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ABSTRACT 

Recognizing human activities using deep learning methods has 

significance in many fields such as sports, motion tracking, surveillance, 

healthcare and robotics. Inertial sensors comprising of accelerometers and 

gyroscopes are commonly used for sensor based HAR. In this study, a 

Bidirectional Long Short-Term Memory (BLSTM) approach is explored for human 

activity recognition and classification for closely related activities on a body worn 

inertial sensor data that is provided by the UTD-MHAD dataset. The BLSTM 

model of this study could achieve an overall accuracy of 98.05% for 15 different 

activities and 90.87% for 27 different activities performed by 8 persons with 4 

trials per activity per person. A comparison of this BLSTM model is made with the 

Unidirectional LSTM model. It is observed that there is a significant improvement 

in the accuracy for recognition of all 27 activities in the case of BLSTM than 

LSTM.
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CHAPTER ONE 

INTRODUCTION 

 

Purpose 

Human activity recognition (HAR) has significance in various fields such 

as healthcare, robotics, motion monitoring and tracking, surveillance, and sports. 

Sensor based human activity recognition is in practice since several years. With 

the advancement in technology, sensor based HAR is constantly growing in 

terms of efficiency and accuracy. There is a scope for tremendous improvement 

in sensor based HAR using deep learning models. Deep learning models reduce 

the need for hand crafted feature extraction and can recognize complex and 

closely related activities more efficiently than traditional methods. 

Sensor data primarily used for HAR purposes are those of body worn 

inertial sensors comprising of triaxial accelerometer (accelerations in x, y and z 

axes) and triaxial gyroscope sensors (angular velocities in x, y and z directions). 

These sensors can capture a sequence of motion data generated in a time 

series. For this project, the body worn inertial sensor data provided by the UTD-

MHAD dataset [5] is used. The dataset consists of groups of closely related 

activities such as baseball swing and tennis swing, which is obtained by wearing 

the sensor in the right arm and activities such as lunge and squat which is 

obtained by wearing the sensor in the right thigh.  A Bidirectional Long Short-
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Term memory model is trained, and the results are analyzed and compared with 

a unidirectional Long Short-Term model. 

 

Motivation 

The importance of human activity recognition related applications has 

brought in the demand for cost cutting and efficient methods. The applications 

range from taking care of elderly patients to analyzing player movements in 

sports. Simple and basic activities have been recognized successfully in the past 

using deep learning models. However, recognizing complex and closely related 

activities is a challenging task. Body worn sensor based HAR is a time series 

classification task. Many of the sensor based HAR using deep learning have 

used a set of basic activities on deep learning models. The contribution of this 

project is to use a variant of LSTM model which is a Bidirectional LSTM model for 

human activity recognition on activities which are closely related to each other, 

meaning activities which either have similarity in their sequence of sensor data or 

appear similar to human eye and on a larger pool of activities, in this case 27 

activities. Figure 1 provides with an overview of the proposed model for this HAR.  
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                Figure 1.  Overview of the proposed model for HAR 
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CHAPTER TWO 

SENSOR BASED HUMAN ACTIVITY RECOGNITION 

 

Types of Sensors for HAR 

Most of the human activity recognition can be broadly classified into two 

categories, video-based activity recognition which is also called as vision-based 

activity recognition [4,6] and sensor-based activity recognition. Video based 

approach utilizes images or videos captured by video cameras. The data 

generated from this approach are in the form of video sequences at a specific 

frame rate and/or depth image. 

 

Figure 2. Typical positions of body worn inertial sensors 

 

Sensor-based activity recognition utilizes the motion data captured by 

sensors such as accelerometer, gyroscope, magnetometer, bluetooth, GPS etc. 
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The generated data is in time series which can be in time domain or frequency 

domain. These sensors can again be broadly classified as body worn or 

wearable sensors which are attached to the human body, object sensors which 

are attached to the object in the environment, ambient sensors for the 

environment and hybrid sensors [4]. 

 

Body Worn Inertial Sensors 

Body worn inertial sensor is the most common sensor used for HAR 

because of the advancement in wearable computing and availability of low cost 

and small sized inertial sensors. These sensors comprising of accelerometers 

and gyroscopes, sometimes magnetometer as well, are attached to specific parts 

of the body such as, hands and waists to record human motions. The portability 

and compactness of these sensors makes it suitable for attaching to the body 

parts for capturing the motion data.  Figure 2 provides the typical body positions 

for these sensors.  In this project, the body worn triaxial inertial sensor data 

(accelerometer and gyroscope) attached to the right wrist and the right thigh of 8 

persons, is used. Figure 3 and 4 show the sensor readings of a baseball swing 

and a tennis swing of the UTD-MHAD dataset. 
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Figure 3. Accelerometer and gyroscope readings for a baseball swing 
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Figure 4. Accelerometer and gyroscope readings for a tennis swing 
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Figure 5. Images for sequence of motions from the dataset for a baseball swing 

 

 

 

 

 
 
Figure 6. Images for sequence of motions from the dataset for a tennis swing 
 

 

The purpose of Figure 5 and Figure 6 is to provide an understanding of 

the sequence of motions for closely related activities, a baseball swing and a 

tennis swing from the dataset [5]. The color coding for similar set of motion 

sequence is highlighted. It is to be noted that values of the acceleration and/or 

angular velocities are very close for these two activities at the above highlighted 

sequences. 
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CHAPTER THREE 

DEEP LEARNING FOR HAR 

 

Background 

Traditional HAR methods require feature engineering and domain specific 

knowledge on the raw data before using it in machine learning or statistical 

models. These conventional techniques rely heavily on heuristic hand-crafted 

feature extraction. For example, for accelerometer data, the feature extraction 

could be based in time domain such as variance and mean or it could be in 

frequency domain such as the distribution of signal energy and amplitude.  

Identifying relevant features becomes time consuming and identifying complex 

activities becomes difficult [1] as the features extracted are based on 

mathematical operations rather than based on context. These methods put 

limitations on accuracy and require expertise in the respective field. 

This is where deep learning based HAR has proved beneficial [13]. Deep 

learning models automatically learn the features required to make accurate 

predictions from the raw data directly. This enables new and large datasets to be 

used for HAR. Different types of sensor data can be used which results in 

efficient models and two or more sensor data can be combined as the model can 

adopt faster. These models are also capable of learning high level features which 

can be very well utilized in complex HAR. 
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Related Work 

There have been several studies and methodologies adopted for human 

activity recognition. Some have used camera sensors for video-based analysis 

and some have used smartphone or body worn inertial sensors. Some of the 

machine learning and deep learning methods adopted in this direction are 

discussed in this section. Support Vector Machines (SVM) is a discriminative 

classifier which represents samples as points in space. The category of new 

points is determined based on the side of the optimal hyperplane. Hidden Markov 

Models (HMM) attempts to build a probabilistic description of the data space has 

been used in human activity recognition. Transitions among the states in the data 

space are governed by the transition probabilities. For a particular state, an 

outcome and not the state visible to an external observer is generated, according 

to the associated probability distribution. Some other methods include Stacked 

Autoencoders which consists of multiple layers of sparse autoencoders, Deep 

Belief Networks (DBN) which are a class of unsupervised pretrained networks 

which consists of hidden units connected between the layers but is disconnected 

with units within each layer, Restricted Boltzmann Machines (RBM) which are 

shallow, two-layer neural nets and the building blocks of deep belief networks. It 

is restricted because there is no intra-layer communication. Some other 

techniques used in researches include Convolutional Neural Networks (CNN), 

Long Short-Term Memory (LSTM) and models combining two or more methods 

such as DeepConvLSTM and combination of LSTM and CNN models. 
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Li et al. [14] used the sparse autoencoder by adding noise to the cost 

function and adding KL divergence, which improved the performance of HAR. 

Hammerla et al. [15] used CNN where they treated the 1D sensor data as an ID 

image for activity recognition. Anguita et al. [7] proposed a hardware friendly 

multiclass classification on smartphones using Support Vector Machines with 

fixed point classifications. Ravi et al. [13] adopted a 2D convolutional model 

using the smartphone sensor data. The concept of binary RBM was implemented 

by Lane et al. [17]. Kim et al. [20] used Hidden Markov Model to make a 

comparison analysis on concurrent and interleaved human activity recognition 

with the conditional random field approach for pattern discovery. Chen et al. [3] 

used online SVM and CT-PCA on smartphone sensor data where they designed 

a HAR system in terms of placement, orientation, and subject variations based 

on coordinate transformation. Kellokumpu et al. [2] implemented a discrete 

Hidden Markov Model on sequence of postures for activity recognition. Li et al. 

[8] adopted a hybrid model of CNN and LSTM for HAR and defined an evaluation 

framework to fix the stages of Activity Recognition Chain. Ordóñez et al. [1] 

further extended the HAR using a combination of deep convolutional and LSTM 

RNN networks.  

 

 

 

https://www.mdpi.com/search?authors=Francisco%20Javier%20Ord%C3%B3%C3%B1ez&orcid=
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CHAPTER FOUR 

UNIDIRECTIONAL AND BIDIRECTIONAL LSTM 

 

Unidirectional LSTM 

 Due to the time varying nature of actions, LSTM based models can capture the 

dynamic temporal variations for accurate sequence recognition and 

classifications. LSTMs can learn the context by themselves. This is highly suitable 

for HAR as the model can be trained to learn high level features and context on its 

own. The main advantage of LSTM over Recurrent Neural Network (RNN) is that 

it can remember the long-term time dependencies without the problem of 

vanishing or exploding gradients. LSTM is advantageous over HMMs, RNNs and 

other time series and/or sequence based learning models in various applications 

because of its insensitivity to gap length. In this project, the effectiveness of LSTM 

and BLSTM in applications involving recognition of closely related activities is 

explored and compared. 

 

LSTM Cell 

 LSTM which is a variant of recurrent neural network has the capability to 

remember long term dependencies without the problem of vanishing gradients. 

LSTM was proposed by Sepp Hochreiter and Jürgen Schmidhuber in 1997 [9]. An 

LSTM layer consists of several memory blocks. These blocks are made up of 

internal gates (input, forget and output gates). LSTM cells which share the same 

https://en.wikipedia.org/wiki/Hidden_Markov_models
https://www.researchgate.net/scientific-contributions/40000894_Juergen_Schmidhuber
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input gate, forget gate [9,18] and output gate forms an LSTM block. The internal 

gates perform the read, write and erase operations for a block. The internal gates 

allow the model to be trained successfully using backpropagation through time 

which solves the problem of vanishing gradients. 

 

Figure 7. LSTM Cell 

 

The equations (1) – (6) provide the working of the gates and memory state 

equations, 

( )t z t t-1 zz = tanh W x + V h + bz    (1) 

( )t i t i t-1 ii = σ Wx + Vh + b    (2) 

( )t f t f t-1 ff = σ W x + V h + b    (3) 

https://machinelearningmastery.com/gentle-introduction-backpropagation-time/
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( )t o t o t-1 oo = σ W x + V h + b    (4) 

t t-1 t t tc = c f + i z     (5) 

( )t t th = o tanh c     (6) 

 

zt, it, ft, ot, ct, ht are the input node, input gate, forget gate, output gate, memory state 

and hidden state at time t, respectively. W is the weight matrix for x which is the 

input, V is the weight matrix for hidden state of the previous cell. b denotes the 

bias for the corresponding cell state and gates and ∘ denotes the Hadamard 

product. σ and tanh are the sigmoid and hyperbolic tangent activation functions 

respectively. 

 Input node zt is the new memory generated using the input xt and the previous 

hidden state ht-1. 

 Forget gate ft holds the authority to determine the removal of information from 

the previous state after receiving it as input. It takes the decision of erasing the 

cell and is governed by a sigmoid function which keeps the input between 0 and 

1.  

 Input gate it holds the authority to add new information from the current input to 

current cell state. These are governed by sigmoid and tanh functions. Input gate 

takes the decision of writing to the cell. Tanh layer creates a vector for new 

candidates to be added to the current cell state and the sigmoid layer decides 

which values are to be updated.  
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 Memory state ct is the final memory generated by taking the advice of the 

forget gate ft and forgetting the past memory ct−1. Also, it takes the advice of the 

input gate it and gates the input node zt which is the new memory generated. The 

sum of these two results gives the memory state ct. 

 Output gate ot decides on what to output from the cell state which is done using 

the sigmoid function. The input lies between -1 and 1 because of the tanh function 

and this is multiplied with the output of sigmoid function. This allows to output only 

what is needed.  

 

Bidirectional LSTM 

The LSTM version of the bidirectional Recurrent Neural Network (BRNN) 

structure is called Bidirectional LSTM (BLSTM). BRNN was proposed by Mike 

Schuster and Kuldip K. Paliwal in 1997 [10] for eliminating various restrictions of 

RNNs. In BRNN, there are two different recurrent networks in forward and 

backward directions through the same input layer as shown in Figure 6. These 

two networks connect to the same output layer to generate output results. With 

this structure, both future and past information of sequential inputs in a time frame 

are evaluated without delay [10]. In this project, this concept is utilized for time 

series classification where the start of an activity and the end of an activity in 

reverse order are trained by receiving the information from the input layer.  
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  A BRNN computes the backward hidden sequence hf, the forward hidden 

sequence hf and the output sequence y by repeating the backward layer from time 

= T to 1, the forward layer from time = 1 to T and then updates the output layer. H 

is the hidden layer function. For maintaining two hidden layers at any time, BRNN 

consumes twice as much memory space for its bias and weight parameters.  

( )
f f f t+1 ff xh t h h f hh = H W x + W h + b   (7) 

( )
b b b t+1 bb xh t h h b hh = H W x + W h + b   (8) 

f t b tt y h f y h b yy = W h + W h + b   (9) 

 

Figure 8. Bidirectional Recurrent Neural Network 
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1. Neurons in the forward state of BRNN are unidirectional. Training the 

network is same as of a regular RNN since both the networks are not 

connected to each other. 

2. In the forward pass, for time t in 1≤t≤T, all of the input data is run via 

BRNNs and the outputs are predicted. Passes in forward (time from t =1 to 

t=T) and in backward (time from t =T to t=1) are finished. For the output 

neurons as well, a forward pass is finished. 

3. In the backward pass, for time t in 1≤t≤T, the derivative of error function is 

calculated which is used in the forward pass. A backward pass is 

completed for both the forward states (from time t=T to t=1) and backward 

states (from time t=1 to t =T) and for the output neurons. 

4. After this, all the weights are updated.  

The LSTM version of this BRNN is BLSTM and it can show improvement 

over LSTM’s performance in classification processes. BLSTMs are capable of 

remembering the past and the future information as the model is trained in 

both forward and backward directions. In this project, this property of BLSTM 

is utilized and the BLSTM model is devised to access long-range context in 

both the directions. The experiment and evaluation are done on this model to 

show the improvement in the performance in recognizing closely related 

activities. 
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CHAPTER FIVE 

METHODOLOGY 

 

Data 

The BLSTM model is trained and tested for recognizing closely related 

activities. The dataset used for this purpose is the publicly available UTD-MHAD 

[5] dataset, which provides wearable inertial sensor data (3-axis acceleration and 

3-axis gyroscope for rotation signals) for 27 different activities in an indoor 

environment. The data recorded is from only one wearable inertial sensor data 

with a sampling rate of 50 Hz and a measuring range of ±8g for acceleration and 

±1000 degrees/second for rotation.  

The activities are draw triangle, bowling with right hand, swipe right, throw, 

arm cross, draw x, draw circle (clockwise), push, knock on door, jogging in place, 

sit to stand, stand to sit, forward lunge (left foot forward), squat (with two arms 

stretch out), walking in place, swipe left, right hand wave, two hand front clap, 

arm curl, basketball shoot, draw circle (anti-clockwise), front boxing, baseball 

swing from right, tennis forehand swing, tennis serve, catch an object and pick up 

an object. The first 15 activities were used for experimentation of 15 activities 

and the complete set of activities for experimentation of 27 activities. The 

activities are carried out by 8 persons (4 females and 4 males). The inertial 

sensor was worn on the person's right wrist and each action by a person has 4 
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trials. A total of 861 [(27 X 8 X 4) -3] sequences are derived from this, after 

removing 3 corrupt sequences. 

 

Table 1. Set of 27 activities in the dataset [5] 

Body worn inertial sensor on right wrist 

Swipe left  

Swipe right 

Right hand wave  

Two hand clap  

Two hand push 

Cross arms in the chest 

Arm curl (two arms) 

Draw x 

Draw circle (clockwise) 

Draw circle (anti-clockwise) 

Draw triangle 

Bowling  

Front boxing 

Baseball swing from right 

Tennis forehand swing 

Basketball shoot 

Tennis serve  

Throw 

Knock on door  

Catch an object  

Pick up and throw  

Body worn inertial sensor on right thigh 

Jogging in place  

Walking in place  

Sit to stand  

Stand to sit 

Forward lunge (left foot forward) 

Squat (with two arms stretched out)  
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Architecture 

The application of the model is for activity recognition on a large pool of 

activities, 27 in this case and which are closely related to each other, meaning 

activities which either have similarity in their sequence of sensor data or appear 

similar to human eye. For example, swipe right and right-hand wave might appear 

similar to human eye and activities such as baseball swing and tennis swing have 

highly similar x, y and z axes accelerations. In order to classify such activities 

using deep learning approach, the model needs to be efficient to identify the 

minor differences in the motion of the activity.  

In BLSTM, the data is trained in forward and backward directions in two 

separate hidden layers through the same input layer. For the model to accurately 

distinguish between similar activities, this property of BLSTM structure will provide 

with better results than other network structures. In this project, the BLSTM model 

has two layers, one Bidirectional LSTM layer and an output layer which is a dense 

layer, as shown in Figure 7. The first layer follows a many to many architecture. 

The output of all the cells in the first layer are used as the input to the dense layer. 

The dense layer for the output has a sigmoid activation.  

The number of BLSTM cells in each layer is derived based on the number 

of data samples for each trial of the activity in the dataset. The number of cells is  
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Figure 9. Architecture of the Bidirectional LSTM 
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kept fixed for both 15 set of activities and 27 set of activities. The number of 

sequences in the data increased to a larger number as the concept of sliding  

window is applied to the data. To prevent the model from overfitting, regularization 

technique of dropout was used. 

     The optimizations best suited in these cases were analyzed. RMSProp 

and Adam optimizations were used based on the size of the sample in 

consideration. RMSProp was efficient for sample size of 15 activities whereas 

Adam was suitable for a higher sample size of 27 activities of the dataset. It is 

observed that there is a need for change in the optimization as the size of the 

sample increases. Also, comparison of the final results of HAR is done between 

the BLSTM and LSTM model. Figure 8. gives the architecture of the LSTM model 

which is used for comparison with the BLSTM model.  

 

Figure 10. BLSTM and LSTM models for comparison 
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Data Preparation 

For the chosen dataset, training and experimentation is done for 15 

activities and all of 27 activities. The reason for dividing the dataset as two 

different sets of activities is to enable deeper analysis of the BLSTM model. This 

allows for identifying the need for better methods and/or tuning of 

hyperparameters, if any with the increase in the complexities of the activities. 

Each of this data is divided into training (80%) and test set (20%). For test 

dataset, the dataset was tested based on subject specific and subject generic 

splitting of test data [21]. In subject specific test set, last two samples of each 

activity by each person was kept for testing. In this case, there is contribution of 

each person to the test data. In subject generic test dataset, the data of the last 

two persons was kept for testing. In this case, the contribution to the test data 

was by only last two persons whose entire activity samples were used for testing 

and the remaining six persons’ entire activity samples were used for training. 

 

Software Tools 

 The model was implemented in an Intel Core i7 machine with 16 GB 

memory using Tensor Flow 1.10.0 framework and the deep learning libraries 

Keras 2.2.2, Pandas 0.23.4, Numpy 1.14.5 and Scikit-Learn 0.19.2. 

 

 

 



24 
 

Sliding Window 

One of the problems with the time series data is the unequal sequence 

length of each sample. In this case, the sequence length for each activity sample 

of a specific trial by each person are of unequal lengths. Usually, for each of the 

action trial window, the sequence data is normalized. These can be using 

statistical methods such as standard deviation, mean etc. But as discussed in  

 

Figure 11. Sliding window of 128 timesteps 

 

earlier chapters, these methods require domain expertise and the aim is to train 

the model directly on raw data. Some of the other normalization techniques are 

truncating and padding. In truncating, the sequence is truncated so that all the 

sequences are of equal length. In padding, zeroes are added at the end of the 
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sequence so that all the sequences are of equal length. These techniques often 

lead to loss of temporal information. Hence, in this project the method of sliding 

window is adopted. The time series data is divided into several blocks. The sliding 

window moves to the next block which gets added to the sequence as shown in 

Figure 9. This maintains a fixed length of the sequence without the loss of 

temporal information.  

If the time series data is given as, 

0 1 2 -1 1( ,  ,  ,  . . . ,  ,  ,  ,  . . .)n n nx x x x x x +   (10) 

When the window size is fixed at k, the data interval becomes,  

1 1( ,  ,  . . . ,  ,  )i k i k i ix x x x− − + +    (11) 

In this project, the shape of the input vector is N x W x 6, where W is the window 

size which is kept as 128, N is the total no. of windows calculated for the entire 

sample space and 6 is the x, y, z axes readings of accelerations and angular 

velocities from accelerometer and gyroscope respectively. Since, the sampling 

rate of the inertial sensor data in the dataset is 50 Hz, the time interval between 

two successive data points is 0.02s. 

 

Activation 

The activation used in this BLSTM model is the sigmoid activation 

function which is a logistic function. The model has the sigmoid activation 
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function in the final output layer, which is the dense layer. Sigmoid activation 

function which is shown in Figure 10, is real-valued and differentiable which 

makes it capable of finding the gradients. It is the mathematical 

representation of a behavior of a biological neuron where the case of neuron 

firing or not, is indicated by its output. Based on the experimentation with 

different activation functions, sigmoid was the best one for this model. It is 

given by the equation, 

( )
( )-x

1
 f x  = 

1+e
   (12) 

                    

Figure 12. Sigmoid activation function 

 

Regularization 

The regularization used for this BLSTM model is dropout. Dropout is a 

regularization technique where randomly selected neurons are dropped out 

during training. It prevents the complex co-adaptations on training data [11]. Drop 

out reduces the chances of overfitting and has provided improvements on 

several difficult problems, such as in speech and image recognition [10,11]. 
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Variations of dropout for LSTM have been suggested in the past. This includes, 

instead of applying dropout to the forward connections, the dropout is applied to 

the recurrent connections or a combination of both. Zaremba et al. [22] 

suggested using dropout in RNNs only in the non-recurrent connections. They 

experimented it for speech recognition, machine translation and language 

modeling. Gal et al. [23] proposed a recurrent dropout called variational dropout 

where the same dropout mask at each timestep is applied in the recurrent and 

forward connections. Moon et al. [24] proposed a recurrent dropout where the 

dropout at recurrent connections is applied at the cell states. Semenuita et al. 

[25] proposed a recurrent dropout where the dropout at recurrent connections is 

applied at hidden state update vectors. They further analyzed the sampling of 

dropout mask that is, once per sequence or once per time step.  

In the BLSTM model of this project, the regular dropout or simply, dropout 

which is applied in forward connections is applied between the BLSTM layer and 

the output layer which is a dense layer, as the number of sequences becomes 

larger than the original sample sequence because of the sliding window. Further 

experimentation was done by combining this dropout of BLSTM hidden layer to 

output layer with a recurrent dropout in the BSTM layer. It is observed that the 

regular dropout, that is dropout in forward connections between the BLSTM layer 

and output was more effective than the combination of this dropout with the 

recurrent dropout. Therefore, the regular dropout between the BLSTM layer and 

output layer is used. This leads to significantly lower generalization error. 
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Figure 13. Overview of regular and recurrent dropouts 

  Only on forward connections 

Regular dropout in a feed forward neural net 

Dropouts in Recurrent Neural Networks and its variants 

On both recurrent and forward  
connections 

Only on recurrent connections Hidden to output connections 

Input to hidden connections Hidden to hidden connections 
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 Figure 13 above shows the regular dropout in a standard feed forward 

network and the use of regular dropout as well as recurrent dropout in recurrent 

neural networks and its variants. For simplicity instead of BLSTM, an RNN 

structure with an input layer, two layers of RNN and an output layer is shown. 

The solid lines depict no dropout in that connection whereas dotted lines depict 

dropout applied in that connection. The horizontal arrows are for recurrent 

connections and the vertical arrows are for forward connections. Input to hidden, 

hidden to output, hidden to hidden connections depicts the regular dropout 

applied between these layers, where hidden is the RNN layer. 

 

Loss 

Categorical Cross-Entropy 

The loss function used in this model is the categorical cross-entropy loss. 

A loss function states the loss in predicting the outcome with the desired or true 

output. The objective in the training is to minimize the loss across the training 

iterations. The categorical cross-entropy loss is used when a probabilistic 

interpretation of the scores is desired. It measures the dissimilarity between the 

predicted label distribution and the true label distribution. It is given by, 

 
i c

N C

y C model i c

i=1 c=1

1
- 1 logp y C

N
    (13) 

where, the summation is over the observations denoted by i, and is N in number, 

and the categories c, which is C in number. The indicator function, i cy C1  is for 
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the observation i which belongs to the c category. The term 
 model i cp y C

 is the 

probability predicted by the model for the observation i, to belong to the c 

category. The model outputs a vector of C probabilities, when there are more 

than two categories, each giving the probability that the input should be classified 

to the respective category. 

 

Optimization 

RMSProp 

 Per-parameter learning rates are maintained by RMSProp which are 

adapted on the basis of the average of recent magnitudes of the gradients for 

the weight. It is suitable where the weights change at a fast rate [16]. In this 

model, RMSProp works well for 15 activities. RMSProp divides the learning 

rate by an exponentially decaying average of squared gradients. RMSProp 

automatically decreases the size of the gradient steps towards minima when 

the steps are too large. The update equations for RMSProp given by the 

equations,  

2

t t tv = γ v + (1-γ) g    (14) 

t+1 t t

t

η
θ  = θ  -  g

v + ε
   (15) 

where η  is the initial learning rate and a good default is value 0.001, tg is 

the gradient at time t, tv  is the exponentially decaying average of past squared 
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gradients, ε  is used to avoid ending up with a division by zero and γ which is 

the decay parameter and is generally set to 0.9. 

Adam 

Adam or Adaptive Moment Estimation optimization is based on adaptive 

estimates of lower-order moments [19] and works well for non-stationary 

objectives. In this case, as the activities were increased from 15 to 27, Adam 

works better than RMSProp. For a larger dataset, as seen in this project, Adam 

suits better than RMSProp. Adam keeps an exponentially decaying average of 

past gradients, mt along with exponentially decaying average of past squared 

gradients vt [16]. mt and vt are initialized as 0 vector because of which they are 

biased towards 0. The Adam update rule is given by the below equation 22, 

where m t and v t are bias-corrected first and second moment estimates [16] 

respectively. 

First moment of gradients, 

( )t 1 t-1 1 tm =β m + 1-β g    (16) 

 

Second moment of gradients, 

( ) 2

t 2 t-1 2 tv =β v + 1-β g    (17) 

 

First moment bias correction, 
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t
t

t

1

m
m =

1-β
     (18) 

 

Second moment bias correction, 

t
t

t

2

v
v =

1-β
     (19) 

 

Update rule, 

t+1 t t

t

η
θ  = θ  -  m

v  + ε
   (20) 

 1β , 2β are the decay rates with values close to 1. 1β is usually kept around 0.9 

while 2β is kept at 0.99.  
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CHAPTER SIX 

RESULTS AND OBSERVATIONS 

 

Accuracy 

The BLSTM model achieved an overall accuracy of 98.05% for 15 activities 

and 90.87% for 27 activities on the subject specific test dataset. Fig. 6 depicts the 

accuracy comparisons for the two set of activities on subject generic and subject 

specific test dataset with two different models, BLSTM and LSTM. 

 

 

Figure 14. Accuracy of BLSTM vs LSTM 
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It is to be noted that as the sample size was increased from 15 to 27 

activities, the performance of LSTM decreased from 81.36% to 52.40% for subject 

generic. It is observed that as the sample size increases from 15 to 27 activities, 

the BLSTM performs better than LSTM. The difference in accuracy between 

BLSTM and LSTM for 15 activities in case of subject specific is 2.16% whereas in 

case of 27 activities the difference increases to 5.83%. 

 

Recall, Precision and F1 Score 

Recall is the true positive rate and gives the measure of number of activities 

correctly identified as positive out of the total true positives,  

True Positive

True Positive + False Negative
 

Precision is the measure of number of items correctly identified as positive 

out of total items identified as positive, 
True Positive

True Positive + False Positive
 

F1 score is the measure of balance between recall and precision. It is the 

harmonic mean of recall and precision, 
2 * Recall * Precision

Recall + Precision
. 

Table 2. depicts these values in percentage for all the different set of 

activities in LSTM and BLSTM model in subject specific and subject generic test 

data. As can be observed, BLSTM in subject specific gives the best result of 

97.74% and 90.34% for 15 and 27 activities respectively. 
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Table 2. Recall, precision and F1 score for different combinations of the model 

  
Mean 
Recall % 

Mean 
Precision % 

Mean 
F1 score% 

15 Activities LSTM Subject Generic 82.54 82.83 78.98 

15 Activities BLSTM Subject Generic 90.99 91.81 90.92 

15 Activities LSTM Subject Specific 95.87 95.25 95.45 

15 Activities BLSTM Subject Specific 97.90 97.67 97.74 

27 Activities LSTM Subject Generic 53.84 55.73 54.77 

27 Activities BLSTM Subject Generic 72.03 71.17 69.55 

27 Activities LSTM Subject Specific 84.90 83.72 83.78 

27 Activities BLSTM Subject Specific 90.65 90.58 90.34 

 

 

 

Figure 15. Recall, precision and F1 score for different combinations of the model 
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Activity            Accelerometer data   Gyroscope data 

                    

           

                                           Results 

Figure 16. Activity [5], input (data) and output (results) 
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Figure 17. Accuracy metrics for BLSTM model on subject specific test dataset for 

27 activities 
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Figure 18. Accuracy metrics for BLSTM model on subject generic test dataset for 

27 activities 
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Figure 19. Accuracy metrics for BLSTM model on subject specific test dataset for 

15 activities 
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Figure 20. Accuracy metrics for BLSTM model on subject generic test dataset for 

15 activities 
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Confusion Matrix 

 

 

 

Figure 21. Confusion matrix for 27 activities in BLSTM subject specific 
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Figure 22. Confusion matrix for 27 activities in LSTM subject specific 
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Figure 23. Confusion matrix for 15 activities in BLSTM subject specific 
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Figure 24. Confusion matrix for 15 activities in LSTM subject specific 
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CHAPTER SEVEN 

CONCLUSIONS  

 

Bidirectional LSTM is efficient to work directly on raw data from body worn 

inertial sensor. It yields results with good accuracy in a time series classification 

task. The BLSTM model of this project could achieve an accuracy of 98.05% and 

90.87% for 15 and 27 activities, respectively. BLSTM is suitable for human 

activity recognition. On an average, majority of the 27 activities had a F1 mean 

score of 90%. This model which uses a large pool of activities is capable of 

distinguishing between closely related activities. This study observed that BLSTM 

yields results with better accuracy than LSTM for HAR on closely related 

activities.  
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