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For every k and r, we construct a finite family of axis-parallel
rectangles in the plane such that no matter how we color them
with k colors, there exists a point covered by precisely r members
of the family, all of which have the same color. For r = 2, this
answers a question of S. Smorodinsky [S. Smorodinsky, On the
chromatic number of some geometric hypergraphs, SIAM J. Discrete
Math. 21 (2007) 676–687].
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1. Introduction

Given a set of points P and a family of regions R in the plane, in a natural way one can associate
two hypergraphs with them, dual to each other. Let H(P , R) denote the hypergraph on the vertex
set P , whose hyperedges are all subsets of P that can be obtained by intersecting P with a member
of R. The hypergraph H∗(P , R) is defined by swapping the roles of R and P : Its vertex set is R, and
for each p ∈ P it has a hyperedge consisting of all regions in R that contain p.

Let H be a hypergraph with vertex set V (H). The chromatic number χ(H) of H is the small-
est number of colors in a coloring of V (H) such that no hyperedge with at least two vertices is
monochromatic. Let Hr (and H�r ) denote the hypergraph on the vertex set V (H), consisting of all
r-element (at least r-element) hyperedges of H . By definition, we have χ(H) = χ(H�2).

In the special case when R is the family of all axis-parallel rectangles and P is a set of n points
in the plane, the problem of bounding χ(H(P , R)) reduces to estimating the chromatic number
of the graph G(P , R) := H2(P , R) consisting of all two-element (hyper)edges of H(P , R). Kříž and
Nešetřil [8] gave an explicit construction showing that the chromatic number of G(P , R) cannot be
bounded by an absolute constant. Chen, Pach, Szegedy, and Tardos [4] proved by a probabilistic argu-
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ment that there exist n-element point sets P such that the chromatic numbers of G(P , R) grow at
least as fast as Ω(

logn
log2 logn

). On the other hand, Ajwani, Elbassioni, Govindarajan, and Ray [1] proved

that χ(H(P , R)) = χ(G(P , R)) � O (n.382).
It was also shown in [4] that, for a fixed r � 2, a randomly and uniformly selected set P of n

points in the unit square almost surely satisfies

χ
(

Hr(P , R)
) = Ω

(
log1/(r−1) n

log2 logn

)
,

as n tends to infinity.
Concerning the dual question, S. Smorodinsky [15] proved that if R is a family of n open axis-

parallel rectangles and P is a set of points in the plane, then χ(H∗(P , R)) = O (log n). In other words,
the rectangles in R can be colored by at most constant times log n colors so that, for any point
p ∈ P covered by more than one rectangle, at least two rectangles containing p have different colors.
Smorodinsky asked whether there always exists such a coloring with a bounded number of colors. In
the present note, we answer this question in the negative, in the following stronger form.

Theorem 1. There exists a constant C > 0 such that for all n � r � 2 integers there exist families R of n axis-
parallel rectangles in the plane such that for any coloring of the rectangles with k � C logn

r log r colors, one can find
a point covered by exactly r members of R, all of the same color.

Using our notation, we have that χ(H∗
r (P , R)) � C logn

r log r , where P = R
2 (or a suitable finite subset

of R
2). For r = 2, the above mentioned result of Smorodinsky [15] shows that Theorem 1 is not far

from being optimal.
A family of axis-parallel rectangles is said to form an r-fold covering of the plane if every point

p ∈ R
2 is contained in at least r members of the family. The covering is called locally finite if no

point of the plane belongs to infinitely many rectangles. We say that a covering has a k-split if the
family can be partitioned into k parts such that the union of any k − 1 parts form a (1-fold) covering.
Theorem 1 yields

Corollary 2. For every r,k � 2, there is a locally finite r-fold covering of the plane with axis-parallel rectangles
that does not have a k-split.

In the case k = 2, Corollary 2 states that there are locally finite r-fold coverings of the plane with
axis-parallel rectangles that cannot be partitioned into two coverings. A very simple direct construc-
tion proving this can be found in [13]. Some positive results with half-planes, disks, translates of a
convex polygon, etc., in the place of rectangles, were established in [2,7,9,11,12,14,16]. There is an
intimate relationship between questions of this type and the notion of conflict-free colorings, intro-
duced by Even, Lotker, Ron, and Smorodinsky [5]; see also [6]. Many similar problems on colorings
are discussed in [3] and [10].

2. The construction and its basic properties

First we have to introduce some notations.
For any two integers c � 2 and k � 0, let [c] := {0,1, . . . , c − 1} and let [c]k stand for the set of

strings of length k over the alphabet [c]. For x ∈ [c]k , let x j denote the jth digit of x (1 � j � k),
so that we have x = x1 . . . xk . Let ←−x denote the reverse of x, that is, ←−x = xk . . . x1. An initial segment
of x is a string x1 . . . x j for some 0 � j � k. Expanding x as a c-ary fraction, we obtain a number

x := ∑k
j=1 x j/c j . Let ε denote the empty string so that ε = 0.

Let c � 2 and d � 1 be integers. For any 0 � k � d, u ∈ [c]k , and v ∈ [c]d−k , define an open axis-
parallel rectangle Rk

u,v in the plane as follows:
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Fig. 1. The family R = R(3,2). Equal coordinates are slightly perturbed for clarity.

Rk
u,v := (

u, u + c−k) × (
v, v + ck−d).

All of the rectangles Rk
u,v belong to the unit square (0,1)2.

Now we are in a position to define the family of rectangles R meeting the requirements of Theo-
rem 1. Let R consist of the rectangles in{

Rk
u,v

∣∣ 0 < k < d, u ∈ [c]k, v ∈ [c]d−k, uk = vd−k
}

together with the rectangles in{
R0

ε,v

∣∣ v ∈ [c]d, vd = 0
} ∪ {

Rd
u,ε

∣∣ u ∈ [c]d, ud = 0
}
.

See Fig. 1. For convenience, we slightly change the notation. For any z ∈ [c]d−1, 0 < k < d, set Sk
z :=

Rk
u,v , where u is the initial segment of z of length k, and v is the initial segment of ←−z of length d −k.

Further, for any z ∈ [c]d−1, set S0
z := R0

ε,v and Sd
z := Rd

u,ε , where u is obtained from z by appending to
it a 0 as its last digit, and v is obtained from ←−z in the same way. Using this notation, we have

R = R(c,d) = {
Sk

z

∣∣ 0 � k � d, z ∈ [c]d−1}.
Clearly, we have |R| = (d +1)cd−1. Finally, let H∗ = H∗(c,d) = H∗(R2, R(c,d)) denote the hypergraph
on the vertex set R = R(c,d), whose hyperedges are all nonempty subsets of S ⊆ R for which there
is a point in the plane covered by the elements of S , but by no other element of R.

The most important property of our construction is the following.

Theorem 3. Let d � 1, 2 � r < c, and let H∗ = H∗(c,d) denote the hypergraph defined above. If a subset
I ⊆ R(c,d) contains no hyperedge of H∗ of size r, then we have

|I| � cd−1

1
r−1 − 1

c−1

.

Let G∗ := G∗(c,d) denote the graph H∗
2, consisting of all two-element hyperedges of H∗ = H∗(c,d).

In view of Theorem 3, the chromatic number χ(H∗(c,d)) satisfies the following.
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Corollary 4.

(1) The graph G∗(2,d) is bipartite.
(2) The chromatic number of G∗(3,d) is at least d+1

2 .
(3) For c � d + 3, the chromatic number of G∗(c,d) is d + 1.

Proof. To establish (1), color the rectangles Sk
z ∈ R(2,d) according to the parity of k + ∑d−1

i=1 zi . By
Corollary 8 in Section 3, this is a proper coloring of the vertex set of G∗(2,d).

Applying Theorem 3 with r = 2, we obtain that the size of every independent set in G∗(c,d) is at
most cd−1/(1 − 1/(c − 1)). As the total number of vertices of G∗(c,d) is (d + 1)cd−1, the chromatic
number of G∗(c,d) is at least (d + 1)(1 − 1/(c − 1)). In case c = 3, this gives the bound claimed in (2).
For c � d + 3, we have (d + 1)(1 − 1/(c − 1)) > d, so that χ(G∗(c,d)) � d + 1. This is tight, since the
vertices Sk

z ∈ V (G∗(c,d)) = R(c,d) can be colored according to the value k, 0 � k � d. �
Theorem 1 immediately follows from

Corollary 5. Let k, r � 2 be fixed. There exists a family of k(2r)2kr axis-parallel rectangles in the plane such
that for any coloring of these rectangles with k colors, one can find a point covered by exactly r rectangles, all
of which have the same color.

Proof. Consider the family R(c,d) with c = 2r, d = 2kr − 1. For any k-coloring of the members of
R(c,d) = R(2r,2kr − 1), the size of the largest color class is at least (d + 1)cd−1/k = cd , which is
larger than the bound in Theorem 3. Thus, the largest color class contains a hyperedge of H∗(c,d)

of size r. Note that the slightly smaller choices c = 2r − 1, d = 2kr − 2k would also suffice for the
proof. �

It remains to establish Theorem 3.

3. Proof of Theorem 3

Let d � 1 and c � 2 be fixed. Let R = R(c,d) denote the family of all rectangles Rk
u,v with 0 �

k � d, u ∈ [c]k , v ∈ [c]d−k . This family contains R = R(c,d) as a subfamily. Let H∗ = H∗(c,d) be the
corresponding hypergraph, that is, let the vertices of H∗ be the members of R, and let its hyperedges
be all nonempty sets of the form {R ∈ R | p ∈ R}, where p ∈ R

2.
First we study the structure of H∗ . We define Rk

u,v � Rl
w,z if k � l, u is an initial segment of w ,

and z is an initial segment of v . Note that � is a partial order on R. We show that the hyperedges
of H∗ form intervals in this partial order.

Lemma 6. The hyperedges of H∗ are exactly the sets {e ∈ R | a � e � b}, where a � b are elements of R.

Proof. Let a = Rk
u,v and b = Rl

w,z be two elements of R with a � b. Let pa,b = (w +c−l−1, v +ck−d−1),

a point of the plane. Let e = Rm
x,y ∈ R arbitrary. We have e = (x, x + c−m) × (y, y + cm−d). So pa,b ∈ e

if and only if x < w + c−l−1 < x + c−m and y < v + ck−d−1 < y + cm−d . The first pair of inequalities
is satisfied if and only if m � l and x is an initial segment of w , while the second pair is satisfied if
and only if k � m and y is an initial segment of v . Both pairs are satisfied if and only if a � e � b.
Therefore, the point pa,b shows that {e ∈ R | a � e � b} is an edge of H∗ .

To see that H∗ has no additional hyperedges, it is sufficient to prove the following two claims.

(1) Any two rectangles a,b ∈ R are disjoint, unless a � b or b � a.
(2) For any three rectangles a � e � b, we have a ∩ b ⊆ e.
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Here (1) shows that the vertices of any hyperedge of H∗ are linearly ordered by �. If a is the minimal
vertex of a hyperedge f and b is its maximal vertex, then f ⊆ {e ∈ R | a � e � b}, and by (2) equality
must hold.

To verify (1), let a = Rk
u,v = a1 × a2 and b = Rl

w,z = b1 × b2. Here a1, a2, b1, and b2 are open
intervals. We may assume k � l, by symmetry. If for some i � k we have ui �= wi , then a1 and b1 are
disjoint. If for some i � d − l, we have vi �= zi , then a2 and b2 are disjoint. So if a and b intersect, we
must have a � b. Notice that in this case we have b1 ⊆ a1 and a2 ⊆ b2.

To verify (2), let a � e � b with a = a1 × a2 and b = b1 × b2. Using the last observation of the
previous paragraph, we have a ∩ b = b1 × a2 and by the same observation again, this is contained
in e. �

We say that the type of a rectangle Rk
u,v ∈ R is k. It is easy to see that if a � b are rectangles in R

of type k and l, respectively, then for all m, k � m � l, there exists precisely one d ∈ R of type m that
satisfies a � d � b. Consider now the two-coloring of R, where the color of a rectangle is determined
by the parity of its type. The last observation shows that in any hyperedge of H∗ the number of
vertices of the two color classes differ by at most one. In particular, no edge of size at least two is
monochromatic.

Next we describe the structure of the subfamily R = R(c,d) of R. The elements of R are partially
ordered by �. Note that for any a = Sk

z and b = Sl
t , we have a � b if and only if k � l and zi = ti for all

1 � i � k and l � i � d − 1. For any a � b in R(c,d), we define the interval [a,b] = {e ∈ R | a � e � b}.
For any a = Sk

z and b = Sl
t with a � b, the interval [a,b] contains one element of type m for each

index m such that k � m � l and zm = tm . Here the type of the rectangle Sm
w (inherited from R) is m.

Corollary 7. The hyperedges of H∗(c,d) are exactly the intervals [a,b], where a � b are vertices of H∗(c,d).

Proof. The hyperedges of H∗(c,d) are the sets e ∩ R where e is a hyperedge of H∗(c,d). The assertion
follows from Lemma 6. �

The next statement is a simple consequence of Corollary 7.

Corollary 8. Two vertices Sk
z and Sl

t are connected in G∗(c,d) by an edge if and only if

(1) k �= l,
(2) for all indices i strictly between k and l, we have zi �= ti , and
(3) for all other indices i, we have zi = ti .

Proof of Theorem 3. Let us fix d � 1, 2 � r < c and a set I ⊆ R = R(c,d) such that no edge of H∗(c,d)

of size r is contained in I . For any vertex a ∈ R of type 0 � i < d, we define the next vertex N(a) of
type i + 1 as follows. Let N(Si

x) = Si+1
x if i = 0 or Si

x ∈ I . If 0 < i < d and Si
x /∈ I , then let N(Si

x) = Si+1
y ,

where y j = x j for all indices 1 � j � d − 1, j �= i, and yi = (xi + s) mod c. We choose s to be the
smallest positive integer such that Si

y /∈ I . In other words, we obtain y from x by shifting the ith digit

cyclically upward until we reach a value y with Si
y /∈ I . Note that the choice s = c makes y = x and

Si
y /∈ I . We call the vertex Si

x bad if s = c is the minimal choice, that is, if 1 � i � d − 1, Si
x /∈ I and

N(Si
x) = Si+1

x . Clearly, Si
x is bad if and only if Si

x /∈ I but Si
y ∈ I for all the c − 1 strings y that differ

from x only at the position i. Therefore, for the set B of bad vertices, we have |B| � |I|/(c − 1).
It is easy to see that for 0 � i � d − 1, the function N : R(c,d) → R(c,d) bijectively maps the set

of vertices of type i to the set of vertices of type i + 1. We call a sequence a0,a1, . . . ,ad of vertices
of R a cluster if N(ai) = ai+1 for 0 � i � d − 1. Note that ai is of type i for every i. There are cd−1

clusters (one for each a0 of type 0) and they form a partition of R into subsets of size d + 1.
The main observation is the following. If in a cluster a0,a1, . . . ,ad we have ai,a j ∈ I for some

indices 0 � i � j � d, then ai � a j and [ai,a j] = {ak | i � k � j, ak ∈ I ∪ B}. This follows readily from
the definition of the relation �.
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Now we use the fact that intervals like [ai,a j] are edges of the hypergraph H∗(c,d) (Corollary 7),
and no edge of size r is contained in I . Therefore, a cluster contains at most r − 1 elements of I not
separated by bad vertices. If there are b bad vertices in a cluster, then the cluster contains at most
(r − 1)(b + 1) elements of I . Summing over all clusters, we conclude that

|I| � (r − 1)|B| + (r − 1)cd−1.

Using the inequality |B| � |I|/(c − 1) and rearranging the terms, the desired bound on |I| follows. �
4. Concluding remarks

For any c � 2,d � 1, define a graph G ′ = G ′(c,d) on the vertex set {vk
z | 0 � k � d, z ∈ [c]d} as

follows. Connect two vertices vk
z and vl

t with k � l by an edge if and only if

(1) k < l,
(2) for all indices i with k < i � l, we have zi �= ti , and
(3) for all other indices i, we have zi = ti .

Clearly, the definition of G ′(c,d) is very close to the description of G∗(c,d) given in Corollary 8. Let
us compare the two graphs.

It is easy to see that G ′ contains a complete graph on d + 1 vertices. For example, let z(i) be a
string of i zeros followed by d − i ones. Notice that the vertices vi

z(i) , 0 � i � d, form a complete
subgraph. Thus, the chromatic number of G ′ is at least d + 1, and this is tight, as shown by the
coloring that assigns color i to all vertices of the form vi

z . Moreover, the vertex set of G ′ can be
partitioned into (d + 1)-element sets so that each set induces a complete graph in G ′ . To see this,
let x = x1 . . . xd ∈ [c]d , and for any 0 � i � d, define x(i) ∈ [c]d as follows: Let (x(i)) j = x j if j > i, and
let (x(i)) j = (x j + 1) mod c if j � i. Clearly, the vertices vi

x(i) induce a complete subgraph in G ′ , and
for the different choices of x, they form a vertex partition. This shows that no independent set in G ′
contains more than a fraction of 1/(d + 1) of the vertices.

On the other hand, the graph G∗ is triangle-free. To verify this, consider three vertices a = Sk
z ,

b = Sl
t , and e = Sm

w with k � l � m. If a and b are connected by an edge in G∗ , we have k < l and
zl = tl . Analogously, if b and e are connected, then l < m and tl = wl . This yields that k < l < m and
zl = wl , which implies that a and e are not connected. Despite this difference, the proof of Theorem 3
was inspired by the similarity between G∗ and G ′ , and by the simple argument above, which provides
an upper bound on the size of the largest independent set in G ′ .

The fact that G∗ is triangle-free is not merely a coincidence. Consider any family S of axis-parallel
rectangles in the plane, and construct a graph G = (V , E) on the vertex set V = S by connecting two
rectangles if they have a point in common that is not covered by any other member of S . Recall
that G∗ was also constructed in this manner. While G may contain triangles and even subgraphs
isomorphic to K4, it cannot have a complete subgraph on five vertices. Furthermore, we can partition
the edge set of G into two subsets E = E1 ∪ E2 as follows. Let us put an edge {v1, v2} ∈ E in E1 if the
boundaries of the rectangles v1 and v2 cross in four points. Otherwise, put the edge {v1, v2} in E2.
It is easy to see that G1 := (V , E1) is triangle-free. It seems that G1 is the interesting part of G , as
the chromatic number of the graph G2 := (V , E2) is small. Perhaps G2 is even �-degenerate for an
appropriate absolute constant �, that is, every subgraph of G2 has a vertex of degree at most �. To
prove this, it would be sufficient to show that |E2| � �|V |/2.
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