901 research outputs found

    Deep Learning-Based Action Recognition

    Get PDF
    The classification of human action or behavior patterns is very important for analyzing situations in the field and maintaining social safety. This book focuses on recent research findings on recognizing human action patterns. Technology for the recognition of human action pattern includes the processing technology of human behavior data for learning, technology of expressing feature values ​​of images, technology of extracting spatiotemporal information of images, technology of recognizing human posture, and technology of gesture recognition. Research on these technologies has recently been conducted using general deep learning network modeling of artificial intelligence technology, and excellent research results have been included in this edition

    An Efficient and Lightweight Deep Learning Model for Human Activity Recognition Using Smartphones

    Get PDF
    Traditional pattern recognition approaches have gained a lot of popularity. However, these are largely dependent upon manual feature extraction, which makes the generalized model obscure. The sequences of accelerometer data recorded can be classified by specialized smartphones into well known movements that can be done with human activity recognition. With the high success and wide adaptation of deep learning approaches for the recognition of human activities, these techniques are widely used in wearable devices and smartphones to recognize the human activities. In this paper, convolutional layers are combined with long short-term memory (LSTM), along with the deep learning neural network for human activities recognition (HAR). The proposed model extracts the features in an automated way and categorizes them with some model attributes. In general, LSTM is alternative form of recurrent neural network (RNN) which is famous for temporal sequences’ processing. In the proposed architecture, a dataset of UCI-HAR for Samsung Galaxy S2 is used for various human activities. The CNN classifier, which should be taken single, and LSTM models should be taken in series and take the feed data. For each input, the CNN model is applied, and each input image’s output is transferred to the LSTM classifier as a time step. The number of filter maps for mapping of the various portions of image is the most important hyperparameter used. Transformation on the basis of observations takes place by using Gaussian standardization. CNN-LSTM, a proposed model, is an efficient and lightweight model that has shown high robustness and better activity detection capability than traditional algorithms by providing the accuracy of 97.89%

    Latest research trends in gait analysis using wearable sensors and machine learning: a systematic review

    Get PDF
    Gait is the locomotion attained through the movement of limbs and gait analysis examines the patterns (normal/abnormal) depending on the gait cycle. It contributes to the development of various applications in the medical, security, sports, and fitness domains to improve the overall outcome. Among many available technologies, two emerging technologies that play a central role in modern day gait analysis are: A) wearable sensors which provide a convenient, efficient, and inexpensive way to collect data and B) Machine Learning Methods (MLMs) which enable high accuracy gait feature extraction for analysis. Given their prominent roles, this paper presents a review of the latest trends in gait analysis using wearable sensors and Machine Learning (ML). It explores the recent papers along with the publication details and key parameters such as sampling rates, MLMs, wearable sensors, number of sensors, and their locations. Furthermore, the paper provides recommendations for selecting a MLM, wearable sensor and its location for a specific application. Finally, it suggests some future directions for gait analysis and its applications

    Transformer-based Self-supervised Multimodal Representation Learning for Wearable Emotion Recognition

    Full text link
    Recently, wearable emotion recognition based on peripheral physiological signals has drawn massive attention due to its less invasive nature and its applicability in real-life scenarios. However, how to effectively fuse multimodal data remains a challenging problem. Moreover, traditional fully-supervised based approaches suffer from overfitting given limited labeled data. To address the above issues, we propose a novel self-supervised learning (SSL) framework for wearable emotion recognition, where efficient multimodal fusion is realized with temporal convolution-based modality-specific encoders and a transformer-based shared encoder, capturing both intra-modal and inter-modal correlations. Extensive unlabeled data is automatically assigned labels by five signal transforms, and the proposed SSL model is pre-trained with signal transformation recognition as a pretext task, allowing the extraction of generalized multimodal representations for emotion-related downstream tasks. For evaluation, the proposed SSL model was first pre-trained on a large-scale self-collected physiological dataset and the resulting encoder was subsequently frozen or fine-tuned on three public supervised emotion recognition datasets. Ultimately, our SSL-based method achieved state-of-the-art results in various emotion classification tasks. Meanwhile, the proposed model proved to be more accurate and robust compared to fully-supervised methods on low data regimes.Comment: Accepted IEEE Transactions On Affective Computin

    Machine Learning Methods for Image Analysis in Medical Applications, from Alzheimer\u27s Disease, Brain Tumors, to Assisted Living

    Get PDF
    Healthcare has progressed greatly nowadays owing to technological advances, where machine learning plays an important role in processing and analyzing a large amount of medical data. This thesis investigates four healthcare-related issues (Alzheimer\u27s disease detection, glioma classification, human fall detection, and obstacle avoidance in prosthetic vision), where the underlying methodologies are associated with machine learning and computer vision. For Alzheimer’s disease (AD) diagnosis, apart from symptoms of patients, Magnetic Resonance Images (MRIs) also play an important role. Inspired by the success of deep learning, a new multi-stream multi-scale Convolutional Neural Network (CNN) architecture is proposed for AD detection from MRIs, where AD features are characterized in both the tissue level and the scale level for improved feature learning. Good classification performance is obtained for AD/NC (normal control) classification with test accuracy 94.74%. In glioma subtype classification, biopsies are usually needed for determining different molecular-based glioma subtypes. We investigate non-invasive glioma subtype prediction from MRIs by using deep learning. A 2D multi-stream CNN architecture is used to learn the features of gliomas from multi-modal MRIs, where the training dataset is enlarged with synthetic brain MRIs generated by pairwise Generative Adversarial Networks (GANs). Test accuracy 88.82% has been achieved for IDH mutation (a molecular-based subtype) prediction. A new deep semi-supervised learning method is also proposed to tackle the problem of missing molecular-related labels in training datasets for improving the performance of glioma classification. In other two applications, we also address video-based human fall detection by using co-saliency-enhanced Recurrent Convolutional Networks (RCNs), as well as obstacle avoidance in prosthetic vision by characterizing obstacle-related video features using a Spiking Neural Network (SNN). These investigations can benefit future research, where artificial intelligence/deep learning may open a new way for real medical applications

    Intelligent Sensing Techniques for Desk Workplace Ergonomics

    Get PDF
    Wearables mit integrierten inertialen Messeinheiten ermöglichen neue Sensoranwendungen, die über längere Zeiträume hinweg messen. Die Arbeitsergonomie ist ein besonderer Bereich, in dem Wearables und intelligente Sensorik die Gesundheit und das Wohlbefinden vieler Menschen verbessern können. Personen in Büroumgebungen sind aufgrund anhaltender Fehlhaltungen besonders anfällig für Muskel-Skelett-Erkrankungen. Haltungsbedingte Probleme sind dadurch inzwischen der dritthäufigste gemeldete Risikofaktor für die Gesundheit am Arbeitsplatz. Das Ziel dieser Arbeit ist es, die Anwendung von Edge-AI-Technologien für eine kontinuierliche Bewertung ergonomischer Risikofaktoren am Schreibtischarbeitsplatz zu untersuchen. Der erstellte Ansatz bewertet die ergonomische Risikosituation eines Nutzers auf Basis der Körperhaltung und der Arbeitsplatzbedingungen und leitet daraus Verbesserungsvorschläge ab. Relevante Bewegungen werden kontinuierlich von einem Sensornetzwerk mit Beschleunigungssensoren und Gyroskopen erfasst, die an einem tragbaren Brillenrahmen sowie an einer Armlehne eines Bürostuhls angebracht sind. Diese Arbeit schlägt ein neuartiges domänenspezifisches maschinelles Lernverfahren und Zustandsübergangsmodell für die langfristige Ableitung von Körperhaltungen durch die Klassifizierung und Aggregation von Ereignissen vor, die in den Sensorzeitreihen auftreten. Zusätzlich wird ein Manifold von Bewegungen erstellt, der Schlussfolgerungen und Empfehlungen für ergonomisch relevante Körperbewegungen ermöglicht. Schließlich demonstriert eine Software-Implementierung die Techniken erfolgreich in der Praxis
    corecore