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Abstract

Wearable devices with integrated inertial measurement units have enabled new sensing ap-
plications over extended periods. Work ergonomics is a particular domain where wearables
and intelligent sensing can improve the health and well-being of many people. Persons in
office environments are particularly prone to musculoskeletal disorders (MSDs) due to sus-
tained bad posture. As a result, posture-related problems have become the third most
frequently reported work health risk factor.

The goal of this work is to explore the application of Edge-AI technology for a continu-
ous assessment of ergonomic risk factors in a desk workplace environment. The approach
evaluates the ergonomic risk situation of a user based on their posture and the work-
place constraints, and it infers suggestions for improvement. Relevant movements are
captured continuously by a sensor network using accelerometers and gyroscopes mounted
on a wearable glass frame as well as on an office chair armrest. This work proposes a novel
domain-specific machine learning and state transition model for the long-term derivation
of posture through the classification and aggregation of events that can occur in the sen-
sor time series. Additionally, this work creates a manifold of movements that enables
reasoning and recommendation capabilities for ergonomically relevant gestures and body
movements. Finally, a software implementation successfully demonstrates the techniques
in practice.

v





Zusammenfassung

Wearables mit integrierten inertialen Messeinheiten ermöglichen neue Sensoranwendun-
gen, die über längere Zeiträume hinweg messen. Die Arbeitsergonomie ist ein besonderer
Bereich, in dem Wearables und intelligente Sensorik die Gesundheit und das Wohlbefinden
vieler Menschen verbessern können. Personen in Büroumgebungen sind aufgrund anhalten-
der Fehlhaltungen besonders anfällig für Muskel-Skelett-Erkrankungen. Haltungsbedingte
Probleme sind dadurch inzwischen der dritthäufigste gemeldete Risikofaktor für die Ge-
sundheit am Arbeitsplatz.

Das Ziel dieser Arbeit ist es, die Anwendung von Edge-AI-Technologien für eine kontinuier-
liche Bewertung ergonomischer Risikofaktoren am Schreibtischarbeitsplatz zu untersuchen.
Der erstellte Ansatz bewertet die ergonomische Risikosituation eines Nutzers auf Basis
der Körperhaltung und der Arbeitsplatzbedingungen und leitet daraus Verbesserungsvor-
schläge ab. Relevante Bewegungen werden kontinuierlich von einem Sensornetzwerk mit
Beschleunigungssensoren und Gyroskopen erfasst, die an einem tragbaren Brillenrahmen
sowie an einer Armlehne eines Bürostuhls angebracht sind. Diese Arbeit schlägt ein neu-
artiges domänenspezifisches maschinelles Lernverfahren und Zustandsübergangsmodell für
die langfristige Ableitung von Körperhaltungen durch die Klassifizierung und Aggregation
von Ereignissen vor, die in den Sensorzeitreihen auftreten. Zusätzlich wird ein Manifold von
Bewegungen erstellt, der Schlussfolgerungen und Empfehlungen für ergonomisch relevan-
te Körperbewegungen ermöglicht. Schließlich demonstriert eine Software-Implementierung
die Techniken erfolgreich in der Praxis.
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Chapter 1

Introduction

Inertial Measurement Units (IMUs) have had significant improvements in size, cost, and
energy efficiency that facilitate their use in everyday wearable devices [1]. In combination
with Edge-AI and on-device sensor data processing, new technical opportunities are now
emerging in a wide spectrum of applications [2]. Especially for the application area of fit-
ness but also increasingly in the health domain many intelligent sensing solutions emerged
in the last years [3].

Work ergonomics is a domain where wearable devices and intelligent sensing can improve
the health of a large number of people. One particularly relevant area of application is
the desk workplace. For example, according to the Sixth European Working Conditions
Survey by Eurofound in 2015, 57% of workers in the European Union including the United
Kingdom (EU28), work with computers, smartphones, and laptops at least a quarter of
the time [4]. Similarly, a Eurostat study has shown that the use of computers and the
internet in enterprises has steadily increased from 44% in 2012 up to 54% in 2019 [5].

Together with a steady increase in desk work, the amount of time spent sitting is also
increasing. 58% of people in the EU28 spend at least a quarter of their work time sitting,
with 28% spending even all or most of their time sitting [4]. This makes workers at a
desk workplace particularly prone to musculoskeletal disorders (MSDs) if they maintain a
poor sitting posture. Poor posture and low sitting activity have been confirmed by many
studies to correlate with MSDs and other health risks [6, 7, 8]. Despite the recognition of
prolonged sitting as the third most frequently reported work risk factor in the EU28 [9],
there is still no established solution for desk work ergonomics.

The goal of this work is to explore intelligent sensing techniques for the automatic assess-
ment of desk workplace ergonomic risk factors under considerations of low-power devices
and long-term sensing. This work presents a sensor setup using accelerometers and gy-
roscopes on the frame of wearable glasses and on the desk chair to measure relevant
movements. A novel domain-specific AI approach, the state transition model, extracts
the user’s posture, leveraging the long-term static nature of desk work. The approach
derives the posture by extracting and accumulating interesting events from the data which
optimizes both power usage and model accuracy. The extracted posture and workplace
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2 1 Introduction

conditions are used to determine workplace ergonomic risk factors such as sustained bad
posture. Based on the assessment, the system gives immediate suggestions for posture
improvement. The application of manifolds to the ergonomic movement data provides fur-
ther understanding of the data. Overall, this work provides valuable insights into typical
ergonomic risk factors of desk work. It also provides non-invasive supporting technology
with local privacy so that the approaches can be applied to real desk workplaces.

This work is structured as follows: Chapter 2 gives an overview of related work in the area
of intelligent sensings for desk work ergonomics. Chapter 3 introduces domain knowledge
about desk work ergonomics relevant for this work. Chapter 4 presents the wearable IMU-
based sensor setup for sensing the user’s posture during desk work. Chapter 5 explains
data preprocessing techniques that prepare the collected sensor data for further processing.
Chapter 6 presents the state transition model that derives the posture from the prepro-
cessed sensor data. Chapter 7 describes the ergonomic assessment of the derived posture
and applications for presenting the assessment to the user. Chapter 8 presents explain-
ing and reasoning about ergonomic movement data through the application of manifolds
to the data. Chapter 9 evaluates the techniques using a practical implementation with
recorded data. Chapter 10 discusses the findings of this work before Chapter 11 concludes
by summarizing the results and providing an outlook on future work.



Chapter 2

Related Work

This work investigates different intelligent sensing techniques for desk workplace ergonomics.
In particular, it looks at the sensor setup, the processing of the sensor data to extract the
user’s posture from the sensor data, the ergonomic assessment of posture, and the ap-
plication of manifolds to the ergonomic movement for explainability and reasoning about
the data. There is already work in research and patents on extracting and ergonomically
evaluating posture. However, previous approaches come with various shortcomings and
limitations. The first section of this chapter (Section 2.1) discusses related research on
sensing and data processing techniques. Concerning the application of manifolds to er-
gonomic movements, there is limited previous research. Section 2.2 describes how related
work applies manifolds to ergonomic movements.

2.1 Sensing for Desk Workplace Ergonomics

Section 2.1.1 looks specifically at academic works on sensing for desk workplace ergonomics
and Section 2.1.2 takes are closer look at patents in this area.

2.1.1 Academic Context

Paliyawan et al. [10] use a Kinect camera to capture video footage of a desk worker. Their
work uses the Kinect software to extract the orientation of 32 body joints which they use
to describe the body posture. Paliyawan et al. apply different machine learning methods
to classify whether the user is sitting still or moving. They also use a threshold-based
approach on the Kinect body joint data to determine when the user stands up. Paliyawan
et al. assign a health risk level, depending on how long the user sits still and doesn’t stand
up. If the user’s risk level is high, the user is then alarmed and given a report. According
to Paliyawan et al.’s work, the motivation for this approach is to encourage the user to take
small breaks, which prevents ergonomic injuries. Their work concludes that the system
is useful to users without interrupting the user’s work. It was also found that the visual
variety of the tracked objects negatively affects system performance.

Wu et al. [11] also use the Kinect camera and body joint extraction to determine the user’s
posture. Their work however explores how the extracted posture can be used to actively

3



4 2 Related Work

actuate furniture to match ergonomic guidelines. In particular, Wu et al. ask the user to
perform two predefined postures to extract postural features of the user. Based on these
postural features they calculate an ergonomically correct configuration of the desk chair
and table. The calculated configuration is either automatically adjusted or feedback is
given to the user. After an initial setup, the desk setup is not corrected anymore. Wu
et al. conclude that their sensing and actuation approach significantly the user’s postures
and helped users conform to ergonomic guidelines. Similar to Paliyawan, Wu et al. noted
that the accuracy of the model is impacted by the variety of clothes worn by the users.

Both Paliyawan et al. and Wu et al. use a video-based approach for posture extraction
to perform an ergonomic assessment of the posture. Collecting and processing video data
requires significantly more processing capabilities than inertial measurement-based ap-
proaches. Video data is also considerably more impeding on the user’s privacy. Paliyawan
et al. mention the user’s privacy in their work, but state that the original video data is
deleted after processing, which in their opinion avoids the problem. Wu et al. only initially
configure the desk setup and after that doesn’t give feedback anymore.

Prueksanusak et al. [12] use an array of pressure sensors embedded in the seating plat-
form and the backrest of a user’s office chair to measure posture. Using different machine
learning algorithms, they classify the collected time series of the sensors into five sitting
postures. For real-time processing, Prueksanusak et al. send the user’s data to a cloud
server. The distribution of postures over time is presented to the user using graph visual-
izations. With this, Prueksanusak et al. aim to promote the user’s understanding of their
sitting posture. Prueksanusak et al. conclude that the approach is capable to differentiate
the five sitting postures.

Jeong et al. [13] use a combination of pressure sensors embedded in the seating platform
and distance sensors in the backrest of a user’s office chair to measure posture. With
this data, they aim to detect different sitting postures. Jeong et al. use a k-Nearest-
Neighbor classifier to distinguish between eleven postures in the sensor time series. They
conclude that the mixture of pressure and distance sensors can accurately measure posture.
Although Jeong et al. do not propose any specific application of the proposed posture
extraction they mention the possibility to integrate the data with a real-time feedback
system.

The use of pressure and distance sensors in the user’s chair requires fewer processing
capabilities and power compared to a video-based system. The mentioned works on chair-
embedded sensing approaches only use the chair to sense posture. Therefore, postures of
the head can’t be detected. Similar to the works with cameras, the mentioned works on
pressure and distance-based sensing do not look at the mostly static nature of desk work
to design their processing.

Jun et al. [14] use three body-worn inertial measurement units (IMUs) to measure posture.
The sensors are placed on the user’s forehead using a headband, the arm using an armband,
and taped on the thorax. Jun et al. use the IMUs as inclinometers determining the
thorax angle, the head angle the arm angle, and the neck angle relative to a base posture.
Comparing the determined angles to the optimal ergonomic posture, Jun et al. determine
different measures to assess posture. One example of such a measure is the percentage of
time spent in predefined non-neutral angular ranges. They conclude that their IMU-based
approach can capture the user’s posture despite noting that there is inter-person variability
in the results.

Severin et al. [15] also use an IMU-based approach to measure the head posture. In contrast
to Jun et al., they create a neck wearable sensor array consisting of three IMUs. Severing
et al. propose a threshold-based system that discriminates between three posture risk
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levels depending on the angles of the sensors. The work also proposes real-time feedback
using text and audio. They conclude that the wearable can detect forward head posture
and that their system is portable and easy to use.

Sinha et al. [16] attach a smartphone to the rear upper trunk of the user. They collect
data from the inbuilt accelerometer, magnetometer, and gyroscope of the smartphone.
Moving windows of the sensor time series are then used to calculate different morphological
features such as mean absolute value, standard deviation, etc. Sinha et al. then use
different machine learning algorithms to classify between five sitting postures based on
these features. They conclude that it is possible to distinguish between the considered five
sitting postures using only the smartphone IMU data.

Jun et al., Severin et al., and Sinha et al. use a placement of IMUs that is not natural to a
user working at a desk. Jun et al. require the user to tape sensors to their body. Severin
et al. use a neck wearable which is not commonly used. And Sinha et al. attach a smart-
phone to the user’s upper trunk. Therefore, these approaches offer significant problems
for practical usability due to the impediment of the user.
Jun et al. and Severin et al. directly use the orientations as determined by IMU sensor
fusion to infer information of the posture. This approach is prone to the accumulation
of sensor drift over time in the sensor orientation fusion due to the errors of the sensor
signals. Both works also don’t specifically regard the effect of sensor drift in their analy-
sis. This is particularly problematic when implementing an ergonomic assessment solution
that captures posture over an extended period of time, i.e., over several hours.

2.1.2 Patents

The Inwerk GmbH [17] patented a system for interactive office ergonomics that uses an
IMU which is placed on the office chair of a user to detect their movement. The patent uses
the IMU data to infer ”moves” as a measure of the user’s activity similar to a pedometer.
The patent does mention the intent to collect a movement profile but does not explain an
algorithm to extract the features from the IMU data. The patent includes user notification
with either vibration, sound, or by actuating LEDs. These notifications are also released
when environmental factors cross guide values.

In their patent, the Wilkhahn Wilkening + Hahne GmbH & Co. KG [18] present a system
that combines a seat and a portable device including at least one movement sensor for
the characterization of a person’s movement. The patent uses the measurements to create
a movement profile. The movement profile contains movements along the body axis and
scattering of movements around the neutral positions of the seat. The patent presents the
idea of assessment of the movement profile within a time period. This assessment is then
envisioned to notify the user about the characteristics of their movement.

Both mentioned patents use IMUs to measure the user’s movement during office work.
They use the collected movement data to assess a movement profile with the goal to
release notifications when guide values are exceeded. However, similar to research on
sensing for desk work ergonomics the patents directly estimate movement characteristics
from the IMU data without addressing the long-term static nature of desk work.

2.2 Movement Manifolds for Ergonomics

As there is very limited work on the specific application of manifolds to desk work er-
gonomic movements, this section considers related work that uses manifolds for ergonomics
in general.
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Lin et al. [19] use movement manifolds to recognize patient handling activities for the
ergonomics of nursing workers. They use a wearable insole to sense and characterize
information about patient handling activities. The work uses manifold learning to project
the high-dimensional raw pressure data onto a low-dimensional manifold space. Similarity
comparison of the trajectories of the movements on the manifold with learned manifolds
is then used to determine the sensed activity. The work concludes that the manifold
can detect the intrinsic structure of the pressure data and helps achieve good activity
recognition accuracy.

Chen et al. [20] created a system for posture estimation of construction workers using a
single IMU. Their goal is to enable easy measurement of the construction worker’s posture
for safety monitoring. They use a neural network-based approach to infer the surface
level, the walking activity, and the gait phase from IMU data. Chen et al. then use
manifold learning with a Gaussian process dynamic model to translate from the extracted
low-dimensional movement characteristics back to a high-dimensional joint angle model of
the full human posture. They conclude that this approach can derive posture within small
deviations.

As the works of Lin et al. and Chen et al. demonstrate, there is already a body of
work on the use of manifold learning with the application to ergonomics. However, the
mentioned works do not specifically consider movements at the desk workplace but for other
applications. Also, the mentioned works use manifolds for activity recognition and posture
reconstruction. There is a particularly large gap in the use of manifolds for explainability
and reasoning about ergonomically relevant movements.

2.3 Summary

Previous work on sensing for desk ergonomics has focused primarily on different sensing
approaches for the user’s movements and approaches to feature extraction and ergonomic
evaluation directly from sensor data. None of the mentioned works utilizes the long-
term mostly static nature of desk work to develop specialized data processing techniques.
The high computing power and battery requirements of camera-based approaches make
processing hard to implement directly on-device. Pressure-based sensing approaches focus
on the desk chair and disregard the head posture. Previous work on IMU-based sensing
directly uses the orientation or position information of the sensor fusion to extract posture
which makes the approaches susceptible to sensor drift. Also, previous sensor placements
in IMU-based approaches impede the user which hinders practical usability. The use of
movement manifolds for explaining and reasoning about ergonomically relevant movements
are barely explored. The work explores intelligent sensing techniques to address the major
shortcomings of previous work on desk work ergonomics. The following chapter presents
the domain knowledge on desk workplace ergonomics that is relevant for this work.



Chapter 3

Desk Workplace Ergonomics

Domain knowledge about desk workplace ergonomics plays an important role throughout
this work. The following chapter introduces the desk work ergonomics to provide an
overview of the relevant domain knowledge for this work. Section 3.1 introduces the
terminology of desk work ergonomics and the reason why this particular application scope
is relevant. Section 3.2 presents relevant desk workplace ergonomic risk factors overall
and the specific importance of sitting posture. Section 3.3 introduces the four postures
regarded in this work. Section 3.4 discusses relevant environmental factors.

3.1 Terminology and Scope

The International Ergonomics Association defines ”ergonomics” (from Greek ergon (work)
and nomos (laws)) as follows [21]:

”Ergonomics [...] is the scientific discipline concerned with the understanding of
interactions among humans and other elements of a system, and the profession
that applies theory, principles, data, and methods to design in order to optimize
human well-being and overall system performance.”

Ergonomics is an interdisciplinary science comprising subjects such as anatomy, physiology,
psychology, but also engineering, human-computer interaction, and many more. Figure 3.1
gives an overview of the different areas of ergonomics. The goal of ergonomics is to apply
all these disciplines to design products, workplaces, or systems that suit the people who
use them.

In general, the application of ergonomics to workplace design is of interest because people
spend a significant part of their lives at work. Therefore, ergonomics has the potential to
severely impact the lives of many people. In recognition of the importance of ergonomics,
the EU has issued a series of directives requiring its member states to take measures to
encourage the ergonomic design of workplaces [22].

In the context of digitalization, a significant and constantly growing proportion of working
time takes place at a desk. For example, according to the Sixth European Working Con-
ditions Survey by Eurofound in 2015, 57% of workers in the EU28 work with computers,

7
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Figure 3.1: Areas of ergonomics (image taken from [23]). The bubbles represent different
disciplinary areas that are incorporated in ergonomics. Ergonomics is a multi-
disciplinary science aiming to optimize human well-being.

smartphones, and laptops, etc. at least a quarter of their working hours [4]. Similarly, an
Eurostat study has shown that the use of computers and the internet in enterprises has
steadily increased since 2012 up to 54% in 2019 [5]. A continuation of the trend towards
more computer work is expected. Therefore, the desk workplace is a particularly impor-
tant application area of ergonomics. Desk workplace ergonomics is simply the application
of ergonomics to the desk workplace.

3.2 Ergonomic Risk Factors of Desk Work

People at the desk workplace are particularly exposed to ergonomic risk factors which can
be defined as ”actions or conditions that increase the likelihood of injury to the muscu-
loskeletal system” [24]. The scope of risk factors in the desk workplace is multifaceted
and includes individual physiology, work environment, technology, work organization, and
psychosocial factors, among others [25].

Ergonomic risk factors related to sitting posture at the desk are especially relevant. In
particular, it has been shown that prolonged periods of sitting and poor sitting posture are
associated with a wide variety of physical conditions such as back pain, an increased risk
for musculoskeletal disorders (MSDs), health risks such as coronary heart disease, diabetes,
overweight, certain types of cancer, and even psychological disorders such as depression
and anxiety [7, 26, 27]. Since it is predicted that the proportion of desk work and the
associated duration of sitting will increase, the health risks of incorrect sitting posture are
attracting more and more attention. The risk of poor posture and low activity at work
is also recognized by government bodies [8] and in public media [28]. A physiotherapist
interviewed as part of this work indicated that about 20-40% of the work-related issues
they treated were related to sitting.

The assessment of ergonomic risk factors is complicated by the fact that there is a multi-
tude of individual factors that make each person’s ergonomic risk situation different. Such
factors include gender, physical exercise, mental stress, and more [29]. For example, a
person that does sports outside of the work at the desk can compensate for lower sitting
activity while a person who does not exercise suffers from a greater risk of postural prob-
lems. Also, different people have different musculoskeletal dispositions which is why the
same posture may have different implications for them.
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Despite the awareness of the severity of the related issues for desk workers and the ex-
tensive research on the ergonomics of desk work, there is a lack of practical smart sensor
solutions for the automatic assessment of desk workplace ergonomic risk factors as shown
in Chapter 2. Such sensing solutions could enable a personalized objective assessment of
the user’s desk workplace ergonomic risk situation. This is particularly striking as intel-
ligent sensor solutions especially in the application area of fitness [30, 31, 32] but also
increasingly for health are already widely used [33].

Another relevant factor is that the long-term nature of desk ergonomics also makes com-
prehensive medical studies impractical. A sufficiently long-term controlled study requires
a considerable amount of effort and is difficult to implement in the normal working envi-
ronment of individuals.

This work conducted an interview with a physiotherapist who has over 20 years of ex-
perience in treating conditions associated with desk work. The interview consisted of a
number of open questions to get an impression of relevant factors of desk ergonomics from
the medical point of view. A summary of the interview can be found in the appendix
(Section A). In the interview, the expert said that the relationship between sitting pos-
ture and MSDs is practically strongly established. However, they added that due to the
long-term nature of ergonomics, the actual study situation is difficult. In the interview, it
was emphasized that each patient’s risk situation was highly variable. People between 40
and 50 years of age and people that don’t do sports are most affected. However, there are
also younger patients.

3.3 Considered Postures

Sustained poor posture is a particularly important desk workplace ergonomic risk factor.
Research showed that office workers with chronic lower back pain sit in a more asymmet-
rical way than healthy workers [34]. This work focuses on four degrees of freedom (DoFs)
of the head and trunk because research found these factors to be particularly relevant to
the physical risk factors [35, 36]. For each of the four degrees of freedom, this work regards
whether the posture is neutral (center) or biased towards either side. It thereby discretizes
the postures. Figure 3.2 illustrates the four degrees of freedom.:

� Head angle denotes the vertical tilt of the head. The head angle may be either center,
up, or down. A non-neutral head angle may for example occur when the workstation
is not correctly set up so the user has to look down to see their monitor.

(a) Head angle (b) Head direction (c) Head tilt (d) Trunk direction

Figure 3.2: Four degrees of freedom (DoFs) for posture. For each of the DoFs, this work
regards whether the posture is neutral (center) or biased to either side.
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� Head direction identifies the torsion of the head around the body axis. The direction
may be center, left, or right. A bias in the head direction is very prominent for dual-
monitor setups where one screen is used more likely than the other. This is often
the case when the monitors are used for different purposes.

� Head tilt is the horizontal tilt of the head. The head may be either center, lefttilt or
righttilt. Head tilt is often a postural habit of users or may occur due to fatigue.

� Trunk direction denotes the torsion of the trunk around the body axis. The three
possible configurations are center, chairleft, or chairright. Like head direction, a bias
in trunk direction may be caused by predominantly using one screen a dual-monitor
setup. This particular posture is also often a result of postural habit.

This work defines the overall posture of a person as the combination of the postures of the
four degrees of freedom. For example, a person can look up and to the right at the same
time, while their head tilt and trunk direction are neutral. Thus, the overall posture is
described by specifying the posture of each of the four degrees of freedom.

3.4 Environmental Factors

Apart from the user’s posture, the office environment and the desk setup of the user can
impact their wellbeing at the desk workplace as well. Environmental factors that are rel-
evant for desk workplace ergonomics include temperature, relative humidity, lighting, and
indoor air quality (IAQ). In addition to these environmental factors, the workplace setup
of the user has an impact on the ergonomic risk. The user’s workplace setup includes
how they set up their sceen(s), desk, and chair. Relevant factors include but are not
limited to the head-to-display angle, head-to-screen distance, chair seat height, chair seat
depth, and workstation height [37]. There exist checklists and guidelines as well as special-
ized ergonomic furniture that aim to encourage good workplace setup and environmental
conditions [38].

Although the user’s sitting posture is the focus of this work, it also touches on how the
assessment of the work environment can be included. Through this, this work aims to
provide a perspective on a joint sensor-based assessment of postural and environmental
ergonomic risk factors.

3.5 Summary

This chapter introduced desk workplace ergonomics as the application domain for this
work. It showed that sustained poor posture and lack of postural activity are two par-
ticularly important desk workplace ergonomic risk factors. This chapter introduced four
particular postures for which poor posture and low postural activity are investigated in
this work. The following chapter introduces the sensing solution that measures the user’s
posture.



Chapter 4

Sensing Posture with IMUs

The automatic evaluation of postures requires a sensing setup that captures the user’s
body posture. The following chapter describes this work’s sensing approach that uses in-
ertial measurement units (IMUs) for measuring the user’s posture. Section 4.1 discusses
the considerations involved in using IMUs to measure posture. Section 4.2 presents con-
crete sensor placement using a sensor on a wearable glasses frame as well as on the armrest
of the desk chair. Section 4.3 shows the practical sensor implementation. Section 4.4 ad-
dresses sensor synchronization between multiple sensors. Section 4.5 demonstrates typical
characteristics of the recorded data in a feasibility study. Finally, Section 4.6 gives an
overview of the processing pipeline to derive posture from the sensor data.

4.1 Considerations for the use of IMUs

This work uses inertial measurement units (IMUs) as the primary means to measure move-
ment data for posture extraction. An IMU is a measurement device that combines an
accelerometer, a gyroscope, and sometimes a magnetometer to measure movement [39].
Apart from using the raw sensor data of accelerometers and gyroscopes, IMUs combine
sensor information of the sensors to derive device orientation or position. This is called
sensor fusion [40].

This work uses IMUs instead of other sensing approaches, in particular cameras. One
reason for this decision is that human motion capturing using IMUs creates less data
compared to video-based approaches. The lower amount of data requires much lower
computing capabilities and also less processing power. These advantages are particularly
relevant to be able to implement the processing directly on mobile devices where compute
power limitations and battery runtime play an important role.
A second important factor is that the collection of IMU data is much less invasive to
the user’s privacy than permanently recording video of the user [41]. Cameras not only
capture the user’s posture but everything in the frame. This includes possibly identifying
or sensitive information about the user or bystanders. Therefore, the use of IMUs presents
a purpose-bound and privacy-friendly sensor solution.

11
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One significant disadvantage of using IMUs for position or orientation information using
sensor fusion is the accumulation of sensor drift. As the measurements of gyroscopes and
accelerometers are inherently noisy and biased, the integration of acceleration and angular
velocity accumulates errors over time. Therefore, sensing with IMUs over longer periods
of time requires a way of handling the accumulation of sensor drift. Different approaches
combat this issue in practice, using more complex models like Kalman filters or by fusing
the IMU data with other sensors such as for example GPS [40]. Another possible approach
is to limit the time spans considered so that sensor drift is limited in the time frame under
consideration.

In addition to the IMU data for extraction of a user’s posture this work utilizes environ-
mental sensors. These sensors measure for example light, noise, humidity, and air pollution
that are relevant factors for desk workplace ergonomics.

4.2 Sensor Placement

This work utilizes two sensor boards for sensing the user’s posture. One board is mounted
on the side of the temple of a wearable glasses frame. The other is on the armrest of
the office chair. See Figure 4.1 for a sketch of the sensor placement. This joint approach
to measuring motion allows deriving more complex postures than known approaches that
measure at only one location, i.e., only at the chair, or with a head wearable.

Figure 4.1: Sketch of the sensor placement (image taken from [42], modified). The red
squares denote the position of the two sensors on the frame of wearable glasses
and the armrest.

Previous work established the use of head-placed IMUs for detecting postures that are
relevant for ergonomics [15]. The sensor placement on the glasses allows to detect even
small movements and changes in orientation of the user’s head as the movement of the
head translates into a movement of the glasses. Therefore, this sensor is particularly
important for the detection of head posture. The placement on the side of the wearable
glasses frame’s temple ensures that the sensor does not interfere with the user’s view or
hinder head movement.

The second sensor on the desk chair’s armrest provides additional information on the
movement and the orientation of the user’s spine. In particular, the combination of the
sensor data of the head and the chair provides estimating information about the torsion
of the spine. Additionally, the sensor on the armest provides information about arm
support on the chair and the inclination of the chair. An important consideration with
the placement is that the board may not interfere with the use of the armrest.

This sensor placement provides a simple and unintrusive approach to measuring head and
trunk postures. In particular, this setup is able to measure the posture for all of the
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considered degrees of freedom (see Section 3.3). Additional sensors require more power
and additional synchronization and computational effort. Therefore, this work uses only
the two necessary sensors. Nevertheless, additional sensors on the backrest may provide
more information when considering more and other postures. In particular, sensors on the
backrest or under the seating platform can provide more data on the sitting posture. Note
that the methods proposed in this work can generally be expanded to work with only one
or more than two sensors.

4.3 Sensor Implementation

This work uses the Arduino Nicla Sense ME board as a sensor platform. See Figure 4.2
for an image of the board.

Figure 4.2: Image of an Arduino Nicla Sense ME board (image taken from [43], cropped).

The Ardunio Nicla Sense ME is an Arduino-based development board. The board has a mi-
croelectromechanical systems (MEMS)-based IMU with an accelerometer and a gyroscope.
Additionally, the board contains a magnetometer, a pressure sensor, and an environmental
sensor that measures humidity, temperature, and volatile organic compounds (VOC). This
work also utilizes the virtual orientation sensor provided by the BSXLite Sensor Fusion
library that is integrated into the IMU. This virtual sensor fuses the accelerometer, gyro-
scope, and magnetometer information to provide information about the orientation of the
board. Additionally, the BSX Library contains calibration algorithms for the sensors [44].
The board also contains other physical and virtual sensors that this work doesn’t use [43].

Table 4.1 contains a list of the used sensors, their axes, sensor ranges, resolutions, and
the applied sampling rates. As the sensor specifications illustrate this particular setup can
sense the user’s movements very precisely. Also, the environmental sensors on the board
enable additional evaluation of environmental ergonomic features.

In the prototype setup, the sensor on the glasses frame is soldered to a breadboard as
the form factor of the board prohibits the flat placement of the board on a surface. The
breadboard is then taped to the side of the glasses (see Figure 4.3a). Weighing about 4
g, the weight of the sensor itself is not noticeable, barring the added weight of a battery.
For a market-ready implementation of the approach, this work envisions integrating the
sensor directly into smart glasses.

In this work’s implementation, the board on the armrest is embedded into a 3D-printed
frame that is taped to the armrest of the chair (See Figure 4.3b). This allows for placing
the sensor such that it does not prevent the user from using their armrest. It also ensures
the safety of the user and sensor in case of possible contact.

The Nicla board also contains a Bluetooth Low Energy (BLE) module that enables wireless
communication between the sensors and the processing device.
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Table 4.1: Specifications of the used sensors on the Arduino Nicla Sense ME board. If a
field does not apply or no data was found, the field is crossed out.

Sensor Sensor Type Axes Sensor Range
Sensor

Resolution
Sampling

Rate

BHI260AP Accelerometer x, y, z
±16 g

≈±157.91 m/s2
1

209
m/s2 50 Hz

Gyroscope x, y, z
±2000 ◦/s

≈±34.91 rad/s

1

16
◦/s 50 Hz

Virtual
Orientation

Sensor
x, y, z, w quaternion - 50 Hz

BMM150 Magnetometer x, y, z
±1300 µT (x,y)
±2500 µT (z)

0.3 µT 50 Hz

BMP390 Pressure - 300 hPa–1250 hPa 0.016 hPa 1 Hz

BME688 Temperature - −40 ◦C–85 ◦C 0.5 ◦C 1 Hz

Humidity - 0 %–100 % - 1 Hz

VOC
b-VOC

[45]
various scalings - 1 Hz

(a) Image of the wearable glasses prototype with
the attached sensor board.

(b) Image of the encased sensor board attached to
the armrest of the chair

Figure 4.3: Images of the used sensor boards. The left image shows the wearable glasses
prototype. The Nicla board is attached indirectly via a soldered breadboard
to place the sensor firmly despite the uneven form factor of the Nicla Board.
The right image shows the second Nicla board that is encased in a 3D-printed
protection casing attached to the armrest of a desk chair.
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4.4 Sensor Synchronization

To jointly use the information of the different sensors, the measurements have to be syn-
chronized. However, sensor synchronization, especially with wireless transmission of the
sensor data is non-trivial and subject to multiple synchronization issues.

1. The sensors have only local times and no understanding of a global time.

2. Each sensor’s local clock may be subject to clock drift and offset.

3. The wireless transmission of the sensor data introduces different non-deterministic
delays such as the time from accessing the network interface to sending, access time
to the channel, transmission time at the physical layer, and receiving time spent in
the arrival network interface.

In summary, a solution is necessary to tag the sensor data with an estimate of a timestamp
of the time of measurement with respect to a global time. Note that ”global” time here
only means global for the system and not global with respect to e.g. Coordinated Universal
Time. Time synchronization is a well-studied problem in the literature [46].

Since the methods described later in the processing pipeline of this work are capable of
learning to adapt to small timing distortions, this work uses the following approach for
sensor synchronization. The basic idea is to periodically send a timestamp every second
from a central device to the sensors from which the sensors estimate the difference of their
local time tlocal to the time of the central device tcentral.

∆t = tlocal − tcentral (4.1)

To account for non-deterministic fluctuations in the time lag between the central device
and sensor, the difference is estimated using the mean difference between received time
and local time over k values. In practical experiments smoothing over k = 10 timestamps
results in a sufficiently stable estimation of the time lag.

∆t =
1

k

k∑
i=1

tlocal,i − tcentral,i (4.2)

Such fluctuations may occur due to particularities of the data transmission software stack
or due to radio frequency noise during signal transmission.

When tagging data, each of the sensors adds the local delta to their local time to estimate
the global time of measurement.

t̂central = tlocal + ∆t (4.3)

Afterward, the tagged time series of the different sensors can be globally aligned. Without
loss of generality, the calculation rule is explained for two time series. For more time series,
the calculation rule can be performed pairwise until all time series are merged. For two
sensor time series the alignment of their data frames can be performed as follows:

1. Trim both time series to the smallest common start and end timestamp. Different
start and end timestamps are expected, as the moment of subscription to the sensor’s
notifications is expected to be subject lag.

2. All non-monotonic timestamps are removed. Non-monotonic timestamps can occur
when the variations in the timelags between sensor and central device are too large
for the averaging mechanism to handle. That is when the fluctuation is larger than
the sampling rate of 50 Hz and thus the order of timestamps is no longer monotonic.
However, when averaging over 10 timestamps such error could only be observed
about every 2000 samples in practice. Therefore, the loss of data is accepted.
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3. The time series are joined based on the timestamps of the sensor data. For each
sample from the first sensor, the last sample from the second sensor whose timestamp
is less than or equal to the timestamp is matched. (see also [47]). This work joins the
data on the timestamps of the glasses sensor. This choice is purely by convenience.

4.5 Feasibility

This section takes one concrete raw sensor time series example to demonstrate relevant
characteristics of the raw data. Thereby, this section proves the overall feasibility of
the sensing approach and shows important features of the data that influence the signal
processing approach.

The concrete example is a roughly 30-minute long section of a 2-hour long recording.
During the recording, the user performed unsupervised desk work. Figure 4.4 shows the
raw motion sensor time series of the glasses and chair sensor. Note that the orientation
data has four axes. This is because this work uses quaternions to represent the orientation.
Quaternions provide a variety of advantages over other representations for rotations such
as avoiding singularities and numerical advantages. The motion data is normalized for
easier comparability of the data. The environmental data of the glasses sensor during this
recording can be found in the appendix (Figure B.1c).

(a) Raw motion data of the glasses sensor

(b) Raw motion data of the chair sensor

Figure 4.4: Example for raw motion data during unsupervised desk work. The upper plot
shows the motion data of the glasses and the lower plot of the chair sensor.
The annotated shapes mark particular features of the data which are further
explained in Figure 4.5, Figure 4.5 and Figure 4.7.
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Looking at the raw data of the head-mounted sensors, three particularly notable charac-
teristics of the dataset can be seen:

1. The acceleration and angular velocity are mostly static with distinct peaks whenever
the user changes posture (Figure 4.5). The peaks are particularly clear to see looking
at the angular velocity. Depending on the posture before and after a movement the
height of the peaks and the affected axes during change of posture vary. The posture
changes can also be seen in a change in the orientation of the sensor.

Figure 4.5: Example for motion data of the glasses sensor during posture changes. The
data is mostly static with distinct peaks whenever the user changes posture

2. There are periods where the user does not change posture at all (Figure 4.6). These
periods can be one or even up to multiple minutes long. In these periods the sensor
data is mostly static.

Figure 4.6: Example for motion data of the glasses sensor between posture changes. Be-
tween posture changes the data is mostly static.
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3. Looking at the orientation data over longer periods, it can be seen that the sensor
orientation drifts over time (Figure 4.7). This indicates the accumulation of sensor
errors over time in the orientation sensor fusion algorithm. Therefore, an approach
for posture extraction over longer periods of time needs to account for the accumu-
lation of sensor drift.

Figure 4.7: Example for sensor drift in the raw orientation data of the glasses sensor. Over
sensor errors accumulate in the orientation data fusion.

The inspection of raw sensor data reveals the typical mostly static sensor time series with
distinct peaks in acceleration and angular velocity, as well as the change in orientation
whenever the user changes posture. This shows the general feasibility of the data to
characterize the posture of the user. However, further processing is necessary to extract
the actual posture from the raw sensor time series data.

4.6 Processing Pipeline Overview

Further processing is necessary to derive the posture from the motion data collected with
the sensor setup. This section outlines the processing pipeline for deriving and assessing
posture based on the sensor data. The following chapters then explain the different modules
of the pipeline in-depth.

This work uses a modularized approach that divides the overall processing pipeline into
seven separate modules. Figure 4.8 gives a graphical overview of the modularized pipeline.

Figure 4.8: Overview of the processing pipeline. The gray blocks denote the modules of
the pipeline. The arrows represent the data flow through the modules. Dotted
borders mark the devices on which the modules are located. Note that one
single physical device may take the role of multiple of the devices.

� The first module of the pipeline is the data collection module. This module measures
relevant movements of the user and jointly collects the data on the processing device.
Chapter 4 already outlined the sensor setup for data collection. Section 9.1 goes into
detail about the practical data collection setup and process.
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� The data preprocessing module prepares the collected raw data for further processing.
Chapter 5 explains the applied signal processing methods and different approaches
for the extension of the dataset.

� The state transition model (Chapter 6) performs the actual extraction of the posture
from the sensor time series. This novel domain-specific machine learning approach
builds on classifying and aggregating interesting events in the sensor time series
when the user changes posture. The state transition model itself consists of three
sub-modules:

– The transition extraction module detects the moments in the time series where
a change of posture occurs. Around each of these moments, a window of the
sensor time series is extracted. Section 6.4 describes this work’s approach for
the extraction of the transitions.

– The transition classification module determines the change before and after
every transition using the extracted transition windows. Section 6.5 elaborates
on the chosen classification approach.

– The posture derivation module takes the classified sequence of transitions be-
tween postures and aggregates the transitions to derive the actual posture after
the transitions. Section 6.6 presents the derivation of posture.

� The posture evaluation module assesses the derived posture with respect to the desk
work ergonomic risk factors. Section 7.1 explains the calculation of comprehensive
posture tendency and activity scores.

� Finally, the user application provides the user immediate action recommendations
for improvement based on their assessment as well as the possibility to review their
ergonomic assessment which is elaborated in Section 7.3.

This work chooses the approach of modular decomposition for engineering purposes. Each
of the modules has clear boundaries and expected behaviors at design time. This allows
for the design and evaluation of each individual module which simplifies the overall system
design. This also makes tracking system performance easier. In contrast to an end-to-
end approach, the modularized approach allows modifying or substituting each module
with limited effects for the overall system. This is particularly important for systems
using machine learning, as even small changes in the dataset or preprocessing may have
an unforeseeable impact on the model performance. With the clear module boundaries,
performance changes can be investigated for each individual module and therefore possible
issues are easier to detect and address.

As Figure 4.8 indicates, the modules of the processing pipeline may be distributed over
three devices: The sensors, which collect movement data, the processing device that col-
lects the data from the sensors, derives the posture from the data and evaluates the posture,
and the output device on which the user application is implemented. It is important to
note that these three devices do not have to be physically different devices. In particu-
lar, this work envisions implementing the posture extraction directly on the sensor. For
example, smart glasses may perform both the role of one sensor and the processing device.

4.7 Summary

This chapter introduced a sensor solution using two IMUs placed on the frame of wearable
glasses and on the armrest of the desk chair to sense posture in the context of desk work
ergonomics. The investigation of an example recording showed the general feasibility of
the sensing approach to sense relevant movements. An outline of the further processing
pipeline to derive and assess posture based on the sensor data was given. The following
chapters explain the different modules of the pipeline in-depth.





Chapter 5

Data Preprocessing

Data preprocessing is an essential technique for machine learning as the capabilities of the
machine learning model to extract information from the dataset strongly depend on the
quality of data. The following sections describe different signal processing techniques to
improve data quality (Section 5.1 and Section 5.2) and data augmentation as a tool to
extend the dataset (Section 5.3).

5.1 Denoising

Like all signals measured by real sensors, the data measured by the MEMS sensors contains
noise and jitter due to for example thermal effects [48]. Practical experimentation shows
that the presence of noise can negatively impact the performance of machine learning
models. Therefore, it is important to reduce the noise in the data set. At the same
time, noise reduction should preserve the general signal characteristics so that no relevant
information is lost.

This work uses a moving average filter to filter noise. Practical experiments have shown
that a simple moving average filter with a window size of 20 samples = 400 ms performs
best. Other possible noise filtering approaches are using an exponential moving average
filter or wavelet denoising. However, in practice these methods performed worse.

The moving average with a window size of k samples at time t is calculated as:

MAk,t =
1

k

t∑
i=t−k+1

xi (5.1)

The calculation of successive moving average values can be efficiently realized by using
the fact that at every step a new value xn+1 enters the sum and the oldest value xn−k+1

drops out. This allows the cheap real-time computation of the moving average filter.
Therefore, this approach is well suited for the application in on-device signal processing
where compute and power limitations are relevant.

MAk,t+1 = MAk,t +
1

k
(xn+1 − xn−k+1) (5.2)
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5.2 Normalization

While it was shown that it is not strictly necessary to normalize inputs for a neural network,
practical experience has proven that it can make training faster and minimize the risk of
getting stuck in local minima [49]. Normalization of the features also makes comparing the
general signal shape of sensors with different scales easier. Therefore, this work performs
standardization (also called Z-score normalization) on the input data before feeding it
into neural networks. Unless mentioned otherwise, plots in this work show the normalized
sensor time series. Therefore, the axis of upcoming plots with the measurements is unitless
(indicated with ”[1]”).

Standardization scales the dataset X = (Xi)
n
i=1 by removing the empirical mean of the

dataset µ and dividing by the empirical standard deviation of the data σ:

µ =
1

n

n∑
i=1

Xi (5.3)

σ =

√√√√ 1

n− 1

n∑
i=1

(Xi − µ)2 (5.4)

X ′ =
X − µ

σ
(5.5)

5.3 Data Augmentation

In the presence of sufficiently large datasets, neural networks have been shown to perform
remarkably well in classification tasks. However, in many real-world tasks, the amount of
labeled data available may be limited due to the cost of collecting and labeling data. At
the same time, neural networks are prone to overfitting when fed with too few training
examples. One way to combat this and make the model more robust to overfitting is to
increase the amount of available data by synthetically adding variations of existing data
to the dataset, which is called data augmentation.

This work uses a selection of techniques to manipulate existing data to synthetically create
data that is representative of actual recorded data. In particular, the data augmentation
techniques manipulate the transition data in a way that preserves the identity of the
transitions. This allows the model to learn to recognize and correctly classify such invari-
ant transformations. The techniques used in this work are jittering, scaling, magnitude
warping, and time warping. Figure 5.1 visualizes the four different techniques applied to
example time series.

� Jittering adds random noise to the signal. In particular, this work adds zero-mean
normally distributed noise as this noise is similar to thermal noise in the sensors.

x′ = x + N (0, σ2) (5.6)

� Scaling takes the original time series and multiplies it with a number that is normally
distributed with the mean 1. These kinds of variations may occur when a user
performs similar movements but at different speeds.

x′ = x ∗ N (1, σ2) (5.7)
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Figure 5.1: Plots of different time series data augmentation techniques for an example time
series. The plots show the time series of the orientation sensor on the glasses
for one transition window. The original time series (top row) gets manipulated
by jittering, scaling, magnitude warping, and time warping. The resulting
modified time series are plotted below the original one.

� Time warping manipulates the data by smoothly distorting the time intervals be-
tween samples using normally distributed distortions. This work uses a cubic spline
with randomly generated anchor points to create a smooth distortion curve. Fig-
ure 5.2 gives an example of a time distortion curve. The time warped data is obtained
by linearly interpolating the original data according to the distorted timescale. Sim-
ilar modifications as time warping occur when a user makes the same movement at
different speeds. Time warping also simulates distortions in time similar to when the
time synchronization of sensors is imperfect.

� Magnitude warping changes the data by multiplying the original data with a smooth
curve that is centered around one. As a curve, this work uses a cubic spline with
several generated anchor points at random positions and with random magnitudes
determined by a normal distribution centered around one. Figure 5.3 shows an
example of such a curve. Such changes to movements may be seen when the same
movement gets executed with a slightly varying trajectory.
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Figure 5.2: Example time warping time distortion curve. The resulting time series is ob-
tained by distorting the time axis according to the time distortion curve and
by linearly interpolating the data according to the scaled time.

Figure 5.3: Example magnitude warping scaling curve. The resulting time series is ob-
tained by multiplying the original data magnitude with the scaling curve.

5.4 Summary

This chapter presented denoising and normalization as relevant signal preprocessing tech-
niques in the context of this work. It also demonstrated data augmentation as a tool to
extend the collected dataset in semantically meaningful ways. After the preprocessing, the
data is ready for the actual extraction of posture which is explained in the next chapter.



Chapter 6

State Transition Model

This work presents a novel domain-specific AI approach for the derivation of posture from
the preprocessed sensor data, the state transition model. Section 6.1 explains the fun-
damental idea of the approach. Section 6.2 clarifies the notion of states and transitions.
Section 6.3 explains the technical background for the state transition model. The following
three sections then explain the three main steps of the state transition model in detail:
The transition extraction detects transitions and extracts small sensor time series win-
dows where a change between posture occurs (Section 6.4). The transition classification
distinguishes the extracted transitions to infer the posture before and after each transition
(Section 6.5). Finally, the posture derivation derives the user’s posture sequence from the
sequence of classified transitions (Section 6.6).

6.1 Fundamental Idea

Previous approaches directly derive posture from the sensor time series by moving a win-
dow over the sensor time series. They then directly classify the posture for each window.
However, as the user sits mostly statically during desk work, they only rarely change pos-
ture. This work takes this observation to create a domain-specific machine learning model
for posture extraction from the time series data. The fundamental new idea is to only
consider the sensor data where the user is actually moving. This approach classifies these
movements as transitions between postures. The actual posture is then determined in a
second step by aggregating the transitions between the postures. Figure 6.1 visualizes the
fundamental idea of the state transition model.

This work refers to this approach as ”state transition model” for postures derivation. The
reason for this is that the fundamental idea is to indirectly derive the static state, here
posture, by extracting and aggregating the transitions between postures. This approach is
inspired by pedestrian dead reckoning (PDR) where also, starting from a known position
successive position displacements are added up [50] to derive the position over time.

This approach has a variety of advantages:

25
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Figure 6.1: Fundamental idea of the state transition model for posture extraction. The
image shows an example where a user changes their posture from looking right
(from the user’s point of view) to looking left. Previous approaches for posture
extraction continually look at windows of the time series data and directly
classify the posture for every window (indicated with the blue arrows). This
work’s approach instead only looks at the transition between postures and
classifies the transition (green arrow). Then, in a second step, the approach
derives the actual posture from the extracted transition. Note the broken-up
time axis as postures are potentially being held over long periods of time.

1. It is more compute-efficient as the primary signal processing only needs to be active
when there is relevant movement and can be inactive otherwise. Therefore, power
can be saved by reducing the signal processing when no relevant movement is de-
tected. This helps to implement the system directly on mobile devices where power
consumption is relevant.

2. Instead of continuously monitoring the time series the model only investigates the
transitions. Consequentially, similar to PDR, the method is more robust against the
accumulation of sensor drift over time since the time durations under consideration
are much shorter.

3. In contrast to most of the sensor time series where the user sits statically, the ac-
celerometer and gyroscope can measure the dynamic movement during transitions.
This means that the transition classification does not have to rely only on the static
orientation, but can also use acceleration and angular velocity.

4. Domain knowledge about the posture transitions and common movement sequences
can be incorporated into the classification of transitions and derivation of posture
from them. This use of domain knowledge improves the overall system performance.

6.2 States and Transitions

To better understand the state transition model, this section clarifies the terms state and
transition in the context of the state transition model. This work interprets posture as a
continuous-time dynamic system with a state that evolves over time and transitions that
modify the state at discrete times. Figure 6.2 visualizes the idea of the state-transition
understanding of posture.

In terms of this state transition understanding of posture, the state is the overall posture
of the user with regard to the four degrees of freedom introduced in Section 3.3. Following
that notation, the overall state is defined by the combined state of the four DoFs (see
Section 3.3). This work uses two notations to refer to a state: First, as a textual notation,
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Figure 6.2: Visualization of the state transition understanding of posture. This work inter-
prets posture as a continuous state system with posture as its state. Transitions
occur at discrete times and modify the state. The transitions (gray boxes) are
characterized by the state before and after the transition. The states are ei-
ther characterized by a textual notation or by a vector notation indicating the
orientation in all four degrees of freedom.

the overall posture is described by joining the DoFs with a plus, e.g. up+left describes
the posture where the head angle is up and the head direction is left. For simplicity,
center is omitted. Instead center describes the posture where all four DoFs are neutral.
To describe a transition from one posture to another posture the notations of the two
postures are joined by an underscore, e.g. center left is the transition from the neutral
posture to the left head direction.

And second, the vector notation p ∈ {−1, 0, 1}4 where each of the four entries describes
the state of one DoF. The order of entries is given by the order of mention in Section 3.3
1 and −1 describe the two non-neutral postures and 0 describes the neutral posture. As
an example, left = [0, 1, 0, 0] and down+right = [1,−1, 0, 0].

6.3 Technical Background

Before going into detail about the state transition model, the following section presents
some technical background for the model. This section first introduces convolutional neural
networks (Section 6.3.1) and then Hidden Markov Models (Section 6.3.2).

6.3.1 Convolutional Neural Networks

Neural networks are used useful in a wide range of applications. Many applications use
neural networks to classify data. Convolutional neural networks (CNNs) are a specialized
kind of neural network that is designed to process data that has a grid-like topology. CNNs
are primarily known for their use in computer vision tasks. However, CNNs also have been
successfully applied to time series data which can be thought of as a 2D grid consisting
of one dimension for the features per timestep and one dimension for time. The following
section introduces the basic structure and properties of CNNs.

Although the exact structure of a CNN varies depending on the application, most CNNs
follow a basic structure: They consist of a series of convolutional layers and pooling layers
for feature extraction. After that, the extracted features are flattened to one dimension and
fed into fully connected layers for the actual classification. Depending on the application
the number and size of the individual layers may vary [51].

The basic building block of a convolutional neural network is the convolutional layer which
gives CNNs their name. Convolutional layers build upon the mathematic operation con-
volution [51]. Given functions i and k the convolution is defined as:

f(t) = (i ∗ k)(t) =

∫
i(a)k(t− a)da. (6.1)
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CNNs extend that notation to typically two dimensions and use the discrete convolution.
In CNN terminology f is usually referred to as the input, g as the kernel, and f as the
feature map. Usually, multiple kernels are used [51]. The output of a convolutional layer
can be computed as:

f(i, j) = (i ∗ k)(i, j) =
∑
m

∑
n

i(m,n)k(i−m, j − n) (6.2)

Figure 6.3 visualizes the idea of 2D-convolution.

Figure 6.3: Visualization of 2D-convolution (image taken from [51]). The kernel is moved
over the input. At each position of the kernel, the output is computed as the
sum of the pairwise product of the kernel and input at that position.

The utilization of convolutional layers yields three advantages over basic fully connected
neural networks [51]: First, instead of describing the interaction between every input and
output unit, CNNs typically use kernels much smaller than the input to detect features
in a local neighborhood, which results in sparse representations. This means CNNs need
to store fewer parameters and need fewer operations. Second, the same kernel is used to
calculate features over the whole input (also called parameter sharing). Therefore, this
reduces the storage requirements of the model. And finally, the convolution is invariant to
certain transformations which are common in image and time series data, e.g. translation
in space or time respectively.

Pooling layers are another building block of CNNs. Pooling performs a similar operation
to the convolutional layer in that it moves over the input and investigates rectangular
neighborhoods. However, instead of convoluting the neighborhood with a kernel to com-
pute the output, a pooling function reports a summary statistic of the neighborhood. For
example, max pooling reports the maximum value within the rectangular neighborhood.
Pooling accumulates knowledge from a local neighborhood and reduces the data size for
later layers. The summarization of the pooling layer also helps the network to learn to
become invariant for certain transformations [51].
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The ability of CNNs to detect local dependencies while being memory and computationally
efficient results in variations of CNNs being applied for classification tasks on low-power
devices [52, 53]. This trend is accompanied by research on optimizing CNNs in particular
for the application on low-power devices [54].

6.3.2 Hidden Markov Models

A Hidden Markov Model (HMM) is a stochastic model that is used to model processes with
unobserved (or hidden) states and observed emissions [55]. One particularly common task
of HMMs is to derive the most likely sequence of hidden states from an observed sequence
of emissions. A variety of applications such as for example speech recognition [56] and
bioinformatics [57] use Hidden Markov models.

The HMM is based on augmenting the Markov chain. A Markov chain models the prob-
abilities of sequences of random variables Q = q1, .., qi. Markov chains build upon the
assumption that the probabilities of the random state variables only depend on the last
state. This assumption is called the Markov assumption [55].

P (qt = a|q1, .., qt−1) = P (qt = a|qt−1) (6.3)

Formally, a Markov chain is defined by three components:

� A set of states S = {s1, .., sn}

� A transition probability matrix T where every entry Ti,j = P (qt = sj |qt−1 = si)
describes the probability of moving from state si to state sj

� An initial probability distribution I where every entry Ii = P (q0 = si) describes the
probability that the Markov chain starts in state si

The Hidden Markov Model extends that notion by introducing a sequence of observations
O = o1, .., oj that draw from a vocabulary V = {v1, .., vm}. The so-called emission prob-
abilities Ei(ot) = P (ot|qt = si) then describe the probability to observe an emission ot in
state si [55].

The task of deriving the most likely sequence of states Q from a sequence of observations O
is usually called Decoding. One particularly important algorithm for solving the decoding
problem is the Viterbi algorithm. Given an HMM λ the Viterbi algorithm recursively
calculates the most probable state sequence [55]:

vt(j) = max
q1,..,qt−1

P (q1..qt−1, o1..ot, qt = j|λ) (6.4)

To do this, the Viterbi algorithm uses dynamic programming to calculate the current most
probable state sequence given the values of the last timestep and the currently observed
emission ot.

vt(j) =
n

max
i=1

vt−1(i)Ti,jEj(ot) (6.5)

6.4 Transition Extraction

The first step in the state transition model is to detect when the user changes posture.
Afterward, a transition window is extracted around each detected transition for further
processing. The following section describes the detection mechanism for transitions and
how transition windows are extracted around them (Section 6.4.1), how mistakenly de-
tected noise-actions can be filtered (Section 6.4.2) and an approach to separate transitions
that are close in time (Section 6.4.3).
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6.4.1 Transition Detection

The initial step in the state transition model is to detect when a relevant movement
happens. Figure 6.4 shows an example of the extracted transition times for a sequence of
posture changes.

Figure 6.4: Example for transition extraction for a sequence of posture changes. The plot
shows the orientation data during a sequence of movements. The vertical lines
denote the detected transitions.

Interesting changes of posture express themselves as changes in orientation of the head
and the torso along different axes. The gyroscope measures the angular velocity of the
sensor. Therefore, utilizing the gyroscope is a natural fit to detect these posture changes in
orientation while being robust to other undesired movements. In particular, this work uses
the extreme values of the gyroscope to identify transitions. The extreme values indicate the
most significant motion and thus indicate where a relevant change of posture is probable.

Let gg = (ggi )ni=1 ∈ R3 and gc = (gci )
n
i=1 ∈ R3 be the gyroscope sensor time series of the

sensor on the wearable glasses and of the chair respectively. Then for i = 1, . . . , n calculate
the movement signal as follows:

τ(ggi , g
c
i )α = ||qgi ||2 + α ∗ ||gci ||2 (6.6)

The parameter α adjusts how much significance is given to the chair signal. Practical
experimentation determined α = 0.5 to perform well. Figure 6.5 shows an example of the
movement signal with annotated transition times.

Figure 6.5: Visualization of the transition extraction using gyroscope extreme values. The
plot shows the movement signal τ(ggi , g

c
i )α with α = 0.5 for a series of random

desk work movements. The horizontal lines show the derived transition times.
Around each transition, the gray area denotes the transition window. The
movement signal shows clear peaks whenever the user changes posture.

The local maxima of the movement signal are candidates for transitions. Local maxima
are calculated by a simple comparison of neighboring values. Despite signal processing,
both gyroscope signals may contain noise. Also, the user may not move smoothly between
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different poses. As a result, the transition candidates contain additional local maxima per
actual transition. Therefore, filtering of the candidates is necessary to remove potential
duplicate transitions. This work uses two different methods of filtering:

1. Transition candidates with a topological prominence of less than 1 are removed. The
topological prominence of a peak is defined by the vertical distance between a peak
and the lowest contour line that encircles it and no higher peak [58]. The filtering
of peaks with low topological prominence only keeps peaks that are significant com-
pared to their surrounding. Peaks with smaller topological prominence are likely
caused by noise or unwanted movement. Figure 6.6 visualizes the idea of topological
prominence.

Figure 6.6: Visualization of topological prominence (image taken from [59], modified). The
vertical arrows show the topographic prominence of the three visible peaks.
The dashed lines show the lowest contours. Peaks with high topological promi-
nence stand out particularly clearly from their surroundings.

2. When two or more transition candidates are closer than 50 samples = 1 s, the smaller
peaks are removed until the condition this not true anymore.

After determining the transition times, for each transition a window of 100 samples = 2 s
centered around each transition is extracted. These time series windows serve as the basis
for further processing.

6.4.2 Noise-Transition Classification

Despite the fit of the transition detection approach in Section 6.4.1 to detect relevant
movements, some of the detected transition candidates may still contain non-transition
noise actions. This may be the case due to noise in the signal. Another reason is that the
user performs movements which result in rotational velocities despite no actual change of
posture. To eliminate non-transition noise actions this work introduces a noise classifier.
This classifier estimates the probability of a candidate containing an actual true action.
Transitions with a low probability of being an actual change of posture can be simply
filtered out. Therefore, this approach acts as an optional filtering step after the basic
transition extraction. Figure 6.7 illustrates the filtering of noise actions using an example
time series.

This work formulates the detection of noise actions as a binary classification problem
with one class being ”true action” and the other being ”noise action”. A convolutional
neural network (CNN) with a sigmoid output layer performs the classification. The model
consists of a single convolutional layer with max pooling before the model flattens the data
for classification. The model architecture is intentionally simple to mininize the compute
and power requirements of the model. An additional dropout with a dropout frequency
of 0.5 reduces the likelihood of overfitting to the training data. For training Adam [60] is
used as an optimizer and categorical cross-entropy as a loss function. Early stopping acts
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Figure 6.7: Visualization of the filtering of noise-transitions. The plot shows the time series
of the orientation sensors during random desk work activities. The solid lines
indicate the extracted transitions. Each transition is annotated with the output
probability to be a true transition. Transitions with a probability of p < 0.5 are
identified as noise-transition and are consequentially masked (dashed lines).

as an additional regularization method. See Figure 6.8 for a visualization of the model
architecture.

Figure 6.8: Architecture of the noise-transition classifier. The plot shows the layers of the
convolutional neural network architecture and the data flow through them. The
boxes denote the layers of the network. If applicable, each layer is annotated
with the input shape and the number of channels. The noise-transition classifier
performs a binary classification of whether an extracted transition is a true
transition or not.

6.4.3 Transition Separation

Working at their desks, there are passages in which users change between postures in
quick succession. Such passages occur, for example, when a user repeatedly looks at the
keyboard while typing. Another example is working with multiple contents on different
sections of the screen, especially when working with multiple screens. Figure 6.9 shows an
example of a time series where the user changes postures in rapid succession.

When the distance of neighboring transitions is less than the size of the transition window,
these transition windows overlap. This means that artifacts of a transition may be present
in the transition window of a neighboring transition. If the overlap is small, the impact
of the artifacts for transition classification is likely to be negligible. However, problems
can arise when transitions are so close together that the full neighboring transition spills
into the adjacent transition window. The following section discusses an approach that
masks transitions when they spill into the transition window of an adjacent transition.
The approach tries to find the largest subwindow of a transition that does not contain any
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Figure 6.9: Example for transitions where the transition windows overlap. The time series
shows the movement signal during a passage where the user repeatedly looks at
the keyboard while typing. The horizontal lines mark detected transitions. The
transition windows are shown as the gray background around each transition.
Note that the background gets darker where windows overlap.

adjacent transitions. The remainder of the window, where there would be artifacts of other
transitions gets masked out. Figure 6.10 visualizes the masking of transition windows.

Figure 6.10: Example for the masking of close transitions. The plots show the movement
signal time series for two transition windows (upper and lower plots). In these
two examples, neighboring transitions are closer than 50 samples. The left
plots show the transition windows before the masking and the right plots after
masking. The solid horizontal lines mark the transitions and the dashed ones
the optimal derived borders for masking.

The following approach can be used to mask overlapping transitions:

1. Find the transitions that overlap. Transitions overlap when their distance is smaller
than half the transition window size. Then a transition is included in a neighboring
transition’s transition window.

2. For all overlapping transitions perform the following steps:

a) Calculate the movement signal τ for the transition window of the current tran-
sition (see Equation 6.6).

b) If the transition before the current transition overlaps, determine the optimal
lower border for masking. Therefore, calculate the index of the sample with the
smallest movement signal between the current and the overlapping transition.
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If the index is less than α samples away from the current transition instead
keep at least α samples.

c) If the transition after the current transition overlaps, calculate the optimal
upper border similar to the step before.

d) Mask the transition window. Therefore, set all samples before the lower bor-
der to the data at the lower border. Intuitively, this masks the overlapping
transition in the first half of the transition window. Process the second half of
the transition window similarly by setting all samples after the upper border to
the value at the upper border. If only one transition overlaps into the window,
mask accordingly only on one side.

The parameter α balances between finding an optimal point for masking and keeping
enough characteristics of the transition for further processing. Practical experimentation
showed that α = 20 works best with a window size of 100 samples.

6.5 Transition Classification

After the extraction of the transitions, the next step of the state transition model is to find
out which transition occurred based on the sensor time series. Therefore, this work takes
the fixed-sized sensor time series window around a transition and classifies the transition.
Figure 6.11 shows an example of a sequence of posture changes annotated with the classified
transitions.

In theory, with only the four regarded dimensions with three sub-states each, there are
already 34 = 81 states and (34)2 = 6561 possible transitions. In practice, however, many of
the theoretically possible transitions rarely or never occur. This work uses this observation
and reduces the number of regarded classes. In particular, a hand-selected subset of 42
transitions is used. The 42 transitions are hand-selected based on manual inspection of the
user data. Regardless of how the transitions are chosen exactly, the idea of reducing the
actual number of possible states and transitions based on their probability is an important
tool for reducing model complexity in practice.

This work uses a Convolutional Neural Network (CNN) with a softmax output to classify
the transition windows. CNNs are useful the for classification of time series data partic-
ularly for short dependencies as they are present in the only 100 sample long transition
windows. A CNN is intentionally chosen over other neural networks such as long short-
term memory (LSTM) networks as CNNs are also able to capture local relationships in
time while being less computationally complex and easier to train [61]. For a visualization
of the transition classifier CNN architecture see Figure 6.12.

Figure 6.11: Example transition classification for a sequence of posture changes. The plot
shows the orientation data during a sequence of movements. The vertical
lines denote the detected transitions. Each extracted transition is annotated
with the result of the classification.
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Figure 6.12: Architecture of the transition classifier. The plot shows the layers of the con-
volutional neural network and the data flow through them. The boxes denote
the layers of the network. If applicable, each layer is annotated with the in-
put shape and the number of channels. The transition classifier distinguishes
between 42 possible transitions.

The model takes a transition window which is a matrix of size [100 × #features] and
outputs a vector of size [#classes]. The output denotes the probability of the transition
window to be to each of the regarded transitions. The fixed size of the windows allows
simply using a CNN without the need for a fixed size embedding. The model architecture
uses a series of two convolutional and max-pooling layers before flattening the features
and applying a dense layer with softmax activation to get the output probability for each
class. This architecture comprising convolutional and max-pooling layers before flattening
the features and classifying is a very common CNN architecture [51]. Notably, the chosen
architecture is relatively shallow comprising only five computational layers. This choice
is intentional to minimize computational and memory requirements for a potential on-
device implementation. Additional dropout layers with a dropout frequency of 0.5 act as
a regularization measure.

For the training, Adam is used as an optimizer and categorical cross-entropy as the loss
function. As an additional regularization method early stopping with a patience of 10
epochs is used.

6.6 Posture Derivation

The posture derivation module takes the sequence of extracted postures to extract the
sequence of postures from them. Section 6.6.1 describes the use of HMMs to perform
this derivation. After that, Section 6.6.2 presents the idea of enriching the model with
knowledge about the application.

6.6.1 Posture Model

The transition classifier derives which transition between postures occurred in a sensor
time series. Thus, applying the transition classifier to all detected transitions extracts the
sequence of transitions between postures in the time series. To derive the actual postures,
further work is necessary. The following section describes the use of HMMs to derive the
posture sequence from the observed transition sequence. Figure 6.13 shows an example
where a sequence of posture changes is annotated with the derived postures.

The simplest approach would be to add up the detected transitions. However, if transitions
are confused, sequences can occur in which it is not clear which posture is true. For
example, if two consecutive transitions are center left and center right it is unclear whether
the posture between the transitions is left or center. Therefore, simple aggregation is
impossible if the transition classifier does not recognize the transitions 100% correctly,
which is unrealistic in practice. To solve this issue, this work uses Hidden Markov Models
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Figure 6.13: Example posture derivation for a sequence of posture changes. The plot
shows the orientation data during a sequence of movements. The vertical
lines denote the detected transitions. Between two transitions the posture is
annotated.

(HMMs) as a stochastic model to derive the sequence of postures from the sequence of
transitions under uncertainty about the correctness of the transition sequence. In doing so,
the HMM-based approach allows using empiric domain knowledge about common posture
sequences during desk work to correct errors in the transition sequence. In particular, this
work translates the sequence of observed transitions into the sequence postures such that
for each transition the posture after the transition is derived.

In terms of Hidden Markov Model terminology, the setup is the following: The different
postures are the states of the HMM. The transitions as classified by the transition classifier
provide the observed emission sequence. Using this setup, solving the decoding task with
the Viterbi-Algorithm estimates the most probable sequence of postures. As the posture
consists of four individual degrees of freedom, this work uses four HMMs, each deriving
the sequence of posture states for one degree of freedom. To derive the overall posture the
four decoded sequences of the four HMMs are simply stacked along the time axis. This
results in the vector notation for the overall posture.

To fully specify the HMMs the transition probability matrix, emission probabilities, and
the initial probability distributions need to be defined. By convention, each sequence is
expected to start in the center. Therefore, the initial probability distribution is simply one
for the center state of each HMM and zero for all other states. The transition probability
matrix and the emission probabilities are estimated using a maximum likelihood estimation
using training data.

Formally, the maximum likelihood estimation of the HMM parameters is described using
the following formulas. Let Akl be the number of transitions from state k to l and Ek(t)
be the number of times that a transition t is observed in state k in the training data. Then
the following equation estimates the transition probabilities akl and emission probabilities
ek(b) [62]:

akl =
Akl∑
s∈S Aks

(6.7)

ek(b) =
Ek(b)∑
t∈T Ek(t)

(6.8)

To avoid zero probabilities for transitions and emissions that have not been observed
during training additive smoothing is applied [62]. In particular, this work uses Laplace
smoothing where α = 1.

akl =
Akl + α∑
s∈S Aks + α

(6.9)

ek(b) =
Ek(b) + α∑
t∈T Ek(t) + α

(6.10)
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6.6.2 Application Bias

This work chooses the specific application of Hidden Markov Models (HMM) to the trans-
lation of a sequence of posture changes back to the underlying sequence of postures. This
makes it possible to embed knowledge about the postures and transitions into the model
by modifying the transition and emission probability matrices. In particular, it is possible
to use knowledge about the similarity of postures and states to influence the emission
probabilities of the model in such a way that misclassifications of the transition classifier
can be compensated.

First, this work proposes to increase the emission probability of transitions in states
that are similar to the state after the transition, e.g. when the classifier falsely classi-
fies left+lefttilt left as left+lefttilt center. Increasing the probabilities for transitions with
similar endpoints compensates for the fact that the transition classifier may slightly mis-
classify the endpoint of the transition. To characterize similarity between two transitions,
this work calculates the mean difference of the vector representations of the end postures
pa, pb ∈ {−1, 0, 1}4:

similarity =
1

4

4∑
i=1

|pa,i − pb,i| (6.11)

And second, the emission probabilities of transitions are increased in states where there
is another transition that goes in the same direction. For example, left center ends in
center and shares the direction with center right, so increase the emission probability of
center right in the state center slightly. This idea compensates for the possibility that the
transition classifier detects the direction of a transition but fails to calculate the correct
start and endpoint.

The idea of introducing an application bias is particularly interesting for transitions where
no knowledge about their occurrence during desk work is available. Therefore, there is also
no information to estimate the HMM parameters for these transitions. The application
bias allows an estimation of the parameters so even artificially generated transitions can
be included.

6.7 Summary

This chapter introduced the state transition model-based approach for extracting postures.
This approach reconstructs the posture sequence from the collected sensor data by extract-
ing and aggregating transitions between postures. However, knowing the user’s posture
and how it changes over time is of limited use. Only the interpretation and evaluation of
the data concerning ergonomic risk factors give the posture data a meaning. The following
chapter demonstrates how to put the posture information into the context of desk work
ergonomics and how the user can benefit from it.





Chapter 7

Ergonomic Application

With the derived posture sequence of the user, it is possible to assess the posture to eval-
uate the user’s personal ergonomic risk situation. Section 7.1 describes the evaluation of
postural tendency and postural activity based on the user’s posture. Section 7.2 shows
how to also include environmental factors in the ergonomic risk assessment. Finally, Sec-
tion 7.3 presents notifications and data presentation as two mechanisms to provide the
user with the value from their personal ergonomic assessment.

7.1 Posture Evaluation

Two ergonomic risk factors are particularly important for the sitting posture: Sustained
poor posture and prolonged static periods of sitting. For each of the two risk factors, this
work defines a feature that assesses the overall posture.

� The postural tendency (abbrev. posture) refers to the long-term trend in the dis-
tribution of head and trunk orientations. This work uses the moving average over
the orientations to characterize posture. A high postural tendency indicates a poor
imbalanced posture while a low postural tendency suggests a good neutral posture.
Therefore, this work assesses sustained poor posture with postural tendency.

� Postural activity (abbrev. activity) measures the spread in the distribution of head
and trunk orientations. Practically, this work uses the moving variance to measure
activity. A high postural activity indicates that the user is sitting dynamically while
a low activity indicates static periods of sitting. This work uses postural activity to
assess prolonged periods of static sitting.

The following calculation rule derives a score between 0 and 100 for both the postural
tendency and the postural activity from a user’s overall posture. For this purpose, this
work evaluates each degree of freedom of the posture (see Section 3.3) individually. This
allows a differentiated assessment of the risk situation. The following calculation rule
determines the posture and activity score for one particular degree of freedom:

39
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1. Map the orientations to a numbers (xi)
n
i=1 ∈ {−1, 0, 1} such that 1 and −1 describe

the two non-neutral postures, and 0 describes the neutral posture. For example,
looking at the direction of the head, ”left” would be mapped to −1, ”right” to 1,
and ”center” to 0. This is equivalent to taking one of the four entries of the vector
notation from Section 6.2.

2. Calculate the rolling mean and the rolling variance over time windows w = (wj)
m
j=1 of

size twin in time and length k = twin/tsample in samples where tsample is the sampling
period. Let x = (xi)

n
i=1 ∈ {−1, 0, 1} be the time series of the orientation. Then the

rolling mean µ(wj) and the rolling variance σ2(wj) can be calculated as follows:

µ(wj) =
1

k

∑
xi∈wj

xi (7.1)

σ2(wj) =
1

k − 1

∑
xi∈wj

(xi − µk(wj))
2 (7.2)

3. Scale the rolling mean and rolling variance to the range 0 to 100. For posture, a
low mean is desirable as it indicates a neutral posture. Inversely for activity high
variance is preferable, as this ensures the presence of activity. Additionally, this work
introduces cutoff values cl,p, ch,p, ch,a, and cl,a. A mean below cl,p is considered perfect
posture resulting in a score of 100 (variance above ch,a as perfect activity similarly).
Also, a mean above ch,p is considered bad enough posture (variance below cl,a as bad
enough activity similarly) to always receive a score of 0. Between the cutoff values,
a cosine is used to smooth the distribution. In Figure 7.1a the posture score scaling
for posture is shown with cl,p = 0.05 and ch,p = 0.3. Figure 7.1b similarily shows the
scaling for the activity with cl,p = 0 and ch,p = 0.5. Formally, the following equations
calculate the posture and activity scores:

posture(wj) =


0 |µ(wj)| ≥ ch,p

cos(
|µ(wj)|−cl,p
ch,p−cl,p

) ∗ 50 + 50 cl,p < |µ(wj)| < ch,p

100 |µ(wj)| ≤ cl,p

(7.3)

activity(wj) =


0 σ2(wj) ≤ cl,a

100 − (cos(
σ2(wj)−cl,a
ch,a−cl,a

) ∗ 50 + 50) cl,a < σ2(wj) < ch,a

100 σ2(wj) ≥ ch,a

(7.4)

Based on empiric evaluation this work proposes twin = 30mins as the size of the regarded
time windows and ch,p = 0.3, cl,p = 0.05, ch,a = 0.3 and cl,a = 0 as initial starting values
for the score cutoff. Figure 7.2 shows an ergonomic assessment of an example recording
using the above approach.

The ergonomic risk situation of a user is highly individual and subject to a variety of
personal factors. Therefore, personalization of the ergonomic risk assessment is necessary.
Adjusting the regarded time window twin, as well as the introduced cutoffs ch,p, cl,p, ch,a
and cl,a allows the personalize the assessment to the personal precondition of a user. In
addition, individual adjustment of the cutoff values for each of the regarded dimensions
provides a more differentiated assessment of the various postures. The configuration of
these parameters can be created by the user, adjusted based on medical assessments, or
automatically derived by an algorithm based on the measurements made for a user.
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(a) Posture score scaling cruve (b) Activity score scaling curve

Figure 7.1: Plots of the scaling curves for the posture and activity scores. The left plot
shows the scaling curve for the posture (ch,p = 0.3 and cl,p = 0.05). The right
plot shows the activity scaling curve (ch,a = 0.3 and cl,a = 0). The posture
score falls off with increasing mean as a high mean indicates an unbalanced
posture. For the activity score, a high variance denotes a high score as a high
variance indicates an active posture. Note the symmetry around the x = 0 of
the posture curve.

Figure 7.2: Example ergonomic scoring. The upper plots show the rolling mean and vari-
ance for an example recording while the lower plots show the corresponding
posture and activity score after scaling (ch,p = 0.3, cl,p = 0.05, ch,a = 0.3 and
cl,a = 0). The white areas in the upper plots denote the areas above and be-
low the cutoff values while the gray hue indicates the area between the cutoff
values.
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7.2 Environmental Evaluation

Apart from measuring the user’s movement and the derivation of their posture, the sensor
setup also measures various environmental factors that are relevant for office ergonomics.
This work also includes these factors in an overall ergonomic assessment of the desk work-
place. As noted in Section 4.1 the sensors used in this work measure humidity, air pressure,
and volatile organic compounds (VOC). The desk workplace setup can be estimated using
the virtual orientation sensors. The absolute head angle at the default position esti-
mates the head-to-monitor view angle. Combined with knowledge about the used screens,
the maximum head direction angle can be used to estimate the eye-to-monitor distance.
Adding additional sensors for noise and light to the sensing setup is possible to provide
an even broader environmental assessment. The evaluation approach listed below can be
applied to any other factors as desired.

Table 7.1: Guide values for desk environmental and desk setup ergonomic factors [37].

Factor Guide Value

Noise <55 dB

Light ≈500 lx

Relative Humidity 50 %–60 %

Temparature 20 ◦C–27 ◦C

VOC <3.0 mg/m3

Eye-to-monitor View Angle 0◦–30◦

Eye-to-monitor Distance 500 mm–700 mm

This work compares the measured values of the environmental factors to guide values to
assess ergonomic risk. Table 7.1 gives an overview of typical guide values for the desk setup
and environment [37]. Small deviations indicate low ergonomic risk while abnormalities
mark high potential risk. Similar to the posture score, the assessment assigns a score
between 0 and 100, depending on the match with the guide values. Again, the sliding
mean with a window size of 30 minutes of the sensor time series is used (Equation 7.3). In
this context, the sliding window approach smoothes the assessment of the environmental
factors as many environmental factors underly large short-term changes, e.g. light changes
when someone walks by the desk or there is sudden noise during printing.

Let cl be the lower limit of the guide value range and ch the higher limit. Note that some
guide values only have one limit. Others like noise even only have a singular target value.
In that case, the missing limit is simply set to the maximum value, or both limits are set
to the same value respectively. The following equation then calculates the environmental
score:

environment(wj) =


100 − cl−µ(wj)

α∗cl µ(wj) ≤ cl

100 cl < µ(wj) < ch

100 − µ(wj)−ch
α∗ch µ(wj) ≥ ch

(7.5)

The parameter α adjusts how harshly deviations from the guide value should be punished.
For different environmental factors, different values for α are possible.

7.3 User Application

The assessment of a user’s ergonomic risk factors already offers some insights into their
personal ergonomic risk. However, the real value is in providing this information to the
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user, helping them to better understand and positively change their personal ergonomic risk
factors in the workplace. This section presents two mechanisms to make the information
gained by the ergonomic assessment accessible to the user. Notifications provide immediate
action propositions to the user whenever their ergonomic scores suggest arising issues
(Section 7.3.1). And an application presents the data to the user (or a medical professional)
in a way that allows the user to gain a detailed understanding of his personal ergonomic risk
factors (Section 7.3.2). These approaches enable the user to identify ergonomic problems
earlier and correct them directly, improving their quality of life.

7.3.1 User Notification

A first mechanism to provide value to the user is to make immediate recommendations for
action as soon as ergonomic problems occur. For this purpose, the user receives notifica-
tions on his screen or cell phone as soon as his posture scores fall below defined threshold
values and thus indicate an ergonomic risk. This approach has two goals: First, the user
is informed about problems directly during the execution of his work and not afterward.
This allows them to understand their behavior directly on the spot and not to look back
on it retrospectively. And more importantly, the action suggestions provide the user with
immediate and professional instructions on how to improve their posture immediately.
Therefore, the user can eliminate posture problems before problems or diseases arise from
them.

To identify when to send out notifications, this work proposes a thresholding approach
on the ergonomic scores from Section 7.1. Whenever either the activity or posture score
falls below a certain threshold a notification is sent. The threshold can be defined in an
application by the user or a medical professional who supervises the user. Additionally, the
thresholds can be individually defined for each of the different posture dimensions. This
allows for the personalization of the notification mechanism to the personal conditions of
the user.

This work proposes two output devices for the notifications. Since this work considers
work at a computerized desk workstation, a natural option is to display notifications on
the user’s computer. This approach integrates into the user’s workflow and minimizes the
barrier to interacting with the notification because there is no need to change the device.
Figure 7.3 shows two examples of notifications on a desktop application.

(a) Desktop notification issued because of poor
sitting posture.

(b) Desktop notification issued because of low sit-
ting activity.

Figure 7.3: Examples for desktop notifications. The notifications contain both the cause
for the notification as well as an immediate action proposition. Note the use
of visual cues to indicate the proposed action.

Another option is to provide notifications on a smartphone. This method increases the
barrier of interaction with the notification by crossing device boundaries. However, users
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are more accustomed to receiving and interacting with notifications on the smartphone,
which could in turn encourage interaction. Figure 7.4 examples for notifications on a
smartphone.

(a) Phone notification issued because of
poor posture.

(b) Phone notification issued because
of low activity.

Figure 7.4: Examples for smartphone notifications. The notifications contain both the
cause for the notification as well as an immediate action proposition. Note the
use of visual cues to indicate the proposed action.

The notification itself contains both the cause for the notification and an immediate action
proposition. By showing the user not only the problem but also the immediate action, they
can improve their posture without having to stop and think. An additional proposition
may take the form of suggestions on how to change posture or what body parts to move.
The notification may refer to additional optional exercises for affected body parts. These
exercises are specifically tailored to the user’s personal disposition based on the posture
evaluation.

This work proposes to not only use textual notifications but also to provide sketches
or small videos as visual cues for suggested actions. The visual cues help the intuitive
understanding of the action proposition. Again, the goal is to improve posture while
minimizing the necessary mental distraction from the actual work.

7.3.2 Data Presentation

In addition to immediate action propositions, presenting the collected data to the user also
provides value. Thus, this work proposes an application that presents the user with his
current ergonomic risk situation and shows time trends of his data. This gives the user
a holistic picture of their current situation and helps them to identify both positive and
negative trends. This additional information further helps uncover additional problems
and reveal sources of certain phenomena. The application for data presentation is inspired
by very popular fitness applications that collect fitness data and present it in a similar
way [30, 31, 32]. The application consists of a home screen, which displays the user’s
current situation, and detail screens, where the user can click to view the development of
his values over time.

The home screen shows the scores calculated in Section 7.1 to give the user an intuitive
understanding of his situation. See Figure 7.5a for a mockup of the home screen. The
scores are separated into posture and activity to indicate the relevance of both factors for
a good posture. The home screen also shows the scores determined by the environmen-
tal evaluation in Section 7.2. For simplicity, the home screen only shows a selection of
environmental factors, and different factors are cumulated such as the desk setup or air
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quality. Therefore, the home screen gives the user a holistic picture of their current per-
sonal postural and environmental ergonomic risk situation. The home screen also presents
notifications generated by the mechanism in Section 7.3.1, to remind the user of the action
proposition. A coloring of the scores similar to a traffic light visualizes the associated
ergonomic risk of every score. This helps the user to intuitively distinguish between high
and low ergonomic risk.

When the user clicks on a score, they see a graph that visualizes the development of their
posture over time. Figure 7.5b shows a mockup of such a detail screen. The time scale
is adjustable so the user can review the development both short-term (e.g. one day) and
long-term (e.g. months). The detail screen adopts the traffic light coloring of the home
screen to distinguish between periods of high ergonomic risk and unproblematic periods.

In addition to the usefulness of this information for the user himself, it may also be of
interest to healthcare professionals. The long-term nature of work ergonomics makes it
difficult to collect relevant data, as observation over such long periods of time in controlled
studies is practically impossible. Similarly, treating physicians can only rely on a snapshot
of the patient and their reports. In particular, a physical therapist interviewed in the
context of this work stated that in some cases it can be very difficult to deduce the actual
cause of the problems only from the information given by the patients and the physically
recognizable characteristics. Therefore, an application that collects and presents the user’s
data over long periods can help both medical researchers and healthcare practitioners gain
objective and long-term insights into their patient’s ergonomic risk factors.
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(a) Home screen of the data presenta-
tion app

(b) Example detail screen of the data
presentation app.

Figure 7.5: Mockups of the data presentation application. The application consists of a
home screen that shows the current situation of the user and detail screens
that show the development of his situation over time. The home screen shows
the scores for the user’s posture, activity, and workplace environment. Clicking
on the scores on the home screen access the detail screens. The detail screens
show the time development of the user’s activity and posture. The height of
the bars indicates the activity of the user, while the center of the bars indicates
the posture tendency of the user.
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7.4 Summary

This chapter demonstrated the assessment of the user’s posture. An application presents
the assessment to the user by recommending actions to improve their posture and pre-
senting them their evaluation. This enables the user to actively improve their posture
and understand their personal ergonomic risk. Now that this work presented the entire
pipeline from sensing to an ergonomic assessment of posture, the next chapter explores the
application of manifolds to ergonomic motion data as an additional technique that further
improves the understanding of ergonomic motion.





Chapter 8

Ergonomic Movement Manifold

The sensor setup proposed in this work allows collecting large volumes of high-dimensional
data. This complexity of the dataset makes it hard to find semantically interesting struc-
tures in the data and thus hinders understanding of the data. Manifold learning is an
important mathematical tool that helps find semantically meaningful low-dimensional
structures in high-dimensional data [63]. Previous research has shown that applying man-
ifold learning to human motion offers promising results [64]. This work uses manifolds
of ergonomically relevant movements for reasoning and explainability. Section 8.1 first
explains the basic idea of manifolds. Section 8.2 explains the manifold learning approach
of this work. Finally, Section 8.3 and Section 8.4 demonstrate how to use the manifold in
explaining and reasoning about ergonomic movement data.

8.1 Manifold Basics

A manifold is a topological space that is locally Euclidean. This means that around every
point, there is a neighborhood that locally appears to be the euclidean space. This ab-
stract definition allows for a variety of very different manifolds. There are many different
approaches for creating manifolds ranging from statistical approaches to using machine
learning. However, typically manifolds with specific additional structures are of inter-
est [63]:

� The so-called manifold hypothesis assumes that the data distribution over real-life
data is highly concentrated. Therefore, manifold learning tries to find the low-
dimensional structures in the overall data space where interesting variations of the
data lie on the directions of the manifold. Such manifolds allow representing the data
in terms of coordinates on the low-dimensional manifold rather than coordinates in
the high-dimensional original space.

� There is interest in manifolds where traversing the locally euclidean neighborhood
has semantic meaning. These manifolds allow traversing the manifold to obtain
meaningful new results.

49
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8.2 Learning the Movement Manifold

This work uses principal component analysis (PCA) as the manifold learning method.
PCA is a mathematical method that successively decomposes a multivariate data set into
a set of orthogonal components, the principal components which are linear combinations of
the original dimensions. Each principal component explains the maximum variance in the
dataset while being orthogonal to the previous principal components. This is equivalent
to successively fitting lines that minimize the squared distance from the data points to the
line. Therefore, the first principal component is the direction of greatest covariance in the
data, the second the next uncorrelated direction of greatest covariation, etc. The principal
components are calculated by determining the eigenvectors of the covariance matrix that
correspond to the largest eigenvalues. Each principal component explains the fraction of
variance in the dataset equal to the corresponding eigenvalue [65]. Figure 8.1 illustrates
the fundamental idea of the PCA.

Figure 8.1: Illustration of the principal component analysis (image taken from [66]). The
plot shows a toy dataset with its first two principal components. The principal
component analysis iteratively determines new directions in space, the prin-
cipal components. At each step, the next principal component is the linear
combination of the original dimensions that explains the most variance while
being orthogonal to the previous principal components.

This work projects the transition window data on the manifold spanned by the first n
components of the PCA that explain at least 70% of the original dataset’s variance. Similar
fractions of explained variance are common in other applications [67]. To accommodate
the fact that the collected data is two-dimensional (time × features), this work flattens
the data to one dimension to be able to apply PCA.

There is a variety of different existing manifold learning approaches. Despite the fact that
this thesis uses PCA as the manifold learning approach, the following ideas and approaches
can generally be applied to other manifold learning algorithms as well. However, some ideas
may have to be modified. For example, if the chosen manifold learning approach does not
create linear structures, the structures may need to be interpreted differently.

8.3 Explainability of Movement Data using the Manifold

The ability of manifolds to find semantically relevant structures in high-dimensional data
allows using them to explain data. For this purpose, the data is mapped into the manifold.
Then this work visually investigates symmetries and clusters in the projected data. These
structures can reveal semantic information hidden in the original dataset. Clusters on
the manifold reveal similarities between the data. Striking symmetries between different
patterns suggest special relationships between the data. Depending on what patterns show
symmetry, the relationships between the patterns can be explained.
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Some manifold learning approaches also provide interpretability of the created manifold,
e.g. the principal components of a dataset are ordered in order of decreasing explained
variance. This additional information further explains the dataset structure. For exam-
ple, if certain semantic structures are particularly noticeable in a projection on the first
principal components these semantic structures can are responsible for the most variance
in the dataset.

8.4 Reasoning and Data Generation using the Manifold

One of the factors that complicate the correct derivation of a user’s overall posture is
the fact that a user’s posture consists of many independent dimensions. To cover all
possible overall postures, the number of possible postures, and even more so the number
of transitions between two postures is already notable with the four considered dimensions
(34 = 81 possible postures and (34)2 = 6561 possible transitions). Although many of the
transitions are rarely or never observed in practice, collecting sufficient training data only
for relevant transitions is still costly. This work proposes a novel approach that reduces the
effort to collect training data by generating data for combined movements from existing
data using manifolds.

The proposed approach is inspired by work on word embeddings in natural language pro-
cessing. This work found that it is possible to produce semantically meaningful and com-
prehensible results by vector composition when linear substructures in a manifold contain
relevant semantic information [68]. This work takes this idea and applies it to desk work
ergonomically relevant movements. This work shows that on a manifold in which the vector
combination of movements leads to semantically meaningful movements, this information
can be used both to reason about the structure of data as well as to generate data. In
particular, this thesis presents an approach that uses a vector combination on the manifold
to combine two transitions and obtain a movement that resembles the movement when
both transitions are performed simultaneously. Thus, this work explores the possibility
of applying the idea of vector composition on manifolds to motions that are relevant for
ergonomics.

Figure 8.2: Visualization of vector combination on the manifold. The plot shows a pro-
jection of the transition data onto the first two principal components of the
dataset. The scatter points denote the projections of actual recorded data
(small points) and the centroids for the classes (large points). The arrows
visualize the idea of using vector composition to derive the centroid of a com-
bined transition.
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Figure 8.2 provides a visualization of the fundamental idea of vector combination to obtain
semantically meaningful movements. The approach performs the following steps:

1. Find a manifold where linear substructures in space represent semantically meaning-
ful characteristics of the motions under consideration. Depending on the manifold
learning approach used, interesting substructures that are not linear may appear as
well.

2. Project the recorded transition window data onto the manifold.

3. Find the centroid of each transition class on the manifold as a representative of this
class.

4. Combine transitions by vector combination of the vectors from the origin to the
centroids on the manifold. Depending on the found substructures the necessary
vector combination may be different.

5. Transform the resulting derived centroid back into the original space. This allows to
obtain the transition window of the derived centroid.

6. Create a dataset from the back-transformed centroid using data augmentation tech-
niques. The data augmentation ensures the reintroduce variation into the created
data that is similar to the variation found between actual recordings of the same
transition.

When the projection of the data on the manifold produces semantically interesting linear
substructures, the arithmetics of the vector combination to obtain meaningful results are
particularly simple. As Figure 8.2 illustrates simply adding or subtracting vectors yields
meaningful results. Other manifold learning approaches may generate non-linear substruc-
tures. Then, vector combination may still produce meaningful results on these manifolds.
However, different arithmetics of the vector combination may be necessary to account for
the non-linearity.

8.5 Summary

The application of manifolds to the movement data offers the potential for explainability
and reasoning about desk workplace ergonomic movement data. Interesting substructures
of the data on the manifold allow explaining characteristics of the data. In particular, linear
substructures allow reasoning about the data structure and for vector combination on the
manifold to obtain semantically meaningful information. After Chapter 4- 8 conceptually
presented various intelligent sensing techniques, the next chapter presents the evaluation
of the approaches with a practical implementation using recorded data.
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Evaluation

This chapter evaluates the approaches based on a practical implementation using data
recorded in a real-world desk workplace setup. Section 9.1 describes the overall data
collection setup and process. After that, the different steps of the posture extraction
pipeline, the transition extraction (Section 9.2), transition classifier (Section 9.3), and
posture derivation (Section 9.4) are evaluated individually. Section 9.5 compares the per-
formance of different variations of the end-to-end pipeline. Finally, Section 9.6 investigates
the application of manifolds to the recorded data.

9.1 Data Collection

The collection of a comprehensive dataset was necessary to train and test the various
approaches in the posture extraction pipeline, and to investigate the application of the
manifold to ergonomic movement data. The following subsections describe the details of
the data collection performed in this work. The first subsection describes the controlled
desk setup for data collection (Section 9.1.1). Then Section 9.1.2 shows the general data
collection process. The last section provides detailed information about the collected
dataset (Section 9.1.3).

9.1.1 Desk Setup

For the collection of data, this work uses a controlled desk workplace setup. The workplace
consists of a dual monitor setup similar to ones found in offices. Figure 9.1 shows a sketch
of the desk setup. The sensors are placed as shown in Figures 4.3a and 4.3b.

This work uses two monitors with a screen diagonal of 22 inches equating to a screen size
of 56 cm × 34 cm. The seam between the screens is aligned with the central axis of the
chair. There is no gap between the monitors. The monitors are 107 cm away from the
user. The upper end of the monitor lines up with the user’s view angle at 0◦. To see the
lower border of the monitor the user has to look 25◦ down. To see the left and rightmost
areas of the screen the user has to move his head at most 32◦. The desk is a simple desk
that is not hight-adjustable. The desk is 76 cm high, 200 cm wide, and has a depth of

53



54 9 Evaluation

Figure 9.1: Sketch of the desk setup for data collection (image taken from [69], modified).
Blue lines indicate distances, green lines indicate angles. Note that the sketch
is not true to scale.

80 cm. The distance between the front of the desk to the desktops is 73 cm. The office
chair is height adjustable and has an armrest and a backrest. The seat height is 50 cm
high and the armrest is 20 cm above the seating platform. The armrest does not touch the
desk when the chair turns. While seated the user is roughly 15 cm away from the desk.
The chair also has rollers and can rotate freely around its axis.

9.1.2 Data Collection Process

This work uses two programs in the data collection process. The first program is an
Arduino sketch for sensor readout and BLE communication on the sensors. The second
program is a python script on the processing device that collects the data from the sensors.
For wireless communication between the sensors and the processing device, this work uses
Bluetooth low energy (BLE). This work interfaces the BLE module and the sensors on
the Arduino Nicla board with libraries provided by Bosch Sensortec and Arduino. The
provided cheat sheet [70] gives an impression of how to utilize the libraries. On the
processing device, bleak is used as the library to utilize BLE. Figure 9.2 visualizes the
overall data collection process.

With respect to the roles defined by BLE, the processing device acts the BLE central and
the sensors as BLE peripheral devices respectively. Each of the sensors provides a BLE
service with three characteristics. The movement and the environmental characteristics
utilize the notification mechanism of BLE and can be subscribed to by the processing device
to receive notifications whenever new sensor data is available. The third characteristic is
the time synchronization characteristic which can be written to by the processing device
for global time synchronization with the sensor (see Section 4.2).

The Arduino sketch runs continuously on the sensors. In its fixed frequency loop, the
sketch reads out the sensor values. The sketch writes the recorded sensor data to the
movement and environmental characteristics. The processing device periodically sends
its timestamp to the sensors so they can update the estimate of their timedelta to the
processing device. Starting the python script initiates the actual data collection. For each
sensor, the script starts a data collector subscript that subscribes to both the movement
and environmental characteristics of the sensor. When a processing device is subscribed,
the BLE notification mechanism automatically notifies the device whenever new data is
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Figure 9.2: Overview of the data collection process. Each of possibly multiple sensors runs
an Arduino sketch that reads out the sensor values and updates its BLE ser-
vice. A python script on the processing device initiates the data collection.
For each sensor, a data collector subscript subscribes to the movement data
and environmental data characteristics. Simultaneously the python script pe-
riodically sends its timestamp to the sensors so they can estimate the global
time using the delay between the received timestamp and their local time. The
sensors tag the samples with the adjusted time and notify the data handlers on
the processing device side whenever a new sample is available. The handlers
then append the received samples to a file.

available on the sensor. The script also provides data handlers that write the received
sensor data into files. Depending on the number of sensors the number of data collector
subscripts is adjusted. The thread on the processing device sending the timestamps should
have a high priority to provide accurate timestamps.

9.1.3 Collected Data

This work collected and labeled a dataset to train and evaluate the transition and posture
model. Additional unlabeled data was collected for long-term tests and ergonomic eval-
uation. Data collection was performed over multiple sessions on different days. Between
sessions, the sensors remained attached to the chair and glasses. This work collected data
for one test subject.

For model training and testing, a total of 35 recordings with a combined duration of
2h 01min 32s were created using the approach in Section 9.1. The recorded time series
contains 1520 manually labeled transitions representing 42 different transition classes. See
Table C.1 in the appendix for the distribution of recorded transitions per class. During each
recording, the test subject performed on average 36 predefined movements. When selecting
the sequences to be recorded, this work ensured that both non-neutral postures occurred
equally often. The test subject made an intentional pause of about one second between each
movement. After each recording, the data was labeled based on the predefined movement
sequence. However, during the recording additional recordings were made with a webcam
on the computer to cross-check the sequence. The video recordings were deleted after
labeling. The time series are split into a training set to train the transition classifier
and the pose model, a validation set for hyperparameter optimization of the transition
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classifier, and a test set to evaluate the models. Since the number of classes in the dataset
is relatively large in relation to the number of samples, stratified sampling was used to
split the datasets so that the distribution of classes in the different sets is approximately
equal. This prevents underrepresenting rarer classes in either dataset. To do so, each time
series was split into 70% that are included in the training set, 15% in the validation set,
and 15% in the test set. The data is not shuffled to preserve the order of transitions to
learn for the posture model.

This work collected an additional four recordings with 204 labeled transitions and a total
duration of 11min 33s for the end-to-end testing of the state transition model. The data
collection for the end-to-end test data took place on a different day than the model training
and test dataset. This data is not included for the training and evaluation of the individual
modules of the state transition model. The dataset contains around 10% of transitions
where two transitions neighboring transitions are closer than 50 samples = 1s.

For the evaluation of the ergonomic evaluation over the long term, an additional three
time series were recorded. In contrast to the other time series, these recordings are not
labeled. The unlabeled recordings comprise a total duration of 04h 56min 42s.

9.2 Transition Extraction

The first step in the state transition model is the transition extraction. The performance
of the overall model depends on whether all transitions between postures that the user
performs can be detected. Therefore, this section serves to provide insight into the per-
formance of the transition extraction algorithm and its extensions. In particular, this
work compares the basic transition extraction algorithm, the extraction algorithm with
additional filtering of non-action transitions, the algorithm allowing close transitions, and
the algorithm combining allowing close transitions and filtering noise-transitions. Sec-
tion 9.2.1 introduces the false extraction rate as a quantitative measure to compare the
models. Section 9.2.2 compares the transition extraction variations by visual inspection
and by comparing the false extraction rates.

9.2.1 False Extraction Rate

This work uses the false extraction rate (FER) to evaluate the transition extraction capa-
bilities of the different variations of the transition extraction algorithm. The FER denotes
the fraction between the falsely added or missed transitions and the overall true number
of transitions. This gives an intuition for how well the different approaches extract the
correct transitions and only the correct transitions. Concretely, the FER is defined as
follows [71]:

FER =
#Missing transitions + #Additional transitions

#True transitions
(9.1)

#Missing transitions and #Additional transitions denote the number of actual transitions
that the transition extraction algorithm doesn’t correctly extract and the number of ad-
ditionally extracted transitions that are not actual transitions. #True transitions denotes
the total number of actual transitions in the dataset.

9.2.2 Transition Extraction Performance

The chosen example for visual inspection is in total 3min 18s long and contains 56 tran-
sitions, 7 of which are closer than 500ms to each other. Figure 9.4 shows the movement
signal of the recording for the four different variants of the transition extraction pipeline.
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Each time series is annotated with the correctly identified transitions, the falsely detected
additional transitions, and the missed actual transitions.

As Figure 9.4a shows, the basic algorithm can detect most transitions. However, whenever
transitions are close to each other, not all transitions can be correctly identified due to
the distance constraint. The missed transitions (dashed lines) are close to other correctly
identified transitions. One additional noise-transition is extracted at the beginning of the
recording.

When the noise-classifier filters out transitions with a significant probability of not being
actual transitions (p < 0.5), the falsely identified transition at the start of the recording is
removed (see Figure 9.4b). However, some correct transitions are also falsely filtered out.
Applying the filtering of noise-transitions to unsupervised desk work the approach appears
to be much more effective at filtering out many additional transitions (Figure 9.3). This
suggests that for unsupervised desk work the noise-filtering yields an advantage. Note that
for unsupervised desk work a higher threshold ( p < 0.9) provides better results.

Figure 9.3: Noise-transition removal for example unsupervised desk work. The plot shows
the virtual orientation sensor time series for both the glasses and the chair
sensor. Extracted transitions are marked as solid lines. Each transition is
annotated with the output of the noise-transition classifier. Transitions with
an output < 0.9 are masked (dashed lines). The approach masks all noise-
transitions correctly, except one in the beginning (red line).

Removing the distance constraint allows detecting close transitions. If done, all previously
missed transitions get extracted (see Figure 9.4c). On the other hand, more additional
false transitions are detected as well.

Allowing close transitions and simultaneously filtering noise-transitions at the same time
allows for filtering of the close transitions. As seen in Figure 9.4d all close transitions that
are missed by the basic approach are detected. Importantly also all falsely added transi-
tions are removed by the noise-transition classification. This shows that the combination
of allowing close transitions but also filtering them is well suited for practical transition
extraction.

Table 9.1 shows the false extraction rates and the number of missing and additional transi-
tions on the end-to-end test recordings for all algorithm variations. Following the findings
of the visual inspection, the basic transition extraction algorithm already performs well
(FER = 0.0539). The noise-transition removal filters all additional transitions, but also
some correct transitions. Allowing close transitions enables detecting all missed transitions,
but also falsely detects additional transitions. In both cases, this results in slightly worse
scores than the basic algorithm (avg. ∆FER = -0.0123). Combining both approaches
yields the best result (FER = 0.0196). This indicates that combining both approaches
balances between allowing additional transitions but also filtering noise-transitions which
in combination resolves the overshooting of the individual goals of the extensions.



58 9 Evaluation

Table 9.1: Transition extraction performance. FER = False extraction rate. The basic
transition extraction algorithm already performs well but detects one additional
transition and misses 10 transitions. Removing noise-transitions removes all
additional transitions but also some correct ones. Allowing close transitions de-
tects all transitions but falsely detects additional transitions. The combination
of both methods performs best with missing no transitions and filtering all but
four additional transitions.

Model
Actual

Transitions
Additional
Transitions

Missing
Transitions

FER

Basic transition extraction 204 10 1 0.0539

Basic transition extraction +
Noise-transition removal

204 14 0 0.0686

Basic transition extraction +
Allowing close transitions

204 0 13 0.0637

Basic transition extraction +
Noise-transition removal +
Allowing close transitions

204 4 0 0.0196

This section concludes that the basic transition extraction algorithm is already well suited
for transition extraction apart from missing close transitions. The combination of allowing
close transitions and filtering additional noise-transitions performs even better than the
basic algorithm by providing a balance between detecting possibly missed transitions and
filtering additional ones. The noise-transition classification appears particularly effective
for filtering out transitions during unsupervised desk work where the user moves less
conscious than during the labeled recordings.
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(a) Basic transition extraction

(b) Transition extraction with filtering of non-action noise-transitions (p < 0.5)

(c) Transition extraction with allowing close transitions (d < 500ms)

(d) Transition extraction with allowing close transitions (d < 500ms) and filtering of non-action noise-
transitions (p > 0.5)

Figure 9.4: Transition extraction examples. The transition extraction algorithm finds most
transitions but misses some transitions that are very close in time (dashed lines)
due to the distance constraint. One additional transition is falsely detected
(red line). The noise-transition filtering filters out the additional transition
but also some correct transitions. When close transitions (d < 500 ms) are
allowed, additional transitions including the ones the normal algorithm falsely
misses but also other, noise-action transitions are detected. Allowing close
transitions and also filtering with the noise model provides a balance between
both effects.
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9.3 Transition Classification

After transition detection, the classification of the transitions is necessary to be able to
derive the posture. Section 9.3.1 introduces metrics for the performance assessment of
the transition classifier. Section 9.3.2 investigates how the transition classifier performs
under various feature selections. Section 9.3.3 evaluates how data augmentation and the
introduction of data generated using the manifold approach impact the transition classifier.
Finally, Section 9.3.4 takes a detailed look at typical classification errors of the model.

9.3.1 Classification Metrics

This work uses two commonly used classification metrics, the accuracy, and the F1-score,
for evaluating the transition classifier. These metrics can be derived from the confusion
matrix. Table 9.2 explains the confusion matrix for a binary classification task. The
concept can be extended to a multiclass classification task by adding columns and rows
for all classes and viewing all but the true class as negatives.

Table 9.2: Confusion matrix for a binary classification task. TP = True Positives, FN =
False Negatives, FP = False Positives, and TN = True Negatives.

Predicted
Positive Negative

Actual
Positive TP FN
Negative FP TN

The accuracy is a basic score that describes the proportion of data that is correctly labeled
which gives an intuitive understanding of a classifier’s performance.

accuracy =
TP + TN

TP + TN + FP + FN
(9.2)

While accuracy is an intuitive metric it does not take the distribution of the data into
account which might lead to incorrect conclusions. Therefore, this work also utilizes the
F1-score which in turn combines the measures of precision and recall.
Precision denotes how much of the positive labeled data is positive.

precision =
TP

TP + FP
(9.3)

Recall answers the question of how much of the positive labeled data is predicted correctly.

recall =
TP

TP + FN
(9.4)

The F1 score finally combines both recall to balance between the two concurrent metrics.

F1 =
2 ∗ precision ∗ recall
precision + recall

(9.5)
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9.3.2 Feature Selection

Both the sensor on the glasses, as well as the sensor on the chair collect a total of 10
different motion features: Three features for each of the accelerometer axes, three for the
gyroscope axes and four for the orientation quaternion of the virtual orientation sensor.
The following section compares the performance of the transition classifier depending on
the selection of features for classification. It thereby aims to find the optimal feature
selection for deriving the transitions from the time series. In addition, this work compares
the model size with the goal to be able to use the model on mobile devices or directly on
the sensor. Note that the transition classifier was trained on a GPU. Therefore, despite
seeding all used libraries results may not be fully reproducible [72]. Table 9.3 shows the
model size, loss, accuracy, and F1-Score of the transition classifier with varying feature
selection.

The results reveal that no matter the feature selection the transition classifier performs
well on the training data (Accuracy, F1-Score > 0.9). However, if not all ten features of
the sensor on the glasses are selected, the classifier does not generalize well on the test
set. In that case, the test set Accuracy is at least 0.26, and the F1-Score 0.19 worse
than the performance on the training set. Selecting only the gyroscope features for both
sensors results in the worst performance (Accuracy = 0.5687, F1-Score = 0.6109). The
best-performing feature selection that selects the same features for both the glasses and
the chair sensor is using the full 20 features (Accuracy = 0.9866, F1-Score = 0.9932 for
training and Accuracy = 0.8879, F1-Score = 0.9094 for test set respectively). In particular,
this feature selection is able to shrink the generalization gap between training and test set
performance significantly compared to the other symmetric feature selections.

Interestingly, similar and even better performance can be achieved with an asymmetric
feature selection where for the glasses sensor the full ten features are selected and for
the chair sensor the selected features are filtered. In particular, the transition classifier
performs best when for the glasses sensor only the gyroscope features are selected. This
feature selection achieves the best performance for both the training set (Accuracy =
0.9952, F1-Score = 0.9941) and for the test set (Accuracy = 0.9070, F1-Score = 0.9210) of
the tested feature selections. Additionally, this model has 15,680 parameters less ( 32%)
than the model with all 20 selected features. This means that the memory footprint of the
model is also smaller and computation cheaper. Therefore, this feature selection does not
only perform better but also is more suitable for low-power devices with smaller memory
availability.

The main findings of the comparison of the transition classifier under different feature
selections are: If not all 10 features are selected for the glasses sensor, the generalization of
the classifier on the test data is significantly worse. The classifier with the full 10 features
of the glasses sensor but only the gyroscope features from the chair sensor performs best
and requires less model size. In the following, only the best performing feature selection
(accelerometer, gyroscope, and orientation sensor of the glasses and gyroscope of the chair
sensor) is considered if not mentioned otherwise.
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Table 9.3: Transition classifier performance per selected features. Acc = Accelerometer,
Gyro = Gyroscope, Ori = Virtual orientation sensor. L = Categorical cross-
entropy loss, A = Accuracy, F1 = F1-Score. If not mentioned otherwise the
same features are selected for both sensors. Asymmetric feature selection was
also performed for the features of the glasses sensor. The results were however
omitted as the models performed significantly worse.

Features #Features Params Training Test

Acc 6 17,690
L: 0.2960
A: 0.9494
F1: 0.9489

L: 1.2776
A: 0.7336
F1: 0.7308

Gyro 6 17,690
L: 0.4125
A: 0.9179
F1: 0.9344

L: 1.8585
A: 0.5687
F1: 0.6109

Ori 8 17,946
L: 0.2886
A: 0.9513
F1: 0.9579

L: 1.4537
A: 0.7548
F1: 0.7620

Acc, Gyro 12 33,242
L: 0.1821
A: 0.9885
F1: 0.9853

L: 1.1882
A: 0.7674
F1: 0.7630

Acc, Ori 14 33,498
L: 0.1840
A: 0.9780
F1: 0.9729

L: 1.8064
A: 0.7844
F1: 0.7908

Gyro, Ori 14 33,498
L: 0.1722
A: 0.9914
F1: 0.9932

L: 2.0017
A: 0.7315
F1: 0.7620

Acc, Gyro, Ori 20 49,050
L: 0.1622
A: 0.9866
F1: 0.9884

L: 0.7276
A: 0.8879
F1: 0.9094

Acc, Gyro, Ori Glasses
Acc Chair

13 33,370
L: 0.1637
A: 0.9828
F1: 0.9851

L: 0.8178
A: 0.8795
F1: 0.8935

Acc, Gyro, Ori Glasses
Gyro Chair

13 33,370
L: 0.1257
A: 0.9952
F1: 0.9941

L: 0.5809
A: 0.9070
F1: 0.9210

Acc, Gyro, Ori Glasses
Ori Chair

14 33,498
L: 0.1653
A: 0.9914
F1: 0.9894

L: 0.8124
A: 0.8753
F1: 0.8842

Acc, Gyro, Ori Glasses
Acc, Gyro Chair

16 41,146
L: 0.1475
A: 0.9876
F1: 0.9874

L: 0.9165
A: 0.8689
F1: 0.8816

Acc, Gyro, Ori Glasses
Acc, Ori Chair

17 41,274
L: 0.1445
A: 0.9885
F1: 0.9866

L: 1.0912
A: 0.8753
F1: 0.8732

Acc, Gyro, Ori Glasses
Ori, Gyro Chair

17 41,274
L: 0.1430
A: 0.9914
F1: 0.9891

L: 0.7799
A: 0.8943
F1: 0.9060
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9.3.3 Data Augmentation & Manifold

This work proposes data augmentation and data generation with manifolds as methods to
create synthetic data. Therefore, this section investigates how the addition of this data
impacts the performance of the transition classifier. For evaluation of data augmenta-
tion, each transition window in the training set got modified with the four different data
augmentation techniques mentioned in Section 5.3: Jittering, scaling, time warping, and
magnitude warping. For the normal distributions of the four augmentation techniques
variances σ ∈ {0.05, 0.01} were used. For time and magnitude warping k ∈ 2, 4 warping
points were used. In total, the data augmentation adds 12 variations for each transition
window to the dataset. The manifold-based data generation approach (Section 8.4) was
used to create in total 72 transition windows for 8 previously not regarded transitions
(combinations of head angle and head tilt). Table 9.4 shows the model performance of the
transition classifier for different datasets.

Table 9.4: Transition classifier performance for different data. L = Categorical crossen-
tropy loss, A = Accuracy, F1 = F1-Score.

Data
Dataset
size

Params Training Test

Basic Data 1047 33,370
L: 0.1257
A: 0.9952
F1: 0.9941

L: 0.5809
A: 0.9070
F1: 0.9210

Basic Data
+ Manifold

1119 39,010
L: 0.1507
A: 0.9902
F1: 0.9924

L: 0.5682
A: 0.9089
F1: 0.9194

Augmented Data 13,611 33,370
L: 0.1186
A: 0.9885
F1: 0.9881

L: 0.7442
A: 0.9239
F1: 0.9255

Augmented Data
+ Manifold

14,547 39,010
L: 0.1188
A: 0.9904
F1: 0.9912

L: 0.7837
A: 0.9248
F1: 0.9324

Comparing the classifier performance using the basic dataset to the one with the gener-
ated data using the manifold, it is observable that the classifier needs an additional 5640
parameters to account for the additional classes. Also, the training for the models using
the manifold data needed more epochs to converge. The model performance of the model
with the added generated data is similar to the performance of the model without the
added data (avg. ∆Accuracy = +0.0024, ∆F1-Score = +0.0033). This means that the
transition classifier is able to discriminate between the generated data similarly to the
actual recorded data.

Comparing the models using augmentation of the dataset with the ones without augmen-
tation it is observable that the models perform on average worse on the training set and
better on the test set. The decrease of performance on the training set (avg. ∆Accuracy =
-0.0034, ∆F1-Score = -0.0024) is smaller than the increase of performance on the test set
(avg. ∆Accuracy = +0.0748, ∆F1-Score = +0.0043). Therefore, the augmentation of the
dataset reduces the generalization gap between the training and test set slightly. Interest-
ingly the performance increase of the accuracy metric is much bigger than the increase in
F1-Score.

This section concludes the following main findings: Adding data generated using the man-
ifold vector combination approach does not impact the ability of the transition classifier
to discriminate between the transitions significantly. Augmentation of the dataset allows
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slightly closing the generalization gap between training and test set. The overall best per-
forming model is the transition classifier with the augmented data and the data generated
using the manifold.

9.3.4 Transition Classifier Errors

This section takes a closer look at the performance of the transition classifier using the
best-performing feature selection. Therefore, this work compares the true and derived
transition for one concrete example recording. This section also takes a closer look at the
confusion matrices of the transition classifier for the training and test dataset to identify
common errors of the model.

Figure 9.5 shows a comparison of the detected transitions of the transition extraction
algorithm and the transition classifier and the actually labeled transitions for an example
recording. For this example, the transition classifier using the augmented dataset was
used. Note that the chosen recording is part of the dataset not used for either training
or testing the transition classifier. While one of the transitions is not correctly extracted
by the extraction algorithm, most of the correctly extracted transitions are also correctly
classified. The only wrongly classified transition in the example is the second to last
transition. There, right down is misclassified as right center. Therefore, the transition
classifier misclassified the end posture of the transition in one degree of freedom.

Figure 9.5: Comparison of true and derived transitions. Each transition (lines) is anno-
tated with a tuple (true transition, derived transition). Some transitions were
not correctly identified by the transition extraction algorithm. Actual transi-
tions that the extraction algorithm missed (dashed lines) are annotated with
the true transition. Falsely identified additional transitions are annotated with
the derived transition.

To identify common errors of the transition model this work takes a closer look at the
confusion matrices of the transition classifier (Figure 9.6) for the basic dataset and the
data set after data augmentation (Figure 9.7). The cell in row i and column j of the
confusion matrix indicates the number of observations that are known to be transition
i and predicted to be transition j. The diagonal of the confusion matrix denotes the
correctly classified transitions.

The confusion matrices for the training sets (Figures 9.6a and Figure 9.7a) indicate a good
performance as almost all entries are on the diagonal. This is consistent with the good
accuracy and the good F1-score as noted in Section 9.3.3. The transition classifier for the
augmented dataset misclassified more, but still only a few, transitions in the training set.
One observable error is the confusion of two transitions in the same direction, e.g up -
center and center down. This is unsurprising since both transitions move the head from
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downwards. Another observable error is the confusion of down+left center and down -
center. There the start-posture is misclassified in one degree of freedom. This error is
also explainable by the similarity of the two transitions which differ only in one degree of
freedom of the postures. Similar errors also occur for other transitions.

For the test sets (Figure 9.6b and Figure 9.7b) similar errors are observable but overall with
higher frequency than the training set. Again, errors where either two transitions with the
same general direction but different start- and end-postures got confused or one degree
of freedom of either start- or end-posture is not get recognized correctly can be observed.
Additionally, occasional confusions of transitions of the trunk and the head in the same
direction, e.g. center chairleft and center left can occur. Errors of the classifier using the
basic and the augmented dataset are similar. The confusion matrix for the augmented
dataset also reflects the slightly higher accuracy compared to the classifier only using the
basic dataset.

The important findings of this section are: The observed errors are mostly confusions
between two transitions with the same direction but different start- and end-postures and
misclassifications of one degree of freedom in the start- or end-postures of a transition.
Therefore, typical errors of the transition classifier are due to the confusion of two similar
transitions. The observed errors are consistent for both the basic and the augmented
dataset.
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(a) Confusion matrix for training data

(b) Confusion matrix for test data

Figure 9.6: Confusion matrices of the transition classifier. The rows of the confusion matrix
are normalized.
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(a) Confusion matrix for training data

(b) Confusion matrix for test data

Figure 9.7: Confusion matrices of the transition classifier after data augmentation. The
rows of the confusion matrix are normalized.
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9.4 Posture Extraction

The last step of the state transition model is the posture extraction. Section 9.4.1 intro-
duces the BLEU-score as the performance metric for the posture extraction. Section 9.4.2
examines the performance of the posture model under different dataset variations in detail.

9.4.1 BLEU-Score

In theory, it would be possible to evaluate transition sequences to posture sequences using
the classification metrics introduced in Section 9.3.1. Instead of evaluating the classifica-
tion of single transitions, these metrics would then evaluate the correct translation of a
whole posture sequences. Consequentially, the metrics would classify a posture sequence
as incorrect no matter if the complete sequence or only the derivation of one posture is
wrong. However, this contradicts the intuition to assess an almost correctly derived pos-
ture sequence where only one of n is misclassified as still very good and a completely
random sequence as bad. Therefore, a metric that accounts for this intuition is desirable.
Consequentially, this work uses a metric from the area of natural language translation that
is designed to correlate well with the human judgment of translation, the BLEU-score [73].

The basic idea of the BLEU score is to compare a query text with one or more reference
translations and assign a score between 0 and 1 indicating how similar the query is to
the reference texts. Values closer to 1 represent more similar texts. BLEU computes its
precision metric by comparing the n-grams of the query with the n-grams of the reference
translation and count the number of matches. Matches are independent of the positions
where they occur. An additional factor, the brevity penalty, is introduced to punish short
translations. Equation 9.6 shows the calculation rule for the BLEU-score [73]. Depending
on the maximum order of n-grams the BLEU-score is also called BLEU-n, i.e. BLEU with
1-grams, 2-grams, 3-grams, and 4-grams is called BLEU-4 [74].

BLEU-n = min(1, exp(1 − reference-length

output-length
))︸ ︷︷ ︸

brevity penalty

(
n∏

i=1

precisioni)
1/n

︸ ︷︷ ︸
n-gram precision

(9.6)

With mi being the number of matched i-grams between translation T and query Q and li
being the total number of i-grams in T the i-gram precision can be calculated as

precisioni =
mi

li
(9.7)

There are two additional typical modifications to the BLEU score: The scores for each
of the individual n-gram orders are aggregated using the geometric mean. If there is no
n-gram overlap for any order the geometric mean and consequentially the BLEU-score
is 0. To avoid this harsh behavior the value 0 is replaced with a small value ϵ. And
also, the precision is modified not to allow more matches of a query n-gram than there
are occurrences of that n-gram in the reference. This avoids translations that just repeat
probable words [73].

The variation of BLEU used in this work uses the BLEU-4 score with ϵ = 0.1. Instead of
word n-grams, the BLEU score compares n-grams of posture sequences. The BLEU score
is calculated individually for each of the four degrees of freedom.

9.4.2 Posture Model Performance

The following section evaluates the performance of the posture model. In particular,
this work compares the performance of the posture model on the training data, the test
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data, and the transitions classified by the transition classifier. Additionally, this section
investigates how the performance changes depending on whether the data generated using
the manifold approach is used and the application bias is applied and whether the dataset
is augmented or not. Table 9.5 shows the BLEU-scores for each of the variants. The score
is also broken down into the scores for each of the degrees of freedom.

Table 9.5: Posture model performance for different datasets. The scores denote the BLEU-
score for each of the regarded degrees of freedom and µ is the average over all
degrees of freedom. ”Combined” denotes the performance of the posture model
when fed with the classified transitions from the transition classifier.

Data Training Test Combined

Basic Data
[1.0, 0.9816, 1.0, 1.0]

µ = 0.9954
[1.0, 0.9770, 0.9977, 0.9977]

µ = 0.9931
[0.9549, 0.9060, 0.9844, 0.9229]

µ = 0.9421

Basic Data
+ Bias & Manifold

[1.0, 0.9415, 0.9314, 0.9598]

µ = 0.9582
[1.0, 0.9392, 0.9333, 0.9631]

µ = 0.9589
[0.9600, 0.8647, 0.9333, 0.8962]

µ = 0.9135

Augmented Data
[1.0, 1.0, 1.0, 1.0]

µ = 1.0
[1.0 , 1.0 , 0.9977, 0.9977]

µ = 0.9989
[0.9595, 0.9501, 0.9977, 0.9143]

µ = 0.9554

Augmented Data
+ Bias & Manifold

[0.9986, 1.0 , 0.9307, 1.0]

µ = 0.9823
[0.9986, 1.0 , 0.9307, 1.0]

µ = 0.9823
[0.9670, 0.9526, 0.9428, 0.9376]

µ = 0.9500

Looking at the basic posture models without applying the application bias, the hidden
Markov model (HMM) can almost perfectly learn the translation from transitions into
states for the training set. This is also true for the model using data augmentation (avg.
BLEU-Score 0.9977). Thus, the HMM is able to model the underlying process. The
performance for the test set is almost identical to the performance on the training set for
all regarded models (avg. ∆BLEU-score = -0.0007). This is not surprising as the previous
result showed that the HMM is able to model valid sequences and the test set is made up
of valid sequences as well.

The performance of the posture model on the transitions classified by the transition model
does slightly drop compared to the training and test sets (avg. ∆BLEU-score = -0.0430). A
drop in performance is expected as the posture model has to handle the misclassifications
of the imperfect transition classifier. However, the fact that the performance drop is
relatively small shows that the model is able to correct mistakes made by the transition
classifier.

When comparing the biased HMMs with the HMMs without application bias it is observ-
able that the biased models perform worse for all datasets (avg. ∆BLEU-score = -0.0233).
The difference between the biased and unbiased models is larger for the basic dataset (avg.
∆BLEU-score = -0.0333) than for the augmented dataset (avg. ∆BLEU-score = -0.0132).
In this thesis it was observed, that the difference is larger for the training and test set
than for the combined model which uses the classified transitions. The fact that the bi-
ased model performs worse on the training set is expected as the bias forces the HMM
slightly away from the distributions estimated on the training data. However, the biased
model also performs worse on the classified transitions. In particular, for the head tilt
the application bias appears to reduce the overall score the most. Interestingly, all of the
manifold-generated data includes the head tilt. In isolation, the introduction of bias wors-
ened model performance. However, since the result is obtained through the interaction
of the transition and posture model, several factors influence the result. It remains to be
seen whether other approaches to bias the HMMs will yield performance improvements.

Figure 9.8 shows a comparison of the derived postures using the posture model and the
labelled postures for an example recording. For this example, the posture model with the
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Figure 9.8: Comparison of true and derived postures. Each transition (lines) is annotated
with a tuple (true posture, derived posture). Two transitions were not correctly
identified by the transition extraction algorithm. These transitions (dotted
lines) are annotated with the true posture.

augmented training data was used. Note that the chosen recording is part of the dataset
not used for either training or testing the transition classifier.

This section concludes that the posture model is able to capture the underlying process
well and is even able to correct errors of the transition classifier. The posture model for
the augmented dataset performed. Using an application bias does not immediately yield
better performance which leaves the question open if the bias helps generalization of the
posture model to unknown data.

9.5 End-to-End Pipeline comparison

This section evaluates the end-to-end performance of the different variants of the complete
pipeline. Section 9.5.1 introduces the quantative evaluation metric for the end-to-end
performance. Section 9.5.2 compares the different pipeline variations quantatively and
discusses the effect of the different pipeline variations on the overall posture extraction
performance.

9.5.1 Metric

The end-to-end performance metric grasps how well a model is able to extract the correct
postures over a recording. The metric evaluates how much of the time the extracted
posture is similar to the true posture and scale this by how similar the two postures are at
each moment in time. This penalizes if the detected posture differs from the true posture
at any time and takes the duration of each posture into account. Thereby, it also penalizes
incorrect transition extraction.

The metric compares the posture sequence extracted using the pipeline (query) and the
labeled postures (reference). For multiple recordings, the metric is calculated by averaging
over all individual scores, weighted by the length of the recording. The following calculation
sequence calculates the metric for one recording:

1. Let Tq = (tq,i)
n
i=1 and Tr = (tr,i)

m
i=1 be the timestamps of the transitions and Pq(t)

and Pr(t) the postures at time t of query q and reference r respectively. Additionally,
let t0 be the start time of the recording and tmax be the end time of the recording.

2. The query and reference posture must be compared whenever either one changes.
Therefore, calculate moments in time where either the query or the reference posture
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sequences changes. Therefore, sort the sequence of the combined timestamps of the
query and the reference posture sequence. Include the start of the recording as the
first timestamp t0.

3. Compare query and reference posture for each determined timestamp. Therefore,
calculate the subset accuracy of query and reference at each point of time. The
subset accuracy extends the accuracy by allowing partially correct labeling. By
convention both sequences are expected to be in the center at the start. Square
the resulting score to punish large deviations more. The reason for this alteration
of the subset accuracy is that in practice most of the time only one or two degrees
of freedom are not neutral. Therefore, deviations are more punished to lower the
score of classifications which just randomly guess ”mostly center”. I is the indicator
function.

Ai = (
1

4

4∑
d=1

I(Pq(ti) = Pr(ti))
2 i = 0, ..,m + n (9.8)

4. Each posture is held after a transition until another transition changes the posture
again. The score for each posture is scaled by how long the posture lasts to account
for the duration of each posture. Therefore, the subset accuracy is multiplied by the
difference between the timestamp of a transition and the next timestamp. The last
extracted posture is held until the end of the recording tmax = tm+n+1. The score is
finally normalized by dividing by the total length of the recording.

S =

∑m+n
i=0 Ai ∗ (ti+1 − ti)

tm+n+1 − t0
(9.9)

9.5.2 Comparison of Pipelines

This section aims to evaluate the overall end-to-end performance of different variations of
the state transition model processing pipeline for posture extraction. In total 16 different
processing pipelines are compared. The various pipelines utilize different transition extrac-
tion mechanisms and some of the pipelines utilize the application bias and manifold data
generations while others don’t. As a baseline, this work also evaluates the performance of
the model that simply always predicts the user’s posture to be in the center. Table 9.6
shows the end-to-end performance metric for the different models.

All different state transition model pipeline variations (avg. Metric = 0.8929) manage
to score significantly higher than the baseline (Metric = 0.7159). The worst-performing
pipeline utilizes the basic dataset, filters noise-transitions, and applies the application bias.
This pipeline achieves a score of 0.8592. In contrast, the best-performing pipeline achieves
a score of 0.9123. This pipeline utilizes the dataset with augmented data, allows close
transitions that are masked, and filters noise-transitions in addition to the basic state
transition model. This demonstrates that the wearable approach with the state transition
model for posture extraction is able to match the ground truth posture well. Also, the
different proposed additions to the basic state transition model pipeline overall increase
the score with varying success.

Every pipeline with the augmented dataset performs better than the same pipeline trained
on the basic dataset (avg. ∆Metric = 0.0170). Although the difference is small, the consis-
tent increase of performance across all models suggests that data augmentation is able to
help the pipeline to generalize better on the unseen test data. This confirms the findings
of Section 9.3.3 that concluded that data augmentation improves the transition classifier
performance on the test dataset. These observations overall conclude that the augmenta-
tion of the dataset is useful for regularization of the state transition model although the
increase in performance is limited.
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The removal of noise-transitions (see Section 6.4.2) lowers the pipeline metric in all but
one case. The examination of the extracted transitions on the test recordings shows that
the basic transition extraction mechanism misses very few and detects very few additional
transitions. This means that overall the basic transition extraction algorithm already
performs very well for the test recordings. The noise-transition classifier is then able to
correctly filter out the additional transitions. However, it also filters out some of the
correct transitions which explains the worse score. Simply increasing the threshold four
noise-classification has not proven useful as the falsely misclassified transitions receive
similar scores than the actual true transitions. As mentioned in Section 9.2, during visual
inspection of the effect of the noise-transition removal on the unsupervised recordings it
was found that the removal of noise-transitions appears effective. This raises the suspicion
that when the user moves more conscious during the predefined sequences of the test data
recording the basic extraction algorithm is sufficient. During unsupervised desk work, there
are more unconscious movements that the transition classifier correctly masks. This work
concludes that the idea of filtering noise-transitions is promising but its actual performance
impact depends on the application.

Allowing close transitions and masking transitions that enter a neighboring transition (see
Section 6.4.3) consistently improves model performance (avg. ∆Metric = 0.0157). Similar
to data augmentation the difference is not very big but the consistent increase of the metric
shows that the approach does indeed yield a performance increase. This work concludes
that allowing close transitions helps the overall model performance especially paired with
the masking of transitions that appear in neighboring transition windows.

The addition of the application bias and the manifold generated data overall decreases
performance slightly (avg. ∆Metric = 0.0087). As this decrease is very small it could be
the result of statistical effects. A possible explanation for lower scores could also be the fact
that the addition of new transitions to the transition classifier may have a negative impact
on the performance of the classifier for the unknown end-to-end test dataset. Also, the
positive effect of introducing new transitions may be less than expected as the most often
occurring transitions are already covered by the recorded dataset. This work concludes
that the generation of data using the manifold approach in itself is viable and does not
significantly negatively impact model performance. However, also no improvement in
performance could be seen.

The results of the end-to-end pipeline evaluation indicate an overall good match of the ex-
tracted posture with the ground truth. Data augmentation allows for better generalization
of the pipeline to unknown data. Filtering noise-transitions did not yield a performance
improvement but the application to unsupervised movement data appears promising. Al-
lowing close transitions and masking overlapping transitions does consistently improve
performance. Adding data generated by the manifold method does not improve or de-
crease performance significantly.
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Table 9.6: End to end model performance comparison. Metric denotes the score from
Section 9.5.1. The ”Baseline” model classifies the posture to be permanently
neutral.

Model
Data

Augmentation
Noise-tranisition

removal
Transition
separation

Bias
& Manifold

Metric

Baseline 0.7159

State
transition

model
0.8949

X 0.8681

X 0.9050

X X 0.8792

X 0.8878

X X 0.8592

X X 0.8961

X X X 0.8704

X 0.9114

X X 0.8953

X X 0.9119

X X X 0.9123

X X 0.9008

X X X 0.8835

X X X 0.9090

X X X X 0.9015

9.6 Ergonomic Movement Manifold

This section investigates using a manifold for explaining and reasoning about ergonomic
movement data. This work uses a principal component analysis of the data as a manifold.
The dataset used for the PCA comprises the combined training and test set. 9 principal
components are necessary (see Figure 9.9) to explain at least 70% of the variance of this
dataset. With data augmentation, instead 13 components are necessary. In the following,
this work uses a projection on the first two principal components to explain substructures
on the manifold. The first two components of the PCA explain the most variance (≈ 50%).
While they explain not all of the used variance, it is easier to understand the projection to
this two-dimensional subspace of the PCA. In addition to the projection of each transition
window, this work uses the centroids for each transition class as representatives for that
class.

Figure 9.9: Cumulative explained variance of the first principal components. At least 9
components are necessary to explain 70% of the dataset’s variance.
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The projection of the dataset onto the manifold spanned by the first two principal com-
ponents reveals three interesting substructures:

First, inverse transitions, which are transitions from a posture A to posture B and the
transition back from B to A are projected approximately opposite on the manifold. Fig-
ure 9.10a illustrates this for the transitions center down+left and center right+chairright.
Similar observations can be made for other transitions as well. Note that the symmetry of
each transition is not perfect with respect to the origin. This observation shows that the
idea of inverse transitions translates onto the manifold.

The second observation is that transitions with the same direction are projected to the
same area on the manifold, independent of their start and end posture. As Figure 9.10b
illustrates, the transitions center up+left, down+right center, down left, and right up are
all located in a similar substructure of the manifold. They all describe movements simul-
taneously up and left. Again this observation is consistent for other transitions such as for
example center left and right center. This observation explains that the direction of the
movement plays an important role in the structure of the dataset.

The third observation is that a combined transition, i.e. a transition in two degrees of
freedom is projected close to the vector combination of the two transitions in one degree
of freedom. For example vector combination of the transition center down and center left
lies close to the projection of center down+left on the manifold. Figure 9.11 visualizes
two examples of this observation. This observation allows two conclusions: First, it en-
ables reasoning in that combined movements are the result of combining the individual
movements. And the second conclusion is that vector combinations on the manifold create
semantically meaningful combined movements. As the principal component analysis de-
fines a back-transformation into the original space, this enables obtaining the sensor time
series corresponding to the point on the manifold. Therefore, this observation allows the
generation of data for combined transitions.

To confirm that the transitions created using vector combination on the manifold are
representative of real combined movements, this work compares the time series that is
created by transforming the combined point back into the original space with actually
recorded combined movements. Figure 9.12 shows the comparison of the sensor time se-
ries of the back-transformed derived centroid, the actual centroid of the recorded combined
movement’s transitions, and three examples of actually recorded transitions. It is observ-
able that the derived time series shows a close similarity with the actual centroid of the
combined movement and also with the recordings. Compared with the actual example
recordings the difference to the derived transition is overall larger which is not surprising
as the examples vary among each other and compared to the centroid as well. This means
variance has to be reintroduced to the dataset in order to obtain data that is similar to
the recorded dataset.

This work concludes that an ergonomic movement manifold allows explaining and reason-
ing about ergonomic movements. First, the idea of inverse transitions translates onto the
manifold. Second, the direction of movements is important for the manifold structure.
And finally, the vector combination of transitions on the manifold allows for reasoning
about combined transitions as well as the generation of semantically meaningful move-
ment data. Therefore, the application of manifolds to ergonomic movement data proves a
valuable technique for understanding ergonomic motion.
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(a) Manifold structure for inverse transitions

(b) Manifold structure for transitions with the same direction

Figure 9.10: Manifold structure for inverse transitions and transitions with the same di-
rection. The plot shows a projection of the recorded transition windows on
the first two principal components of the data. The large scatter points are
the centroids of each data class. On the manifold inverse transitions (tran-
sitions from one posture A to posture B and the transition back from B to
A) are projected opposite to each other (upper plot). Transitions with the
same direction are projected to the same region of the manifold indepedent
of the start- and end-posture (lower plot). Note that for visual clarity, all the
projections of other transitions are not plotted.
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(a) Derivation of ”center down+left”

(b) Derivation of ”down+left center”

Figure 9.11: Derivation of two example transitions on the manifold. The plots show a
projection of the recorded transition windows on the first two principal com-
ponents of the data. The large scatter points are the centroids of each data
class. The plus denotes the derived centroid using vector combination of the
vectors from the origin to the centroids of the simple transitions in one direc-
tion. The derived centroid lies close to the centroid of the recorded combined
movement. Note that for visual clarity, all the projections of other transitions
are not plotted.
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(a) Data for ”center down+left”

(b) Data for ”down+left center”

Figure 9.12: Comparison of derived transition windows using the manifold method and
actual recordings. The plots show a comparison of the transition window of
the back-transformed derived centroid, the back-transformed centroid time
series of the true centroid, and two example actual recordings (rows). For
each transition, the orientation, the accelerometer, and gyroscope data for the
glasses sensor are plotted (columns). The chair sensor data has been omitted
as the regarded movements only affect the head. For easier comparison, all
features are standard scaled and are thus unitless.
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9.7 Summary

This chapter presented a detailed evaluation of the different intelligent sensing techniques
the work proposes using data recorded in a controlled environment. The evaluation con-
cludes that the individual steps of the posture extraction pipeline are able to perform their
respective purpose. In addition, an end-to-end test of the processing pipeline showed that
the posture extraction method this work proposes matches well with the ground truth.
With the viability of the approach is proven, the next chapter discusses the results of this
work and uses the discussion to outline possible future work.
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Discussion

This chapter discusses the main findings of this work. Therefore, Section 10.1 looks at the
IMU-based sensor setup, Section 10.2 at the state transition model for posture extraction
from the sensor data, and Section 10.3 at the ergonomic movement manifold for explaining
and reasoning about ergonomic movement data in detail. This is followed by a discussion of
ethical considerations (Section 10.4) and the personalization of the ergonomic assessment
(Section 10.5).

10.1 Sensing Posture with IMUs

Using inertial measurement units to sense human posture provides a number of advantages
over other sensing approaches like cameras. These advantages are lower processing power
and battery requirements, and higher user privacy. With the goal of implementing the
signal processing on-device, the use of IMUs is a natural choice in this work.

Nevertheless, the use of IMUs also presents inherent difficulties, such as the accumulation
of sensor drift during sensor fusion, which make them difficult to use in long-term, mostly
static environments such as desk work. However, by using the state transition model,
this work provides an approach that addresses sensor drift. It also allows leveraging the
dynamic sensor data from the accelerometer and gyroscope in addition to sensor fusion.
The state transition model is thus an important contribution to the use of IMUs, as it can
mitigate the difficulties and better exploit the advantages of their use for the application.

This work uses a sensor setup with one sensor placed on the frame of wearable glasses and
one sensor on the armrest of the desk chair. The placements of the sensors were specifically
chosen so that they can sense the posture while impeding the user as little as possible.
Using this setup to record data, it was shown that the state transition model can derive the
four regarded postures well. More and differently placed sensors might be useful to detect
more postures and enhance accuracy. In particular, the attachment of additional sensors
to the user’s backrest and seating platform looks promising for providing even more details
about the user’s sitting posture.

79
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10.2 State Transition Model

Typical motion data at a desk workstation is mostly static with short dynamic periods
where the user transitions between postures. This work leveraged these characteristics of
the data to create a domain-specific machine learning method, the state transition model.
Instead of extracting the posture directly from the raw data, this model first extracts and
classifies the transitions between postures and then aggregates the transitions to derive
the posture.

Focusing only on the transitions where the user is moving instead of constantly inferring
the posture optimizes power consumption by only classifying when something is happening.
It also eliminates the effect of sensor drift in the IMU data by reducing the time spans
under consideration. To make this approach work, transitions between postures must be
identifiable. Looking at real-world data, there are clear transitions that are well detected
using the presented transition detection approach. However, in rare cases, if the user moves
very slowly and drifts from one posture to another, it may not always be possible to detect
the movement. To solve issues when transitions have not been detected for a long time
but the sensor orientations changed significantly, this work artificially inserts transitions.

The classification for the posture transitions in each transition window plays an important
role in the state transition model. When developing the state transition model further
and including even more postures, one particular challenge is that the number of possible
transitions grows quadratically with the number of possible postures. This work reduces
the number of regarded transitions by filtering out transitions that don’t occur often in
practise. Nevertheless, it is worth thinking about other approaches to reduce the number
of regarded transitions. One idea would be to only classify and aggregate the relative
movement, but not the start- and end-posture of a transition.

This work uses Hidden Markov Models to derive the posture sequence from the classified
transitions sequence. The evaluation shows that this approach is able to resolve errors of
the transition classifier well whenever a single transition is misclassified. When multiple
transitions are misclassified in a row, the error-correction capabilities of the HMM are not
sufficient. This is due to HMMs only considering the current posture when determining
the probability for the next posture. In practice, this is not very often the case due to the
good classification performance of the transition classifier. Nevertheless, when sufficient
sequence data is available, it would be interesting to investigate if other sequence models
that consider more timesteps, e.g. RNNs can correct these errors as well.

The evaluation of the model using recorded data reveals that the extracted posture using
the state transition model matches well with the ground truth. Also, extensions and vari-
ations of the submodules of the state transition model show the potential to improve the
model performance. Although the results are already promising, it is expected that ad-
ditional tuning and testing of the different approaches can further improve performance.
In particular, biasing the posture model with domain knowledge was shown to be less
beneficial than expected in this work. This leaves the open question of whether other
approaches to bias may offer greater performance improvements. Overall, the state tran-
sition model offers great potential for the extraction of posture from long-term IMU data
under low-power constraints.

10.3 Ergonomic Movement Manifold

The application of manifolds to ergonomic movements at the desk workstation is mostly
unexplored. This work investigates the explainability and reasoning of movements through
projecting the transition windows onto the first principal components of the data. The
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evaluation of this approach shows that interesting structures of the dataset are indeed
uncovered.

The opposite projection of inverse transitions and the grouping of transitions with the same
direction represent notable structures on the manifold that help explain the motion data.
Apart from explaining the movement data, these observations also suggest the feasibility
of other interesting approaches. For example, the already mentioned grouping of similarly
directed transitions suggests the feasibility of focusing only on the direction instead of
classifying start- and end-posture to transition classification.

Using vector combination, this work demonstrates the application of manifolds to the
movement data to reason about combined movements and generate semantically meaning-
ful data. Such a vector combination was only shown for transitions that start or end in
the same posture, or for two transitions in the same direction. This leaves open whether
and how similarly promising vector combinations exist for other combinations of motions
on the manifold.

This work also examined if the generated data affects the posture extraction performance.
While the evaluation showed that the addition of generated data doesn’t negatively impact
the transition classifier performance, the overall performance was reduced slightly. One
possible reason is the disability of the application bias to create reasonable probabilities
for the HMM rather than the quality of the created data itself. Further investigation into
using the generated data may be required to use the approach.

10.4 Ethical Considerations

The creation of personal health information and private data that can be traced back to
a person makes the consideration of ethical issues indispensable. Wearable devices allow
the collection of a vast amount of highly sensitive data such as health-related workplace
ergonomic data. The collection and transmission of highly personal data raise serious
concern over the privacy and data misuse for the users [75]. To address this issue, this
work actively considers privacy in the development of the solution.

This work specifically considers the on-device processing of data. The entire processing
pipeline is envisioned to be implemented directly on the device, without any data having
to leave the system and only the final assessment scores being transmitted. Therefore,
the collected critical data is confined to the system, and only the absolutely necessary
information is transmitted to the user. Thus, on-device signal processing is of critical
importance for a privacy-conform wearable solution for desk ergonomics. Consequentially,
on-device assessment of desk workplace ergonomic risk factors provides a great opportunity
to reduce the inherent tension between privacy and automatic ergonomic assessment.

Besides computing and power considerations for on-device processing, the use of cameras
is very sensitive with respect to the user’s privacy. Apart from body posture, the video
image contains a lot of highly sensitive and personal information about the user and their
environment. The problem is amplified by the fact that most of the information in the
video is not necessary for assessing the user’s posture. Using IMUs with motion sensors
to capture the user’s body movements is thus a more purpose-built and privacy-friendly
sensing approach.

Finally, the user has to actively consent to the use of the system and is able to dissent the
use at any time. Since the user themself is the only subject of both the wearable sensor
system and the resulting assessment, they are in complete control of using the system. A
future solution must resolve the trade-off between the benefits of ergonomic assessment
and the protection of the user’s private data.



82 10 Discussion

10.5 Personalization

The ergonomic disposition of each individual user varies greatly. A user’s physical dis-
position, their psychosocial situation, and the possibility of compensating for physical
inactivity and poor posture through sports are just a few examples of personal factors.
The approach presented in this work offers advancements for personalized ergonomic risk
factor assessment.

The IMU-based sensing approach allows for an automatic assessment of the ergonomic
risk situation of the user based on their personal sensor data. Therefore, the sensing-based
assessment approach is inherently better personalized than using for example standardized
checklists. This work establishes the feasibility of the proposed sensing approach for one
particular dual monitor setup with a typical desk chair. To be able to provide such a
personalized assessment to a wide range of users, a larger variety of desk setups have to
be considered in the future.

Another place where this work explicitly addresses personalization is in the scaling curves
of mean and variance to determine the posture and activity scores. By applying different
evaluation curves between users or even for each degree of freedom, the individual predis-
position of the user can be precisely incorporated into the evaluation. While the practical
benefits of personalized scoring are clear, it is required to define the curves in the first
place. In addition to the proposal that this work makes, it is envisioned to automatically
generate the scoring curves based on the sensor data. An influence of previous medical
findings would also be desirable.

This work uses machine learning in the state transition model for posture extraction.
This intentional choice over threshold or rule-based approaches was made because ma-
chine learning has proven successful in evaluating human activity data and adapts well to
different users and setups. Due to the limited scope of this work, the impact of the use of
the system by different users was not further investigated. One logical next step towards
the practical is to further study the functionality with many different test subjects and
desk setups.

10.6 Summary

The discussion showed how the intelligent sensing techniques contribute to a privacy-
informed and personalized desk workplace ergonomic risk assessment. The IMU-based
sensing solution allows for purpose-bound and low-power sensing. The state transition
model then extracts the posture from the sensor data while minimizing the influence of
sensor drift and further minimizing the power consumption. Using the ergonomic motion
manifold helps to better understand the motion data and provides further insights to
improve the state transition model. The efforts to optimize power consumption and reduce
computational complexity enable on-device processing of data, which in turn allows local
privacy of sensitive data. Finally, the personalized assessment of the user’s posture provides
them with the ability to improve their personal desk workplace posture and thus their
health. The next chapter concludes this work by summarizing the results and providing
an outlook for future work.
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Conclusion and Outlook

At the desk workstation, many people are exposed to a particularly high ergonomic risk
due to potential sustained poor sitting posture and lack of activity while sitting. Since desk
work will continue to increase and the associated health risks will become more dramatic,
the ergonomic assessment of the desk workplace is becoming increasingly important. How-
ever, the long-term and highly individual nature of desk work ergonomics makes assessing
the risk situation very difficult. Previous work has not been able to create an established
solution for the continuous assessment of ergonomic risk factors. The goal of this work
was to explore intelligent sensing techniques for the continuous assessment of desk work
ergonomic risk factors under considerations of low-power devices and long-term sensing.
This chapter summarizes the main findings of this work and provides an outlook on future
work in the area.

Poor posture and low sitting activity are particularly important ergonomic risk factors
at the desk workplace. To provide an assessment of the personal risk situation of a user
this work created a sensor setup using IMUs placed on the frames of wearable glasses
and the armrest of the desk chair that sense relevant movements of the user. A domain-
specific AI-approach, the state transition model, derives the posture from the raw sensor
data while utilizing the typical mostly-static nature of desk workplace data to optimize
power consumption and long-term accuracy. Instead of deriving the posture directly, this
approach first extracts only the transitions between postures from the sensor data and then
aggregates the transitions in a second step to derive the posture. To assess the posture
for the ergonomic risk factors of poor posture and low sitting activity, this work derives
the postural tendency score and the postural activity score. The ergonomic assessment is
used to provide the user action propositions to improve their posture whenever the scores
indicate high ergonomic risk. Finally, this work creates an ergonomic movement manifold
and demonstrates its use for explainability and reasoning about ergonomic movement data.

A practical implementation is used to evaluate the intelligent sensing techniques with
data collected in a controlled desk workplace environment. The state transition model for
posture extraction achieved promising results with an overall time-scaled partial accuracy
of 0.9123. In addition to comparing different end-to-end posture extraction pipelines, this
work evaluates the transition extraction, transition classification, and posture derivation in
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detail. The results demonstrate that the posture derived using the state transition model
on the data recorded with the proposed sensor setup matches the ground truth well. The
projection of the recorded movement data onto the ergonomic movement manifold reveals
interesting structures of the dataset: Inverse transitions are projected opposite, transitions
with the same direction share the same region, and the combination of two movements
on the manifold is similar to the recorded combined movement. These results show the
applicability of manifolds to ergonomic movement data.

This work presented a variety of novel contributions to the area of intelligent sensing tech-
niques for desk workplace ergonomics. The sensor setup provides a joint sensing approach
for assessing head and trunk posture. The use of IMUs to measure posture allows for
higher user privacy as well as lower compute and battery power requirements compared
to previous camera-based approaches. Special emphasis was put on developing a sensor
setup that does not impede the user in contrast to previous approaches using IMUs. The
state transition model does not only alleviate inherent issues of the use of IMUs over long
periods of time but also further reduces power usage while extracting posture. Due to the
low computational and battery power requirements of the processing pipeline developed
in this work, the processing is envisioned to be performed directly on the device. This
enables local privacy of the user’s sensitive health data. With the application of manifolds
to ergonomic movement data, this work investigated a technique that is barely explored
in previous work on desk work ergonomics. This technique does not only allow a better
understanding of ergonomic movements but also new approaches to reason about or even
generate data for them. Overall, this work provides valuable insights into the personalized
assessment of desk workplace ergonomic risk factors and provides non-invasive supporting
technology with local privacy.

The proposed solution enables providing a personalized ergonomic risk assessment to in-
dividual users and can be used as a supporting technology to enable long-term medical
studies on ergonomics at the desk workstation. However, there is still much to research
and develop in the field of intelligent sensor technology for the ergonomics of desk work-
stations. Moving forward, an in-depth study of the approach for a wide range of users and
desk configurations is important to demonstrate general applicability. Another logical next
step is to implement the processing pipeline on-device evaluate the power and processing
requirements in practice. Also, adding sensors to the backrest and seat of the desk chair
promises to collect more detailed data on the user’s posture. This could enable looking at
other postures that were not previously regarded. Beyond ergonomics at the desk worksta-
tion, there are a variety of application areas with similar characteristics for which transfer
learning might be possible. In particular, a transfer to ergonomics for professional drivers
and people who read a lot, such as school children, is possible since they are also strongly
affected by prolonged sitting postures.
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Appendix

A Expert Interview

In the context of this work, a qualitative expert interview with a physiotherapist with over
20 years of experience in treating conditions associated with desk work was conducted.
The interview consisted of a number of open questions. The goal of the interview was
to get an impression of relevant factors of desk ergonomics and the treatment of affected
patients from the medical point of view. The following section shows a summary of the
interview. Clarifications of the answers are inserted in square brackets.

� Q: In your day-to-day work, how much of your work relates to issues caused by
prolonged sitting / sitting posture?
A: Roughly 20-40% of patients. There are differences between patients with issues
due to sitting at the computer and other reasons for prolonged sitting.

� Q: What are the most frequent medical conditions that you see caused by work er-
gonomic issues?
A: In severe cases, mainly herniated discs. Of course, also muscle tensions in the neck
and cervical muscles. There is also the elbow problem due to mouse usage which is
often a muscular malposition. There are also issues with the hip joint due to bent
sitting. The dominant issues are muscle tensions.

� Q: Is there any distribution in people that are particularly very/less likely to be af-
fected?
A: There is a slight increase for the group of people of age 40-50. However, also many
younger people are affected. Younger people are more likely to be affected by muscle
tensions. For the older group issues are more likely already degenerative problems.
Less affected are people who have compensation, through exercise, relaxation tech-
niques, yoga, sports, or similar. However, I also have athletes as patients that have
problems due to prolonged sitting.

� Q: How relevant are issues to the people you treat?
A: This is really highly variant. For some patients, it is only an inconvenience due
to muscle tensions which they can compensate for with treatment and heat. For
others, they have paresthesias [abnormal sensations of the skin and radiating pain],
numbness, and possibly even motor limitations. With herniated discs, there is often
reflex attenuation. In that case, operations might be necessary. In particularly severe
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cases, it is necessary to take painkillers and antidepressants during particularly long
periods of illness.

� Q: How established is the connection between bad posture and musculoskeletal disor-
ders (MSD) in the medical community?
A: The connection is established. The same is true for the connection between lack
of activity and MSDs. However, the actual state of studies is highly problematic.
One would really have to accompany people for eight hours during their work. One
would have to create a summary of how long the subject remained in which posture.
In practice, the connection is very tangible.

� Q: Are the issues different between patients?
A: Yes, highly. The general muscle tone and basic posture of each patient’s body are
individual. As noted before, how people move outside of the desk strongly affects
their risk for postural issues. Nevertheless, even very active people are affected by
the problems.

� Q: What are particular challenges in assessing desk workplace-associated issues?
A: I am not there with the patient at the desk. Patients have to describe their
situation to me. Otherwise, the assessment is based on different physical factors:
Head posture, spine, muscle expression, shoulder blades, spreading of the arms, from
the side: double S-shape, from the front: belly shape (belly button), collarbone
position, etc. From there I have movement patterns performed actively, passively,
and isometrically. This provides information about the mobility of the skeleton and
the muscles. However, all this has to be seen in relation to the precondition of the
person. For example, when a man does a lot of sports is totally normal that his
shoulder blades are further apart. For women with narrower shoulders and a wider
pelvis, their arm posture is also different.
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B Example Raw Data

(a) Raw movement data of the glasses sensor

(b) Raw movement data of the chair sensor

(c) Raw environmental data of the glasses sensor

Figure B.1: Example raw sensor data. Note that the movement sensor data is standard
scaled.
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C Dataset Information

Table C.1: Total recorded transitions per transition type and data set

Transition Training Set Validation Set Test Set

center chairleft 23 5 5

center chairright 22 5 6

center down 48 10 11

center down+left 17 3 4

center down+right 17 4 4

center left 72 11 12

center left+chairleft 19 4 4

center lefttilt 24 4 5

center right 62 15 15

center right+chairright 18 4 5

center righttilt 22 5 6

center up 47 11 11

center up+left 18 3 4

center up+right 17 4 4

chairleft center 22 5 6

chairright center 22 4 4

down+left center 16 4 4

down+right center 16 4 5

down center 46 11 12

down left 12 2 3

down right 11 2 2

left+chairleft center 19 4 4

left+chairleft left 8 1 2

left center 63 13 14

left down 11 3 3

left left+chairleft 8 1 2

left right 45 10 10

left up 13 3 3

lefttilt center 23 5 5

right+chairright center 17 4 5

right+chairright right 7 2 2

right center 71 18 19

right down 12 3 3

right left 32 7 8

right right+chairright 7 2 2

right up 12 2 3

righttilt center 22 5 6

up+left center 18 3 3

up+right center 17 4 4

up center 47 11 11

up left 11 3 3

up right 13 3 3

Total 1047 226 247
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