30 research outputs found

    Making Triangles Colorful

    Get PDF
    We prove that for any point set P in the plane, a triangle T, and a positive integer k, there exists a coloring of P with k colors such that any homothetic copy of T containing at least ck^8 points of P, for some constant c, contains at least one of each color. This is the first polynomial bound for range spaces induced by homothetic polygons. The only previously known bound for this problem applies to the more general case of octants in R^3, but is doubly exponential.Comment: 6 page

    Polychromatic Coloring for Half-Planes

    Full text link
    We prove that for every integer kk, every finite set of points in the plane can be kk-colored so that every half-plane that contains at least 2k−12k-1 points, also contains at least one point from every color class. We also show that the bound 2k−12k-1 is best possible. This improves the best previously known lower and upper bounds of 43k\frac{4}{3}k and 4k−14k-1 respectively. We also show that every finite set of half-planes can be kk colored so that if a point pp belongs to a subset HpH_p of at least 3k−23k-2 of the half-planes then HpH_p contains a half-plane from every color class. This improves the best previously known upper bound of 8k−38k-3. Another corollary of our first result is a new proof of the existence of small size \eps-nets for points in the plane with respect to half-planes.Comment: 11 pages, 5 figure

    Colorful Strips

    Full text link
    Given a planar point set and an integer kk, we wish to color the points with kk colors so that any axis-aligned strip containing enough points contains all colors. The goal is to bound the necessary size of such a strip, as a function of kk. We show that if the strip size is at least 2k−12k{-}1, such a coloring can always be found. We prove that the size of the strip is also bounded in any fixed number of dimensions. In contrast to the planar case, we show that deciding whether a 3D point set can be 2-colored so that any strip containing at least three points contains both colors is NP-complete. We also consider the problem of coloring a given set of axis-aligned strips, so that any sufficiently covered point in the plane is covered by kk colors. We show that in dd dimensions the required coverage is at most d(k−1)+1d(k{-}1)+1. Lower bounds are given for the two problems. This complements recent impossibility results on decomposition of strip coverings with arbitrary orientations. Finally, we study a variant where strips are replaced by wedges

    Making Octants Colorful and Related Covering Decomposition Problems

    Full text link
    We give new positive results on the long-standing open problem of geometric covering decomposition for homothetic polygons. In particular, we prove that for any positive integer k, every finite set of points in R^3 can be colored with k colors so that every translate of the negative octant containing at least k^6 points contains at least one of each color. The best previously known bound was doubly exponential in k. This yields, among other corollaries, the first polynomial bound for the decomposability of multiple coverings by homothetic triangles. We also investigate related decomposition problems involving intervals appearing on a line. We prove that no algorithm can dynamically maintain a decomposition of a multiple covering by intervals under insertion of new intervals, even in a semi-online model, in which some coloring decisions can be delayed. This implies that a wide range of sweeping plane algorithms cannot guarantee any bound even for special cases of the octant problem.Comment: version after revision process; minor changes in the expositio

    Multiple coverings with closed polygons

    Get PDF
    A planar set PP is said to be cover-decomposable if there is a constant k=k(P)k=k(P) such that every kk-fold covering of the plane with translates of PP can be decomposed into two coverings. It is known that open convex polygons are cover-decomposable. Here we show that closed, centrally symmetric convex polygons are also cover-decomposable. We also show that an infinite-fold covering of the plane with translates of PP can be decomposed into two infinite-fold coverings. Both results hold for coverings of any subset of the plane.Comment: arXiv admin note: text overlap with arXiv:1009.4641 by other author

    Octants are cover-decomposable into many coverings

    Get PDF
    We prove that octants are cover-decomposable into multiple coverings, i.e., for any k there is an m(k)m(k) such that any m(k)m(k)-fold covering of any subset of the space with a finite number of translates of a given octant can be decomposed into k coverings. As a corollary, we obtain that any m(k)m(k)-fold covering of any subset of the plane with a finite number of homothetic copies of a given triangle can be decomposed into k coverings. Previously only some weaker bounds were known for related problems [20]

    Coloring axis-parallel rectangles

    Get PDF
    AbstractFor every k and r, we construct a finite family of axis-parallel rectangles in the plane such that no matter how we color them with k colors, there exists a point covered by precisely r members of the family, all of which have the same color. For r=2, this answers a question of S. Smorodinsky [S. Smorodinsky, On the chromatic number of some geometric hypergraphs, SIAM J. Discrete Math. 21 (2007) 676–687]
    corecore