206 research outputs found

    ES2Net: An Efficient Spectral-Spatial Network for Hyperspectral Image Change Detection

    Full text link
    Hyperspectral image change detection (HSI-CD) aims to identify the differences in bitemporal HSIs. To mitigate spectral redundancy and improve the discriminativeness of changing features, some methods introduced band selection technology to select bands conducive for CD. However, these methods are limited by the inability to end-to-end training with the deep learning-based feature extractor and lack considering the complex nonlinear relationship among bands. In this paper, we propose an end-to-end efficient spectral-spatial change detection network (ES2Net) to address these issues. Specifically, we devised a learnable band selection module to automatically select bands conducive to CD. It can be jointly optimized with a feature extraction network and capture the complex nonlinear relationships among bands. Moreover, considering the large spatial feature distribution differences among different bands, we design the cluster-wise spatial attention mechanism that assigns a spatial attention factor to each individual band to individually improve the feature discriminativeness for each band. Experiments on three widely used HSI-CD datasets demonstrate the effectiveness and superiority of this method compared with other state-of-the-art methods

    GlobalMind: Global Multi-head Interactive Self-attention Network for Hyperspectral Change Detection

    Full text link
    High spectral resolution imagery of the Earth's surface enables users to monitor changes over time in fine-grained scale, playing an increasingly important role in agriculture, defense, and emergency response. However, most current algorithms are still confined to describing local features and fail to incorporate a global perspective, which limits their ability to capture interactions between global features, thus usually resulting in incomplete change regions. In this paper, we propose a Global Multi-head INteractive self-attention change Detection network (GlobalMind) to explore the implicit correlation between different surface objects and variant land cover transformations, acquiring a comprehensive understanding of the data and accurate change detection result. Firstly, a simple but effective Global Axial Segmentation (GAS) strategy is designed to expand the self-attention computation along the row space or column space of hyperspectral images, allowing the global connection with high efficiency. Secondly, with GAS, the global spatial multi-head interactive self-attention (Global-M) module is crafted to mine the abundant spatial-spectral feature involving potential correlations between the ground objects from the entire rich and complex hyperspectral space. Moreover, to acquire the accurate and complete cross-temporal changes, we devise a global temporal interactive multi-head self-attention (GlobalD) module which incorporates the relevance and variation of bi-temporal spatial-spectral features, deriving the integrate potential same kind of changes in the local and global range with the combination of GAS. We perform extensive experiments on five mostly used hyperspectral datasets, and our method outperforms the state-of-the-art algorithms with high accuracy and efficiency.Comment: 14 page, 18 figure

    Llam-Mdcnet for Detecting Remote Sensing Images of Dead Tree Clusters

    Get PDF
    Clusters of dead trees are forest fires-prone. To maintain ecological balance and realize its protection, timely detection of dead trees in forest remote sensing images using existing computer vision methods is of great significance. Remote sensing images captured by Unmanned aerial vehicles (UAVs) typically have several issues, e.g., mixed distribution of adjacent but different tree classes, interference of redundant information, and high differences in scales of dead tree clusters, making the detection of dead tree clusters much more challenging. Therefore, based on the Multipath dense composite network (MDCN), an object detection method called LLAM-MDCNet is proposed in this paper. First, a feature extraction network called Multipath dense composite network is designed. The network\u27s multipath structure can substantially increase the extraction of underlying and semantic features to enhance its extraction capability for rich-information regions. Following that, in the row, column, and diagonal directions, the Longitude Latitude Attention Mechanism (LLAM) is presented and incorporated into the feature extraction network. The multi-directional LLAM facilitates the suppression of irrelevant and redundant information and improves the representation of high-level semantic feature information. Lastly, an AugFPN is employed for down-sampling, yielding a more comprehensive representation of image features with the combination of low-level texture features and high-level semantic information. Consequently, the network\u27s detection effect for dead tree cluster targets with high-scale differences is improved. Furthermore, we make the collected high-quality aerial dead tree cluster dataset containing 19,517 images shot by drones publicly available for other researchers to improve the work in this paper. Our proposed method achieved 87.25% mAP with an FPS of 66 on our dataset, demonstrating the effectiveness of the LLAM-MDCNet for detecting dead tree cluster targets in forest remote sensing images

    Remote Sensing

    Get PDF
    This dual conception of remote sensing brought us to the idea of preparing two different books; in addition to the first book which displays recent advances in remote sensing applications, this book is devoted to new techniques for data processing, sensors and platforms. We do not intend this book to cover all aspects of remote sensing techniques and platforms, since it would be an impossible task for a single volume. Instead, we have collected a number of high-quality, original and representative contributions in those areas

    Roadmap on signal processing for next generation measurement systems

    Get PDF
    Signal processing is a fundamental component of almost any sensor-enabled system, with a wide range of applications across different scientific disciplines. Time series data, images, and video sequences comprise representative forms of signals that can be enhanced and analysed for information extraction and quantification. The recent advances in artificial intelligence and machine learning are shifting the research attention towards intelligent, data-driven, signal processing. This roadmap presents a critical overview of the state-of-the-art methods and applications aiming to highlight future challenges and research opportunities towards next generation measurement systems. It covers a broad spectrum of topics ranging from basic to industrial research, organized in concise thematic sections that reflect the trends and the impacts of current and future developments per research field. Furthermore, it offers guidance to researchers and funding agencies in identifying new prospects.AerodynamicsMicrowave Sensing, Signals & System

    Deep learning-based change detection in remote sensing images:a review

    Get PDF
    Images gathered from different satellites are vastly available these days due to the fast development of remote sensing (RS) technology. These images significantly enhance the data sources of change detection (CD). CD is a technique of recognizing the dissimilarities in the images acquired at distinct intervals and are used for numerous applications, such as urban area development, disaster management, land cover object identification, etc. In recent years, deep learning (DL) techniques have been used tremendously in change detection processes, where it has achieved great success because of their practical applications. Some researchers have even claimed that DL approaches outperform traditional approaches and enhance change detection accuracy. Therefore, this review focuses on deep learning techniques, such as supervised, unsupervised, and semi-supervised for different change detection datasets, such as SAR, multispectral, hyperspectral, VHR, and heterogeneous images, and their advantages and disadvantages will be highlighted. In the end, some significant challenges are discussed to understand the context of improvements in change detection datasets and deep learning models. Overall, this review will be beneficial for the future development of CD methods

    Physics vs. Learned Priors: Rethinking Camera and Algorithm Design for Task-Specific Imaging

    Full text link
    Cameras were originally designed using physics-based heuristics to capture aesthetic images. In recent years, there has been a transformation in camera design from being purely physics-driven to increasingly data-driven and task-specific. In this paper, we present a framework to understand the building blocks of this nascent field of end-to-end design of camera hardware and algorithms. As part of this framework, we show how methods that exploit both physics and data have become prevalent in imaging and computer vision, underscoring a key trend that will continue to dominate the future of task-specific camera design. Finally, we share current barriers to progress in end-to-end design, and hypothesize how these barriers can be overcome
    corecore