

q′=1 uAq′
(x)

(4.7)

be the normalised degree of fulfillment of ruleRq, whereuAq
is the degree of fulfillment of rule

Rq. Whenx isn-dimensional,uAq
is determined as a conjunction of the individual memberships

in the antecedents computed by a suitable t-norm,i.e.,

uAq
(x) = uAq1

(x1) ◦ · · · ◦ uAqn
(xn), (4.8)

wherexn is then-th components ofx and◦ denotes a t-norm. Then, it can be shown that the

output of the above Mamdani PFS is a conditional probability density function if an additive

reasoning scheme is used with multiplicative aggregation of the rule antecedents (van den Berg

et al., 2004). The conditional probability of the output given an input vectorx can be computed

as

f(y|x) =
N
∑

j=1

∑Q

q=1 βq(x) Pr(Cj|Aq)uCj
(y)

∫∞

−∞
uCj

(y)dy
, (4.9)

assuming that the output space is well-formed,i.e. the output membership values satisfy

N
∑

j=1

uCj
(y) = 1, ∀y ∈ Y. (4.10)

It is also possible to compute the crisp output of the probabilistic fuzzy system by taking the

conditional expectation of the output according to

E(y|x) =
∫ ∞

−∞

yf(y|x)dy. (4.11)

However, we do not consider the expected output of the system in this chapter, as we are pri-

marily interested in the conditional distribution of the returns for computing the VaR value of a

portfolio.

Assuming that the membership functions in the rule antecedents and the rule consequents

have been defined, the optimal probability parametersPr(Cj|Aq) can now be determined by
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using maximum likelihood parameter estimation, in which the log-likelihood function

J =

K
∑

k=1

ln (Pr(yk|xk)) (4.12)

is maximised whereK is the number of samples in the data set (Waltman et al., 2005b). In

(4.12), it is assumed that the samples in the data set are independent of one another. A suitable

initialisation for iterative optimisation for maximum likelihood estimation is given by direct

estimation from the data by using

Pr(Cj |Aq) =

∑K

k=1 uCj
(yk)uAq

(xk)
∑K

k=1 uAq
(xk)

. (4.13)

Note that the output of a PFS by using (4.9) can also be interpreted as a fuzzy histogram.

The technique for estimating a probability density function (pdf) using (crisp) histograms is

well-known. By appropriately partitioning the domain of the sample spaceY into a set ofN

disjunct classesCj, each “column”fj(y), (j = 1, 2, . . . , N) of the histogram is defined by the

functions

fj(y) =

{

Pr(Cj)

cj
if y ∈ Cj

0 if y 6∈ Cj,
(4.14)

where the probabilityPr(Cj) is estimated in the usual way (using the relative frequency of

samplesyk ∈ Cj) and where the scaling scalarcj equals the size of classCj (which in the one-

dimensional case, is equal to the length of the intervalCj). The probability density function

f(y) is approximated by a summation of the functionsfj(y) according to

f(y) ≈ fapp(y) =

N
∑

j=1

fj(y). (4.15)

Probability density functions defined on a sample spaceY that is fuzzily partitioned can

also be estimated, this time by using afuzzy histogram. To do so, we need a generalisation of

the above-given crisp approach. LetY be fuzzily partitioned in a set ofN fuzzy classesCj

described by membership functionsuCj
(y), then the (fuzzy) columnfj(y) for fuzzy classCj

can be estimated according to

fj(y) =
Pr(Cj)uCj

(y)
∫∞

−∞
uCj

(y)dy
, (4.16)

Equation (4.16) is a generalised version of (4.14). The numerator in (4.16) describes a proba-

bility weighted with membership functionuCj
(y). The denominator of (4.16) is a scaling fac-

tor representing the fuzzified size of classCj (which in the one-dimensional continuous case,
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pdf normal distribution Crisp histogram Fuzzy histogram

(a) Fuzzy histogram
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(b) Triangular membership functions

Figure 4.1: A fuzzy histogram approximates a pdf better than a crisp histogram (a), due to the

overlapping membership functions (b).

equals thefuzzy lengthof the intervalCq). The complete pdff(y) is again approximated by a

summation of the functionsfj(y):

f(y) ≈ fapp(y) =

N
∑

j=1

fj(y) =

N
∑

j=1

Pr(Cj)uCj
(x)

∫∞

−∞
uCj

(y)dy
. (4.17)

Due to the overlap of the fuzzy sets, fuzzy histograms approximate probability distributions

better, in practice. In Figure 4.1 a representation of this phenomenon is shown, where a normal

probability density function is approximated using both a crisp and a fuzzy histogram. In both

cases, seven classes have been used.

Note that (4.17) guarantees that the approximationfapp(x) is properly defined in the sense

that
∫ ∞

−∞

fapp(y)dy = 1. (4.18)

The proof of this observation is obtained by using (4.17), so that

∫ ∞

−∞

fapp(y)dy =

∫ ∞

−∞

N
∑

j=1

Pr(Cj)uCj
(y)

∫∞

−∞
uCj

(y)
dy

=

N
∑

j=1

Pr(Cj)

∫∞

−∞
uCj

(y)dy
∫∞

−∞
uCj

(y)dy
=

N
∑

j=1

Pr(Cj) = 1. (4.19)

By setting the multiplier in (4.17) as
∑Q

q=1 βq(x) Pr(Cj |Aq), (4.9) is obtained.
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(a) Equally spaced.
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(b) More sets towards the origin.

Figure 4.2: Two possible partitions for the output space.

4.4 Probabilistic fuzzy models of value at risk

In this chapter, we consider probabilistic fuzzy systems that estimate probability distribution

of returns given input data and fuzzy rules that describe the general system behaviour. The

models estimate one-day ahead VaR of a portfolio. The same methodology could be applied

for multiple-day estimates of VaR, too. The probabilistic fuzzy models that we consider use the

returnsrt at periodt to predict the distribution of the returns at periodt+ 1.

The model parameters are determined by two different approaches. For convenience we will

name them PFS1 and PFS2. In the following sections we explain in detail how the parameters

for both models are obtained.

4.4.1 Mamdani PFS

PFS1 is a Mamdani probabilistic fuzzy system in which a data-driven sequential approach is

used for determining the model parameters. The input and the output spaces are partitioned into

nine fuzzy regions each. This implies that there are nine fuzzy rules in the model. The type,

distribution and location of the membership functions can be determined in various ways. For

example, it is possible to use triangular or Gaussian membership functions only, or combine

them with shouldered membership functions at the edges of the domain. The distribution of the

membership functions can be uniform over the universe of discourse, or it can be varying. Since

the output membership functions must satisfy (4.10), it is convenient to use triangular member-

ship functions for the output partition. Two possible distributions for the output membership

functions in that case are shown in Fig. 4.2.
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If necessary, the triangular membership functions are combined with shouldered member-

ship functions at the edges of the domain, as shown in Fig. 4.2, to ensure that the domain is

always covered by the fuzzy partition, no matter how extreme the returns may be on a partic-

ular day. Furthermore, financial returns data are usually distributed in such a way that there

are many observations around the origin since usually the returns are either slightly positive or

slightly negative. In order to capture the variability in the region with a large amount of data,

more membership functions are placed around the origin. As one moves towards the edges of

the universe of discourse, the membership functions become wider and the separation between

them increases, as shown in Fig. 4.2(b). This is the partition that has been used in PFS1. Note

that the triangular membership functions in this partition are not symmetric.

The range in which the returns for different assets and different portfolios could vary differ

a lot from one asset to the other. Hence, it is usually not possible to find a single partition that

could be used for different data sets. In order to deal with this situation, we have introduced a

scaling parameterz with which the parameters of the output membership functions are multi-

plied in order to adapt the distribution of the membership functions according to the properties

of a given data set.

The input membership functions of PFS1 are Gaussian. They are determined by using a

fuzzy clustering heuristic. Given a pre-determined number of clustersQ, fuzzy c-means algo-

rithm (Bezdek, 1981) is applied in the product space of the antecedent variables. Given the data

xk, k = 1, . . . , K, fuzzy c-means algorithm divides it intoQ fuzzy groups by minimising the

objective function

J(X ;U, V ) =

Q
∑

q=1

K
∑

k=1

(uqk)
m{‖xk − vq‖2}, (4.20)

subject to the constraint
Q
∑

q=1

uqk = 1. (4.21)

We derive the antecedent membership functions from the clustering results. One rule is derived

from each cluster. A multi-dimensional Gaussian membership function is placed at the location

vq of each cluster centre. The spreads of the membership functions are derived from the dis-

tribution of the data. The fuzzy covariance matrix can be used for this purpose. LetFq be the

fuzzy covariance matrix for clusterq, which is computed as

Fq =

∑K
k=1(uqk)

m(xk − vq)(xk − vq)
T

∑K

k=1(uqk)
m

. (4.22)
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Then, the composite membership functionuAq
for clusterq is given by

uAq
= e−

1

2
(x−vq)TF

−1
q (x−vq). (4.23)

These membership functions are generally not oriented along the axes of the product space of

antecedent variables. In fuzzy models, the membership functions are usually defined on each

variable separately and then composed by using a t-norm. In that case, the multivariate Gaussian

membership function can be projected onto the individual axes by taking the diagonal elements

of Fq as

uAq
= e−

1

2
(x−vq)T [diag(Fq)]−1(x−vq). (4.24)

Note that for the PFS VaR models used in this chapter, (4.23) and (4.24) are equivalent, since

we use a single dimensional antecedent space.

After determining the parameters of the antecedent and consequent membership functions,

the probability parameters Pr(Cj |Aq) of the fuzzy system must be determined. As explained

in Section 4.3, the optimal values of these parameters can be determined by using maximum

likelihood estimation. Hence, we maximised the following log-likelihood function (Waltman

et al., 2005b)

L =

K
∑

k=1

ln

(

N−1
∑

j=1

ūCj
(yk)

Q
∑

q=1

βq(xk) Pr(Cj |Aq)+

+ ūCN
(yk)

Q
∑

q=1

βq(xk)
[

1−∑N−1

j=1
Pr(Cj |Aq)

]

)

, (4.25)

where

ūCj
(yk) =

uCj
(yk)

∫∞

−∞
uCj

(y)dy
. (4.26)

The optimisation algorithm has been initialised by using (4.13) to estimate the initial values for

the probability parameters.

4.4.2 Fuzzy histogram model

In PFS2, the probabilistic fuzzy system is interpreted as a fuzzy histogram. The membership

functions of the model are selected based on the modeler’s choice. We have fixed the distribution

and type of the membership functions. The input and output spaces are both partitioned into

nine fuzzy regions, using equally distributed triangular membership functions, combined with

shouldered membership functions at the edges of the domain, as shown in Fig. 4.2(a).
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Maximum likelihood estimation could again be used for determining the conditional prob-

ability parameters. Another alternative approach is based on using a method directly related

to an exception based back testing, in this case the Kupiec statistical test. It is interesting to

find the optimal parameters by minimising an objective function based on the test statistic since

the acceptance of the models is based on it. In this approach, a suitable cost function is used

and the optimal solution is determined by minimising the cost function using a general search

algorithm. Since the cost function we use may have a finite number of discontinuities, we use

a derivative-free optimisation algorithm. In particular, we use a real coded genetic algorithm

(GA), where each element in the chromosome of an individual corresponds to a probability

parameter.

A genetic algorithm repeatedly modifies a population of solutions. The solutions are repre-

sented as chromosomes which can be combined to produce offspring through crossover opera-

tions. Crossover operations use information from two or more parent chromosomes to generate

new chromosomes. Members of the population can be altered between generations by applying

local mutations to chromosomes. Mutation is a background operator, which produces sponta-

neous random changes in various chromosomes, to guarantee population diversity. Members

of a current population are selected for crossover and mutation according to some determined

random scheme, which takes into account a measure of the quality of the solution that they rep-

resent. This function is called the fitness function. Members with higher fitness are more likely

to be selected than those with lower fitness and are therefore more likely to pass good solution

information to the next generation. Over successive generations, the population evolves toward

an optimal solution. The algorithm is well suited to problems that are complex and have a large

search space, making them impossible to search exhaustively.

In this work we use the real coded GAs (Wright, 1991; Michalewicz, 1996; Herrera et al.,

1998) to estimate the probability parameters Pr(Cj |Aq) of the fuzzy system. Since our models

have nine antecedent membership functions and nine output membership functions, there are

81 parameters to optimise. Each solution in the real coded GA is represented as a vector of 81

values. Roulette wheel selection has been used to select individuals for reproduction. Weighted

mean is used as the crossover operator, while Gaussian mutation was used as the mutation op-

erator. The initial population was generated by random perturbations of the estimates obtained

from (4.13) by adding zero-mean normally distributed noise with standard deviation 0.5. After-

wards, the disturbed parameters were normalised to make sure that the probabilities add up to

1.

At each iteration, the VaR model is computed with the corresponding probability parameters

for each individual by using the returns at periodt to predict an estimated distribution of the

returns at periodt + 1. With this estimated distribution, it is possible to obtain the number of
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Table 4.1: Stocks used in the empirical study.

Data Range
KPN 06/01/1999 – 27/12/2002
ABN 05/01/2000 – 29/12/2003

JiaLing 23/04/2002 – 17/07/2006
BaoShan 04/01/2001 – 04/04/2005
COSCO 26/09/2002 – 16/07/2007

Merchant Bank 10/05/2002 - 28/08/2006

exceptionsN for the candidate model. Note that it is possible to find the optimal number of

exceptionsN∗ that minimises (4.5) sinceT andc are fixed in the experiments. Then, the goal

of optimisation is to select those parameters that minimise the difference betweenN andN∗.

We minimise the following cost function.

M = |N −N∗|+ 10 sign(N −N∗) |P50 − x̄|
max(x)−min(x)

, (4.27)

whereP50 is the obtainedrv in (4.1) whenc is 50%. Since|N − N∗| ∈ N is a discontinuous

function with flat regions, the second term of (4.27) enables the chromosomes to be distin-

guished from one another even for small changes of decision variables. The model built by this

process, is by construction an optimal VaR model that minimises a cost function directly related

to the Kupiec statistical test.

4.5 Experimental study

In an empirical study, we have studied the performance of the proposed probabilistic fuzzy

systems (PFS1 and PFS2) to estimate VaR for different stocks. The performance of both PFS

models has been compared with the performance of the GARCH models. We are interested in

the one-period VaR value. Table 4.1 shows the six different stocks that have been considered

in our study. Two of the companies (KPN and ABN AMRO) have originally been established

in the Netherlands. Since 1990’s, the stocks of these two companies have been traded on the

Dow Jones Exchange. At the time of this study, both of them were one of the Fortune Global

500 corporations. Their stock prices have gone through several periods of positive and negative

tides of the global economy. The other four companies that we studied are Chinese companies

traded on the Shanghai Stock Exchange in China. These companies are the China Jialing In-

dustry Company, China Merchant Bank, China Baoshan Steel Company and COSCO Group.



109

4.5 Experimental study 95

0 100 200 300 400 500 600 700 800 900 1000
−10

−8

−6

−4

−2

0

2

4

6

8

D
ai

ly
 r

et
ur

n 
[%

]

Observations

(a) KPN

0 100 200 300 400 500 600 700 800 900 1000
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

D
ai

ly
 r

et
ur

n 
[%

]

Observations

(b) China Merchant Bank

Figure 4.3: Daily returns of KPN and China Merchant Bank.

They all share some similar properties. First, each of them is a big state-owned company. The

number of employees exceeds 5000. The value of their total assets reaches 100 billion Chi-

nese dollar. Second, each of them has come into the stock market both in China and in Hong

Kong. In addition, their stocks were first traded on the Chinese stock market since 1992. Third,

these companies have already existed for more than 20 years and gone through times of huge

economics innovation in China.

For all companies, we collected the company’s daily closing stock price for 1000 trading

days from either the Dow Jones Jones Exchange or the Shanghai Stock Exchange. The samples

were collected from different periods selected arbitrarily in order to reduce the sensitivity to

the global conjecture at a given period of time. The first 500 samples were used as the training

set. The remaining 500 samples are used as the test set. Note that the stocks of the considered

companies are not all similar. Figure 4.3 shows the daily returns of the KPN and the China

Merchant Bank. As can be seen, there are differences in terms of volatility and the distribution

of the returns.

For each of the data sets, probabilistic fuzzy value at risk models have been developed by

using the two approaches outlined in Section 4.4. For PFS1, models have been obtained for

different values of the scaling parameterz for the output in order to determine a suitable value.

We report the models obtained after finding a suitable value ofz through simple search. PFS2

models do not use a scaling parameter for the output. Furthermore, GARCH (1, 1) models have

been developed for each data set by using maximum likelihood estimation for the parameters.

The performances of the PFS models and the GARCH models have been compared by using

the test set. All the results reported in this section are related to the test sets. In order to reduce

the sensitivity to algorithm initialisation, the experiments were run 30 times. We report the best
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Figure 4.4: Antecedent and consequent membership functions for ABN AMRO.

models obtained. The validity of the models is assessed with the exception-based back testing

method using the Kupiec statistical test.

In our models, we have used nine antecedent membership functions and nine consequent

membership functions. Hence, the fuzzy system had nine rules. For model PFS1 the FCM

algorithm was run with nine clusters. In such a system, there are 81 probability parameters

Pr(Cj |Aq) (nine for each rule). We now give some more details of the model for one of the

stocks we have studied (ABN AMRO). The antecedent membership functions obtained for

model PFS1 after FCM clustering are shown in Fig. 4.4(a). Since FCM has the tendency to

place more clusters in regions covered with more data, there are more antecedent membership

functions in the centre, where more samples are available. The output membership functions

are triangular, and they follow the pattern shown in Fig. 4.4(b).

Given the fuzzy membership functions whose parameters are determined as above, the con-

ditional probability parameters for PFS1 are determined by using maximum likelihood estima-

tion. Given the conditional probability distribution of one period returns, the value at risk of the

portfolio is obtained by using (4.1) and (4.2).

In the PFS2 models, we have used nine antecedent membership functions and nine con-

sequent membership functions, with 81 probability parametersPr(Cj|Aq). As already stated

these parameters are estimated using a real coded genetic algorithm to minimise (4.27). In our

implementation of the GA, each individual from the population corresponds to a different set

of probability parameters. A population with 20 individuals was used. The selection probabil-

ities were calculated and successive pairs of individuals were drawn using the roulette wheel

selection.
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90% of the population at the next generation was created by a crossover function, that cre-

ates children that are the weighted arithmetic mean of two parents. Gaussian mutation was

used, where a random number is added to a variable, taken from a Gaussian distribution. The

termination condition was to stop the algorithm when the best individual did not improve in

over 100 consecutive generations or if the cumulative change in the fitness function value was

less than1× 10−6. During our experiments all tests halted by the fitness function criterion. All

models were implemented in Matlab.

The steps necessary for computing the one-period value-at-risk of a portfolio can now be

summarised as follows for PFS1 models.

1. Collect the price series regarding the portfolio and compute the one-period returns. Create

training and validation data sets.

2. Determine antecedent membership functions: apply fuzzy c-means clustering to compute

the locations of the membership functions and use cluster covariance (4.22) to obtain the

spreads from (4.23).

3. Select the number of consequent membership functions and form a partition as shown in

Fig. 4.2(b). Determine the value of the scaling factorz.

4. Given the definitions of the antecedent and the consequent membership functions, deter-

mine the optimal probability parameters of the PFS by maximising (4.25).

5. Using the test set, compute the estimated conditional probability distribution function for

the one-period returns for each observation in the test set.

6. Given the conditional probability distribution functions, compute the VaR by using (4.1)

and (4.2).

7. Validate the model by using exception based back-testing as explained in Section 4.2.

The steps necessary for computing the one-period value-at-risk of a portfolio for models

PFS2 can be summarised as follows.

1. Collect the price series regarding the portfolio and compute one-period returns. Create

training and validation data sets.

2. Determine the antecedent and consequent partition over the universe of discourse, with

nine equally spaced membership functions.

3. Given the antecedent and consequent membership functions, determine the 81 optimal

probability parameter of the PFS, by minimising (4.27), for the training data set.
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Table 4.2: Influence of the scaling factor on the failure rates for ABN AMRO for different VaR

confidence.
Scaling factor

c 0.002 0.003 0.004 0.005
95% 0 0.068 0.068 0.092

97.5% 0 0.032 0.038 0.046
99% 0.006 0.014 0.026 0.022

4. Compute the estimated conditional probability distribution function for the one-period

return for each observation in the validation data set and the corresponding VaR, using

(4.1) and (4.2).

5. Validate the model by using the exception based back-testing as explained in Section 4.2.

4.6 Results

We start by considering the influence of the scaling factorz for PFS1. Table 4.2 shows the

influence of the scaling factorz on the observed failure rates of the model for different values of

the VaR confidence levelc for one of the data sets. It can be observed from the table that as the

value of the scaling factor increases, the number of failure rates is also increasing, indicating

an underestimation of the VaR value. Conversely, the number of failure rates may be reduced

to zero whenz becomes small, indicating an overestimation of the VaR value. Both cases are

undesirable and hence an optimal value forz should be determined. This is done by minimising

the average deviation in failure rate for different values of the VaR confidencec. Specifically,

the absolute difference between the theoretical failure rate and the observed failure rate in the

data is computed for 95%, 97.5% and 99% VaR estimation. The mean of these three numbers

is taken as the index to be minimised. The optimalz value is the one that corresponds to the

minimal value of this index. This procedure was repeated for the data of all companies. It can be

seen that all probability variables are positive according to this estimation. Table 4.4 shows the

optimal probability parameters obtained after maximum likelihood estimation for PFS1. Note

that some of the probability parameters are now zero. Furthermore, after an extreme return (e.g.

first and ninth rows), the returns tend to be extreme as indicated by large values of probability

in the first and ninth columns and low values in the fourth and fifth columns. Conversely, the

returns tend to be average after an average event (e.g.fifth row) as indicated by zero probability

in the first and ninth columns. This is an indication that there is volatility clustering in this data

set (van den Berg et al., 2004).

Table 4.3 shows the initial probability parameters obtained with (4.13).
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Table 4.3: Initial probability parameters for ABN AMRO model.

Consequent
Rule 1 2 3 4 5 6 7 8 9

1 0.1003 0.1333 0.2066 0.0567 0.0441 0.1215 0.1012 0.1218 0.1143
2 0.0565 0.1351 0.1659 0.0792 0.0744 0.0972 0.1617 0.1489 0.0811
3 0.0459 0.1679 0.1495 0.1300 0.1024 0.0773 0.1463 0.1359 0.0448
4 0.0544 0.1683 0.1700 0.1105 0.0647 0.0802 0.1454 0.1579 0.0468
5 0.0516 0.1578 0.1800 0.1119 0.0692 0.0770 0.1547 0.1472 0.0506
6 0.0563 0.1648 0.1760 0.0956 0.0655 0.1206 0.1340 0.1227 0.0646
7 0.0700 0.1877 0.1659 0.0748 0.0405 0.0901 0.1147 0.2002 0.0562
8 0.0529 0.1625 0.1626 0.1122 0.0999 0.0930 0.1313 0.1286 0.0570
9 0.0539 0.1729 0.1624 0.1132 0.0746 0.0772 0.1476 0.1505 0.0476

Table 4.4: Probability parameters for PFS1 ABN AMRO model after optimisation.

Consequent
Rule 1 2 3 4 5 6 7 8 9

1 0.1401 0.0850 0.3776 0 0 0.1586 0 0.0940 0.1446
2 0.0247 0.0762 0 0 0.1366 0.1239 0.3359 0.2380 0.0646
3 0 0.0308 0 0.3430 0.2831 0 0.3432 0 0
4 0.0017 0.1197 0.0895 0.1036 0.0348 0.1577 0.1609 0.3321 0
5 0 0.1893 0.4046 0.2158 0.0725 0 0.1178 0 0
6 0 0 0.2309 0.1297 0 0.3170 0.2131 0 0.1093
7 0 0.4398 0.1626 0.0046 0 0 0 0.3931 0
8 0.0455 0.3267 0.2359 0 0.0755 0.0511 0.0120 0.2105 0.0429
9 0.0595 0.3158 0.2772 0 0 0.0478 0.0980 0.1970 0.0047

Table 4.5: Probability parameters for PFS2 ABN AMRO model after optimisation.

Consequent
Rule 1 2 3 4 5 6 7 8 9

1 0.0741 0.0850 0.1610 0.1680 0.1142 0.1041 0.0861 0.0998 0.1077
2 0.1056 0.0372 0.1052 0.1610 0.1737 0.0331 0.0640 0.1549 0.1654
3 0.0238 0.0380 0.1133 0.1286 0.1157 0.1744 0.1362 0.1032 0.1667
4 0.0000 0.0875 0.1181 0.0941 0.1516 0.1782 0.1751 0.1839 0.0113
5 0.0529 0.1130 0.1052 0.1298 0.1469 0.1806 0.1064 0.0873 0.0778
6 0.0540 0.0944 0.1351 0.1585 0.0739 0.1096 0.1076 0.1527 0.1140
7 0.0788 0.1554 0.1199 0.1678 0.0241 0.1673 0.1501 0.0219 0.1148
8 0.0869 0.0769 0.1450 0.1618 0.1263 0.1013 0.1158 0.0956 0.0904
9 0.1643 0.0178 0.0797 0.0951 0.1504 0.2045 0.1304 0.1284 0.0294
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When considering the optimal parameters for the PFS2 model (Table 4.5), we see that none

of the probability parameters are zero. Hence, the genetic optimisation algorithm does not

lead to maximum likelihood parameters, but as explained below the models are accepted. This

indicates that the fitness landscape can be very flat, leading to different, but equally acceptable

solutions.

Table 4.6 shows the obtained results of the exception-based back testing for the best GARCH

and the probabilistic fuzzy models. This table shows the number of exceptions that have oc-

curred in the validation data for different levels of the confidence parameterc. The bold face

numbers indicate that the model is not rejected according to the test statistic. The non-rejection

region for the Kupiec test statistic is also shown. The optimal number of exceptions, according

to (4.5) is25 for c = 95%, 13 for c = 97.5% and5 for c = 99%.

As can be seen in Table 4.6, the GARCH models are rejected for some data sets, while the

PFS models are accepted for all data sets. However, note that the estimation of the probability

parameters is a problem with multiple minima. In different runs, different solutions for the

probability parameters were obtained. Table 4.7 shows the mean (ηPFS2
) and standard deviation

(σPFS2
) of the failure rate obtained during the 30 experiments made to reduce the sensitivity to

algorithm initialisation in the PFS2 model, as well as the percentage of tests (PPFS2
) that are

accepted by the exception-based back testing. As Table 4.7 shows, in some of the cases, the

number of obtained exceptions was in the rejection region, and in the case ofc = 99%, the PFS2
model is accepted most of the times. We conjecture that through the use of a different objective

function that takes the differences in losses between the actual and predicted VaR, this problem

can be solved.

It is also interesting to consider how the VaR values estimated by the PFS compare to the

values estimated by the GARCH models. Table 4.8 shows the sum of the differences between

the VaR estimated and the actual losses in the periods where the VaR estimation is smaller than

the actual losses, i.e., when exceptions occur. The daily returns and VaR estimates for the PFS

and GARCH models withc = 97.5% are shown in Fig. 4.5.

As can be seen in Table 4.8, the expected losses are in most cases smaller in the PFS models.

In other cases where the GARCH model has smaller total expected losses than the PFS model,

the GARCH model leads to a smaller number of exceptions (which could indicate a conservative

model). Note, for instance, that in stock COSCO withc = 95% the GARCH model is too

conservative and is not accepted according to the Kupiec test. The losses for the stocks Baoshan

and ABN withc = 95% are much larger in the PFS2 model than in the PFS1 and the GARCH

models. This indicates that the genetic optimisation suffers from multiple local minima. The

model is accepted by the Kupiec test, which considers only the number of exceptions, but

exhibits larger expected losses for a few cases. This is a weakness of the proposed training
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Table 4.6: Failure rates for back testing.

Asset c PFS1 PFS2 GARCH Non-Rejection
95% 34 25 19 16< N < 36

ABN 97.5% 16 12 13 6 < N < 20
99% 7 6 9 1 < N < 10
95% 29 24 11 16< N < 36

KPN 97.5% 14 8 8 6 < N < 20
99% 7 5 4 1 < N < 10
95% 31 25 22 16< N < 36

JiaLing 97.5% 19 13 14 6 < N < 20
99% 8 4 6 1 < N < 10
95% 36 24 12 16< N < 36

BaoShan 97.5% 16 13 8 6 < N < 20
99% 6 5 6 1 < N < 10
95% 32 25 14 16< N < 36

COSCO 97.5% 18 12 11 6 < N < 20
99% 8 5 5 1 < N < 10
95% 21 27 10 16< N < 36

Merchant 97.5% 12 13 5 6< N < 20
99% 5 5 4 1 < N < 10

Table 4.7: Average failure rates for PFS2 model.

Asset c ηPFS2
σPFS2

PPFS2
Non-Rejection Region

95% 40.7 15.5 36.67% 16< N < 36
ABN 97.5% 24.0 13.4 33.33% 6< N < 20

99% 7.6 4.2 76.67% 1< N < 10
95% 56.0 38.3 16.67% 16< N < 36

KPN 97.5% 25.7 15.3 23.33% 6< N < 20
99% 8.9 6.1 66.67% 1< N < 10
95% 36.0 17.3 33.33% 16< N < 36

JiaLing 97.5% 25.7 18.8 23.33% 6< N < 20
99% 7.9 4.0 66.67% 1< N < 10
95% 42.5 16.9 23.33% 16< N < 36

BaoShan 97.5% 25.9 12.1 33.33% 6< N < 20
99% 8.3 6.3 73.33% 1< N < 10
95% 42.9 20.9 30.00% 16< N < 36

COSCO 97.5% 23.0 15.8 40.00% 6< N < 20
99% 7.2 4.5 66.67% 1< N < 10
95% 39.7 16.6 26.67% 16< N < 36

Merchant 97.5% 25.1 14.9 33.33% 6< N < 20
99% 6.9 4.5 70.00% 1< N < 10
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Figure 4.5: Daily Returns and VaR estimates withc = 97.5%.
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Table 4.8: VaR Exceptions.

Asset c PFS1 PFS2 GARCH
95% 0.5886 1.8622 0.3579

ABN 97.5% 0.3185 0.2850 0.6878
99% 0.1841 0.1196 0.8943
95% 0.8224 0.5209 0.9735

KPN 97.5% 0.5166 0.4454 0.8070
99% 0.3587 0.1465 0.4169
95% 0.5640 0.3344 0.8680

JiaLing 97.5% 0.3288 0.6796 0.6314
99% 0.2187 0.0827 0.3174
95% 0.3673 2.0010 0.3514

BaoShan 97.5% 0.2025 0.2873 0.2864
99% 0.0755 0.1978 0.1824
95% 0.6517 0.9291 0.6776

COSCO 97.5% 0.3862 0.7746 0.6128
99% 0.2072 0.2119 0.3054
95% 0.2100 0.9166 0.3579

Merchant 97.5% 0.0900 0.3013 0.1864
99% 0.0358 0.1963 0.1720

methods for PFS2. Choosing another fitness function may help alleviate this problem. It is also

interesting to note that the PFS2 model in some cases exhibits a more conservative behaviour

than the PFS1 model and simultaneously has the number of exceptions equal, or very close,

to the optimal number of exceptions, according to (4.5), for the stocks BaoShan, COSCO and

Merchant, as can be seen in Fig. 4.5.

4.7 Conclusions

We have proposed applying probabilistic fuzzy systems for value at risk modelling of portfo-

lios for quantifying the market risk. Probabilistic fuzzy systems combine an approximate rule

based description of system behaviour with statistical properties of data. We have studied two

approaches for determining the model parameters. In one, a Mamdani probabilistic fuzzy sys-

tem is designed by following a sequential approach for determining the model parameters. The

location of the antecedent membership functions is determined by using fuzzy clustering. Max-

imum likelihood parameter estimation is used for determining the probability parameters of the

PFS. The output membership functions are scaled by using a scaling parameter. In another, we

determine the membership parameters based on (expert) knowledge by fixing the distribution

and type of the membership functions. The conditional probability parameters are estimated

by minimising the test statistic of a back testing method by using a constrained evolutionary
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optimisation method. It is found that the data-driven sequential approach leads to more stable

models. With evolutionary optimisation, locally optimal solutions are often obtained.

The performance of the proposed models has been compared to the VaR estimation by

using the popular GARCH (1,1) volatility estimation. Exception-based back testing is used

for this purpose. It is found that PFS models are not rejected by back testing, while GARCH

models are sometimes rejected. This shows the added flexibility that comes through the use of

the probabilistic fuzzy models, enabling them to adapt to the properties of the data. In terms

of the computed value at risk models, the proposed methods tends to be less conservative.

However, this depends on the specific portfolio for which the VaR measure is being computed.

Furthermore, with some portfolios, PFS models estimate larger VaR at 99% confidence. The

reasons for this behaviour could be multi-fold, but we think it might be related to the degree

of volatility clustering observed in the return series. As future work, we will investigate in

more detail whether this difference in the behaviour can be attributed to the degree of volatility

clustering.
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A multi-covariate multi-horizon

conditional volatility model using

probabilistic fuzzy systems1

5.1 Introduction

A NALYZING the prices and risk of financial products is a major concern for financial

institutions as well as for macroeconomic policy makers such as central banks. Financial

institutions undertake activities to reduce the possibility of failure to an acceptable range. These

activities may include portfolio adjustment, hedging or insurance, to manage the different kinds

of risk that they are exposed to, such as the market risk, the credit risk and the operational risk

(Hull, 2000). Furthermore, macroeconomic policy makers such as central banks use prices of

influential returns such as the S&P 500 returns as broad indicators of the country’s economy.

According to these indicators, monetary or fiscal policy can be adjusted (Rigobon and Sack,

2003).

The analysis of prices and risk of financial products is often based on their market risk.

Market risk is the exposure to the uncertain market value of a portfolio (Holton, 2003). Un-

certain market values of a portfolio or a financial product cannot be assessed if the focus is

only the expected return of the portfolio. For this reason, estimating and forecasting the whole

density of the portfolio, or the returns constituting the portfolio are of importance. Value at

risk (VaR) is a conventional measure to quantify the market risk from the estimated conditional

density of returns or a portfolio. It is a single number for the senior management to express and

summarise the total market risk of a portfolio with financial assets. Value at risk measures the

1Parts of this chapter have been published in Almeida, Basturk, Kaymak, and Milea (2012a); van den Berg,
Kaymak, and Almeida (2013); Almeida, Basturk, and Kaymak (2014a).
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worst expected loss over a given horizon under normal market conditions at a given confidence

level. Due to regulations, large banks must nowadays base their market risk capital require-

ments on the VaR estimate (Jorion, 2006). This implies that accurate VaR models are needed

for allocating the capital more efficiently in order to cover possible losses.

Additionally, analyzing the risk of returns in longer horizons is important since the horizon

of decision making relying on these financial products may vary. While some contracts allow

the financial institutions to alter their portfolios in a very short time, other contacts are adjustable

only in longer horizons and hence require a longer term risk analysis. Particularly the decision

making by policy makers is not possible in short horizons. For example, the U.S. monetary or

fiscal policy is not adjusted in a daily frequency. Hence analyzing prices and market risk of

financial products at longer horizons is of interest both for financial institutions and for policy

makers.

Value-at-Risk can be obtained from the negative lower quantile of the conditional distribu-

tion function. Simulation approaches or parametric approaches are usually used for conditional

density estimation and for VaR estimation. The simplest models of volatility assume that it does

not vary over time while more advanced models acknowledge that volatility varies dynamically

over time. The disadvantage of the parametric approach is that the data usually do not follow

the parametric distributions that are assumed to underlie the data generating process. Obtaining

these density estimates or forecasts is not trivial since the considered density is typically dy-

namic, i.e. changes over time. These changes can be attributed to certain variables as well as

seasonal factors, such as the day of the week (Berument and Kiymaz, 2001). Therefore, more

flexible modelling approaches are needed.

A semi-parametric model in which the model structure and the model parameters can be

adapted to the underlying data distribution is the probabilistic fuzzy system (PFS). In a prob-

abilistic fuzzy system, a linguistic description of the system behaviour encoded by the fuzzy

rules is combined with the statistical properties of data. PFS is suitable for approximating prob-

ability distributions. Since accurate VaR estimation is enabled by estimating the probability

distribution of the data, PFS has been used to estimate it (Xu and Kaymak, 2008; Almeida and

Kaymak, 2009b,a). These studies focused on single covariate models using a multi-step sequen-

tial approach for determining the model parameters. In Almeida and Kaymak (2009b) separate

approaches are proposed to design a PFS for two different reasoning mechanisms.

In this work, we consider conditional density estimation and the related VaR estimation by

using a multi-covariate and multi-output PFS model on daily S&P 500 returns data. We use

a single approach to design a PFS for the two different reasoning mechanisms, which provide

additional information, linguistic interpretation and process understanding. In this application

we first analyze whether the conditional density of returns and the associated VaR can be suc-
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cessfully estimated with a PFS multi-covariate model including information on past returns, as

suggested in Villani et al. (2009). The performance of the model is illustrated using the quan-

tiles of the estimated conditional density function for returns. Furthermore, the performance of

the proposed model and a set of alternative models in terms of the VaR estimates are evaluated

by using an unconditional coverage test (Kupiec test) and an independence test (Christoffersen

Markov test). Comparing the proposed model and estimation method with the conventional

GARCH models, it is found that the GARCH models are sometimes rejected, while the PFS

models of VaR are never rejected. We next apply the PFS model with seasonal factors to the

S&P 500 returns. Specifically, we analyze whether the conditional distribution of returns and

associated VaR depend on the day of the week, as suggested in Berument and Kiymaz (2001).

Furthermore, we analyze the performance of the PFS model in short and long term horizons

focusing on the one day ahead and one month (21 trading days) ahead forecasts using the pro-

posed multi-covariate multi-output model. The extended model captures seasonal patterns in

S&P 500 returns in short and longer horizons as well as the increased risk factor in longer term

forecasts of returns. The model is shown to perform well in VaR estimation according to the un-

conditional coverage and independence tests. Regarding the PFS model estimation, we present

a two-step approach to estimate the model parameters, by dividing the parameter estimation

into two groups: the input parameters and the output and reasoning parameters.

The outline of this chapter is as follows. In Section 5.2, we summarize the basics of PFS

models, introduce the multi-covariate multi-output PFS model and provide a discussion on

the additional information, linguistic interpretation and process understanding provided by two

equivalent reasoning mechanisms that the PFS model provides. We discuss the VaR estimation

using the PFS models and model validation techniques for VaR estimation in Section 5.3. The

extended multi-covariate multi-output PFS model is introduced in Section 5.4. In Section 5.5

the multi-covariate PFS is applied to the S&P 500 returns for conditional density estimation us-

ing the two different reasoning mechanisms that PFS model provides. Value-at-Risk estimation

for the S&P 500 returns including the seasonality analysis and multiple period ahead forecasts

are provided in Section 5.6. Finally, conclusions are given in Section 5.7.

5.2 Probabilistic fuzzy systems

Probabilistic fuzzy systems (PFS) are based on the concept of the probability of a fuzzy event,

as defined by Zadeh (1968). Probabilistic fuzzy systems combine two different types of uncer-

tainty, namely fuzziness or linguistic vagueness, and probabilistic uncertainty. The PFS consists

of a set of rules whose antecedents are fuzzy conditions and whose consequents are probability

distributions.
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Assuming that the input space is a subset ofR
n and that the rule consequents are defined

on a finite domainY ⊆ R, a probabilistic fuzzy system consists of a system of rulesRq,

q = 1, . . . , Q, of the type

Rq : If x isAq thenf(y) is f(y|Aq) , (5.1)

wherex ∈ R
n is an input vector,Aq : X −→ [0, 1] is a fuzzy set defined onX andf(y|Aq) is

the conditional pdf of the stochastic output variabley given the fuzzy eventAq.

For the purpose of this study, we consider two possible and equivalent reasoning mech-

anisms of PFS, namely the fuzzy histogram approach and the probabilistic fuzzy output ap-

proach (van den Berg et al., 2012). In both cases, we suppose thatJ fuzzy classesCj form a

fuzzy partition of the compact output spaceY .

5.2.1 Fuzzy histogram model

In the fuzzy histogram approach, we replace in each rule of (5.1) the true pdff(y|Aq) by its

fuzzy approximation (fuzzy histogram)̂f(y|Aq) yielding the rule set̂Rq, q = 1, . . . , Q defined

as

R̂q : If x isAq thenf(y) is f̂(y|Aq) , (5.2)

wheref̂(y|Aq) is a fuzzy histogram conform (van den Berg et al., 2001)

f̂(y|Aq) =

J
∑

j=1

P̂r(Cj|Aq)uCj
(y)

∫∞

−∞
uCj

(y)dy
. (5.3)

The numerator in (5.3) describes a superposition of fuzzy events described by their membership

functionsuCj
(y), weighted by the probabilitŷPr(Cj|Aq) of the fuzzy event. The denominator

of (5.3) is a scaling factor representing the fuzzified size of classCj. Because of overlapping

membership functions, fuzzy histograms have a high level of statistical efficiency, compared to

crisp ones. We show this in Fig. 5.1 where the probability density function (pdf) of the standard

normal distribution is approximated by a classical and by a fuzzy histogram using in both cases

a partitioning in seven classes. For more details we refer to van den Berg et al. (2004). Besides

a high level of statistical efficiency, several classes of fuzzy histograms also have a high level of

computational efficiency. An example of such type of fuzzy histogram is one that uses triangular

membership functions (Waltman et al., 2005a).

The interpretation of this type of reasoning is as follows. Given the occurrence of a (multi-

dimensional) antecedent fuzzy eventAq, which is a conjunction of the fuzzy conditions defined
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Figure 5.1: A fuzzy histogram approximates a pdf better than a crisp histogram.

on input variables, an estimate of the conditional probability density function based on a fuzzy

histogramf̂(y|Aq) is calculated.

5.2.2 Probabilistic fuzzy output model

In the probabilistic fuzzy output approach, sometimes also referred to as Mamdani PFS (Kay-

mak et al., 2003; Xu and Kaymak, 2008; Almeida and Kaymak, 2009b), we decompose each

rule (5.1) to provide a stochastic mapping between its fuzzy antecedents and its fuzzy conse-

quents. The rules are written in the following form.

RuleR̂q: If x isAq theny isC1 with P̂r(C1|Aq) and

. . .

y isCJ with P̂r(CJ |Aq). (5.4)

These rules specify a probability distribution over a collection of fuzzy sets that partition the

output domain. The rules of a PFS also express linguistic information and they can be used to

explain the model behaviour by a set of linguistic rules. This way, the system deals both with

linguistic uncertainty as well as probabilistic uncertainty.

The interpretation for the probabilistic fuzzy output approach is as follows. Given the oc-

currence of a (multidimensional) antecedent fuzzy eventAq, which is a conjunction of the fuzzy

conditions defined on input variables, each of the consequent fuzzy eventsCj is likely to occur.

The selection of consequent fuzzy events is done proportionally to the conditional probabilities

P̂r(Cj |Aq), j = 1, 2, . . . , J . This applies for all the rulesRq, q = 1, 2, . . . , Q.
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5.2.3 Equivalence of reasoning mechanisms

Although the fuzzy rule bases (5.2) and (5.4) are different, under certain conditions, the two

corresponding probabilistic fuzzy systems implement the same crisp input-output mapping (van

den Berg et al., 2012). Letβq(x) = uAq
(x)/

∑Q
q′=1 uAq′

(x) be the normalised degree of fulfill-

ment of ruleRq, whereuAq
is the degree of fulfillment of ruleRq. Whenx is n-dimensional,

uAq
is determined as a conjunction of the individual memberships in the antecedents computed

by a suitable t-norm,i.e.,

uAq
(x) = uAq1

(x1) ◦ · · · ◦ uAqn
(xn), (5.5)

wherexi, i = 1, . . . , n is thei-th component ofx and◦ denotes a t-norm. Then, it can be shown

that the output of the fuzzy rules (5.4) is a conditional probability density function, like in the

rules (5.2), if an additive reasoning scheme is used with multiplicative aggregation of the rule

antecedents (van den Berg et al., 2004). Assuming that the output space is well-formed,i.e. the

output membership values satisfy

J
∑

j=1

uCj
(y) = 1, ∀y ∈ Y , (5.6)

the conditional probability of the output given an input vectorx can be computed as

f(y|x) =
J
∑

j=1

Q
∑

q=1

βq(x)P̂r(Cj|Aq)
uCj

(y)
∫∞

−∞
uCj

(y)dy
. (5.7)

It is also possible to compute a crisp output of the probabilistic fuzzy system. As shown

in van den Berg et al. (2012), using the estimated conditional probability density function, the

expected conditional output of the probabilistic fuzzy output is given by the weighted average

of the estimated expected output of each rule according to

η̂y|x = Ê(y|x) =
∫ ∞

−∞

yf̂(y|x)dy =
Q
∑

q=1

βq(x)Ê(y|Aq)

=

Q
∑

q=1

J
∑

j=1

βq(x)P̂r(Cj|Aq)z1,j , (5.8)
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and the estimated conditional variance is

σ̂2
y|x = Ê(y2|x)− (Ê(y|x))2 =

∫ ∞

−∞

y2f̂(y|x)dy − η̂y|x =

Q
∑

q=1

βq(x)Ê(y|x)− η̂2y|x

=

Q
∑

q=1

J
∑

j=1

βq(x)P̂r(Cj |Aq)z2,j − η̂2y|x , (5.9)

whereÊ(y|Aq) is the estimated expected output of each rule,

z1,j =

∫∞

−∞
yuCj

(y)dy
∫∞

−∞
uCj

(y)dy
, (5.10)

andz2,j is defined as

z2,j =

∫∞

−∞
y2uCj

(y)dy
∫∞

−∞
uCj

(y)dy
. (5.11)

In this work we are primarily interested in the output of the PFS as a fuzzy histogram, by

using (5.3) as an approximation of the conditional distribution of the returns, for computing the

VaR value of a portfolio. Note that the same type of fuzzy additive reasoning is applied in both

schemes, which eventually yield the same crisp input-output mapping.

5.2.4 Probabilistic fuzzy systems with multiple outputs

The results presented in the previous sections can be extended for the case of multiple outputs,

following the distinction between fuzzy input and conditional density output of (5.2). The basic

idea is that each one of thec outputs will have an independent probability density function

conditional on the same input variablesx, making the output of each PFS rule is defined by

multiple densities. The fuzzy histogram model rules can be written as

Rq : If x isAq thenf1(y) is f1(y1|Aq)and

. . . andfc(y) is fc(yc|Aq) , (5.12)
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and the probabilistic fuzzy output rules are

RuleR̂q: If x isAq theny1 isC1,1 with P̂r(C1,1|Aq) and

yc isCc,1 with P̂r(Cc,1|Aq) and

. . .

y1 isC1,J with P̂r(C1,J |Aq) and

yc isCc,J with P̂r(Cc,J |Aq). (5.13)

In this work we develop probabilistic fuzzy systems with multiple outputs. The outputs are

multiple horizon conditional densities used to estimate value-at-risk.

5.3 Value-at-Risk estimation

In this section, we discuss value at risk estimation by using probabilistic fuzzy systems. Value at

risk is a single number for the senior management to express and summarise the market risk of a

portfolio of financial assets. The VaR value of a portfolio is always calculated over a time hori-

zonh at a significance levelc. It indicates the maximum loss that a portfolio of assets will suffer

over a horizon ofh (days) with a confidence ofc. An overview of the mainstream value at risk

estimation methods can be found in Duffie and Pan (1997). Several methods are also discussed

in Wiener (1999). Various building blocks of VaR measurement, methods for model validation

as well as the differences between the parametric and nonparametric estimation approaches are

discussed in Jorion (2006).

5.3.1 Value-at-Risk

Assume that a portfolio has valueWt at timet. Let r denote the one period percentage return of

the portfolio. Iff(r) is the probability density function of the returns, definec ∈ (0, 1), rv such

that

1− c =

∫ rv

−∞

f(r)dr. (5.14)

The value at riskV aRt of the portfolio at timet is then defined as

VaRt(c) = −rvWt. (5.15)

Ideally,Pr(rt < −VaRt(c)|Ωt) = c, whereΩt the information set at timet. Assuming that the

returns are distributed normally, the key step in the value at risk estimation can be formulated as

determining the varianceσ2 of the returns distribution. This is also calledvolatility estimation.
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Other models estimate VaR without strict assumptions, such as Gaussian errors or zero mean, on

the underlying data distribution. Mixture models (Villani et al., 2009) or nonparametric models

(Zmeškal, 2005a) are examples of such models. These flexible models are proposed since the

underlying data distribution or this distribution’s properties are hard to assess. In this respect,

the PFS model is a suitable and flexible model for VaR estimation, since the model does not rely

on distributional assumptions of the data. Furthermore, the VaR of a return can be computed

directly from the PFS output density.

5.3.2 Volatility estimation

Simulation approaches or parametric approaches are usually used for conditional density es-

timation and for VaR estimation. In order to estimate the VaR for a given horizon, the daily

volatility is scaled to multiple-day volatility (Hull, 2000). The simplest models of volatility

assume that it does not vary over time. In that case, the varianceσ2
t could be estimated by

usingM observations asσ2
t =

∑M
i=1

r2i
M

, ∀t. More advanced models acknowledge that volatil-

ity varies dynamically over time. For example, volatility clustering has been observed in the

financial markets, which means that there are periods of high variability followed by low vari-

ability. GARCH models are used to capture the time varying behaviour of volatility. These

models relate the unobserved volatility/variance of data to the past variance and past observa-

tions. Hence, the conditional density of the data is a normal distribution, but the occurrence

of positive or negative extreme data values depends on the past observations together with past

volatility. The standard GARCH(p, q) model fort = 1, . . . , T observations is defined as:

yt =
√

ht ǫt ∼ NID(0, ht) (5.16a)

ht = α0 +

q
∑

i=1

αiy
2
t−i +

p
∑

j=1

βjht−j (5.16b)

ǫt ∼ NID (0, 1) (5.16c)

whereyt is the data with a conditional normal distribution andNID(µ, σ2) denotes the nor-

mal and independently distribution with meanµ and varianceσ2. Scalarsq andp are, respec-

tively, the lag order for past returns and past conditional volatility in the GARCH model and

(α0, αi, βj) for i = 1, . . . , q andj = 1, . . . , p are GARCH model parameters.

More advanced models acknowledge that volatility varies dynamically over time. The dy-

namic aspect of volatility could be modelled in various ways. For example, a multivariate

regime switching approach to VaR estimation has been discussed in Billio and Pelizzon (2000).

Another model where volatility changes dynamically in time is the GARCH (Generalised Auto
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Regressive Heteroscedasticity) model (Bollerslev, 1986). For the GARCH (1, 1) model, which

is used quite often in practice, the variance is estimated using a first-order autoregressive model

of the squared returns. The disadvantage of the parametric approach is that the data usually

do not follow the parametric distributions that are assumed to underly the data generating pro-

cess. Therefore, more flexible modelling approaches are needed. Flexible parametric models,

based on regression density estimation using adaptive mixture of Gaussian (Villani et al., 2009)

or student–t (Li et al., 2010) distributions, where the mixture probabilities of the components

changes smoothly as a function of the covariates, have been use to analyze the distribution of

daily returns. Semi-parametric approaches using a fuzzy stochastic approach (Zmeškal, 2005a),

a fuzzy measure model for pricing options (Cherubini and Della Lunga, 2001) and using fuzzy

set theory (Bowden, 2006) have also been used for VaR estimation. These flexible models are

proposed since the underlying data distribution or this distribution’s properties are hard to as-

sess. In this respect, the PFS model is a suitable and flexible model for VaR estimation, since

the model does not rely on distributional assumptions of the data. Furthermore, the VaR of a

return can be computed directly from the PFS output density.

5.3.3 Model validation

Model validation is the process of checking whether a model performs adequately, and can be

done in various ways. In this chapter, we consider a failure test of unconditional coverage test

using the Kupiec test (Kupiec, 1995) and independence test using Christoffersen’s Markov test

(Christoffersen, 1998).

Kupiec has developed a statistical test for assessing the validity of a VaR model (Kupiec,

1995). Kupiec confidence regions are defined through the tail point of the log-likelihood ratio

LRc

LRc = 2 ln

(

(

1− I/T

c

)T−I (
I/T

1− c

)I
)

(5.17)

In (5.17),I is the number of exceptions andT is the total number of observations. It is con-

sidered that an exceptionIt(c) has occurred whenrt+1 < VaRt(c). This ratio is shown to be

asymptoticallyχ2-distributed, with 1 degree of freedom, under the null hypothesis that the VaR

model is valid (Kupiec, 1995). Note that the Kupiec test statistic is two sided. Hence, the model

is rejected both when there are too few exceptions, (the model is too conservative), as well as

when there are too many exceptions, (the model underestimates the volatility).

Besides the tests of unconditional coverage to detect violations of an accurate VaR measure,

a variety of tests have been developed which explicitly examine the independence property of

the VaR estimation. Christoffersen developed a Markov test (Christoffersen, 1998) to examine
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whether the likelihood of a VaR violation depends on the occurrence of a VaR violation on

the previous day. If the VaR measure accurately reflects the underlying portfolio risk then the

chance of violating today’s VaR should be independent of whether or not yesterday’s VaR was

violated. The idea behind this test is that clustered violations represent a signal of risk model

misspecification. Violation clustering is important as it implies repeated severe capital losses to

the institution which together could result in bankruptcy.

The test is carried out by recording violations of the VaR on adjacent days, such that ifIt is

a first-order Markov process the one-step ahead transition probabilitiesPr(It+1|It) are given by

Pr(It+1|It) =
(

1− π01 π01

1− π11 π11

)

whereπij is the transitionPr(It+1 = j|It = i). Under the null hypothesis, the violations have a

constant conditional mean which implies thatπ01 = π11 = c.

5.4 Multi-covariate multi-horizon probabilistic fuzzy model

In this chapter, we consider conditional density estimation and value at risk models forh-day

ahead returns. In other words, the horizon over which the value at risk is computed ish days.

The proposed model allows for multiple outputs, i.e.h1-days ahead andh2-days ahead returns.

The probabilistic fuzzy models approximate the distribution of future returns, for example re-

turns at timet + h1 and timet + h2, conditional on multi-covariates at timet. In the following

sections we describe the covariates used as well as a description of how the models’ parameters

were obtained.

5.4.1 Model covariates

The covariates include the day-of-the-week to analyse the seasonality effects. The remaining

covariates used in this work follows the choices of previous studies (Li et al., 2010; Villani

et al., 2009), as these predictors appear to contain valuable information that improves the out-

of-sample performance for VaR estimation. Two of the covariates were first used in Geweke

and Keane (2007). The first covariate,LastDayis the percentage returnrt on dayt:

LastDay= rt = 100× ln (pt/pt−1) (5.18)
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wherept is the closing price at timet. The second covariateCloseAbs95, a geometrically decay-

ing average of past absolute returns, and is defined as

CloseAbsρ = (1− ρ)
∞
∑

s=0

ρs|rt−1−s|, (5.19)

whereρ = 0.95 is the discount factor. It is assumed that the mean of each component is constant.

The remaining covariates were introduced in Villani et al. (2009).LastWeekandLastMonthare

a moving average of the returns from the previous 5 and 20 trading days, respectively. The

variableCloseSqr95 is defined as

CloseSqrρ =

√

√

√

√(1− ρ)
∞
∑

s=0

ρsr2t−1−s, (5.20)

and the popular measure of volatilityMaxMin95

MaxMinρ = (1− ρ)
∞
∑

s=0

ρs
(

ln p
(h)
t−s − ln p

(l)
t−s

)

, (5.21)

wherep(h)t and p(l)t are the highest and lowest values of the price at timet. This measure

has been shown to carry more information on the volatility than changes in closing quotes

(Alizadeh et al., 2002). By changing the value ofρ = 0.80 in (5.19), (5.20) and (5.21) we

obtain, respectively, the covariatesCloseAbs80, CloseSqr80 andMaxMin80. In our study, the

response variable is the percentage return at timet.

5.4.2 PFS model parameters

Since we use the same type of fuzzy additive reasoning in both the fuzzy histogram and the

probabilistic fuzzy output schemes, the same crisp input-output mapping is obtained. Thus, to

all intents of this work, the same parameter optimization can be used, yielding to two different

interpretations, as it will become apparent in Section 5.6.

The parameters of the probabilistic fuzzy systems consist of the number of rules in the sys-

tem, the parameters of the antecedent and consequent membership functions (i.e.number, type,

location, etc.), and the probability parametersP̂r(Cj |Aq) of the stochastic mapping between the

antecedent and the consequents. The estimation of all the parameters of the PFS simultaneously

can be very time consuming and it suffers from the problem of multiple local minima. Thus, we

use process knowledge to establish values of a subset of parameters. The other parameters are

then optimized given the values of this subset of parameters. Following the distinction between
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input and output present in the rule structure of (5.2), the optimization problem is divided in

two parts. First we obtain the input membership parameters and then optimize simultaneously

the output membership parameters and the probability parametersP̂r(Cj |Aq).

In this work we determine the parameters of the antecedent membership functions by us-

ing a fuzzy clustering heuristic, that uses the fuzzy c-means algorithm (Bezdek, 1981) on the

product space of the antecedent variables, to obtain a fuzzy partition matrixU = [uqp] for

p = 1, . . . , P samples. One dimensional fuzzy setsAqi, wherei = 1, . . . , n are obtained from

the multidimensional fuzzy sets by projections onto the space of the input variablesX. This is

expressed by the point-wise projection operator of the formuAqi
(xip) = proji(uqp) The point-

wise defined fuzzy setsAqi are then approximated by appropriate parametric functions. In this

work we choose a combination of Gaussian membership functions of the form

uAqi
(xip) = f(xip; σ

1
qi, c

1
qi, σ

2
qi, c

2
qi) = f 1(xip; σ

1
qi, c

1
qi)f

2(xip; σ
2
qi, c

2
qi) (5.22)

where

f 1(xip; σ
1
qi, c

1
qi) =







exp
(

−(xqi−c1qi)
2

2(σ1
qi
)2

)

xqi ≤ c1qi

1 otherwise
(5.23)

f 2(xip; σ
2
qi, c

2
qi) =







exp
(

−(xqi−c2qi)
2

2(σ2
qi)

2

)

xqi > c2qi

1 otherwise
(5.24)

The output membership functions are triangular, as this is a convenient manner to satisfy

(5.6) and fuzzy histograms built with these type of membership functions exhibit a high level

of computational efficiency (Waltman et al., 2005a). To satisfy (5.6) no matter how extreme

the values may be and to ensure that the domain is always covered by the fuzzy partition,

the membership functions at the edges of the domain are effectively a trapezoid, as depicted

in Fig. 5.6. The distribution of the membership functions can be uniform over the universe of

discourse, or it can be varying with more membership functions placed towards the origin (Xu

and Kaymak, 2008) or towards the edges of the universe of discourse (Almeida and Kaymak,

2009a). This varying placement allows to better capture the variability in regions with more

membership functions. We choose to use a uniform distribution over the universe of discourse

as shown in Fig. 5.6. The location of allJ fuzzy membership functions can be optimized as a

function of the location of the membership functions at the edges, mfC1 and mfCJ . A similar

approach to optimize the output membership functions was done in Xu and Kaymak (2008). In

this work, an optimal scaling parameter was found by performing an exhaustive search, separate

from the optimization of the remaining parameters of PFS. Assuming that the membership
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functions in the rule antecedents have been defined, and the type of consequent membership

functions and their distribution are known, the optimal probability parametersP̂r(Cj|Aq) and

location of the output membership functions can be determined by using maximum likelihood

estimation, in which the log-likelihood function

L =
P
∑

p=1

ln
(

P̂r(yp|xp)
)

(5.25)

is maximised whenP samples(xp, yp) are available (Waltman et al., 2005b). In (5.25) it is

assumed that the samples in the data set are independent of one another. The probability param-

etersP̂r(Cj|Aq) must satisfyP̂r(Cj|Aq) ≥ 0 and
∑J

j=1 P̂r(Cj|Aq) = 1 for q = 1, . . . , Q and

j = 1, . . . , J . Using (5.7) and (5.25), the log-likelihood can be written as

L =

P
∑

p=1

ln

(

J
∑

j=1

Q
∑

q=1

βq(xp)P̂r(Cj|Aq)z1,j(yp)

)

(5.26)

where

z1,j(yp) =
uCj

(yp)
∫∞

−∞
uCj

(y)dy
(5.27)

anduAq
is calculated using (5.5). A suitable initialization of the probability parametersP̂r(Cj|Aq)

and mfC1 and mfCJ for iterative optimization for maximum likelihood estimation is given by

direct estimation from the data by using, respectively

P̂r(Cj|Aq) =

∑P

p=1 uCj
(yp)uAq

(xp)
∑P

p=1 uAq
(xp)

, (5.28)

mfC1 = min y, mfCJ = max y. (5.29)

For the case of a PFS with multiple outputs, the likelihood function should take into account

the multiple output densities defined by each rule, and combine these densities when deriving

the likelihood function. If the multiple outputs of each rule output are assumed to be indepen-

dent of each other, derivation of the likelihood is straightforward,i.e. one only has to multiply

the conditional densities obtained in each rule output. This assumption is not very restrictive,

since the independence only implies that the ‘unexplained’ part of the output is independent,

given the relation with antecedent variables.

Given the probabilistic fuzzy system whose parameters are determined as above, the condi-

tional probability distribution ofh period aheads returns can be obtained from multi-covariates

at the previous returns. The value at risk of the portfolio can then be obtained by using (5.14)
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and (5.15). The steps for computing theh value at risk of a portfolio can now be summarized

as follows.

1. Collect the price series regarding the portfolio and compute the nine quantitative covari-

atesLastDay, LastWeek, LastMonth, CloseAbs95, CloseAbs80, CloseSqr95, CloseSqr80,

MaxMin95, MaxMin80. If the purpose is to include the seasonality analysis, this covariate

set additionally includes the seasonal covariateWeekDay. We use two trading years (2×
255 days) for the out-of-sample data and use the remaining data for model estimation.

2. Determine antecedent membership functions: apply fuzzy c-means clustering to compute

the membership partition matrixU = [uqp], obtain one dimensional fuzzy setsAqi by

projections onto the space of the input variablesx. Finally obtain the parametric input

membership functions by approximating fuzzy setsAqi to (5.22).

3. Select the number of triangular consequent membership functions satisfying (5.6).

4. Given the definitions of the antecedent and the consequent membership functions type

and distribution, determine the optimal probability parameters of the PFS and the optimal

location of the output membership functions by maximising (5.26).

5. Using the out-of-sample data set, compute the estimated conditional probability distri-

bution function for theh-period returns for each observation in the out-of-sample data

set.

6. Given the conditional probability distribution functions, compute the VaR by using (5.14)

and (5.15).

7. Validate the model by using exception based back-testing and independence testing as

explained in Section 5.3.3.

5.5 Conditional density estimation for the S&P 500 index

We first analyse whether the proposed multi-covariate model is able to approximate the con-

ditional density of returns, since an accurate estimation of the left tail probability density is

necessary for Value-at-Risk estimation.

In this work we use as an example the S&P 500 stock market index. Our data set contains

3718 daily returns from February 18, 1997 to November 23, 2011. The response variable is the

percentage return, as calculated in (5.18). A time plot of the response variablert is given in

Fig. 5.2. The differences in variance and distribution of the returns are clear from this figure.
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Figure 5.2: Daily returns for S&P 500 between February 18, 1997 to November 26, 2013.

Table 5.1: Estimated quantiles for the in-sample and out-of-sample.
Quantile τ(1%) τ(2.5%) τ(5%) τ(10%) τ(20%)

In-sample 0.94% 2.37% 4.58% 9.57% 19.73%
Out-of-sample 1.37% 3.53% 6.47% 10.39% 19.02%

A probabilistic fuzzy value at risk model has been developed by using the multi-covariate

model with nine covariates,LastDay, LastWeek, LastMonth, CloseAbs95, CloseAbs80, Clos-

eSqr95, CloseSqr80, MaxMin95 andMaxMin80 as defined in Section 5.4. For the PFS model,

we have used five antecedent membership functions and ten consequent membership functions.

Hence, the fuzzy system has five rules, implying that the FCM algorithm was run with five

clusters. In such a system, there are 50 probability parametersP̂r(Cj|Aq). An out-of-sample

evaluation is conducted over a period of two trading years, assuming that a trading year is 255

days. Note that in Villani et al. (2009); Li et al. (2010), all variables exceptLastDay, LastWeek

andLastMonthare used in logarithmic form. In this work we do not follow this approach due

to the negative impact of the scaling effects and smoothing on the clustering algorithms.

Table 5.1 presents the estimated quantilesτ(c) for c = 1%, 2.5%, 5%, 10%, 20%. The table

shows that for example, forc = 2.5%, 2.37% of the data points fall in the estimated quantile, in

the in-sample estimation. For the out-of-sample data, the results are close to the corresponding

quantiles except forc = 5%, which is slightly higher. The quantiles forc = 1%, 5% and the es-

timated expected valuêηy|x are shown in Fig. 5.3. By visually inspecting Fig. 5.3, it is possible

to verify that the multi-covariate PFS models show both singleton peaks around high volatility

periods as well as stable periods of high volatility. The correct estimation of the conditional

density model using PFS allows to provide a correct estimation of the probability distribution

of the possible future values of that variable. This is an important issue for quantitative finance

and risk management. In the following sections, the additional information and process un-



135

5.5 Conditional density estimation for the S&P 500 index 121

Nov09 Mar10 Jun10 Sep10 Dec10 Apr11 Jul11 Oct11

−6

−4

−2

0

2

4

6

Date

%
 r

et
ur

n 
(r

t)

 

 
r
t η

y|x τ(1%) τ(5%)

Figure 5.3: Out-of-sample returnsrt, expected valuêηy|x and quantilesτ(c) for c = 1%, 5%.
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Figure 5.4: Antecedent membership functions.

derstanding provided by the different interpretations of the PFS models are illustrated. Other

approaches, as the ones presented in Li et al. (2010); Villani et al. (2009), do not allow for this

type of interpretations, as they only consider probabilistic uncertainty. Furthermore, we do not

follow the conventional zero-mean assumption for the returns series. As shown in Fig. 5.3, the

estimated expected returnsη̂y|x from (5.8) are not necessarily zero.

5.5.1 Fuzzy histogram model interpretation

Given the fuzzy histogram approach, the rules have the form (5.2). Figure 5.4 and Fig. 5.5

show, respectively, the rule’s antecedents membership and each rule’s output. Note that the rule



136

122 A multi-covariate multi-horizon conditional volatility model using PFS

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

 

 
R

1

R
2

R
3

R
4

R
5

Figure 5.5: Fuzzy histogram rule output.

output for this PFS system is a probability density function estimated with fuzzy histograms,

according to (5.3). As shown in Fig. 5.5, the return distribution for each rule is concentrated

around0, and each rule leads to an asymmetric output density for the rule output. Despite these

similarities, the obtained return distributions vary substantially across rules as the variance of

the output density, hence the volatility of the output is different for each rule. Specifically, the

variance of the pdf’s from rule 2 and rule 4 is small compared to the universe of discourse of

the returns, while the fat tails found in the pdf’s from rules 1, 3 and 5 may capture the sudden

volatility movements in returns.

The PFS rules do not define clear-cut ranges for the returns, since all densities are concen-

trated around0, but instead indicate differences in the volatility or risk in returns. The literature

also documents that the exact values of returns are in general not predictable, while return

volatility is predictable at least to some extent (Andersen et al., 2006). GARCH type of models

are also adopted for these data since they model the return volatility explicitly instead of the

level of returns (Bollerslev et al., 1986). In the later sections, however, it will be shown that a

GARCH model performs worse than the proposed PFS model for the S&P 500 data considering

the value at risk estimates.

Note that the underlying structure of the fuzzy histogram, as defined in (5.3), is based on

the fuzzified size and distribution of the fuzzy setsCj . By optimizing only the location of

the membership functions at the edges, the distribution of the fuzzy sets over the universe of

discourse is never changed. Thus, we may obtain several setsCj concentrated on the central part

of the output density, resulting in pdf’s with small variance while fewer sets will be placed on

the edges of the output distribution, resulting in fat tails. This is a caveat of this simple type of

optimization. Nonetheless, optimizing only the extremes reduces the dimensionality problem,

since the number of parameters to be optimized is reduced. Another interesting aspect is that

the obtained densities are substantially different from each other. This can be explained with the
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Table 5.2: Optimized probability parameters.

Consequent
Rule 1 2 3 4 5 6 7 8 9 10

1 0.0107 0.0091 0.0397 0.1417 0.5269 0.2235 0.0328 0.0125 0.0001 0.0030
2 0.0000 0.0000 0.0002 0.1771 0.7851 0.0376 0.0000 0.0000 0.0000 0.0000
3 0.0003 0.0098 0.0236 0.2573 0.4268 0.2236 0.0485 0.0015 0.0087 0.0000
4 0.0000 0.0000 0.0000 0.0268 0.9731 0.0000 0.0000 0.0000 0.0000 0.0000
5 0.0049 0.0087 0.0274 0.1622 0.6507 0.1150 0.0226 0.0084 0.0000 0.0000

Mean 0.0032 0.0055 0.0182 0.1530 0.6725 0.1199 0.0208 0.0045 0.0017 0.0006

different combinations of covariates regarding previous time periods, which can be interpreted

as a summary of information about last period returns, and variation of closing, minimum and

maximum returns over the period.

5.5.2 Probabilistic fuzzy output model interpretation

In this approach the rules have the form (5.4). Figure 5.6 shows the output membership func-

tionsCj before and after the optimization. Using this figure, a possible linguistic interpretation

of consequentsCj, j = 1, . . . , 10 can be obtained, ranging from very low returns to very high

returns, through a 10 point scale. It is visible that the optimized membership functions are now

more concentrated towards the center in the return region[−5, 5], as most of the data lies in this

region.

Table 5.2 presents the optimized probability parametersP̂r(Cj|Aq) of the rules base (5.4).

The last row of this table corresponds to the unconditional probabilities for each consequent

Cj. These probability values indicate that the overall return distribution is concentrated around

point 0 as the highest mean probability is obtained forC5 corresponding to returns around

zero. The unconditional probabilities of very low returns (C1 to C3) are higher than those

of very high returns (C8 to C10). Hence, despite being centered around value0, the returns

distribution is positively skewed with negative values occurring more often according to the

mean probabilities. This finding is in line with several studies, see e.g. Harvey and Siddique

(2000).

The individual rule outputs in Table 5.2 indicate the ability of each rule to capture specific

output forms, such as extreme returns. Rule 2 and 4 signal highest probabilities for returns

around 0, while rules 1, 3 and 5, capture very low negative returns. This means that the proba-

bility of a very low return (C1) is not zero for these three rules. Note that only rule 1 captures

very high returns (C10) since the only positive probability forC10 is achieved by this rule. The
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Figure 5.6: Consequent membership functionsCj.

skewness of the distribution of the returns is reflected in the mass of probability given to nega-

tive returns (C1 toC4) compared to the positive returns (C6 toC10).

Note that the combination of multi-covariates can be interpreted as a summary of informa-

tion about last period returns, and variation of closing, minimum and maximum returns over

the last periods. Rule 2 and rule 4 are defined by moderate last period returns and moderate

cumulated values for past variation, indicating stability in past returns. These rules lead to the

most peaked return distributions compared to the remaining rules. The obtained density from

these rules indicate ‘mean reversion’ in returns, i.e. slightly positive or negative returns with

mediocre variation result in returns concentrated around0 with relatively small volatility. Rule

1 and rule 5 on the other hand indicate a relatively high probability of extreme returns. These

rules correspond to very low (high) past returns with very low (high) accumulated past vari-

ation, indicating that extreme return values or extreme volatility periods are followed by high

uncertainty in returns for the next period. Finally rule 3, with antecedents corresponding to past

returns around0 and moderate past variation in returns still leads to a relatively wide return

distribution. We conclude that sudden volatility movements are captured with the fat tails of

rules 1, 3 and 5 rather than rules 2 and 4.

5.6 Value-at-Risk estimation for the S&P 500 index

In this section, we analyze VaR estimates of the proposed PFS models for S&P 500 data. The

returns data and the forecast sample period used for the out-of-sample model evaluation are the

same as those in the analysis in Section 5.5. We provide the results of the multi-covariate PFS

model applied to the S&P 500 data for one day ahead returns and illustrate the gains from the

proposed two-step estimation approach for the PFS model. Furthermore, we apply the proposed

PFS models to analyze seasonality and multi-horizon forecasts for these data. These models’

performances are compared with respect to alternative models in terms of the VaR estimates.
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Table 5.3: Kupiec test. Bold face indicates rejection. Non-rejection regions 16<I(0.95)<36,

6<I(0.975)<21 and 1<I(0.99)<11.
c GARCH(1,1) PFS1-Opt2 PFS9-Opt1 PFS9-Opt2 PFSDates PFSt+1&t+30 PFSt+1&t+30

(1 day) (1 month)
I(0.95) 32 26 23 33 25 33 33
I(0.975) 21 16 13 18 15 22 22
I(0.99) 12 9 4 7 6 8 11

Table 5.4: Christoffersen Markov test.
c πij GARCH(1,1) PFS1-Opt2 PFS9-Opt1 PFS9-Opt2 PFSDates PFSt+1&t+30 PFSt+1&t+30

(1 day) (1 month)

0.950
π01 0.937 0.946 0.955 0.935 0.952 0.933 0.941
π11 0.938 1.000 0.957 0.939 0.920 1.000 0.903

0.975
π01 0.959 0.968 0.974 0.963 0.972 0.955 0.955
π11 0.952 1.000 1.000 1.000 0.933 1.000 1.000

0.990
π01 0.976 0.982 0.992 0.986 0.988 0.984 0.978
π11 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5.6.1 Multi-covariate model results for the S&P 500 index

We consider the proposed multi-covariate model and the simultaneous estimation of the out-

put membership functions edges, mfC1 and mfCJ and probability parameterŝPr(Cj|Aq). The

multi-covariate model includes nine covariates,LastDay, LastWeek, LastMonth, CloseAbs95,

CloseAbs80, CloseSqr95, CloseSqr80, MaxMin95 andMaxMin80 as defined in Section 5.4. To

check the effects of using several covariates, we also consider a PFS model with a single co-

variatert (Xu and Kaymak, 2008; Almeida and Kaymak, 2009a,b). For this model we optimize

both the probability parameters and the output membership functions edges. The effects of opti-

mizing the output membership functions edges are considered by considering a multi-covariate

model with the optimization of only the probability parameters. Finally, all these models are

compared against the popular GARCH (1, 1) model, as defined in Section 5.3.2. In summary,

the following models are considered:

• PFS1-Opt2, PFS, single covariate, optimized̂Pr(Cj|Aq), mfC1 and mfCJ .

• PFS9-Opt1, PFS, multi-covariate, optimized̂Pr(Cj|Aq).

• PFS9-Opt2, PFS, multi-covariate, optimized̂Pr(Cj|Aq), mfC1 and mfCJ .

• GARCH (1, 1), the GARCH (1, 1) model.

Table 5.3 and Table 5.4 show the results of the unconditional coverage and independence

test, respectively, for the probabilistic fuzzy models and the GARCH model. Figure 5.7(a)–(d)
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shows the out-of-sample returnsrt and VaRt(c) for c =0.95, 0.975, 0.99 for all models under

consideration.

Table 5.3 shows that the validity of the model is only rejected for GARCH(1,1) atc = 0.99.

Note that the non-rejection regions for the considered sample are 16<I(0.95)<36, 6<I(0.975)<21

and 1<I(0.99)<11. For GARCH(1,1) models andc = 0.99, Table 5.4 shows that the cluster

violations are more accentuated than for the remaining models. Furthermore, this table shows

that VaR violations do not depend greatly on the occurrence of a VaR violation on the previ-

ous day. By visually inspecting Fig. 5.7, it can be seen that the GARCH(1,1) model is slow

to capture sudden changes in volatility. The PFS models under consideration, all react to these

changes quickly.

Fig. 5.7 also indicates the complexity involved in analyzing the return distribution in terms

of the effects of the covariates. The PFS model with a single covariate of past returnsrt, PFS1-

Opt2, cannot accurately capture the changing volatility particularly in high volatility periods,

such as the period around June 2010. This model is rather conservative, which translates into a

prudent risk measure, at the periods with low volatility, although it does not violate the indepen-

dence or unconditional coverage tests. The calculated VaR levels are mostly constant, except

for singleton peaks around high volatility periods.

Note that the single covariatert only provides instant information about volatility, there-

fore it is a restrictive measure of information on the past returns and past return distributions.

In contrast to the model with a single covariate, PFS1-Opt2, the multi-covariate PFS models,

PFS9-Opt1 and PFS9-Opt2, show both singleton and periods of high volatility, due to the in-

creased information contained in the extra covariates. Hence, in order to obtain an accurate

return distribution, information on past returns and on cumulated past values and volatility in

returns should be taken into account. This finding is in line with studies finding long range de-

pendence in stock returns (Andersen and Bollerslev, 1997b) since the added antecedents in these

multi-covariate models, the geometrically decaying average of closing prices and the squares of

closing prices in (5.19), (5.20) and (5.21), include return information from several past periods

with high decay rates, 0.8 and 0.9.

A further consideration is the optimization of the membership parameters in the multi-

covariate models PFS9-Opt1 and PFS9-Opt2, where the membership parameters are only op-

timized in the latter model. The return volatility is accurately captured particularly when the

membership parameters are optimized together with the probability parameters in PFS9-Opt2.

In lower volatility periods, such as around Dec10, PFS9-Opt1 model is more conservative than

PFS9-Opt2 model. This fact can also be seen by inspecting Table 5.3, where PFS9-Opt2 model

has more exceptions. Therefore optimizing the membership parameters together with the prob-

ability parameters does increase model accuracy.
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ahead forecasts

Nov09 Mar10 Jun10 Sep10 Dec10 Apr11 Jul11 Oct11
−8

−6

−4

−2

0

2

4

6

 

 
r
t mean V

t0.95
V

t0.99

(g) PFSt+1&t+30 multi-covariate PFS for one month
ahead forecasts

Figure 5.7: Out-of-sample returnsrt and VaRt(c) for c =0.95, 0.99.
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(b) Friday, one day ahead forecasts.
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(c) Monday, one month ahead forecasts.
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(d) Friday, one month ahead forecasts.

Figure 5.8: Rule outputs for Monday and Friday.

5.6.2 Seasonality analysis for the S&P 500 index

In this section we present the results of the seasonality analysis for the S&P 500 index. The

seasonality analysis we perform is based on two PFS models. The first PFS model is developed

to analyze possible difference of value-at-risk on different day of the week. This model denoted

as PFSDateshas a single antecedent variable, day of the week, and a single output, days’ returns.

The second model we consider includes multiple covariates as explained in Section 5.4 and has

two outputs, the one day ahead and one month ahead forecasts, denoted by PFSt+1&t+30. For

eachWeekDaywe consider different partitions of the remaining 9 covariates. The antecedent

membership functions for the qualitative covariates are obtained from the FCM algorithm with

five clusters, while the seasonal covariate is modelled with a crisp characteristic function. Thus

we obtain five rules for eachWeekDayresulting in a model with 25 rules. The consequents are

modelled using 10 triangular membership functions. We first consider the PFSDatesmodel of

the form (5.2). In this model each rule corresponds to a different day of the week. Table 5.5

shows the estimated mean and variance for each day density forecast. As Table 5.5 shows,

the mean and variances of the estimated probability density function are different for each day.

This seems to indicate that seasonal patterns can be observed using a PFS model. Mondays and

Tuesdays are the days with highest variation in returns, implying fatter tails in returns, compared

to the rest of the days.

To further illustrate the seasonality effect we consider the multi-covariate multi-output model

PFSt+1&t+30, estimated using ten covariates, includingWeekDay. Figure 5.8 presents the ob-

tained output probability density functions for one day and one month ahead forecasts forWeek-
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Table 5.5: Day of the week effect on returns mean and variances on 1-day ahead returns.

Monday Tuesday Wednesday Thursday Friday
η̂y|x -0.026 0.038 -0.015 -0.027 -0.002
σ̂y|x 2.209 1.998 1.673 1.809 1.494

Table 5.6: Optimized probability parameters for PFSDates.

Consequent
Rule 1 2 3 4 5 6 7 8 9 10

1 0.007 0.010 0.022 0.124 0.715 0.102 0.012 0.003 0.004 0.002
2 0.000 0.010 0.016 0.162 0.687 0.088 0.025 0.012 0.000 0.002
3 0.006 0.004 0.012 0.152 0.719 0.090 0.014 0.005 0.000 0.000
4 0.004 0.002 0.032 0.152 0.693 0.091 0.025 0.001 0.002 0.000
5 0.000 0.002 0.023 0.146 0.712 0.103 0.012 0.002 0.000 0.000

Day={Monday,Friday}. We recall that for eachWeekDaythe remaining nine covariates are

partitioned in five fuzzy sets. Seasonal patterns in the returns distribution is apparent from this

figure. The rule outputs for Monday are wider compared to those for Friday, indicating fat tails

in the returns distribution on Monday. Such seasonal patterns in returns are also shown in Beru-

ment and Kiymaz (2001). This effect is also visible in the out-of-sample value-at-risk forecast

presented in Fig. 5.7(e), specially for the VaRt(0.99) which displays periodic changes over time.

Apart from the obtained output densities for each day, the fuzzy output model in Sec-

tion 5.2.2 can also be used to gain insight about seasonality. Table 5.6 presents the optimized

conditional probability parameterŝPr(Cj|Aq) for the PFSDatesmodel, where rules 1 to 5 cor-

respond toWeekDay, Monday to Friday. The corresponding optimized output membership

parameters for this model are given in Figure 5.9. These membership functions range from

very low returns to very high returns, through a 10 point scale, where consequent 5,C5, corre-

sponds to returns around 0. According to Table 5.6, returns in all days are concentrated around

consequent 5. Hence most of the returns are around 0, regardless of the specificWeekDay. Mon-

days have the highest probability of very low returns (C1), while Tuesdays and Fridays have an

almost zero probability of very low returns. Furthermore, returns on Fridays are found to be

relatively less volatile, since the probabilities of very low and very high returns (C1 andC10) are

almost0 for this day. Conditional probabilities of low returns (C1 to C3) are higher than those

of high returns (C8 to C10) for all days. Therefore return distributions seem to be positively

skewed regardless of theWeekDay. However, the probabilities of low and high returns, hence

the degree of skewness, differ according toWeekDay.
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Figure 5.9: Consequent membership functionsCj for PFSDates.

5.6.3 Multiple horizon forecasts for the S&P 500 index

We next apply the proposed PFS model with multiple outputs, one day ahead and one month

ahead forecast of VaR, to S&P 500 data. The multiple horizon model includes ten antecedents

WeekDay, LastDay, LastWeek, LastMonth, CloseAbs95, CloseAbs80, CloseSqr95, CloseSqr80,

MaxMin95 andMaxMin80 as defined in Section 5.4. An important aspect of such model is its

ability to provide suitable long term forecasts. Table 5.3 and Table 5.4 show the results of

the unconditional coverage and independence test, respectively, for all the probabilistic fuzzy

models. For completeness we include the results for the PFSDatesmodel. Figure 5.7(f) and

Fig. 5.7(g) show the out-of-sample returnsrt, estimated mean̂ηy|x and value-at-risk VaRt(c) for

c = 0.95, 0.99 for one period and one month period ahead forecasts.

Last three columns of Table 5.3 show that the validity of the model is only rejected for

PFSt+1&t+30 1 month and 1 day atc = 0.975. Note that the non-rejection regions for the

considered sample are 16<I(0.95)<36, 6<I(0.975)<21 and 1<I(0.99)<11. Hence the model

performs well in both forecast horizons when all antecedent variables are included. Regarding

the independence test presented in Table 5.4, for the VaR levels ofc = 0.975, 0.99 the one-

step ahead transition probabilitiesπ01 andπ11 are close to the theoretical values for all model

outputs. This indicated that even with only theWeekDayantecedent the VaR violations do not

depend greatly on the occurrence of a VaR violation on the previous day. However, for the VaR

levelc = 0.95, the obtained transition probabilities are relatively far from the theoretical values.

This result may stem from the low explanatory power of the included antecedents specially in

longer horizons, which may be solved by including other type of antecedent variables in the

PFS model. We leave this topic for future work.

By visually inspecting Fig. 5.7(e), it can be seen that the PFSDatesmodel considering only

theWeekDayinformation is quite conservative. The estimated VaR levels are mostly constant,

except for cyclic peaks. This covariate only provides information regarding seasonal effects,

as discussed previously. In contrast, the multi-covariate PFS models for both horizons show

both singleton and periods of high volatility, due to the increased information contained in the

extra covariates. For the 1 month ahead forecast presented in Fig. 5.7(e) the model appears to
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overestimate the risk, judging by the high VaRt(0.99) values. This result is intuitive since the

stock market is highly volatile and forecasting small changes in VaR levels is not trivial in long

horizons (Baillie and DeGennaro, 1990). Furthermore, it appears that the set of covariates used

contain relevant information for accurate 1 day ahead forecast of density returns. As Fig. 5.7(f)

shows, the VaR levels follow the real variation of the returns. For both forecast horizons, the

mean estimates change slightly over time, although the PFS model mainly captures the returns

volatility. Estimated mean returns from the PFSDatesmodel shown in Fig. 5.7(e) have less

variation over time compared to the mean returns from the multi-covariate PFS model shown in

Fig. 5.7(f). This difference in mean returns indicates that additional antecedent variables such

asLastDayandCloseAbsin the multi-covariate PFS model explain changes in mean returns.

5.7 Conclusions

We have proposed applying multi-covariate probabilistic fuzzy systems for conditional density

estimation and value at risk modelling of the S&P 500 index. An extended multi-covariate and

multi-output PFS model is introduced. This model provides the VaR estimates, as well as full

density estimates, for multiple periods ahead returns data. The additional information, linguis-

tic interpretation and process understanding provided by the different reasoning mechanisms

that the PFS model provides are discussed. The proposed models are used to explain seasonal

patterns and to obtain one-day and one-month ahead density forecasts of the S&P 500 index.

The performance of the proposed models has been compared to the VaR estimation by using the

popular GARCH (1,1) volatility estimation. Unconditional coverage test and an independence

test are used for this purpose. It is found that the GARCH models are not always accepted, while

the PFS models of VaR are never rejected. The proposed multi-covariate PFS models capture

both instant volatility changes and periods of high volatility, due to the increased information

contained in the extra covariates. The proposed parameter estimation leads to less conservative

models that follow the volatility trends accurately. We find that the conditional distribution of

returns and associated VaR depend on the day of the week. Furthermore, the extended model

captures seasonal patterns in S&P 500 returns in short and longer horizons as well as the in-

creased risk factor in longer term forecasts of returns. As future work, we will investigate in

more detail different parameter estimation techniques.
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Chapter 6

Estimation of flexible fuzzy GARCH

models for conditional density estimation1

6.1 Introduction

T HE conditional density of a random variable is an estimate of the probability distribution

of the current value of that variable, given its past values or other variables. Conditional

density estimation has an important role in many fields such as quantitative finance and risk

management for two main reasons. First, most financial return series appear to be uncorrelated

over time, but to be dependent through their higher moments such as the conditional variance

(Bollerslev, 1986). Models aiming at point forecasts (Araújo, 2010; Cheng et al., 2010) cannot

capture such dependency and the need to estimate the full conditional density arises. Second,

investors are not only interested in the expected return from an asset but also in the risk in-

volved in the asset. This risk factor can be calculated using statistical quantiles of the estimated

returns distribution, such as Value-at-Risk or Expected Shortfall (Jorion, 2006), and it cannot

be assessed from models providing point forecasts.

Estimating an accurate model for the distribution of financial returns is not a simple task

since financial time-series typically possess non-trivial statistical properties, such as fat tails,

asymmetric distributions and changing variation over time. For this reason, several methods are

proposed to estimate the density of returns, conditional on past information, or other macroeco-

nomic variables. A popular approach where volatility, and hence the return distribution, changes

dynamically is the Generalized Autoregressive Heteroskedasticity (GARCH) model (Bollerslev,

1986). In this model, the variation in returns is explained by past returns and past variations in

returns. Extended GARCH models are proposed in the literature to capture different aspects of

1Parts of this chapter have been published in Almeida, Basturk, Kaymak, and Costa Sousa (2013a,b, 2014b).
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data behavior, such as the GJR-GARCH (Glosten et al., 1993) models to capture skewness and

Student–t GARCH models to capture fat tails (Bollerslev, 1987).

The existence of different types of GARCH models led to the introduction of models which

can encompass different GARCH specifications and different return distribution properties.

In terms of purely probabilistic models, smooth transition GARCH models (González-Rivera,

1998) and regime-switching GARCH models (Haas et al., 2004) are proposed. Despite the gen-

erality of these model structures, estimation of these models is not trivial and it is impossible

to apply standard maximum likelihood estimation, due to the recursive structure of conditional

volatility (Bauwens et al., 2010). Artificial neural networks (Donaldson and Kamstra, 1997) and

fuzzy systems have also been combined with GARCH models in different forms. In Popov and

Bykhanov (2005); Hung and Hsu (2008); Hung (2009a,c,b, 2011b,a), fuzzy GARCH models

are presented in the form of fuzzy rule base systems, where each rule corresponds to an indi-

vidual GARCH model. Different types of GARCH models were also combined using adaptive

neuro-fuzzy inference systems (Geng and Ma, 2008; Chang, 2006, 2008), and rough-set based

neuro-fuzzy systems (Das et al., 2010), although in these cases the models are used to approxi-

mate either the return series (Chang, 2006, 2008) or realized volatility (Geng and Ma, 2008; Das

et al., 2010), which is the sum of squared intra-daily (e.g. 5 minutes data) returns. The class of

models and objective functions used to estimate realized volatility are different from the models

used to estimate conditional distribution of financial returns, since realized volatility is a point

estimation, while return volatility considers the estimation of the whole conditional distribution

of financial returns2. A GARCH model with fuzzy coefficients is presented in Thavaneswaran

et al. (2007) and Helin and Koivisto (2011b), where the error term is modelled using a set of

fuzzy rules. These models combine fuzzy systems with a statistical model. Similarly, different

types of uncertainty are combined in probabilistic fuzzy systems (van den Berg et al., 2013)

which are also used to estimate conditional volatility of returns (Almeida and Kaymak, 2009b;

Almeida et al., 2012a).

In previous work, we introduced key ideas for a new flexible fuzzy GARCH model for

conditional density estimation (Almeida et al., 2013b), and illustrated model performance using

simulated data from unimodal GARCH models. This model combines two different types of

uncertainty, namely fuzziness or linguistic vagueness, and probabilistic uncertainty. However,

a formal description and analysis of this type of systems still needs to be made. The properties,

2Forecasting return volatility can be seen as equivalent to forecasting realized volatility (Andersen and Boller-
slev, 1997a; Andersen et al., 2001; Barndorff-Nielsen and Shephard, 2002), under the assumptions that high-quality
intraday return data are available (noisy intraday data has a detrimental impact on forecast accuracy (Andersen
et al., 2011)) and the (log) return series is a continuous semimartingale process (Awartani and Corradi, 2005). For
the case of discrete time process, such as GARCH, the assumption of homoskedasticity (all random variables have
the same finite variance) must hold (Hansen and Lunde, 2005). If these assumptions are not fulfilled, the point
estimation of return volatility will be biased.
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estimation issues, model interpretation, differences with previous fuzzy GARCH models and

a real data application on S&P 500 return series, which were not considered in Almeida et al.

(2013b), are studied in detail in this chapter. In the S&P 500 return series application we

show that the linguistic interpretation of this model can provide insight into stylized facts such

as volatility clustering and leverage effects. The presented model is more general than the

previously studied fuzzy rule base GARCH models and can capture different properties of data,

such as fat tails, skewness and multimodality in one single model. The conditional distribution

of the data can vary smoothly over time in mean and variance, where the smooth changes are

related to linguistic descriptors. Previous fuzzy GARCH models (Popov and Bykhanov, 2005;

Hung and Hsu, 2008; Hung, 2009a,c,b, 2011b,a) only allowed for unimodal and symmetric

distributions. Hence, this type of systems could only model fat tail distributions, not skewed or

multimodal distributions.

An interpretation of the proposed fuzzy GARCH models, from both statistical and fuzzy

linguistic points of view is provided in this chapter. The proposed fuzzy GARCH model pro-

vides a linguistic interpretation of the gradual changes in return density, providing a simple

understanding of the underlying changes. The output of the proposed fuzzy GARCH model

is similar to the output of regime-switching and smooth transition GARCH models, since the

obtained return distribution can have a nonstandard functional form. An advantage of the pro-

posed model is the tractable form of the likelihood function, which in turn does not suffer from

the estimation issues reported in pure probabilistic flexible GARCH models (González-Rivera,

1998; Haas et al., 2004).

The performance and estimation issues of the proposed model are examined using simulated

data and a real data application on S&P 500 return series. It is shown that the proposed model

captures the conditional volatility of the data in all examples considered. The proposed model

is suitable for analysis of the returns distribution. The main focus in analyzing the returns

distribution is not to consider a single model and the parameters, e.g. to draw policy conclusions,

but rather to estimate the expected gains and losses from investing in an asset and to use the

latest information in the market for investment decisions. The reason for the proposed model to

successfully capture such interesting values is two fold. First, the flexible functional form allows

to approximate a nonstandard returns density. Second, possibly complex effects of current

market information on future returns is explained using simple linguistic descriptors and with a

well studied GARCH-type rule base system.

The outline of the chaper is as follows. Section 6.2 gives an overview of previously studied

probabilistic and fuzzy GARCH models. Special attention is given to inconsistencies in the

explanation of estimation in existing fuzzy GARCH models. The proposed new fuzzy GARCH

model is presented in Section 6.3 and compared to other fuzzy and probabilistic GARCH mod-
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els. An interpretation of the model is given, from the point of view of its probabilistic output

as well as from a linguistic perspective. We show that all model parameters can be estimated

using a maximum likelihood approach, in which the objective function includes the whole out-

put density. Examples of this estimation are given in Section 6.4, where we also show that

the proposed model can successfully capture existing fuzzy GARCH models. In Section 6.5

we present a real world application of the new fuzzy GARCH model for conditional density

estimation, and finally, Section 6.6 concludes the chapter.

6.2 GARCH model and extensions

GARCH models are used to capture the time varying behaviour of variance. These models relate

the unobserved volatility/variance of data to the past variance and past observations. Hence, the

conditional density of the data is a normal distribution, but the occurrence of positive or negative

extreme data values depends on the past observations together with past volatility. The standard

GARCH(p′, q′) model fort = 1, . . . , T observations is defined as (Bollerslev, 1986):

yt =
√

ht ǫt ∼ NID(0, ht) (6.1a)

ht = α0 +

q′
∑

i=1

αiy
2
t−i +

p′
∑

j=1

βjht−j (6.1b)

ǫt ∼ NID (0, 1) (6.1c)

whereyt is the data with a conditional normal distribution andNID(µ, σ2) denotes the normal

and independently distribution with meanµ and varianceσ2. Scalarsp′ and q′ are, respec-

tively, the lag order for past returns and past conditional volatility in the GARCH model and

(α0, αi, βj) for i = 1, . . . , q′ andj = 1, . . . , p′ are GARCH model parameters. At each period,

theconditional volatility, ht, is assumed to move around the constantunconditional volatility

h. In the long run, the local volatility reverts to its overall mean value. This property is known

as ‘mean reversion’. The residual variance is fixed to1 since bothht andǫt in (6.1) are unob-

served. This model is not identified unless the residual variance is fixed. Whenβj = 0, ∀j, the

model simplifies to an ARCH(q′) model (Engle, 1982) which relates the data variance only on

its observed past values. The long run (unconditional) volatility can be written in terms of the

model parameters:

h = α0/

(

1−
q′
∑

i=1

αi −
p′
∑

j=1

βj

)

. (6.2)
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Sufficient conditions for positive varianceht at every period are:

α0 > 0, αi ≥ 0, βj ≥ 0,

q′
∑

i=1

αi +

p′
∑

j=1

βj < 1, i = 1, . . . , q′, j = 1, . . . , p′, (6.3)

where these restrictions also ensure a stationary variance process and the existence of a finite

mean and variance ofht.

For the GARCH model, max(p′, q′) is the number of observations to leave out, as the past

information is not available fully for these observations. The actual observations to use in the

model starts from:t⋆ = max(p′, q′)+1. Initial observationsy1, . . . , yq′ can be obtained from the

data or set as the unconditional mean of the data. The initial unobserved variancesh1, . . . , hp′

can be set as the unconditional variance of the data. Conditional on these initial values, the

likelihood of a single observation is:

ℓ(yt | It−1) = ℓ(yt | ht) = φ(yt; 0, ht) (6.4)

for t ∈ {t⋆, . . . , T}, whereIt−1 = {y1, . . . , yt−1, h1, . . . , ht−1} denotes the information set at

time t− 1, andφ(.;µ, σ2) is the probability density function (pdf) of a normal distribution with

meanµ and varianceσ2.

Using the independence assumption in (6.1), the likelihood of the whole sample is obtained

by multiplying (6.4) for allt:

ℓ(y) =

T
∏

t=t⋆

ℓ(yt | It−1) =

T
∏

t=t⋆

ℓ(yt | ht) =
T
∏

t=t⋆

φ(yt; 0, ht), (6.5)

wherey = {yt⋆ , . . . , yT} and the variance termht is obtained recursively using the equality in

(6.1b).

In order to obtain the parameter estimates, the likelihood in (6.5) is often maximized using

gradient search methods. Despite the simplicity of the likelihood formulation, maximizing this

function can be cumbersome due to the nonlinearities in the model structure, and hence the

possibility of local maxima and multiple modes (Zivot, 2009). A common practice is to get

robust estimates using several starting values for the algorithm.

Extensions of the standard GARCH model are proposed in order to capture different dynam-

ics of the observed series. In particular for the stock returns series, the normality assumption in

(6.1) is found to be restrictive. The normal conditional density of returns may fail to account for

observations in the tails of the distribution and skewness in the observed series characterized by

asymmetric effects of positive and negative past observations on current variance (Zivot, 2009).
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Two commonly used extensions are the Student-t GARCH model (Bollerslev, 1987) and the

GJR GARCH model (Glosten et al., 1993), which account for fat tails and asymmetric distri-

butions, respectively. Despite several extended GARCH models, proposing a unifying one that

can capture all dynamics of the observed series is often impossible.

Another extension of the models is the regime switching GARCH models. Such models

are proposed since the relationship between the current return distribution and past returns’

mean and variance can be complex (James Chu et al., 1996), compared to the linear variance

model assumed by the GARCH model (Haas et al., 2004). Introducing such a complex relation-

ship using the Markov-switching structure ensures that the estimated volatility reacts quickly to

changes in the volatility levels, and the forecast performance of the original GARCH model is

improved. These models proposeK separate GARCH models (Klaassen, 2002):

yt =
√
htǫt ∼ NID(0, ht),

ht = ht,k, if st = k, k = 1, . . . , K,

ht,k = α0,k +
∑q′

i=1 αi,ky
2
t−i +

∑p′

j=1 βj,kht−j , for k = 1, . . . , K,

ǫt ∼ NID (0, 1) ,

(6.6)

wherest denotes the realization of the state at timet, and is characterized by a Markov process.

Despite the flexibility of allowing different GARCH models in different time periods, regime

switching GARCH models can still be restrictive, as each observation is assumed to belong to

a single regime at each period in time. Our proposed fuzzy GARCH model does not have this

constraint.

Apart from the above mentioned fully probabilistic extensions of the GARCH model, we

focus our attention on fuzzy GARCH models as presented in Popov and Bykhanov (2005);

Hung (2009a,c, 2011b,a). This type of models consists of a set of if-then rules, where the

antecedent of each rule are fuzzy sets and the consequents are GARCH models, consisting of

l-th rules (Popov and Bykhanov, 2005; Hung, 2009a,c, 2011b,a):

Rl : If x is Fl then ht,l = α0,l +

q′
∑

i=1

αi,ly
2
t−i +

p′
∑

j=1

βj,lht−j , (6.7)

wherex ∈ R
n is an input vector,Fl : X −→ [0, 1] is a multidimensional fuzzy set defined on a

continuous sample spaceX. The output of this fuzzy model is presented as
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yt =
√

htǫt , (6.8a)

ht =

L
∑

l=1

gt,lht,l , (6.8b)

wheregt,l = ut,l/
∑L

l=1 ut,l are normalized membership functions withut,l ≥ 0 for l = 1, . . . , L,
∑L

l=1 ut,l > 0, and by definitiongt,l ≥ 0 and
∑L

l=1 gt,l = 1. The inference used for the out-

put (6.8a) and (6.8b) is similar to the inference of a Takagi-Sugeno fuzzy model (Takagi and

Sugeno, 1985). Although not clear in Hung (2009a,c, 2011b,a), we assume that like in Popov

and Bykhanov (2005), whenx is n-dimensional,ut,l is determined as a conjunction of the indi-

vidual memberships in the antecedents computed by a suitable t-norm,i.e.,

ut,l(x) = uFl1
(x1) ◦ · · · ◦ uFln

(xn), (6.9)

wherexn is then-th component ofx and◦ denotes a t-norm.

In our analysis of this model, we note that the combination ofht,l in (6.7) provides the

unobservedconditional varianceht. The density of outputyt is based onht:

yt | ht, xt ∼ NID(µ, ht) . (6.10)

In Popov and Bykhanov (2005), the parameters of the model in (6.7) were estimated in a two

step approach. First the antecedents were obtained using a fuzzy clustering heuristic, followed

by the estimation of the GARCH parameters using maximum likelihood estimation. The chosen

explanatory variable was the return at the previous period,yt−1. For a simulated nonlinear

GARCH model, good results are reported using as variance termht,l in (6.7) a GARCH(3,3)

model or by constraint ofβj = 0 using a GARCH(0,5) model. For the real data example

(Popov and Bykhanov, 2005), the conditional variance is not given by a GARCH model but it

is considered to be constant over timeht,l = hl, ∀t, which gives

Rl : If yt−1 isFl thenht,l = hl. (6.11)

In Hung (2009a,c), the parameters of the fuzzy GARCH model are obtained using a genetic

algorithm, while in Hung (2011b) particle swarm optimization is used. The objective function

E1 is defined as the mean squared error between the estimated output densityy∗t =
√
ht ǫt and
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observationyt, as

E1 =

T
∑

t=1

(y∗t − yt)
2 . (6.12)

To the best of our knowledge, the calculation of this objective function as a difference be-

tween a density function and a point is not possible. We further note that the same objective

function is used in Hung (2009b), although the rule base model is different. Furthermore, in

Hung (2011a) a similar objective function, based on the squared returns, is defined:

E2 =

T
∑

t=1

(y∗2t − y2t )
2 , (6.13)

where the difference between the square of the implied density of returnsy∗2t and the point

squared returnsy2t is again not possible. We further note that using squared daily returns as

a comparison to a model is not appropriate, because squared daily returns provide a poor ap-

proximation of realized daily volatility (Andersen and Bollerslev, 1998). More accurate results

can be obtained using the sum of squared intraday results (Andersen and Bollerslev, 1997a;

Andersen et al., 2001; Barndorff-Nielsen and Shephard, 2002; Andersen et al., 2011).

Despite the aforementioned issues regarding the explanation for the parameter estimation of

these fuzzy GARCH models in the literature, the general idea of these models is very appeal-

ing. They possess the advantage of the linguistic interpretation of the rules and the possibility to

explain the conditional data distribution with antecedent variablesx. Despite this general mod-

eling idea, the model output as defined in (6.10) is restricted to a normal conditional distribution

with zero mean. This restriction may not accommodate documented dynamics of data, such as

the existence of extreme observations or skewness in several stock returns series. For this rea-

son, we propose a more flexible fuzzy GARCH model in Section 6.3 which can be estimated

using a maximum likelihood approach.

6.3 Proposed fuzzy GARCH model

In this chapter we present a new flexible fuzzy GARCH model (Almeida et al., 2013b), named

FGARCH(L,p′,q′) where the outputyt and conditional varianceht are defined by each ofl-th

fuzzy rule

Rl : If x is Fl then yt,l | xt, ht,l ∼ NID(µl, ht,l) , (6.14a)

with ht,l = α0,l +

q′
∑

i=1

αi,ly
2
t−i +

p′
∑

j=1

βj,lht−j , (6.14b)
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whereht is given by (6.8b) and the fuzzy setsFl are defined by membership functionsut,l as

function of the antecedent variablext.

For thel-th fuzzy rule, the output consequents are defined by a GARCH(p′,q′) model which

has a normal distribution with meanµl and varianceht,l, with parameters given by:

yt,l =
√

ht,l ǫt ,

ht,l = α0,l +

q′
∑

i=1

αi,ly
2
t−i +

p′
∑

j=1

βj,lht−j ,

ht−j =
L
∑

l=1

gt−j,lht−j,l , for j = 1 . . . , p′ .

(6.15)

wheregt,l = ut,l/
∑L

l=1 ut,l is the normalized antecedent membership function.

The output of this FGARCH model is:

yt | ht, xt ∼
L
∑

l=1

gt,lNID(µl, ht,l) , (6.16)

which can be interpreted as a fuzzy combination of normal densities. Depending on the nor-

malized membership functionsgt,l, the output has several distributional forms, such as a normal

density, a skewed density or a bimodal density. Comparing the output of (6.16) and the output

(6.8), it is clear that the outputs follow different inference mechanisms. In (6.8) the output is

a probabilistic normal distribution with zero mean and the variance modelled with a fuzzy sys-

tem. Conversely, the output (6.16) combines probabilistic and fuzzy uncertainty, resulting in a

combination of normal distributions dependant on a set of fuzzy rules. The model defines the

whole output density including the mean and variance.

The output of the proposed model has a proper conditional distribution, similar to a finite

mixture of normal densities, under the condition that membership values satisfy

gt,l ≥ 0, ∀l, t (6.17a)
L
∑

l=1

gt,l = 1, ∀t . (6.17b)

These conditions ensure that the probability density, hence the likelihood of observationt can

be written conditional on past observations and past variance.

A second concern in the proposed FGARCH(L,p′,q′) model is to obtain positivity and sta-

tionarity conditionsht,l for every rule and at every time period, since the output of the rules in
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(6.14a) are not defined otherwise. Inserting (6.14b) in (6.8b), varianceht at timet is:

ht =

L
∑

l=1

gt,l

(

α0,l +

q
∑

i=1

αi,ly
2
t−i +

p
∑

j=1

βj,lht−j

)

(6.18a)

=

L
∑

l=1

gt,lα0,l +

L
∑

l=1

gt,l

q
∑

i=1

αi,ly
2
t−i +

L
∑

l=1

gt,l

p
∑

j=1

βj,lht−j . (6.18b)

A sufficient condition to ensure a positive and finite expected variance in (6.18) is to incor-

porate standard GARCH model conditions for each rulel = 1, . . . , L in the model:

α0,l > 0, αi,l ≥ 0, βj,l ≥ 0,

q′
∑

i=1

αi,l +

p′
∑

j=1

βj,l < 1, i = 1, . . . , q′, j = 1, . . . , p′ , (6.19)

as the following theorems show.

Theorem 6.1 For the FGARCH(L,p′,q′) model defined by(6.14), the varianceht given by

(6.18) is positive for eacht if (6.19) is satisfied,gt,l ≥ 0, ∀t, l, ∑L
l=1 gt,l = 1, ∀t and initial

variancesh1, . . . ht⋆−1 are set as positive values according to the definition of variance.

Proof: Given thatgt,l ≥ 0, ∀t, l,
∑L

l=1 gt,l = 1, ∀t and initial variancesh1, . . . ht⋆−1 are

set as positive values we obtain

ht =

L
∑

l=1

gt,lα0,l +

L
∑

l=1

gt,l

q
∑

i=1

αi,ly
2
t−i +

L
∑

l=1

gt,l

p
∑

j=1

βj,lht−j

≥
L
∑

l=1

gt,l min
l
(α0,l) +

L
∑

l=1

gt,l min
i,l

(αi,l)y
2
t−i +

L
∑

l=1

gt,l min
j,l

(βj,l)ht−j . (6.20)

Note that the positivity of initial variancesh1, . . . ht⋆−1 ensures thatht−j > 0 for j = 1, . . . , p.

Furthermore, sinceminl(α0,l) > 0 andmini,l(αi,l) = minj,l(βj,l) = 0 we obtain

ht ≥
L
∑

l=1

gt,l min
l
(α0,l) +

L
∑

l=1

gt,l min
i,l

(αi,l)y
2
t−i +

L
∑

l=1

gt,l min
j,l

(βj,l)ht−j

>
L
∑

l=1

gt,l min
i,l

(αi,l)y
2
t−i +

L
∑

l=1

gt,l min
j,l

(βj,l)ht−j = 0 . (6.21)

Given (6.20) and (6.21), the variance term at the initial timet⋆ is positive, and the consequent

variances are also positive.



157

6.3 Proposed fuzzy GARCH model 143

Theorem 6.2 For the FGARCH(L,p′,q′) model defined by(6.14), the expectation of the vari-

anceht given by(6.18)is finite.

Proof: Defining the unconditional expectation of the variance term ash̄ = E (ht), ∀t,
using the definitionE (ht−i) = E

(

y2t−i

)

− E
(

µ2
t−i

)

and (6.18b), we obtain

h̄ = E (ht) =
L
∑

l=1

gt,lα0,l +
L
∑

l=1

gt,l

q
∑

i=1

αi,lE
(

y2t−i

)

+
L
∑

l=1

gt,l

p
∑

j=1

βj,lE (ht−j)

=

L
∑

l=1

gt,lα0,l +

L
∑

l=1

gt,l

q
∑

i=1

αi,l

(

h̄+ E
(

µ2
t−i

))

+

L
∑

l=1

gt,l

p
∑

j=1

βj,lh̄

=

∑L

l=1 gt,lα0,l +
∑L

l=1 gt,l
∑q

i=1 αi,lE
(

µ2
t−i

)

1−
∑L

l=1 gt,l

(

∑q
i=1 αi,l +

∑p
j=1 βj,l

) . (6.22)

As a result of theorem 6.1,ht > 0, ∀t⇒ h̄ > 0.

The numerator of (6.22) is finite since

E
(

µ2
t−i

)

<∞, ∀i, t (6.23)

and model parameters are constrained by definition (6.19)

L
∑

l=1

gt,lα0,l +
L
∑

l=1

gt,l

q
∑

i=1

αi,lE
(

µ2
t−i

)

<
L
∑

l=1

gt,l max
l

(α0,l) +
L
∑

l=1

gt,l

q
∑

i=1

max
i,l

(αi,l)E
(

µ2
t−i

)

= max
l

(α0,l) + max
i,l

(αi,l)

q
∑

i=1

E
(

µ2
t−i

)

< max
l

(α0,l) + E
(

µ2
t−i

)

<∞ . (6.24)

Due to (6.19) and
∑L

l=1 gt,l = 1, ∀t the denominator of (6.22) is also finite

1−
L
∑

l=1

gt,l

q
∑

i=1

(αi,l + βj,l) ≤ 1−
L
∑

l=1

gt,l min
l

(

q
∑

i=1

αi,l +

p
∑

j=1

βj,l

)

(6.25)

= 1−min
l

(

q
∑

i=1

αi,l +

p
∑

j=1

βj,l

)

<∞ , (6.26)
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and non-zero

1−
L
∑

l=1

gt,l

q
∑

i=1

(αi,l + βj,l) ≥ 1−
L
∑

l=1

gt,l max
l

(

q
∑

i=1

αi,l +

p
∑

j=1

βj,l

)

= 1−max
l

(

q
∑

i=1

αi,l +

p
∑

j=1

βj,l

)

> 0 . (6.27)

According to (6.23), (6.24), (6.25) and (6.27), the unconditional expected variance in (6.22)

is positive and finite.

The output density function of FGARCH(L,p′,q′) model defined by (6.14) is stationary

since, according to theorem 6.1 and theorem 6.2, the varianceht is positive and the expectation

of the variance is finite.

Note that these conditions should also hold for the fuzzy GARCH models proposed in the

literature (Popov and Bykhanov, 2005; Hung, 2009a,c, 2011b,a), although they have not been

explicitly considered.

6.3.1 Interpretation of the model

Intuitively, the conditional distribution of the proposed model in (6.16) is a smooth combination

of normal distributions. This combined density is similar to a finite mixture of normal densities,

with combinations relying on the antecedent variables. The estimation of the proposed model,

however, is more straightforward and the linguistic interpretation provided by this model is

unique.

In relation to the previous fuzzy GARCH models in the literature, the proposed model is

more general and can capture several different dynamics of data: In (6.14a) and (6.14b), out-

put y shows a smooth transition between normal densities, with possible different mean and

variances. Hence the density of each observation might be multimodal or skewed, while in the

previous fuzzy GARCH models the output density in (6.10) is a unimodal and symmetric nor-

mal density. In the proposed model, the combination of normal densities in the rule output can

lead to unimodal or skewed distributions depending on model parameters:

1. If µl = µl⋆ for all l, l⋆ ∈ {1, . . . , L}, outputy comes from a normal distribution and

conditional varianceh changes over time. This case leads to the previous fuzzy GARCH

models as defined in (6.10).

2. If mean parametersµl are relatively different andht,l are relatively small and similar

acrossl = {1, . . . , L}, output distribution is likely to be multimodal.



159

6.3 Proposed fuzzy GARCH model 145

y

−10

−8

−6

−4

−2

0

2

4

6

8

10

t

20

40

60

80

100

120

140

density

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

(a) FGARCH(2,1,1) model

y

−10

−8

−6

−4

−2

0

2

4

6

8

10

t

20

40

60

80

100

120

140

density

0.00
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

(b) Model proposed in Popov and Bykhanov (2005);
Hung (2009c).

Figure 6.1: Conditional distributions of simulated data from fuzzy GARCH models.

3. If mean parametersµl are relatively close to each other andht,l are relatively different

acrossl = {1, . . . , L}, output distribution is likely to be skewed.

We illustrate the difference between the fuzzy GARCH model defined in Popov and Bykhanov

(2005); Hung (2009c) and the proposed FGARCH(L,p′,q′), using simulated data. Figure 6.1

shows the conditional density of outputy for simulated data from the proposed model (6.14a)

and model (6.7). In this example, both models have two rules with Gaussian membership pa-

rameters{c1,1, s21,1, c1,2, s21,2} = {−2.3, 2.5, 1, 1} defined in (6.29) and GARCH parameters

defined for each rule{α0,1, α1,1, β1,1, α0,2, α1,2, β1,2} = {0.5, 0.25, 0.17, 1.0, 0.50, 0.33}. In the

previous fuzzy GARCH model (Popov and Bykhanov, 2005; Hung, 2009c)µ = 0, while in the

FGARCH(2,1,1) model(µ1, µ2) = (−6, 6).

The model in (6.7) leads to unimodal and symmetric conditional densities while simulated

data from the proposed model has a more complex behavior with skewed, asymmetric and

bimodal conditional densities.

The proposed FGARCH model makes a clear distinction between linguistic and probabilis-

tic uncertainty. The fuzziness or linguistic vagueness is present in the antecedent of each rule

and their combination. By using fuzzy sets to represent linguistic vagueness, the output density

is allowed to vary smoothly, in mean and variance, over time. These smooth changes are related

to linguistic labels (Zadeh, 1975), belonging to one or several fuzzy sets at the same time. The

linguistic labels can be used to explain complex systems, such as financial markets (Hachicha

et al., 2011), with imprecise descriptions of phenomena in a similar way humans do it. Follow-

ing the concept of granularity (Zadeh, 1979, 2008), a fuzzy linguistic label can be viewed as a

set of observation values grouped according to some criteria, in an environment of imprecision,

uncertainty and partial truth (Zadeh, 1997), where each linguistic label has a degree of valid-
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ity. The probabilistic uncertainty can be captured by the GARCH model. In this extensively

studied and good performing model (Hansen and Lunde, 2005), the conditional density of the

data is a normal distribution with time varying variance depending on past variance and past

observations.

Fuzzy GARCH models can be related to finite mixture of GARCH models. Standard mix-

ture of GARCH models allocate each observation to one GARCH model at a time and the

probability of each GARCH model is fixed. More general mixture GARCH models can have

smoothly varying regime probabilities (Geweke and Keane, 2007). In these models, each obser-

vation is allocated to different GARCH models, depending on the regime probabilities explained

by explanatory variables. The fuzzy GARCH model also uses such antecedent variables, but in

this case the uncertainty is modelled using fuzzy sets, relaxing the restriction of realizing one

state at each observation. Even if the mathematical formulation is similar, the interpretation and

underlying modeling of uncertainty (fuzzy and probabilistic) is different from mixture GARCH

models (probabilistic only).

6.3.2 Parameter estimation

It is possible to estimate the model in (6.14a) using the maximum likelihood method, given that

x is predeterminedwith respect toy, i.e. inputxt is included in the information set at timet−1.

More specifically,xt can for instance take pasty values or can be an exogenous variable.

Given that the type and number of membership functionsgt,l are known, the log-likelihood

of datay = {yt⋆ , . . . , yT} is:

ln ℓ(y | It−1) = ln

T
∏

t=t⋆

ℓ(yt | xt, ht) =
T
∑

t=t⋆

ln

(

L
∑

l=1

gt,lφ(yt;µl, ht,l)

)

, (6.28)

whereht is calculated from (6.14b),t⋆ = max(p′, q′) + 1 and initial variances{h1, . . . , ht⋆−1}
are assumed to be known. In practice,{h1, . . . , ht⋆−1} can be set as the unconditional data

variance.

In order to calculate the likelihood in (6.28) it is necessary to specify suitable member-

ship functions, that satisfy conditions (6.17a) and (6.17b). In this work, the FGARCH models

considered use Gaussian membership functions of the form (Jang and Sun, 1997):

ut,l = ut,l(xt) =
n
∏

k=1

exp

(

−1

2

(xkt − ck,l)
2

s2k,l

)

. (6.29)

These membership functions were chosen because they naturally satisfy conditions (6.17a)

and (6.17b) sincegt,l = ut,l/
∑L

l=1 ut,l, ut,l ≥ 0 for l = 1, . . . , L,
∑L

l=1 ut,l > 0. This re-
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duces the need for additional parameter constraints in the gradient search optimization of the

maximum log-likelihood estimation (6.30).

The parameter estimates can be obtained by maximizing the log-likelihood in (6.28), using

gradient search methods. We maximize the log-likelihood with respect to the GARCH pa-

rametersθg,l = {α0,l, α1,l, . . . , αq′,l, β1,l, . . . , βp′,l}, the output mean for each ruleµl and the

membership function parametersθu,l, simultaneously. The optimization problem can be defined

as:

minimize
µl,θg,l,θu,l

− log ℓ(y | It−1) = −
T
∑

t=t⋆

ln

(

L
∑

l=1

gt,lφ(yt;µl, ht,l)

)

subject to α0,l > 0, αi,l ≥ 0, βj,l ≥ 0, i = 1, . . . , q′, j = 1, . . . , p′,

q′
∑

i=1

αi,l +

p′
∑

j=1

βj,l < 1, i = 1, . . . , q′, j = 1, . . . , p′,

cl ≤ cl+1, l = 1, . . . , L− 1,

(6.30)

The first two restrictions ensure a positive variance at each time period, while the last restriction

ensures that the membership functions cannot permute labels. The optimization method cho-

sen approximates the whole output density instead of a proxy for the density, such as the mean

or variance of the process, lending itself to density estimation. This is also the conventional

method to obtain standard GARCH and mixture GARCH models’ parameter estimates. We

constrain the search space to solutions satisfying the positive variance condition and member-

ship functions that cover the universe of the input variables in the antecedent space.

We acknowledge that the proposed maximum likelihood estimation of the FGARCH(L,p′,q′)

parameters has a possible disadvantage of local maxima, similar to standard and extended

GARCH models. The problem of local optima is often more pronounced in highly parametrized

models. For this reason, we concentrate on a FGARCH(L,1,1) model in the remaining of this

chapter. The simple parametrization of the underlying GARCH model is also based on the find-

ings that a GARCH(1,1) model is very hard to beat in practice (Hansen and Lunde, 2005). One

exception to this is the asymmetric GARCH models (Awartani and Corradi, 2005) which are

naturally considered in a FGARCH(L,1,1) model.

6.4 Examples: Synthetic data parameter estimation

In this section we illustrate the performance of the proposed FGARCH model and discuss the

estimation issues using a known data generating process to simulate data. Doing so allows us

to study the approximation capabilities of the FGARCH model,i.e. recover the same density
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function. It also shows the sensitivity to the initialization of the maximum likelihood estimation

procedure, as explained in Section 6.3.2, on the FGARCH model.

We consider two sets of simulated datasets. First, we consider data simulated from the pre-

viously studied fuzzy GARCH models defined by (6.7) and (6.8), usede.g. in Hung (2011b),

which restricts the output density to a normal conditional distribution with zero mean. The ob-

tained data distribution is symmetric with fat tails. We show that the FGARCH model proposed

in this chapter can correctly capture the properties of this data. Second, we consider simulated

data from the proposed FGARCH model defined by (6.14a) and (6.14b). The obtained data

distribution is asymmetric, multimodal and has fat tails. In both cases, we simulate 3000 data

points from the model considered forL = 2 andL = 3 rules. We maximize the log-likelihoods

with respect to the GARCH parametersθg,l = {α0,l, α1,l, . . . , αq′,l, β1,l, . . . , βp′,l}, the output

mean for each ruleµl, and the Gaussian membership parametersθu,l = {cl, s2l } for l = 1, . . . , L,

simultaneously, as defined in (6.30).

Given the number of model parameters, a straightforward approach to decrease the possibil-

ity of obtaining local optimum is to consider several initializations for parameter estimation and

choose the best model. This will also show the sensitivity of the optimization procedure on the

proposed fuzzy GARCH model to the initialization. For all estimations considered, we estimate

model parameters starting from 100 random initial points. From these repetitions, the estima-

tion providing the highest likelihood value is considered the global maximum and labelled as

‘best’. To provide an indication of different local minima and its effect in models’ performance,

we report the average estimates, for both the model parameters and distribution tails, as well as

the 90% interval of the estimates around the average value.

6.4.1 Fuzzy GARCH data with constant mean

In this section, we use a FGARCH model, where the output density is restricted to a normal

conditional distribution with zero mean, as the data generating process. This model is equiva-

lent to the previously studied fuzzy GARCH models defined by (6.7) and (6.8). The obtained

data distribution is symmetric with fat tails, similar to the conditional distribution presented in

Fig. 6.1(b). We estimate the parameters of the proposed FGARCH model defined by (6.14a)

and (6.14b), without any restrictions to the output mean and distribution.

To study the approximation capabilities of the FGARCH model we compare the true and

estimated data densities. The fuzzy GARCH model provides an estimated output density. We

compare the quantiles of this estimated density and the percentage of simulated data points

corresponding to each quantile. For a good approximation of the output density, the quantiles

of this estimated density should match with the quantiles of the data,e.g. 5% of the actual
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Table 6.1: Simulated FGARCH model data with constant mean: percentage of observations in

respective distribution tails.
Simulated data from FGARCH(2,1,1) model

τ(1%) τ(5%) τ(10%) τ(20%) τ(40%)
mean 0.010 0.047 0.098 0.201 0.397
90% (0.009, 0.013) (0.045, 0.047) (0.090, 0.100) (0.194, 0.202) (0.388, 0.399)

Simulated data from FGARCH(3,1,1) model
τ(1%) τ(5%) τ(10%) τ(20%) τ(40%)

mean 0.010 0.047 0.104 0.206 0.394
90% (0.008, 0.011) (0.044, 0.049) (0.102, 0.106) (0.203, 0.209) (0.389, 0.399)

Table 6.2: Parameter estimates and true values for simulated data from a FGARCH(L,1,1)

models restricted to a normal conditional distribution with zero mean. 90% intervals from 100

random initializations are given in parentheses.
FGARCH(2,1,1)

l = 1 l = 2
value estimate value estimate

µ 0.00 0.03 (-0.02, 0.04) 0.00 -0.02 (-0.03, 0.02)
α0 0.50 0.47 (0.42, 0.66) 1.00 1.00 (0.62, 1.01)
α1 0.25 0.29 (0.26, 0.53) 0.50 0.58 (0.41, 0.65)
β1 0.17 0.13 (0.13, 0.31) 0.33 0.34 (0.16, 0.34)
c -3.40 -0.60 (-1.28, 0.12) 3.20 1.21 (0.31, 2.11)
s2 1.00 0.54 (0.00, 0.82) 1.00 0.48 (0.19, 0.77)

FGARCH(3,1,1)
l = 1 l = 2 l = 3

value estimate value estimate value estimate
µ 0.00 -0.02 (-1.09, 0.80) 0.00 -0.09 (-0.82, 0.63) 0.00 0.03 (-0.46, 0.53)
α0 0.50 0.57 (0.00, 1.09) 1.00 0.79 (0.37, 1.23) 1.50 0.86 (0.40, 1.18)
α1 0.17 0.32 (0.00, 0.69) 0.33 0.38 (0.18, 0.62) 0.50 0.29 (0.15, 0.43)
β1 0.11 0.23 (0.00, 0.56) 0.22 0.18 (0.00, 0.51) 0.33 0.21 (0.03, 0.50)
c -3.40 -1.07 (-2.59, -0.02) 0.01 -0.20 (-0.60, 0.27) 3.20 0.51 (-0.44 2.95)
s2 1.00 0.48 (0.00, 0.98) 1.00 0.52 (0.09, 0.76) 1.00 0.67 (0.15, 1.43)

observations should fall in the 5% tail of the output density. The mean estimates and 90%

intervals of the quantileŝτ(c) for c = 1%, 5%, 10%, 20%, 40% for the simulated datasets are

reported in Table 6.1, for FGARCH(2,1,1) and FGARCH(3,1,1) models.

Table 6.1 shows that the percentage of observations in estimated tails of the data distribution

are close to the theoretical values, although for some quantiles the percentage of observations in

some tails are smaller than the theoretical value. This may be a consequence of estimating this

model with only 3000 data points, which may not be enough to represent the true distribution.

A detailed analysis of the effect of the number of observations on the true and estimated tails of

the density is left for future research.
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Figure 6.2: FGARCH model with0 mean: Log-likelihood values form different starting values,

and 90% lower band for obtained log-likelihood.

Table 6.2 presents the true parameter values, together with mean estimates and 90% interval

of parameter estimates (in parentheses) from 100 parameter estimates with different starting

values for optimization.

As Table 6.2 shows, the effect of the initial points on parameter estimation is not negligible.

Estimates of the GARCH parameters(α0, α1, β1) and rule output meansµl are close to the

true parameter values and the 90% interval regardless of the initial points. Estimates of the

membership parametersc, s2 on the other hand, deviate much more from the original values

and are more affected by their initialization. It is interesting to note that the overall fit of

the FGARCH model is not substantially affected with completely random initializations of all

parameters, as the 90% intervals show in Table 6.1.

Since the output distribution from the FGARCH is a combination of GARCH models with

different means, through a set of fuzzy rules, the output variance is jointly captured by the

unobserved (estimated) variance and the fuzzy antecedents. The obtained models are highly

nonlinear and the optimization method includes constraints on GARCH parameters, hence ob-

taining a local maximum is likely. Local maxima is less problematic for the GARCH model

parameters since this part of the model has a structure to explain part of the unobserved vari-

ances, given by the fuzzy antecedent. Due to this model structure, different parameter values

typically lead to very different unobserved variances and the estimation of these parameters is

not affected severely by the initial points. We note that other GARCH models also suffer from

similar initialization issues. The fuzzy parameters, on the other hand, are more susceptible to

random initialization. In the FGARCH model it is possible that different fuzzy membership
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Table 6.3:Simulated FGARCH model data with time varying mean: percentage of observations

in respective distribution tails.
Simulated data from FGARCH(2,1,1) model

τ(1%) τ(5%) τ(10%) τ(20%) τ(40%)
mean 0.010 0.047 0.098 0.201 0.397
90% (0.009, 0.013) (0.045, 0.047) (0.090, 0.100) (0.194, 0.202) (0.388, 0.399)

Simulated data from FGARCH(3,1,1) model
τ(1%) τ(5%) τ(10%) τ(20%) τ(40%)

mean 0.011 0.046 0.100 0.198 0.391
90% (0.009, 0.012) (0.042, 0.049) (0.096, 0.105) (0.191, 0.207) (0.384, 0.407)

parameters lead to similar output density approximations. Hence the optimization of the fuzzy

membership parameters is more sensitive to the initial points for optimization.

Figure 6.2 shows the optimal log-likelihood values for the 100 different estimations per-

formed, together with the 90% lower bound for these values. We observe that for the FGARCH(2,1,1)

model, approximately the same maximum log-likelihood value is obtained in most of the es-

timations, despite the differences in parameter estimates, caused by the random initialization.

For this case, the maximum variation of the log-likelihood is approximately2.48%. A similar

result can be observed for the FGARCH(3,1,1) model. The maximum variation for the log-

likelihood is approximately0.09%, but the variation around the maximum log-likelihood value

is smaller for the FGARCH(2,1,1). Hence the local optima issue, particularly in the fuzzy mem-

bership parameters, does not substantially affect the maximized likelihood. We conjecture that

the smaller maximum variation of the log-likelihood for the FGARCH(3,1,1), when compared

with the FGARCH(2,1,1) model, stems from the higher number of rules and consequent overlap

between them, that leads to the almost same result.

6.4.2 Fuzzy GARCH data with general time varying mean

In this section, we simulate data from FGARCH(2,1,1) and FGARCH(3,1,1) models without

any restrictions on the output density and perform 100 estimations with different starting values

for optimization. The obtained data distribution is asymmetric, multimodal and has fat tails,

similar to the conditional distribution presented in Fig. 6.1(a). Table 6.3 shows the mean esti-

mates and 90% intervals of the quantilesτ̂(c) and Table 6.4 presents the true parameter values,

together with mean estimates and 90% interval of parameter estimates (in parentheses).

Similar to the results in Section 6.4.1, we observe that the estimated output densities capture

the tails of the distribution, as Table 6.3 shows. Furthermore, as it is presented in Table 6.4,

parameter estimates of the GARCH model are less affected by initialization compared to the

estimated fuzzy membership parameters. Nonetheless, we note that there is a larger variation
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Table 6.4: Parameter estimates and true values for simulated data from a FGARCH(L,1,1)

models withL = 2 andL = 3 rules for time varying mean. 90% intervals from 100 random

initializations are given in parentheses.
FGARCH(2,1,1)

l = 1 l = 2
value estimate value estimate

µ -2.00 -0.51 (-1.65, 1.71) 2.00 0.67 (-1.86, 1.71)
α0 0.50 0.70 (0.60, 1.05) 1.00 0.89 (0.61, 0.86)
α1 0.25 0.28 (0.19, 0.45) 0.50 0.37 (0.15, 0.45)
β1 0.17 0.23 (0.18, 0.36) 0.33 0.29 (0.10, 0.36)
c -3.40 -1.84 (-3.73, -0.30) 3.20 1.31 (-1.20, 3.84)
s2 1.00 0.76 (0.15, 1.93) 1.00 0.49 (0.14, 0.89)

FGARCH(3,1,1)
l = 1 l = 2 l = 3

value estimate value estimate value estimate
µ -2.00 -0.19 (-1.18, 1.14) 0.00 -0.05 (-0.82 0.97) 2.00 0.72 (-0.45 1.64)
α0 0.50 0.49 (0.00, 0.82) 1.00 0.73 (0.15, 0.87) 1.50 0.70 (0.50, 0.90)
α1 0.17 0.24 (0.10, 0.50) 0.33 0.29 (0.19, 0.43) 0.50 0.24 (0.13, 0.38)
β1 0.11 0.19 (0.00, 0.47) 0.22 0.20 (0.00, 0.34) 0.33 0.23 (0.14, 0.34)
c -3.40 -1.12 (-3.05, 0.55) 0.01 0.04 (-0.84, 0.81) 3.20 1.29 (-0.59, 3.81)
s2 1.00 0.39 (0.00, 0.80) 1.00 0.46 (0.02, 0.77) 1.00 0.60 (0.19, 1.01)

in the obtained 90% intervals for the parameter estimates than obtained in Section 6.4.1. The

initial points have a bigger effect in the parameter estimates, although, like previously, the

overall fit of the FGARCH model is similar throughout the experiments. This difference is

expected, since the FGARCH model is now capturing more complex data properties, such as

time-varying mean and variance, skewness and bimodality. In this experiment, the parameters of

the FGARCH(3,1,1) model vary more with the initialization than those of the FGARCH(2,1,1)

model, as the 90% intervals shown in Table 6.4 indicate.

The problem of local optima can be a more severe problem when the number of parameters

(e.g.the number of fuzzy rules or parametersp′, q′ of GARCH models) increases. Nonetheless,

the FGARCH model proposed in this chapter achieves good approximation properties, as Ta-

ble 6.1 and Table 6.3 show, even using a small number of rules and the simple GARCH(1,1)

model, as the models described in these experiments.

6.5 Application: Conditional density estimation of S&P500

returns

In this section, we apply the proposed fuzzy GARCH model to build a conditional density

model of S&P 500 returns. This stock market index is based on the market capitalizations of
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Figure 6.3: S&P 500 returns in percentages.

500 companies publicly traded in the U.S. stock market, as determined by Standard & Poor’s. It

is considered as an indicator of U.S. equities reflecting the risk and return characteristics of the

large capital universe. Conditional density estimation used to study financial market volatility

has an important role in financial economics and is at the heart of several subjects, including

asset allocation, market timing, risk management, the pricing of assets and portfolio manage-

ment (Huang, 2007). Many statistical quantiles such as Value-at-Risk or Expected Shortfall,

which are directly linked to the tail of the return distribution of a portfolio of financial assets,

are widely accepted financial risk management tools (Jorion, 2006).

In this chapter, the proposed FGARCH model is applied to 3718 observations of S&P 500

returns from February 18, 1997 to November 23, 2011, calculated as percentage changes of

daily closing prices. The training and forecast samples are the first 3218 and the last 500 obser-

vations (approximately 2 trading years) and are presented in Fig. 6.3. In the period considered,

it is possible to observe periods of volatility changes and extreme returns, indicating non-trivial

statistical properties, such as asymmetric distributions and non-constant variability of returns.

We consider conditional density estimation models for one period ahead forecasts. The pro-

posed FGARCH models approximate the distribution of returns at timet + 1 conditional on

the returns at timet, through the GARCH-type relation and antecedent membership functions.

This choice of the fuzzy rule antecedents provides a more complex and non-linear relationship

between current returns and past returns than it is assumed by GARCH model. This antecedent

variable allows for a linguistic interpretation of different data dynamics on the current returns’

conditional density. By using this variable as antecedent, the FGARCH model allows the analy-

sis of other stylized facts, such as volatility clustering and leverage effects. Volatility clustering

(Mandelbrot, 1963) is considered as the tendency of large changes to be followed by large

changes, of either sign, and small changes to be followed by small changes. The leverage effect

(Engle and Ng, 1993) refers to the asymmetric relation between lagged unexpected returns and
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Table 6.5: Estimated quantiles for the S&P500 data. From 100 estimations with random start-

ing values, we report the percentage of observations at each tail of the distribution according

to the average - best estimation and 99% confidence intervals (in parentheses) are reported for

each model.
Standard GARCH(1,1)⋆

sample τ(1%) τ(5%) τ(10%) τ(20%) τ(40%)
training 1.6 5.0 9.6 18.3 36.3

(1.6, 1.6) (5.0, 5.0) (9.6, 9.6) (18.3, 18.3) (36.3, 36.3)
forecast 2.4 6.4 9.8 17.0 32.4

(2.4, 2.4) (6.4, 6.4) (9.8, 9.8) (17.0, 17.0) (32.4, 32.4)

FGARCH(2,1,1)
sample τ(1%) τ(5%) τ(10%) τ(20%) τ(40%)

training 1.5 - 1.3b 5.4 - 5.9b 10.1 - 10.6b 18.7 - 19.4b 36.9 - 37.5b

(1.3, 1.7) (5.0, 6.0) (9.6, 10.7) (18.3, 19.4) (36.4, 37.6)
forecast 2.5 - 2.6b 6.6 - 7.0b 10.0 - 9.4b 17.1 - 17.4b 33.5 - 34.6b

(2.2, 3.0) (6.2, 7.2) (9.6, 11.0) (16.8, 17.6) (32.6, 34.6)

FGARCH(3,1,1)
sample τ(1%) τ(5%) τ(10%) τ(20%) τ(40%)
training 1.5 - 1.5b 5.6 - 5.9b 10.2 - 10.6b 18.8 - 19.5b 37.1 - 37.3b

(1.3, 1.7) (5.2, 6.0) (9.8, 10.7) (18.3, 19.7) (36.5, 38.5)
forecast 2.6 - 2.2b 6.5 - 7.2b 10.3 - 9.8b 17.1 - 17.4b 33.9 - 34.4b

(2.2, 3.2) (6.0, 7.4) (9.8, 11.4) (16.6, 18.0) (32.8, 35.8)
⋆ The differences in estimated values are negligible, with the reported digits.
b Best estimation providing the highest log-likelihood value.

volatility, where it is observed that negative return tends to increase subsequent volatility much

more than a positive return of the same magnitude. FGARCH(L,1,1) models withL = 2 and

L = 3 rules are estimated, and the results are compared with a standard GARCH(1,1) model.

Model performances are assessed by comparing the quantilesτ̂(c) of the estimated distribution

with the theoretical distribution quantilesτ(c). Each model estimation was repeated 100 times

with different initial points. This method allows us to choose the best parameter estimates,

which lead to the maximum likelihood value from different initializations.

Table 6.5 presents the estimated quantilesτ̂ (c) of the training and forecast samples for the

GARCH and FGARCH models. In this table we report the percentage of observations that

are included in eachτ(c) quantile, best and average quantile estimates and the 99% intervals

(in parentheses). The best estimates are based on the estimation providing the highest log-

likelihood value. This can be seen as the estimation providing the global optimum. Figure 6.4

shows the forecast sample and the estimated conditional density quantiles from the GARCH

and FGARCH models.

Table 6.5 shows that the percentage of observations in the respective tails of the returns dis-

tribution are close to the true values in most cases. The three models we consider lead to differ-
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Figure 6.4: Quantile estimates for S&P 500 data, using the GARCH(1,1) model and

FGARCH(L,1,1) models withL = 2 andL = 3 rules.

ent conditional density estimates. For the distribution quantilesτ(c) with c = 10%, 20%, 40%,

FGARCH models perform better than the GARCH model, as the estimated values are closer

to the theoretical values. The difference between the FGARCH(2,1,1) and FGARCH(3,1,1) is

very small. From the results obtained in Section 6.4, this small difference is expected since

the FGARCH model can capture complex data structures with a small number of rules. For

the quantileτ(c) with c = 1%, 5% level, all models overestimate this quantile, specially in the

forecast sample. This may indicate that the estimated models capture the extreme returns in

the training set, thus resulting in more conservative models. For the FGARCH model, a more

complex antecedent set including information on past returns and other variables may overcome

this issue (Villani et al., 2009; Hachicha et al., 2011; Almeida et al., 2012a; Zheng and Chen,

2013). This topic is left for future research. Despite this overestimation in the tails, by visu-

ally inspecting Fig. 6.4, we can observe that the FGARCH models’ density estimation quickly

adapts to changes in the returns. This can be observed, for instance in periods of low returns,

where the conditional density obtained by the FGARCH model is closer to the observed returns
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than those of the GARCH model, indicating a decrease in market risk. The added value of the

fuzzy GARCH models are clear in periods of sudden decrease of volatility, for example around

October 2010. The standard GARCH model cannot capture these low volatility periods as good

as the fuzzy GARCH models. These results are in line with the findings of van den Berg et al.

(2013); Almeida et al. (2012a), who show that the standard GARCH model cannot capture such

complex behavior.

The proposed FGARCH model provides a linguistic interpretation of the gradual changes

in return density, producing a simple understanding of the underlying changes. From the 100

estimations with random starting values, the ‘best’ estimation result providing the highest log-

likelihood value were selected to illustrate the model interpretation. In order to see the behavior

of each individual GARCH model, we also report the unconditional standard deviation, calcu-

lated as the square root of (6.2). The rule-based of the FGARCH(2,1,1) is given by

R1 : If yt−1 is F1 thenyt,1 | yt−1, ht,1 ∼ N(−0.255, ht,1)

with ht,1 = 3.247 + 0.029y2t−1 + 0.970ht−1 ,
√

h̄1 = 54.2645 ,

andc1 = −4.936, s21 = 1.565,

R2 : If yt−1 is F2 thenyt,2 | yt−1, ht,2 ∼ N(0.016, ht,2)

with ht,2 = 0.000 + 0.000y2t−1 + 0.922ht−1 ,
√

h̄2 = 0.0007

andc2 = 0.083, s22 = 3.306.

(6.31)

The rule-base model for the FGARCH(3,1,1) model is given by

R1 : If yt−1 isF1 thenyt,1 | yt−1, ht,1 ∼ N(−0.102, ht,1) ,

with ht,1 = 2.768 + 0.019y2t−1 + 0.981ht−1 ,
√

h̄1 = 199.9176

andc1 = −3.916, s21 = 1.234,

R2 : If yt−1 isF2 thenyt,2 | yt−1, ht,2 ∼ N(0.104, ht,2) ,

with ht,2 = 0.002 + 0.000y2t−1 + 1.000ht−1 ,
√

h̄2 = 6.9384 ,

andc2 = −2.010, s22 = 1.489,

R3 : If yt−1 isF3 thenyt,3 | yt−1, ht,3 ∼ N(−0.034, ht,3)

with ht,3 = 0.002 + 0.000y2t−1 + 0.887ht−1 ,
√

h̄3 = 0.1421

andc3 = 1.920, s23 = 2.293.

(6.32)

The estimated membership values for both models are presented in Fig. 6.5. For comparison

purposes, the GARCH(1,1) is given by

yt | yt−1, ht ∼ N(0.005, ht) ,

with ht = 0.013 + 0.077y2t−2 + 0.917ht−1 , and
√
h̄ = 1.433 .

(6.33)
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Figure 6.5: Membership functions for S&P 500 data, using the GARCH(1,1) model and

FGARCH(L,1,1) models withL = 2 andL = 3 rules.

The GARCH(1,1) model defines a normal distribution with changing variances for the re-

turn series, while the FGARCH models define separate GARCH models combined using the

fuzzy antecedents. The standard GARCH model in (6.33) leads to a mean around0 and an un-

conditional standard deviation of1.433 for returns. The FGARCH(2,1,1) and FGARCH(3,1,1)

models provide different means and unconditional standard deviations for each rule, as well as

volatility structure given by each rule’s GARCH parameters.

In each rule, the different fuzzy sets combined with the unconditional volatility provides a

clear indication of the presence of leverage effects. For the FGARCH(2,1,1) presented in (6.31),

rule 1 shows that the unconditional volatility after negative returns is very high. This indicates

that the effect of negative returns on variance is very high. This does not seem to be the case for

positive returns, since the unconditional volatility of rule 2 is very low. As Fig. 6.5 shows, for

values above 0 the effect of rule 2 is almost exclusive. For the FGARCH(3,1,1) rule 3 indicates

that the effect of positive returns above 2 is the smallest one, while the unconditional volatility

of very negative returns is very high. In both models, the GARCH parameterα1 is lower than

in the GARCH(1,1) model presented in (6.33), since the effect of the past returns in variance is

already modeled by the fuzzy antecedents in the rule-base model.

An indication of the existence of volatility clustering and volatility persistence (Andersen

and Bollerslev, 1997a) can be related to the effect of past conditional volatility,β1,l in each

GARCH model. For both FGARCH models it is possible to observe that the effect of condi-

tional volatility is larger than in the GARCH model (6.33), except for rule 3 of FGARCH(3,1,1).

This rule indicates that the effect of conditional volatility is lower when past returns are above

2%. Rule 1 of FGARCH(3,1,1) model (6.32) captures extreme negative events followed by

very high volatility the next day. Mean returns in these volatile days are also negative. Rule
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2 of this model is very interesting, since it shows an almost absolute persistence in volatility,

but as the fuzzy antecedents show in Fig. 6.5, this rule is always combined with the other two

rules. Rule 1 of the FGARCH(2,1,1) model presented in (6.31), shows that low returns lead to

a persistent effect in volatility. Rule 2 of this model, indicates a high effect of past volatility for

returns above 0 but the persistence is lower than in rule 1. Although both models show good

conditional density approximation capabilities, they provide different linguistic interpretations.

Thus, for the considered application, the choice between models will depend on the desired

level of linguistic interpretation.

It is interesting to note that in the above analysis of the FGARCH models, each rule was

analyzed independently, providing different interpretations of the conditional density evolution.

Despite the simple structure of the FGARCH model, the long run behavior indicates that the

system will alternate between rules, leading to a complex non-linear dynamic behavior. In

the long run, the local volatility of the GARCH models defined in each rule will revert to its

unconditional volatility. The FGARCH model, on the other hand, due to the fuzzy antecedents

and the unconditional volatility defined by the GARCH structure, will not converge to a single

unconditional volatility level, but instead will vary between the unconditional volatility of each

rule.

6.6 Conclusion

This chapter studies the properties, estimation issues and interpretation of a new flexible fuzzy

GARCH model for conditional density estimation. These models provide linguistic interpreta-

tion of the rules and the possibility to explain the conditional data distribution with antecedent

variablesx. Furthermore, the use of GARCH models in rule outputs allows the system to cap-

ture time dependency in the conditional distributions in a flexible way. Previous fuzzy GARCH

models were restricted to a normal conditional distribution. This restriction may not accom-

modate the documented dynamics of data, such as the existence of extreme observations or

skewness in several stock returns series. For this reason, we propose a more flexible fuzzy

GARCH model. In this model, the distribution of the returns are allowed to vary in mean and

variance smoothly over time, where the smooth changes are related to linguistic descriptors.

We relate this model with existing fuzzy and probabilistic GARCH models and provide an in-

terpretation of the model, from a statistical and fuzzy linguistic point of view. These models

have the advantage that they can be estimated by maximizing a tractable likelihood function,

which in turn overcomes the estimation issues appearing in pure probabilistic flexible GARCH

models. Another advantage is that the model provides a linguistic interpretation of the smooth

changes in return density, providing another view for understanding the underlying changes.
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We illustrate the model capabilities using synthetic datasets exhibiting different data properties

and real data on S&P 500 returns. We show that the proposed model is suitable for analysis of

the returns distribution, as it captures the underlying data distribution in all cases we consider.

In future work, we plan to extend the proposed model to include multiple outputs to capture the

joint conditional distribution of several variables.
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Chapter 7

Summary and Conclusions

This thesis shows that models combining fuzzy and probabilistic representations of uncertainty

are useful in approximating complex conditional densities while providing a parsimonious and

linguistic description of the dynamic behaviour of the system. The models proposed in this the-

sis, namely the probabilistic fuzzy system (PFS) and fuzzy GARCH models, require very few

assumptions regarding the functional form of the estimated density or changes across the space

of covariates. These models possess good approximation capabilities and provide a simple in-

terpretation essential for process understanding. It is shown that the estimation of these models

can be performed by adopting the standard tools for model estimation, such as the maximum

likelihood estimation and least mean squares. Particular attention is given to the interpretation

of the models such that they can be useful in many fields such as macroeconomic analysis,

quantitative finance and risk management. In this thesis, these models are shown to be useful

to model non-linear relations without strict assumptions where regression density estimation is

the goal of the analysis.

7.1 General findings

We provide a formal description of probabilistic fuzzy systems. These systems take proba-

bilistic nature of uncertainty into account and also the fuzzy uncertainty through their fuzzy

partitioning of input and output spaces. Two possible and equivalent reasoning mechanisms

are presented, which lead to two different interpretations of this type of systems. We discuss

an additive reasoning scheme for probabilistic fuzzy systems that leads to the estimation of

conditional probability densities. We analyse the necessary conditions for a PFS, such that the

estimated output density is a proper probability density function and subsequent higher mo-

ments derived from this density exist. We consider the relation of probabilistic fuzzy system

with different types of deterministic systems that have universal approximation capability. This
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relation indicates that a PFS is also suitable for problems of function approximation. Further-

more, we show that PFS can be used to estimate conditional densities of multiple outputs.

In this thesis we propose a new flexible fuzzy GARCH model for conditional density esti-

mation. These models provide linguistic interpretation of the rules and the possibility to explain

the conditional data distribution with antecedent variables. Furthermore, the use of GARCH

models in rule outputs, allows the system to capture time dependency in the conditional dis-

tributions in a flexible way. In this model, the distribution of the returns are allowed to vary

in mean and variance smoothly over time, where the smooth changes are related to linguistic

descriptors.

We illustrate the model capabilities using synthetic datasets exhibiting different data prop-

erties and also to real work problems. We apply the PFS and fuzzy GARCH model on S&P 500

returns. We show that the proposed models are suitable for analysis of the returns distribution,

as they capture the properties of the underlying data distribution in all cases we consider. Par-

ticular relevance is given to the interpretation of these models and its use in the study of stylized

facts, such as seasonality and volatility clustering. The PFS is also applied to the US infla-

tion data. The system shows that slowly changing patterns in inflation are accurately captured

by the PFS model. Application of PFS in multi-horizon estimation of quarterly U.S. inflation,

which provides point estimates as well as the density estimates of inflation, is relevant for a

comprehensive analysis of inflation, particularly for policy making. The PFS model performs

well in one period ahead and 1 year ahead forecasts of inflation. The model is also successful

in capturing the deflationary pressure during the recent crisis.

7.2 Conclusions

Based on the results presented in this thesis, we can conclude that probabilistic fuzzy sys-

tems and fuzzy GARCH models can successfully approximate conditional probability density

functions, using a linguistic link between variables. As such, they deal explicitly with both

the fuzziness in the linguistic descriptions and the probabilistic uncertainty in the output den-

sity. Furthermore, probabilistic fuzzy systems can also be successfully applied to problems of

function approximation since they are functionally equivalent to well-known universal approx-

imators.

These flexible models are successfully applied to analyse financial or macroeconomic data

which may possess non-trivial statistical properties, such as fat tails, asymmetric distributions

and changing variation over time. A probabilistic fuzzy system can be used to forecast inflation

and to analyse stock market data, for multiple horizons in a single model.
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Density forecasts of inflation show periods with multimodality, hence standard distributional

assumptions, such as normality, may not hold for inflation. Inflation is a process with a varying

persistence over time, indicated by the different conditional distributions for each probabilistic

fuzzy system rule. Each rule is associated with a different combination of linguistic descriptions

of inflation and inflation expectation levels.

Probabilistic fuzzy systems and fuzzy GARCH models allow to analyse seasonality, volatil-

ity clustering and leverage effects for stock market data, using a careful construction of the

system. The probabilistic fuzzy systems considered in this work uses a simple dynamic struc-

ture and includes additional information through proxy variables on system’s dynamics. The

fuzzy GARCH model includes information on the system’s dynamic structure through a well

performing econometric model, which is combined with fuzzy linguistic descriptors.

7.3 Future Research

There are several pertinent aspects of the proposed models that were not considered in this

work. Due to the particular probabilistic and fuzzy nature of the rule-base systems presented,

the interpretation of the fuzzy rules (Dubois and Prade, 1996) in these models should be subject

to study. An essential aspect is the definition of conditional probability of fuzzy events in proba-

bilistic fuzzy system. Although there are definitions of conditional probabilities of fuzzy events

that satisfy the classical axioms of conditional probabilities as given by de Finetti (1949) and

Popper (1959), such as Baldwin et al. (1996); Coletti and Scozzafava (2006), it is necessary to

consider how these definitions can be interpreted in the context of probabilistic fuzzy systems.

This study will also serve to clarify possible mathematical similarities which may lead to mis-

understandings regarding probabilistic fuzzy systems. The relation between PFS and stochastic

models used in econometrics, such as Markov chain models, should also be subject to a detailed

study. Furthermore, the relation of the models to other representations of uncertainty such as

the Dempster-Shafer (Shafer, 1976; Smets and Kennes, 1994; Smets, 1998), which also have

been used in rule base form in Almeida and Kaymak (2010); Almeida et al. (2012b), should

be studied. Finally, methods to handle missing data, as in Almeida et al. (2010); Pereira et al.

(2011), should be developed for the proposed models.

In terms of the econometric approach, this thesis leaves more detailed model comparison

and model selection analyses for future research. In this thesis, model comparison is based

on the selected properties of the estimated conditional distribution. An appropriate theoretical

framework should be developed to address the models’ performance adequately, as in Vuong

(1989); Burnham and Anderson (2002). Another interesting econometric extension for the pro-

posed models is the estimation of multivariate conditional densities where the joint conditional
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distribution is non-standard with dependencies between output variables. Such a theoretical ex-

tension will be useful to analyse co-movements in a set of financial data, such as stock returns

of different companies, as discussed in Bauwens et al. (2006).

In this thesis, the proposed models are applied to finance and density estimation problems.

Other applications of fuzzy models to financial data have been considered in Milea et al. (2010,

2011, 2012), and these applications can be extended in future work. Some design aspects of the

proposed models for applications, such as selecting appropriate input variables or the number of

fuzzy rules are left for future research. Given the complex structure of financial data and several

macroeconomic and financial events that have a potential effect on financial data, developing a

method for feature selection from a large set of potential variables deserves special attention for

future work. Such a study may improve the prediction and forecasting power of the proposed

models substantially.
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Summary in English

Conditional density estimation is an important problem in many areas such as system identi-

fication and machine learning, where the predicted density is typically highly non-linear and

multimodal, or in empirical economics, macroeconomic analysis, quantitative finance and risk

management, where financial time-series typically possess non-trivial statistical properties, such

as fat tails, asymmetric distributions and changing variation over time. This thesis considers the

general problem of conditional density estimation,i.e. estimating and predicting the density of

the response variable as a function of covariates.

The semi-parametric models studied and developed in this thesis, namely the fuzzy GARCH

model and probabilistic fuzzy systems, combine fuzzy and probabilistic representations of un-

certainty, while making very few assumptions regarding the functional form of the estimated

density or regarding changes across the space of covariates. These models possess sufficient

generalization power to approximate a non-standard density along with the ability to describe

the underlying process and to incorporate possible non-linear relations between variables using

simple linguistic descriptors. Such systems can capture different properties of data, such as fat

tails, skewness and multimodality in one single model.

The proposed models are applied to time series data for macroeconomic analysis, quanti-

tative finance and risk management. The analysed time series data exhibit complex behavior

and non-trivial statistical properties. A probabilistic fuzzy system is applied to multi-horizon

forecasting of quarterly U.S. inflation. Point and density forecasts of inflation are of great

importance for macroeconomic policy makers and financial institutions. Based on these one

quarter and one year ahead forecasts, a central bank can adjust the monetary policy instruments

accurately and financial institutions can quantify inflationary risk. This application shows that

slowly changing patterns in inflation are accurately captured by probabilistic fuzzy systems.

Fuzzy GARCH models and probabilistic fuzzy systems are used for analysing the returns

distribution of different stocks, specially of the S&P 500 index. The main focus in analysing

the returns distribution is not to consider a single model and the parameters, e.g. to draw policy

conclusions, but rather to estimate the expected gains and losses from investing in an asset and to

use the latest information in the market for investment decisions. The proposed models perform
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well in estimating the expected gains and losses from investing in different stocks. The reason

for the proposed models to successfully capture such interesting values is two fold. First, the

flexible functional forms in these models allow to approximate a nonstandard returns density.

Second, possibly complex effects of current market information on future returns are explained

using simple linguistic descriptors coupled with stochastic models. Particular relevance is given

to the interpretation of these models in the study of stylized facts on the distribution of stock

returns, such as seasonality and volatility clustering.
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(Summary in Dutch)

Conditionele dichtheid schatten is een belangrijk probleem in veel gebieden, waaronder sys-

teem identificatie en machinaal leren, waar de voorspelde dichtheid vaak extreem non-lineair

en multimodaal is. Andere gebieden zijn de empirische economie, macro-economische analyse

en kwantitatief financieel risicomanagement, waar financile tijdreeksen typische niet-triviale

statistische eigenschappen vertonen zoals fat tails, asymmetrische verdelingen en veranderende

variantie in tijd. Dit proefschrift kijkt naar het algemene probleem van conditionele dichtheid

schatting, namelijk het schatten en voorspellen van de respons variabele als een functie van co

varianten.

De semi-parametrische modellen die wij bestuderen, namelijk het fuzzy GARCH model en

probabilistische vage systemen, zijn een samensmelting van vage en probabilistische represen-

taties van onzekerheid, met zeer weinig aannames met betrekking tot de functionele vorm van de

geschatte dichtheid en veranderingen in de ruimte van co varianten. Deze modellen beschikken

over voldoende mogelijkheid tot generalisatie voor het schatten van atypische dichtheid en kun-

nen ook het onderliggende proces beschrijven rekening houdend met de mogelijk niet-lineaire

verbanden tussen variabelen door gebruik te maken van eenvoudige lingustische beschrijvin-

gen. Zulke systemen kunnen verschillende eigenschappen van de data vangen, zoals fat tails,

scheefheid en multimodaliteit in een enkel model.

De voorgestelde modellen worden toegepast op tijdreeksen voor macro-economische anal-

yse, kwantitatief financieel risicomanagement. De geanalyseerde tijdreeksen vertonen complex

gedrag en niet-triviale statistische eigenschappen. Een probabilistisch vaag model is toegepast

voor het voorspellen van kwartaal inflatie in de VS over meerdere perioden. Punts- en dichtheid

inflatie voorspellingen zijn van groot belang voor macro-economische beleidsmakers en finan-

cile instellingen. Gebaseerd op kwartaal- en jaarvoorspellingen kan een centrale bank haar

monetair beleid aanpassen en kunnen financile instellingen inflatie risico kwantificeren. Deze

toepassing toont dat langzaam veranderende patronen in inflatie kunnen worden gevangen in

probabilistische vage systemen.
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Fuzzy GARCH modellen en probabilistische vage systemen worden gebruikt voor het anal-

yseren van verdelingen van returns bij verschillende aandelen en in het bijzonder de S&P 500 in-

dex. De nadruk in het analyseren van deze verdelingen ligt niet op het beoordelen van een enkel

model en bijbehorende parameters voor het opstellen van beleid, maar vooral op het schatten

van verwachten winsten en verliezen die kunnen optreden bij het investeren in de verschillende

aandelen. De voorgestelde modellen kunnen de verwachte winsten en verliezen goed schatten.

Twee redenen liggen hieraan ten grondslag. Ten eerste, de flexibele functionele formulieren

in deze modellen maken het mogelijk om niet-standaard dichtheid van returns te schatten. Ten

tweede, mogelijk complexe effecten van de huidige marktinformatie met betrekking tot toekom-

stige returns zijn verklaard door gebruik te maken van lingustische beschrijvingen in combinatie

met stochastische modellen. We achten de interpretatie van deze modellen bijzonder relevant

voor het bestuderen van gestileerde feiten in de verdeling van aandelen returns, zoals seizoen

gebondenheid en het clusteren van volatiliteit.
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l)CONDITIONAL DENSITY MODELS INTEGRATING FUZZY AND PROBABILISTIC
REPRESENTATIONS OF UNCERTAINTY

Conditional density estimation is an important problem in a variety of areas such as
system identification, machine learning, artificial intelligence, empirical economics, macro -
economic analysis, quantitative finance and risk management.

This work considers the general problem of conditional density estimation, i.e.,
estimating and predicting the density of a response variable as a function of covariates.
The semi-parametric models proposed and developed in this work combine fuzzy and
probabilistic representations of uncertainty, while making very few assumptions regarding
the functional form of the response variable's density or changes of the functional form
across the space of covariates. These models possess sufficient generalization power to
approximate a non-standard density and the ability to describe the underlying process
using simple linguistic descriptors despite the complexity and possible non-linearity of this
process. 

These novel models are applied to real world quantitative finance and risk manage -
ment problems by analyzing financial time-series data containing non-trivial statistical
proper  ties, such as fat tails, asymmetric distributions and changing variation over time.
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