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Abstract: 

Automatic motion planning and navigation is the primary task of an Automated Guided 

Vehicle (AGV) or mobile robot. All such navigation systems consist of a data collection 

system, a decision making system and a hardware control system. Artificial Intelligence 

based decision making systems have become increasingly more successful as they are 

capable of handling large complex calculations and have a good performance under 

unpredictable and imprecise environments.  

This research focuses on developing Fuzzy Logic and Neural Network based 

implementations for the navigation of an AGV by using heading angle and obstacle distances 

as inputs to generate the velocity and steering angle as output. The Gaussian, Triangular and 

Trapezoidal membership functions for the Fuzzy Inference System and the Feed forward 

back propagation were developed, modelled and simulated on MATLAB. The reserach 

presents an evaluation of the four different decision making systems and a study has been 

conducted to compare their performances.  

The hardware control for an AGV should be robust and precise. For practical implementation 

a prototype, that functions via DC servo motors and a gear systems, was constructed and 

installed on a commercial vehicle.  
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CHAPTER 1 

Introduction 
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Introduction 

One of the primary functions of Automatic Guided Vehicles (AGVs) or mobile robots is the 

automatic motion planning required for their autonomous navigation. Mobile robot 

navigation has increasingly become a field of interest over the last two decades. Initially they 

were used in industries for the transport of materials in manufacturing industries and have 

since been used in a range of industries from food and beverage, pharmaceutical to nuclear, 

automotive and printing.  

Mobile robots have become an integral part of space exploration and military missions and in 

other unreachable or hazardous environments. In such environments the mobile robots are 

expected to not only traverse a path to a desired location using prior information and by 

sensing its environment from a range of electronic sensors but the mobile robot is also 

expected to build a map of the environment about which there is no prior knowledge.  

Furthermore, mobile robots are crucial to the advancement in the area of flexible 

manufacturing systems because they are responsible for transporting materials to and from 

workstations and warehouses. A truly automated and integrated manufacturing system is 

made possible only by the presence of mobile robots that can navigate in the changing shop 

floor or industrial environment.  

Also it has been envisioned that commercial vehicles would be able to navigate 

autonomously. There have been many advances in this area with guided or human aided 

vehicles initial objective could soon be realized. However, there are still challenges that arise 

from the efficiency of the system employed, performance in actual traffic conditions and 

safety and reliability of the system.  



 Page 4 
 

The environment in which the AGV or mobile robot navigates is uncertain and is constantly 

changing. The configuration and orientation of the obstacles vary along with the landscape or 

topography of the surroundings. The objective of autonomous mobile robot navigation is to 

build a mobile platform which is capable of successfully navigating in these environments 

without any human assistance. The outcome of the techniques which navigation methods are 

based upon; vary in relation to the computational time and resources available to the robot, 

the dynamic and static memory available to it, the accuracy and efficiency of performance 

expected from the robot. They are generally classified by the characteristics of the 

environment in which the mobile robot is to autonomously navigate. The first in this 

classification is a simple environment which is said to be structured or known. This is 

followed by a semi-structured or partially known environment with final more difficult to 

deal with unstructured or unknown environment. 

There exist methods which suffer from a heavy reliance on sensory information gathered 

about the environment, pre-loaded maps, map building and updating. However, due to the 

inherent nature of the sensors themselves (such as noise) and uncertainties that are always 

present in a practical environment, these approaches have had restricted success. Fuzzy Logic 

based technologies and Neural Network applications for computing, categorized under soft 

computing techniques have come forward as suitable and effective due their inherent 

capability to handle large complex computations that deals with uncertain or imprecise data.  

The overall aim of the research that has been described here is to develop artificial 

intelligence based navigation mechanisms for an AGV. The techniques explored in this 

research are restricted to Fuzzy Inference System and Artificial Neural Networks.  
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CHAPTER 2 

Literature Review 
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Literature Review 

2.1 Review of Fuzzy Logic Techniques for Vehicle Navigation 

Liu et.al [1] has described a fuzzy logic controller for real-time navigation. It has been shown 

that path planning and trajectory following is integrated and co-ordinated into a single unit, 

thus becoming capable of executing manoeuvres such as docking and obstacle avoidance on-

line. Only little information from a low-cost sonar system is necessary which is easily 

available. The controller and the autonomous vehicle can also function in a dynamically 

changing environment due to a tight coupling between sensor data and controller actions. The 

driving mechanism is spontaneous in reacting to the sensor data during the navigation of the 

mobile robot in the environment. Path planning is not required to be separately performed.  

Simon et.al [2] has defined mobile robots as devices that can move in their environment with 

a certain degree of autonomy. Autonomous navigation has been said to be associated with 

available external sensors capturing information from the environment of the mobile robot 

through proximity measurements or visual images. The most common proximity sensors are 

ultrasonic and laser sensors. These proximity sensors are able to detect obstacles ad the 

measure the distance from the obstacles. Advanced autonomous robots are required to 

navigate in indoor environments such as industrial or civil buildings or offices. It is essential 

for them to have the ability to move through corridors, to follow paths and turn corners and 

enter open areas if rooms. The research goes on with the proposition of certain control 

algorithms that are based on artificial vision through cameras used as visual or optical 

sensors. These control algorithms are applied for navigation along a corridor and for 

following the path along a wall. In one of the algorithms proposed, using image processing, 

the robot is guided along the centre axis of the corridor by detection of the perspective lines 

in the corridor. In another algorithm, two lateral cameras are mounted on the robot for 
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stereoscopic vision. From the computed optical flow, apparent image velocities on both the 

cameras are compared for navigation of the autonomous robot. Optic flow computation and 

its temporal derivatives are used by a single camera to drive the robot along the corridor axis 

or to follow the path along a wall. For another method, a globally stable control algorithm for 

wall-following is developed. This is based on incremental encoders and a single sonar sensor. 

Here there is also the discussion of a fuzzy-based reactive controller that is applied to non-

holonomic mobile robots. Also, an ultrasonic sensor has been described to steer an 

autonomous robot along a concrete path where the edge of the wall and the floor is used as a 

continuous landmark. Finally, it has been proposed to use the information from an odometric 

sensor for corridor navigation of a mobile robot. 

Kumar, et.al [3] have described the mobile robot as a micro-controller controlled device that 

is a small four-wheeled mobile platform. This mobile robot is capable of sensing its 

environment using a range of electronic sensors. Using the information gathered by the 

electronic sensors the mechanical actuators of the mobile robot help to move it around. A 

program which is present in the micro-controller determines the behaviour of the mobile 

robot. The autonomous robot in this research has been designed and constructed so as to 

perform a range of navigation algorithms.  The design of the mobile robot consisted of two 

main sections which are—electronic analysis of the information captured by the various robot 

sensors and the programming techniques or navigation algorithms that are used to interface 

the sensors with the microcontroller that is present on the mobile platform. The research uses 

IR proximity sensors for obstacle detection and IR sensors also for path guidance of the 

autonomous robot. The robot is to follow a predetermined path which has varying turns. The 

fuzzy logic reasoning present in the microcontroller determines the speed of the mobile robot. 

The results obtained in the research have also been experimentally proven and MATLAB was 

used to plot the surface viewer graph. 
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Castillo et.al [4] have used Fuzzy Logic for trajectory tracking and control of an autonomous 

unicycle robot. A back stepping approach is used in Fuzzy Logic Controllers to obtain the 

asymptotic stabilization of the robot‘s position and orientation around the desired trajectory. 

This also takes into account the kinematics and dynamics of the vehicle. The Mamdani Fuzzy 

Inference system with nice IF-THEN rules has been used to construct the controller.  Input 

torques and velocities have been taken as linguistic variables and centroid of area method has 

been used as the method for defuzzification of the Fuzzy sets. The performance of the Fuzzy 

Logic Controller has also been illustrated by conducting a simulation study.  

The environment of a mobile robot can contain modelled and un modelled obstacles that are 

commonly present in crowded and unpredictable changing environments. Fatmi et.al [5] 

addresses the challenges of autonomously navigating a mobile robot in such environments. 

The research says that a successful method of structuring the navigation task to deal with 

these challenges is to use behaviour based navigation approaches. Thus, issues of individual 

behavioural design and the action coordinates of the behaviours have been dealt with using 

Fuzzy Logic. A layered approach has been employed in the method described. Here a 

supervision layer based on the context is used to decide which behaviour must be processed 

or activated as opposed to processing all behaviours and then blending the ones found to be 

appropriate. This achieves reduction of time and the saving of computational resources.  

There can be environments containing both static and moving obstacles about which the 

mobile robot has no prior information available. The research by Malhotra et.al [6] has 

discussed the design of a mobile robot for such an environment. A design of a Fuzzy brain for 

the autonomous robot, its integration with both the control system and sensor system has 

been used for detection of the obstacles in the workspace of the mobile robot. The artificial 
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potential field method has been made as the strategy for obstacle avoidance. The strategy 

developed has been implemented by a Fuzzy Logic based system so as to reduce the 

computational effort required for the implementation of the artificial potential field method.  

An intelligent obstacle avoidance algorithm was also proposed to integrate the fuzzy system 

with that main control system.  

Singh et.al [7] have employed the following approach for the control of the mobile robot. 

Desirable traits have been expressed as quantitative preferences that have been defined over 

the set of all possible control actions. This has been done from the perspective of the goal 

with which the particular behaviour is designed to be associated with. For instance, the 

behaviour used to avoid obstacles can map configurations of sonar readings obtained from 

sensors. The mapped configurations correspond to the presence of obstacles to the left of the 

robot into a function that prefers actions that steer the robot to the right. So these 

configurations can be mapped into a function that gives a preference to actions which steer 

the mobile robot to the right. Results of the control are used to calculate the desirability of the 

control. The research documents the calculation of the desirability of a control which uses 

only one level of estimation. It is also proposed that an extension can be made which includes 

a sequence of controls so that present action can be taken by looking into more future 

conditions which might be encountered. This resembles game tree game tree techniques that 

are used in Artificial Intelligence based computer programs. The second extension which is 

suggested is to take the inputs from the sensors as Fuzzy variables and model them to account 

for the more realistic noisy and time dependant nature of most sensors.  

Ramos et.al [8] have discussed an algorithm for Fuzzy decision making that coordinates the 

behaviour of the mobile robot. This algorithm belongs to the arbitration class of behaviour 

control mechanisms. In this class only one behaviour runs at a time. But, it is also possible to 
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use a hierarchical decision making mechanism for hierarchical behaviours. This method does 

not have interference between hierarchical levels. This Fuzzy decision method is capable of 

representing a particular model of the world where in the robot can evolve. To achieve this an 

algorithm is to be developed which consisting of a defining set of behaviours and a set of 

world states in addition to a cost function for the behaviours including a set of goals and 

constraints for the same. A cost function has been computed for each behaviour and actual 

world state pair and the cost of each pair is evaluated from the overall goals. A Fuzzy 

operator is used to aggregate the goals and constraints, and the behaviour with the maximum 

resulting value is taken as the optimum choice. This algorithm was also successfully tested 

for a robot playing the role of a goalkeeper in a soccer game using practical simulations. 

Bidding mechanisms can be used by a group of agents that are responsible for guiding a robot 

in an unfamiliar environment towards a given target. This approach to land marking has been 

used by Busquets et.al [9] and is based on Fuzzy Logic. The research starts off with the 

problem of outdoor navigation stating that it is still an open and difficult challenge in the field 

of mobile robotics. It has been said that many of the present approaches have made the 

assumption that an appropriately detailed and accurate metric map of the environment can be 

got by using sensors that are located on the mobile platform. However, it has been pointed 

out that many of these sensing methods rely on odometry sensors. These odometry sensors 

can be unreliable due to their imprecise nature which results in erroneous results. This 

problem has been attempted to be circumvented by using the collected visual information of 

the environment. This requires the robot to be able to recognise the important visual objects 

and to use them for mapping and navigation tasks. This theory incorporating agents imparts 

flexibility to the solution in problems dealing with dynamic and imprecise environment 

information. A natural way of providing the agent with the required intelligence can be 

attained by using computational intelligence along with agents‘ theory.  
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Figueiredo, et.al [10] describe a method to use intelligent agents for the control of a robot 

which has been simulated by a Khepera simulator. The intelligence of these agents is based 

on a Fuzzy Logic system. These systems have shown by repeated application to the area of 

mobile robotics that they are an effective procedure for control problems.  The behaviour that 

is expected by each agent at each moment is defined with the help of a set of fuzzy rules. This 

is based on the position of the robot, its sensor values and heading angle. A path memory 

system was also developed so that the robot is not stuck by particular obstacles. This allows 

the robot to look for other alternatives on getting trapped. For a control system that must be 

capable of avoiding dead end situations, this method has again resulted in a successful 

combination of computational intelligence and the agents‘ theory. 

Wei et.al [11] have stated in the research that by creating a trading off with low behaviour 

control an efficient strategy can be formulated. High level global planning for navigation of 

the robot can be obtained as most applications involve some prior knowledge of the 

environment. The global planner thus would only require to produce few subgoal positions as 

opposed to the exact geometric paths. It is relatively simple to remove or add these subgoals 

from or into the planner. This then reduces the computational time spent on global planning 

and is also quite flexible as it can re plan in dynamic environments. Simulations were run to 

check if the strategy discussed could be applied to the particular problem of navigation of 

mobile robots in complex or dynamic environments. These simulations were successful in 

showing that the strategy was applicable.  

Wei Li [12] described a strategy for robot navigation that uses Fuzzy Logic and is applicable 

to uncertain environments. It is developed by a process of multisensory integration. Conflicts 

and competitions arise during multiple reactive behaviors. The study conducted focused on 

the efficient coordination of these differences using fuzzy sets and a rule base. To execute the 
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above an array of ultrasonic sensors coupled with a vision system were placed on the mobile 

robot platform. Distance between the robot and would be obstacles are provided by the 

ultrasonic sensors which is used in designing the behavior control of the mobile robot. A 

vision system is incorporated to identify goals which determines the right direction for 

motion of the mobile robot and to avoid getting trapped in a local region. On simulation the 

strategy discussed shows that it can successfully be applied for efficient navigation of the 

mobile robot in both complex as well as uncertain environments by the application of various 

behaviors. These behaviors range from slowing down at narrow and curved roads, 

maneuvering around obstacles, moving towards the destination and escaping U-shaped 

objects.  

Tso et.al [13] have in their research have pointed out that the performance of automatic 

guided vehicles is measured by the errors in their position and orientation. It so happens at 

times the orientation errors are not measurable. And the output feedback employed is 

obtained using position errors.  A controller that uses out-put feedback is designed for an 

AGV with differential-wheel-drive. Opto-sensors are present in a simple linear array of 64x1. 

At first a linear controller is designed whose performance is further improved by the 

implementation of Fuzzy Logic. Accordingly, two fuzzy-logic controllers are formed. The 

Hurwitz criterion, the Popov criterion, and the phase-plane method are used to demonstrate 

the stability of the system which is verified by experiments conducted using a laboratory 

AGV. 
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2.2 Review of Neural Network Techniques for Vehicle Navigation 

Birsel Ayrulu and Billur Barshan [21] have used neural networks and investigated the 

processing of sonar signals for the robustly differentiating commonly encountered features 

that are found in indoor robot environments. This differentiation of features is significant for 

a range of applications for intelligent systems. Here processing of various representations of 

amplitude and times of flight measurement patterns are done. These patterns are in turn 

obtained from a real sonar system. In this study, modular and non-modular neural networks 

have been trained. The training method used is back-propagation with the use of generating-

shrinking algorithms for to develop a learning process for identification of relations between 

parameters for the target primitives. The networks which are trained with this mentioned 

generating-shrinking algorithm have shown better generalization and interpolation capability 

as well as a faster convergence rate. It is found that neural networks can differentiate more 

targets using only a single sensor node. Also, it results in a higher correct differentiation 

percentage than what was achieved by using methods that existed previously that depended 

on multiple sensor nodes. A sensor node has been defined as a pair of transducers with fixed 

separation, that can rotate and scan the target to collect data. It has been said that the 

performance of the other methods would have been worse if the number of sensing nodes 

were reduced. The neural network approach is successful and it demonstrates that sonar 

signals can give information sufficient for differentiating all types of targets. The examples 

shown here were system control based on acoustic signal detection and identification, 

obstacle avoidance, map-building, target-tracking. navigation etc for autonomous mobile 

robots as well as other intelligent systems. 

Franco Scarselli and Ah Chung Tsoi [22] have researched into recent works on 

approximation methods by feedforward neural networks. Their work has focused on mainly 

on the problems seen in computational aspects of the methods. In particular, the work 
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determines the chance of developing a feed forward neural network that can deliver a 

predetermined degree of accuracy of approximation. Also, the number of hidden layers which 

will be required for the feed forward neural network to attain the predetermined accuracy of 

approximation is also looked into. A unifying framework was proposed that helps to 

understand the existing approaches for investigating the problem of universal approximation 

by using feedforward neural networks. Subsequently, two algorithms for training are 

proposed. These training algorithms can determine (to any required level of accuracy) the 

corresponding weights of the given inputs in the feed forward neural network where the 

activation function used is the sigmoid function. The training algorithms are successful in 

escaping from local minima; a problem which commonly plagues several neural network 

training algorithms. 

Soylu et.al [23] in their research have considered a special type of Automatic Guided Vehicle 

or AGV routing problem. For a single, free ranging AGV the problem identified is to find the 

shortest tour through which it can carry out multiple number of pick and deliver or P&D 

tasks. This specific objective is an instance of the asymmetric travelling salesman problem 

that is understood to be NO-complete. Based on Kohonen's self-organizing maps an Artificial 

Neural Network (ANN) algorithm has been introduced. For different pick and deliver tasks 

and for various parameter settings, the performance of the introduced algorithm is tested. 

These results are compared with those obtained from nearest neighbor rule and optimal 

solution rule. This research has positive results for sound quality and computation time 

involved in the artificial neural network algorithm. 

Orille et.al [24] have in their research discussed the use of a multi-layer neural network that 

develops on an analogy with the traditional switching look up table method for induction 

motor Direct Torque Control (DTC) that obtains optimal switching patterns. The 
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MATLAB/SIMULINK program has been used extensively for the developing the system. 

The full simulation of the system ie the Direct Torque Control, the induction motor including 

the the inverter switch and firing circuit, as well as the control unit; have all been simulated 

using MATLAB. The appropriate neural network was chosen that represents the switching 

look-up table, an effective neural network configuration is designed and also tested upon. 

Finally, the neural network representing the switching look-up table is tested as part of the 

Direct Torque Control (DTC) so as to find out the stability and reliability of the system thus 

developed. The simulation result of the DTC that is obtained by the switching look-up table is 

used as a reference to evaluate the performance of the neural network in its simulation for the 

DTC. 

Yang and Meng [25] have looked at the mobile robot navigation problem of real time and 

collision free motion planning from the approach of biologically inspired neural networks. 

This can also be applied to manipulators on a non-stationary environment. Every neuron that 

is present in the topologically organized neural network is provided with only local 

connections. The neural dynamics of these local connections are characterized by a shunting 

equation. Therefore now, the size of the neural network determines the computational 

complexity in a linear relationship. There isn't any prior knowledge of the dynamic and 

changing environment, no explicit search over the free workspace and the collision paths, and 

no learning procedures are involved. Thus the real-time motion of the mobile robot or the 

manipulator is planned through the dynamic activity landscape of the neural network and this 

method is computationally efficient. The qualitative analysis conducted and the Lyapunov 

stability theory confirms the global stability of the neural network. Furthermore, the 

simulation studies conducted give a fair idea of the effectiveness and efficiency of the 

approach that has been proposed. 

Barbera et.al [26] have focused on the objective of developing a mobile robot that can 

navigate in an unknown and unstructured environment while performing delivery tasks. The 

mobile robot is supplied with unreliable sonar as well as infra-red sensors. A method for 

sensor fusion is also developed so as to cope with the unreliable nature of the sensors. The 
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lack of a prior model of the environment is the primary difficulty in applying classical fusion 

methods. The robot first has to carry out process for map building. It has been shown that the 

simple existing methods of sensor fusion do not address each of the specific requirements of 

the particular robot tasks. Thus it has been proposed to use neural networks to achieve the 

function of sensor fusion. This approach delivers a more reliable data set. Also, the training 

procedure of the neural network has been automated. The sensor fusion method thus 

developed has been used to validate the map building process. 

Chronis and Skubic [27] have in their research worked on the difficulties in programming 

robots. A programming by demonstration or PbD paradigm has been discussed. This 

paradigm extracts robot behavior from the control actions demonstrated. The work is in an 

attempt to develop robot programming methods that allow the definition of the task use by 

domain experts for robots as semi-autonomous tools. Due to this, there was an intention of 

injecting into the acquired behavior the biases of the human trainer. For these reasons, the 

programming by demonstration paradigm was chosen as opposed to preferring an 

autonomous learning method. Thus the study tests the feasibility of training a neural network 

from demonstrated navigation actions. The results from using three different training data 

collection methods were compared. The three methods were a mouse driven software 

joystick, a novel PDA interface and a programmed control. A neural network configuration 

was developed that can be used in training a mobile robot for the purpose of corridor 

following behavior. A consistent mapping between inputs and outputs of the network from 

the training data set is necessary for good level of convergence of the feed forward MLP. For 

robust control to be provided in a range of conditions the training data must also include the 

complete range of possible sensor variations. Experimental results how that the most robust 

behaviors are produced by the PDA generated training sets. 
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Davis [28] developed MAMMOTH which is a Modular Architecture Multi-Modal Theory. It 

is a neural network paradigm. This paradigm is an architectural blueprint as well as a training 

system that combines the internal representations of multiple neural networks where each 

neural metowrk is trained so that it can recognize different kinds of features. Functional 

decomposition of a task is achieved by the modules present in a MAMMOTH. Functional 

decomposition means that for a given input, every module completes a portion of the overall 

task and these results are combined by the higher levels of the MAMMOTH network, thus 

giving the solution. The MAMMOTH networks have been applied to several tasks that 

include vision for alignment to be conducted by an inspection robot, on-road navigation as 

well as cross-country navigation. Finally the advantage of using MAMMOTH has been seen 

as its ability for learning low level features separately as well as in parallel which speeds up 

the overall training process for the neural network without any trade off with the performance 

of the neural network.   

Pomerleau [29] describes a learning system--ALVINN (Autonomous Land Vehicle In a 

Neural Network) This is applicable to the problem of vision based autonomous driving or 

navigation. The challenges in this domain are the constantly changing environment and the 

simultaneous real time processing of the information. Thus the flexibility and efficiency of 

the neural network is of significance. ALVINN allows driving in a range of circumstances 

that include single lane paved and unpaved roads, lined and unlined multilane roads. It can 

also deal with obstacle-ridden on-and off road environments. 

Glasius et.al [30] have shown that effective path planning and obstacle avoidance can be 

achieved by a model of a topologically organized neural network. This is of Hopfield type 

and has nonlinear analog neurons. It is a deterministic system which is capable of 

instantaneously giving a suitable path that starts from an arbitrary starting position and can 
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direct to any target position. It in the process also avoids static as well as moving obstacles 

that can have any arbitrary shape. The model makes the assumption that an external input 

given, activates a target neuron that corresponds to the target position and specifies all the 

obstacles that can be found in the topologically ordered neural map. The path comes from the 

neural network dynamics and the neural activity gradient which is in the topologically 

ordered neural map. Computer simulations and analytical results together give a fair idea of 

the performance of the network. 
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CHAPTER 3 

Analysis of Fuzzy & Neural Technique 
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Analysis of Fuzzy & Neural Technique 

3.1 Analysis of Fuzzy Logic Technique 

3.1.1 Fuzzy Logic: 

Unlike Crisp logic based on binary sets which is essentially a two-valued logic, ―fuzzy 

logic‖ is a form of multi-valued logic and is based on fuzzy set theory. To deal with fluid or 

approximate reasoning , fuzzy logic variables can take a truth value that ranges in degree 

between 0 and 1. Fuzzy logic is a super set of conventional logic that has been extended to 

handle the concept of partial truth: the truth values between completely true and completely 

false.
 
 

3.1.2 Fuzzy Set & Membership Function 

A fuzzy set is a set without a crisp, clearly defined boundary. It can contain elements with 

only a partial degree of membership.   

A membership function (MF) is a mapping from an input space(often referred to as the 

universe of discourse) to a membership value between 0 and 1.. In fuzzy logic, it represents 

the degree of truth as an extension of valuation.         

A classical set can be expressed as  

A = {x | x < 13} 

If X is the universe of discourse and its elements are denoted by x, then a fuzzy set A in X is 

defined as a set of ordered pairs.  

A = {x, µA(x) | x ∈ X}  

µA(x) is the membership function of x in A.  
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3.1.3 Fuzzy If-Then Rules: 

Fuzzy if-then rule statements are conditional statements that comprise fuzzy logic. A single 

fuzzy if-then rule is of the form  

if x is A then y is B 

Where A and B are linguistic values defined by fuzzy sets on the ranges (universes of 

discourse) X and Y, respectively. The if-part of the rule "x is A" is called the antecedent or 

premise, while the then-part of the rule "y is B" is called the consequent or conclusion.  

3.1.4 Fuzzy inference System 

 

Figure 1 Fuzzy Inference System 
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Steps in a fuzzy inference System:  

Step 1: Fuzzification 

The first step in a fuzzy inference system is the fuzzification of crisp inputs. It transforms the 

exact logic problem into a fuzzy logic problem. Unlike crisp logic, fuzzy logic deals with 

linguistic variables instead of numerical variables. The process of converting numerical 

variables of the problem into grades of membership for linguistic terms of fuzzy sets is called 

fuzzification. Thus it is a mapping from a certain input space to fuzzy sets in certain input 

universes of discourse.   

Step 2: Rule Evaluation 

The next step in the fuzzy inference system is to apply the fuzzified inputs to the antecedents 

of the fuzzy rules. In case a given fuzzy rule has more than one antecedent, we make use of 

the fuzzy operator AND or OR in order to obtain a single truth value that would represents 

the result of the antecedent evaluation.  

To evaluate the conjunction(intersection) & disjunction(union) of the rule antecedents, the 

fuzzy operators AND & OR are used respectively. 

AND: μA∩B(x) = min [μA(x), μB(x)] 

OR: μA∪B(x) = max [μA(x),μB(x)] 

Then the result of the evaluation would be applied to the consequent membership function. 

There are two main methods of doing so: 

1. Clipping: 

This involves cutting (alpha-cut) the consequent membership function at the level of result of 

the antecedent evaluation. As the top of the membership function is sliced, some information 



 Page 23 
 

loss is inevitable in case of clipping. Still it is often preferred as it doesn‘t involve too 

complex mathematics. 

2. Scaling: 

In this case, the membership functions of the rule consequent are adjusted by multiplying all 

its membership degrees by the truth value of the rule antecedent. There is not much loss of 

information. 

Step 3: Aggregation of the rule outputs 

This is the process of uniting the outputs of all rules that are invoked for a particular set of 

inputs into a single fuzzy set. The clipped or scaled consequent membership functions serve 

as the input to the aggregation process and the output of the process is one fuzzy set for each 

output variable. 

Step 4: Defuzzification 

It is the final step in the fuzzy inference process. It is the reverse process of Fuzzification. 

The Fuzzy Logic Controller (FLC) produces required output in a fuzzy set; however the final 

output has to be a crisp value. Defuzzification involves taking the aggregate output fuzzy set 

and producing a single crisp value corresponding to each of the output variables. Of various 

defuzzification methods, the centroid defuzzification method is most commonly used. 

Centroid defuzzification method involves finding a point that would represent the Centre of 

gravity of the aggregate fuzzy set. Mathematically this point can be expressed as: 

    
∫          
 

 

∫         
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3.2 Analysis of Neural Network Technique 

3.2.1 Introduction to Neural Networks 

An Artificial Neural Network (ANN) is a paradigm for information processing which has 

been developed from an analogy with biological nervous system and is similar in manner to 

how the brain processes information. It bears a strong resemblance to the axons and dendrites 

which are present in the nervous system and is an abstract simulation of a real nervous system 

that contains a collection of neuron units communicating with each other via axon 

connections.  The central idea for this paradigm is the novel structure developed for the 

information processing system. It is the result of a large number of highly interconnected 

processing elements (neurons) which work together to solve a given problem.  

An Artificial Neural Network works by example which is achieved by the activity of training 

the network. This feature is similar to how humans learn. An Artificial Neural Network is 

generally configured with the help of a learning process specifically for a particular 

application. These applications range from image processing, optimization, decision making , 

neural networks can be used for a variety of data mining tasks, among which are 

classification, descriptive modeling, clustering, function approximation, time series 

prediction etc. The complexities of biological neural networks can be better understood with 

the help of artificial neural networks. Some artificial intelligence problems are solved by 

neural networks without necessarily creating a model of a real biological system. Biological 

systems learn by adjusting the synaptic connections existing between neurons. Artificial 

Neural Networks also incorporate this feature.  

The human brain consists of neurons which are highly interconnected through dendrites and 

axons. Information is transmitted between the neurons through activation signals that pass 

from one neuron to another through the axons and dendrites that connect them. This is how 
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intelligence is achieved in human brain. The artificial neural network can be understood as an 

algorithmic version of the biological neural network explained above. They too consist of 

interconnected neurons which communicate through activation signals. Consequently, the 

Artificial Neural Network can approximate a function of multiple inputs and outputs that 

apply to the specific application being considered. The biological neural network, the 

Artificial Neural Network and their analogies have been explained below.   

The brain is responsible for the simultaneous processing of a multitude of information 

(ranging from colors to shapes and sounds) in highly variable environments. The brain is able 

to accomplish such tasks by means of multiple parallel processing elements. Artificial Neural 

Networks incorporate the same idea of parallel processing to the computer in order to 

simulate and thereby take advantage of the brain‘s computing strategies.  

 The neuron essentially consists of three parts, which are: 

1. The neuron cell body or cyton, 

2. Dendrites which are branching extensions from the cyton for receiving input, and 

3. Axon which carries the neuron's output to the dendrites of other neurons. 

A neuron gets input signal from other neurons through a series of dendrites. Synapses are the 

junction between neurons which are responsible the transfer of signals from one neuron to 

another. They are of several types and determine among other properties, the speed and 

information in a signal. It has been estimated that the human nervous system comprises of 

over 100 billion neurons and synapses.  

The neuron sends out spikes of electrical signals through a long, thin stand known as the axon 

which splits into a number of branches. The synapses are located at the ends of each branch. 

The synapses convert this into electrical effects. These electric effects either inhibit or excite 

activity in the neurons to which the branch of the axon is connected. When the next neuron in 
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the information pathway receives excitatory input that is large enough in relation to its 

inhibitory input, it sends a spike of electrical activity down its axon. The network learns by 

adjusting the effectiveness of the synapses so that the influence of the neurons on each other 

changes. However, the interaction between neurons is still not fully understood. This 

interaction is again different for different neurons. 

 

Figure 2 Biological Neural Network 

The process by which the action potentials (which depend on the neuron‘s potential) travel 

down the axon is often modeled as a propagation rule represented by a net value u. 

All the incoming signals at the synapses of the neuron are collected. The excitatory and 

inhibitory influences acting on the neuron are thus summed. This output is a nonlinear 

function of the inputs and the strength of the connection in the synapses can be modified by 

learning. When the excitatory influences become dominant, then the neuron fires and sends 

the message to other neurons via the outgoing synapses. When the combined signal strength 

http://www.gc.ssr.upm.es/inves/neural/ann1/concepts/basis.htm#net
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exceeds a certain threshold it causes firing. In the general case, an activation function f(x) 

gives the value of the neuron. 

The brain learns by modifying the strength and nature of the synapses. Artificial neural 

networks attempt to model algorithmically the very same behavior.  The biological learning is 

simulated mathematically in artificial neural networks by the positive or negative 

reinforcement of connections and weights.  

3.2.2 Analogy between human and artificial neural nets 

An artificial neuron has a processing element which has several input connections. These 

input connections each have an associated weight and a transfer function to calculate the 

output for the given output connection. A network of these artificial neurons forms an 

artificial neural network. A set of given inputs and corresponding outputs, called a training 

set or training pattern, is fed to the network. Adjusting of the weights of the connections in 

the net results in training of the network. Adding an extra connection to each neuron with an 

input value of -1in addition to a weight representing the threshold, adjusts the threshold 

values and weights. If the sum in now greater than zero then the neuron fires. A summary of 

the analogy between a human and artificial neural network has been tabulated below. 

Table 1 Analogy between Biological & Artificial Neural Network 

Human Artificial 

Neuron Processing Element 

Dendrites Combining Function 

Cell Body Transfer Function 

Axons Element Output 

Synapses Weight 

          

http://www.gc.ssr.upm.es/inves/neural/ann1/concepts/basis.htm#act
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Real neurons differ in many respects in comparison to the artificial neurons developed from 

them. They have elaborate dendritic mechanisms and do not only function on the weighted 

sum of the inputs. They also do not stay on until the inputs change. Information is also 

encoded using complex pulse arrangements. Brains, containing neurons in the order of     , 

are considerably more complex than artificial neural networks which are restricted to a few 

thousand nodes. Thus there is a difference in the degree of complexity and the resulting 

computational power. 

3.2.3 The Mathematical Model 

In the neuron of an Artificial Neural Network the weight is a number which represents a 

synapse from a biological neural network. When the weight is negative it denotes an 

inhibitory connection, where as a positive weight denotes an excitatory connection. All inputs 

are summed together and are also modified by their corresponding weights. This process is 

referred to as a linear combination. The amplitude of the output is controlled by an activation 

function.  

The figure describes the mathematical process. 

Consider an artificial neuron having N input, namely u1, u2, ...,uN.  

 

Figure 3 Artificial Neuron 
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Each of the line connecting these inputs to the neuron is assigned some weight, denoted by 

w1, w2,…,wN respectively. For the particular graded potential the activation is determined by 

the formula: wj uj . This model describes the interval activity of the neuron as 

  ∑(    )

 

   

 

The weighted sum value ‗a‘ is the net input to the unit & the output of the activation function 

on the value of a, is the output of the neuron. 

x = f (a ) 

The unit's activation function is the function f. In the simplest case, the unit's output is its net 

input and f is an identity function. 

3.2.4 Types of Neural Networks  

3.2.4.1 Feed forward networks:  

Feed-forward networks can have signals travelling in one direction only; i.e. from input to 

output. These are characterized by absence of feedback loops in the network. So the output of 

any layer does not affect the same layer. Feed-forward ANNs are straight forward networks 

that associate inputs directly with outputs. They are extensively used in pattern recognition. 

This type of organization is also referred to as bottom-up.  
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Figure 4 Feed Forward Neural Network 

 

3.2.4.2 Feedback networks: 

Feedback networks allow signals to move in both directions. This is made possible by 

introduction of feedback loops in the network. These are very powerful & dynamic. Their 

state changes continuously until they attain equilibrium & remain at the point until the input 

changes and some new equilibrium is found. These are also called interactive or recurrent 

networks. 

3.2.5 Back Propagation 

Back propagation is a supervised learning method of training artificial neural networks and 

implements the Delta rule. It is most useful for feed-forward networks.  
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Back propagation technique:  

1. A training sample is presented to the neural network and the network‘s output is obtained.  

2. The network's output is compared to the desired output as supplied by the training sample 

and the error at each output neuron is calculated.  

3. For each neuron, the local error is calculated which shows how much lower or higher the 

output must be adjusted to match the desired output.  

4. The weight of each neuron is adjusted to lower the local error.  

5. Blames are assigned for the local error to neurons at the previous level, giving greater 

responsibility to neurons connected by stronger weights.  

6. Steps 3 to 5 are repeated on the neurons at the previous level, using each one's blame as its 

error. 
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CHAPTER 4 

System Modeling using Fuzzy & Neural 

Technique 
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System Modeling using Fuzzy & Neural Technique 

4.1 System Modeling using Fuzzy Inference System 

The vehicle used here is a commercial electric vehicle ‗Reva i‘. In order to acquire 

information about dynamic environment, the vehicle is equipped with 3 arrays of ultrasonic 

sensors for measuring the distances to nearest obstacles around it. one on the front & two on 

the two sides of the vehicle. Each of these sensor measures distance between the vehicle & 

obstacle in real world & provide the front obstacle distance (d_front), left obstacle distance 

(d_left),  right obstacle distance (d_right). In order to locate the target, the vehicle should 

keep track of its position & the target location. This is achieved by using encoders, GPS 

navigator & heading compass. 

The presence of obstacles in its path acts as repulsive forces for avoiding the obstacles, and 

the bearing of the target acts as an attractive force between vehicle and target. 

 From the sensory data we build a simple model for representation of distances between the 

vehicle & obstacles as follows: 

Let d1i, d2i & d3i be the distances measured by the left, front & right sensor array respectively. 

(i = 1,2,3,4,5,...) 

d_left = Min{ d1i } 

d_front = Min{ d2i } 

d_right = Min{ d3i } 

The minimum values d_left, d_front, d_right now express the distance between the vehicle 

and the obstacles to the left, front & right respectively. The input to the fuzzy logic scheme 

are the distances between the vehicle & obstacles to the left, front & right denoted by d_left, 

d_front, d_right respectively & the heading angle ang_head which denotes the destination 
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position with respect to the vehicle. The output of the fuzzy controller is the vehicle speed & 

the vehicle steering angle denoted by v & ang_steer respectively. 

In this research three types of membership functions are considered for each of the input and 

output variables: Triangular, Trapezoidal & Gaussian.   

The linguistic variables such as ―far‖, ―medium‖ and ―near‖ are taken for the three 

membership functions of d_left, d_front, d_right. To fuzzify vehicle speed v, the linguistic 

variables ―fast‖, ―med‖ & ―slow‖ would be used for its three membership function. For the 

heading angle ang_head & vehicle steering angle ang_steer five membership functions are 

considered with the linguistic variables ―Big Left (BL)‖, ―Small Left (SL)‖, ―Straight (S)‖, 

―Small Right(SR)‖ & ―Big Right (BR)‖ . 

A set of fuzzy logic rules is used to describe the reactive behaviors. According to the 

information acquired by the sensors, some of the rules are fired. The outputs of those rules 

are weighted by fuzzy reasoning and then the velocity and steering angle are calculated. The 

fuzzy logic rules that we have chosen are as follows: 

Table 2 Fuzzy Rule Matrix 

Left_obs Front_obs Right_obs Head_ang V_Smededall 

Righteed 

Steer_ang 

Far Far Far BR Med BR 

Far Far Far SR Fast SR 

Far Far Far S Fast S 

Far Far Far SL Fast SL 

Far Far Far BL Med BL 

Far Far Med BR Med SR 

Far Far Med SR Med SR 

Far Far Med S Fast S 

Far Far Med SL Fast SL 

Far Far Med BL Med BL 
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Far Far Near BR Slow S 

Far Far Near SR Slow S 

Far Far Near S Med S 

Far Far Near SL Med SL 

Far Far Near BL Med BL 

Far Med Far BR Slow BR 

Far Med Far SR Med SR 

Far Med Far S Med S 

Far Med Far SL Fast SL 

Far Med Far BL Slow BL 

Far Med Med BR Slow SR 

Far Med Med SR Slow SR 

Far Med Med S Slow S 

Far Med Med SL Slow SL 

Far Med Med BL Slow BL 

Far Med Near BR Slow BR 

Far Med Near SR Med SR 

Far Med Near S Slow S 

Far Med Near SL Med SL 

Far Med Near BL BL S 

Far Near Far BR Slow BR 

Far Near Far SR Slow SR 

Far Near Far S Slow SR 

Far Near Far SL Slow SL 

Far Near Far BL Slow BL 

Far Near Med BR Slow BR 

Far Near Med SR Slow SR 

Far Near Med S Slow BL 

Far Near Med SL Med SL 

Far Near Med BL Slow BL 

Far Near Near BR Slow BL 

Far Near Near SR Slow BL 

Far Near Near S Slow BL 

Far Near Near SL Slow SL 

Far Near Near BL Slow BL 
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Med Far Far BR Slow BR 

Med Far Far SR Fast SR 

Med Far Far S Fast S 

Med Far Far SL Slow SL 

Med Far Far BL Slow BL 

Med Far Med BR Slow BR 

Med Far Med SR Fast SR 

Med Far Med S Fast S 

Med Far Med SL Fast SL 

Med Far Med BL Slow BL 

Med Far Near BR Slow BL 

Med Far Near SR Slow BL 

Med Far Near S Fast S 

Med Far Near SL Slow SL 

Med Far Near BL Slow BL 

Med Med Far BR Slow BR 

Med Med Far SR Med SR 

Med Med Far S Slow S 

Med Med Far SL Med SL 

Med Med Far BL Slow BL 

Med Med Med BR Slow BR 

Med Med Med SR Med SR 

Med Med Med S Med S 

Med Med Med SL Med SL 

Med Med Med BL Slow BL 

Med Med Near BR Slow BL 

Med Med Near SR Med SR 

Med Med Near S Med S 

Med Med Near SL Med SL 

Med Med Near BL Slow BL 

Med Near Far BR Slow BR 

Med Near Far SR Slow SR 

Med Near Far S Slow BR 

Med Near Far SL Slow SL 

Med Near Far BL Slow BL 
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Med Near Med BR Slow BR 

Med Near Med SR Slow SR 

Med Near Med S Slow BR 

Med Near Med SL Slow SL 

Med Near Med BL Slow BL 

Med Near Near BR Slow BL 

Med Near Near SR Slow BL 

Med Near Near S Slow BL 

Med Near Near SL Slow SL 

Med Near Near BL Slow BL 

Near Far Far BR Slow BR 

Near Far Far SR Med SR 

Near Far Far S Fast S 

Near Far Far SL Slow BR 

Near Far Far BL Slow BR 

Near Far Med BR Slow BR 

Near Far Med SR Med SR 

Near Far Med S Fast S 

Near Far Med SL Slow BR 

Near Far Med BL Slow BR 

Near Far Near BR Med S 

Near Far Near SR Med S 

Near Far Near S Med S 

Near Far Near SL Med S 

Near Far Near BL Med S 

Near Med Far BR Slow BR 

Near Med Far SR Med SR 

Near Med Far S Med S 

Near Med Far SL Slow BR 

Near Med Far BL Slow BR 

Near Med Med BR Slow BR 

Near Med Med SR Med SR 

Near Med Med S Med S 

Near Med Med SL Slow BR 

Near Med Med BL Slow BR 
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Near Med Near BR Slow BR 

Near Med Near SR Slow SR 

Near Med Near S Med S 

Near Med Near SL Slow SL 

Near Med Near BL Slow BL 

Near Near Far BR Slow BR 

Near Near Far SR Slow SR 

Near Near Far S Slow BR 

Near Near Far SL Slow BR 

Near Near Far BL Slow BR 

Near Near Med BR Slow BR 

Near Near Med SR Slow SR 

Near Near Med S Slow BR 

Near Near Med SL Slow BR 

Near Near Med BL Slow BR 

Near Near Near BR Slow BR 

Near Near Near SR Slow BR 

Near Near Near S Slow BL 

Near Near Near SL Slow BL 

Near Near Near BL Slow BL 
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Modeling in MATLAB using Fuzzy Logic Toolbox: 

 

Figure 5 MATLAB Fuzzy Logic Toolbox 

In MATLAB fuzzy logic toolbox, five GUI tools are provided namely The FIS Editor, The 

Membership Function Editor, The Rule Editor, The Rule Viewer & The Surface Viewer 

which can be used to build, edit, and observe fuzzy inference systems. 

1. The Fuzzy Inference System or FIS Editor:  The FIS Editor helps us create a fuzzy 

inference system & define the input & output variables.  

2. The Membership Function Editor: The Membership Function Editor helps us define the 

type of the membership functions associated with each of the input & output variables.  

3. The Rule Editor: The Rule Editor helps us create & edit fuzzy rules to define behavior of 

the system.                                                                                                     

4. The Rule Viewer: The Rule Viewer helps us visualize fuzzy inference diagram. This is a 

read-only tool & used as a diagnostic purposes. It shows the activity status of different rules,  

& shows the effect of membership function shapes on results. 

5. The Surface Viewer: The Surface Viewer generates an output surface map & helps us 

visualize how one or any of the outputs varies with any one or two of the inputs.  
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Modeling with Triangular Membership Functions 

 

Figure 6 Triangular Membership function plot for left_obs 

 

Figure 7 Triangular Membership function plot for front_obs 

 

Figure 8 Triangular Membership Function Plot for Right Obstacle Distance 
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Figure 9 Triangular Membership Function Plot for Heading Angle 

 

Figure 10 Triangular Membership Function Plot for Vehicle Speed 

 

Figure 11 Triangular Membership Function Plot for Steering Angle 



 Page 42 
 

Modeling with Trapezoidal Membership Functions

 

Figure 12 Trapezoidal Membership Function Plot for Left Obstacle Distance 

 

Figure 13 Trapezoidal Membership Function Plot for Front Obstacle Distance 

 

Figure 14 Trapezoidal Membership Function Plot for Right Obstacle Distance 
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Figure 15 Trapezoidal Membership Function Plot for Heading Angle 

 

Figure 16 Trapezoidal Membership Function Plot for Vehicle Speed 

 

Figure 17 Trapezoidal Membership Function Plot for Steering Angle 
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Modeling with Gaussian Membership Functions 

 

Figure 18 Gaussian Membership Function Plot for Left Obstacle Distance 

.  

Figure 19 Gaussian Membership Function Plot for Front Obstacle Distance 

 

Figure 20 Gaussian Membership Function Plot for Right Obstacle Distance 
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Figure 21 Gaussian Membership Function Plot for Heading Angle 

 

Figure 22 Gaussian Membership Function Plot for Vehicle Speed 

 

Figure 23 Gaussian Membership Function Plot for Steering Angle 
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4.2 System Modelling using Neural Network Technique 

For modelling  in neural network,  we use the front obstacle  distance (d_front),  left  obstacle  

distance (d_left), right obstacle distance (d_right) & heading angle (ang_head) as input 

parameters to the ANN. The target parameter are vehicle speed (v) & steering angle 

(ang_steer).We set the input parameters in a matrix [input] and target in matrix [target]. Once 

the input and the target matrix are set, we use the nntool algorithm to train and simulate the 

network. 

Steps involved in setting up the Neural Network: 

1. The network manager window was opened with the command nntool. 

2. The input matrix [input] and the target matrix [target] were imported into the network 

manager. 

3. A new network was created with the inputs and outputs of the following type:  

Network type: Feed-forward backprop 

Training Function: TRAINGD 

Adaptation Learning Function: LEARNGDM 

Performance Function: MSE 

9. The number of layers was varied to get the best result (least mean square error) possible 

10. The network was trained for 1000 to 10,000 epochs to the error reached our pre 

designated threshold. 

11. The performance graph was plotted.    
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Figure 24 Modelling in MATLAB with Neural Network 
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Figure 25 Performance Plot 

 

Figure 26 Training State Plot 

 

Figure 27 Regression Plot 
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CHAPTER 5 

Experimental Model 
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Experimental Model 

 

Figure 28 REVA i, the Commercial Vehicle undertaken for the project 

 

Figure 29 Central Pinion attached to Steering of AGV. Diameter of Pitch Circle=32mm 
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Figure 30 Pinion (spur Gear) attached to the Servo motor for rotating the Central Pinion attached to the Steering of 
Vehicle. Diameter of pitch circle = 45mm 

 

Figure 31 Dummy setup (not affixed to steering handle) showing driving gears mating with driven. 

The servo motors used have the following specification: 

 Quantity used: 2 

 Servo Motor model: Hitec HS-805BB 

 Torque: at 6 Volts; 24.7 kg/cm 
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To each of the servo motors a spur gear was attached with the help of an arm. Over the 

steering wheel a central rectangular shaft was attached. The driven gear is to be attached to 

this shaft. The driven gear is a central gear which meshes with the driving gears in a straight 

line. Additionally, the centre of the driven gear coincides with the centre of the steering 

wheel. Also a frame was built by arc welding of mild steel plates. The view shown for the 

frame with the servo motors is that which is seen from the steering towards the front seat of 

the vehicle. All the dimensions are as per the particular application required for the 

commercial vehicle chosen. 

 

 

Figure 32 Shaft carrying the Central Pinion (to be attached to Steering wheel) 
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Figure 33 Steering Mechanism 

For speed control a mechanism was designed consisting of control over the accelerator and 

brake of the vehicle. A servo motor each is used to actuate the accelerator and brake pedals. 

Similarly, for the steering another mechanism was designed consisting of a central spur gear 

attached to the steering wheel of the AGV. This spur gear is driven by a pair of driving gears 

which mesh on either side of it on a straight line and is powered by the servo motors (Hi-tec 

HS-805BB (24.7 Kg-cm torque)). For mounting on the vehicle, a steel frame has been 

fabricated which is secured to the floor of the AGV platform. The servo motors and driving 

gears are mounted onto this frame. While designing the driving and the driven gears a gear 

ratio of 3 was obtained to achieve gear reduction which gives better control and larger 

rotation of steering wheel via smaller rotation of the servo motors. 
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CHAPTER 6 

Results & Discussion 
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Results and Discussion 

Following the theoretical analysis of Fuzzy Inference Systems and Neural Networks; 

corresponding navigation mechanism for a mobile robot or AGV has been developed.  

Based on the nature of the membership functions—Gaussian functions, Triangular functions 

and Trapezoidal functions; the Fuzzy Inference System provided three separate decision 

making systems. The Feed forward back propagation algorithm under the neural network 

paradigm was the fourth decision making system developed. 

Each of the systems had four inputs: Left Distance (Distance between the AGV and the 

nearest obstacle to its left); Right Distance (Distance between the AGV and the nearest 

obstacle to its right); Front Distance (Distance between the AGV and the nearest obstacle 

ahead of it) and Heading Angle (position of the AGV in relation with the target destination 

expressed as an angle). Two outputs were generated for navigation by each of the systems: 

Velocity (Speed at which the AGV should travel) and Steering Angle (The angle to which the 

steering wheel of the AGV must be turned)  

Experimental data sets were created for the specific application of the AGV available for the 

research. Each of the four decision making systems that were developed were successfully 

set-up modeled in MATLAB.  

To evaluate the performance of each of these decision making systems, simulations were 

conducted for each decision making system, maintaining a constant set of inputs all over.  
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Table 3 Comparison of Outputs for a sample set of Inputs 

 

 

Inputs 

Outputs 

Fuzzy Inference System Neural Network 

Gaussian Triangular Trapezoidal 

Feed forward 

Back 
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d_left = 2.6 

d_front = 1.2 

d_right = 0.8 

ang_head = -38 

18.20 -58.38 15.69 -60.03 18.93 -60.02 13.93 -65.47 

d_left = 2.6 

d_front  = 2.4 

d_right  = 1.3 

ang_head  = 5 

28.20 9.13 26.66 14.99 30.18 15.92 35.02 20.26 

d_left = 1.4 

d_front = 1.8 

d_right = 2.9 

ang_head = 38 

19.75 59.47 20.00 60.12 20.00 60.07 15.81 54.33 



 Page 57 
 

After the required training and learning is completed, it is expected that these decision 

making systems can by themselves without any human intervention guide a mobile robot or 

AGV in unknown and unstructured environment. This is supported by the accurate and 

precise outputs generated by the decision making systems. The outputs that are obtained are 

in agreement with the behavior initially desired. This desired behavior had been decided by a 

human for the particular situation. Thus the systems should be capable of performing 

autonomous navigation replacing a human and rendering human intervention unnecessary. 

However, it was noted that the neural network implemented was modeled with a high mean 

square error and this approach gave outputs that considerably deviated from the rest.   

The hardware for the practical implementation of the above discussed autonomous navigation 

has been designed. The design incorporates a frame which is secured to the car floor and onto 

which the gears and servo motors are mounted.  
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CHAPTER 7 

Conclusion and Scope for Future Work 
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Conclusion and Scope for Future Work 

A navigation system has been developed which can be fed with information gathered from 

the environment using an array of sensors. Ultrasonic sensors are to provide the distance of 

an obstacle from the AGV whereas a GPS device and heading compass are to compute the 

orientation of the AGV with respect to the target destination (heading angle). The output of 

the proposed navigation system is the steering angle and velocity of the AGV. These outputs 

are then used as stimulus for producing the required mechanical behavior through the system 

hardware. The hardware consisting of a mounting frame, driving and driven gears and servo 

motors was constructed and installed in the commercial vehicle REVAi.  

Firstly, the neural network approach can be further optimized to reduce the mean square error 

in the training. There exist a vast number of algorithms for machine learning which can be 

explored. Additionally, the ultrasonic sensor data collection system can be replaced by a 

visual sensors or stereoscopic cameras. The data collected from cameras would also require 

similar processing. Image processing techniques and algorithms through artificial neural 

networks, neuro-fuzzy systems and genetic algorithms are an area of high interest. 

Developments in these fields can be incorporated with those in the autonomous decision 

making systems for further improvements in mobile robot navigation.  
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