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Abstract: Clusters of dead trees are forest fires-prone. To maintain ecological balance and realize its
protection, timely detection of dead trees in forest remote sensing images using existing computer
vision methods is of great significance. Remote sensing images captured by Unmanned aerial vehicles
(UAVs) typically have several issues, e.g., mixed distribution of adjacent but different tree classes,
interference of redundant information, and high differences in scales of dead tree clusters, making
the detection of dead tree clusters much more challenging. Therefore, based on the Multipath dense
composite network (MDCN), an object detection method called LLAM-MDCNet is proposed in this
paper. First, a feature extraction network called Multipath dense composite network is designed. The
network’s multipath structure can substantially increase the extraction of underlying and semantic
features to enhance its extraction capability for rich-information regions. Following that, in the row,
column, and diagonal directions, the Longitude Latitude Attention Mechanism (LLAM) is presented
and incorporated into the feature extraction network. The multi-directional LLAM facilitates the
suppression of irrelevant and redundant information and improves the representation of high-level
semantic feature information. Lastly, an AugFPN is employed for down-sampling, yielding a more
comprehensive representation of image features with the combination of low-level texture features
and high-level semantic information. Consequently, the network’s detection effect for dead tree
cluster targets with high-scale differences is improved. Furthermore, we make the collected high-
quality aerial dead tree cluster dataset containing 19,517 images shot by drones publicly available for
other researchers to improve the work in this paper. Our proposed method achieved 87.25% mAP
with an FPS of 66 on our dataset, demonstrating the effectiveness of the LLAM-MDCNet for detecting
dead tree cluster targets in forest remote sensing images.

Keywords: object detection; forest fires prevention; attention mechanism; remote sensing images

1. Introduction

The forest is an ecosystem capable of nourishing water and purifying the atmo-
sphere [1,2]. Concurrently, the frequent forest fires in recent years have posed a significant
threat to human life and property. Due to the characteristics of inevitable harmful gases
released, their prevention and control have drawn attention progressively [3]. People have
realized that three conditions must be presented to form a forest fire: (1) Combustible
materials (including trees, grasses, shrubs, and other plants); (2) Fire-danger weather is
an important condition; (3) The fire source is the dominant factor. Forest fires will not
occur without even one of them. Various facts show that forest fires can be prevented,
combustible materials and fire sources can be controlled by human beings, and fire-danger
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weather can be forecasted [4]. As a consequence, the establishment of a firebreak or barrier
to prevent the spread of the fire has been deemed the primary choice for forest fire defense
to effectively limit the frequency of forest fires.

For a long period, firebreaks were established without considering the possible fire
sites. Therefore, they typically cut down trees arbitrarily to create firebreaks [5]. Unsuitable
selection of firebreaks not only leads to the cutting down of quality trees and the waste
of forest resources but also leads to the fire-prone dead and old plants being neglected,
which can lay a potential hazard for forest fires. When establishing firebreaks, it is be-
coming common practice to cut dead and old plants with low water content selectively.
In most countries, hiring rangers to monitor is the primary method of locating dead and
old plants. However, this method is labor-intensive, and occasionally omissions will be
unavoidable [6].

The advancement of UAV remote sensing technology in recent years has brought
new ideas for the prevention and control of forest fires. Because of the UAV’s overhead
view, it can monitor stand types, search for dead and old plants more comprehensively,
and provide a reference for constructing fire isolation zones [7]. Before employing remote
sensing images, people typically need to parse the massive quantity of data; otherwise, it
is difficult to extract valuable information directly. The initial stage in parsing is image
classification, and its accuracy has a direct impact on the quality of parsing in the subsequent
process. The introduction of neural networks with the development of machine learning
and deep learning approaches allows for the classification of remote sensing images with
high accuracy and automation. Many researchers try to apply it to the field of target
detection in remote sensing images and have achieved good results. When completing the
scene classification assignment, Yan used Googlenet with subnetworks, which can handle
low and high-complexity remote sensing images separately. The main network, on the
other hand, is weakly coupled with the auxiliary branches and necessitates a significant
number of training sets [8]. Acquiring adequate remote sensing image features is the key to
achieving remote sensing image classification. These methods, in general, improve feature
extraction capabilities by developing network structures or attention mechanisms. Xu [9]
selected the YOLO-V3 as the backbone for remote sensing object detection at different
scales and employed DenseNet to enhance the network feature extraction capability. Guo
used Generative Adversarial Network (GAN) constraint as domain adaptive constraint in
the adaptive module based on Faster R-CNN to achieve instance-level domain adaptation
and learn migratable features [10]. The final experimental results show that the method
detects better than the base network in the small SAR object detection task.

However, the abovementioned methods simply utilize the features output by each
convolutional layer in a crude manner without considering high-level semantic features.
This is often sufficient when applied to object detection for natural and remote sensing
scenes closer to the ground. Nevertheless, in remote sensing image object detection tasks
that are far from the ground and have high information entropy, detailed feature informa-
tion is needed to discriminate the differences between similar classes. When the target
size in the remote sensing image is small, it is challenging to precisely locate the tiny area,
leading to detection inaccuracy. Figure 1 shows some remote sensing images of the forests
we collected. As seen in the Figure, there are still several issues to be addressed when
performing the task of detecting targets in clusters of dead and old trees, as follows.
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• Mixed distribution of adjacent different classes: Because of the transformation of
healthy trees to dead trees under adverse environments such as water shortage and
soil salinization, remote sensing images in this area typically show interspersed rows
of healthy trees and dead trees near each other.

• Interference of redundant information: Due to the complexity of the forest environ-
ment, remote sensing images captured by UAVs typically have irrelevant semantics or
noise, e.g., exposed rocks, shaking water streams, vignettes due to lens shake, etc. The
abovementioned redundant information may trigger the gradient explosion problem
during the neural network training.

• High differences in scales: Some of the dead trees are too scattered in the forest cluster,
showing characteristics such as small target features and high differences in scales from
the clustered dead trees in the remote sensing images. In addition, when collecting
remote sensing images, the scale of the objects will change due to the height of the
sampling UAV and its shooting angle towards the ground.

To address the difficulty of locating detailed features of dead trees cluster contours
due to the mixed distribution of adjacent different classes, some scholars have focused on
locating important areas using bounding boxes and additional annotations [11]. Huang et al.
suggested Part-Stacked CNN architecture to locate multiple object parts based on strong
part annotation with manual labeling [12]. Di et al. proposed a detail feature recognition
detection network Deep LAC, using a backpropagation linked valve linkage function to
form a system for depth and fine-grained localization and alignment [13]. Zhang et al.
presented a network for detecting multiple semantic parts or the whole object based on
shared convolutional filter computation [14]. Xiang et al. proposed a CCA-ResNet where a
CCA mechanism was introduced that equipped the feature map with hierarchical semantic
features by unsupervised reconstruction of local and global features to retain detailed
features from shallower layers [15]. The above methods focus only on the independent
solution of differentiated local localization and local semantic feature-based learning when
extracting detail features. However, the joint role of local detail localization and semantic
feature learning is ignored.

To address the issue of miss and false detection due to interference of redundant infor-
mation, He et al. presented an object detection method based on weighted image entropy.
The method weights local entropy measurements by multiscale grayscale differences and
adaptive thresholding operations to improve the SNR of small targets under circumstances
where the interfering objects in the scene have similar thermal intensity measurements
relative to the background [16]. Finally, it effectively enhanced the critical information and
suppressed the redundant features. Han et al. suggested a multiscale detection algorithm
using relative local contrast measurement (RLCM), which can effectively suppress the
interference of all types of redundant information by computing multiscale RLCM for each
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pixel of the original IR image [17]. Huang proposed a Ship-YOLOv3 based on YOLOv3.
The method reduces the interference of redundant features for the to-be-detected target
by using k-means++ to cluster the dimensions of the bounding box, reducing some of the
convolution operations, and adding the jump join mechanism [18].

To overcome the challenge of high-scale differences in clusters of dead trees due to nat-
urally occurring and the camera angle of the UAV, Wang proposed an effective method for
multiscale small target detection under natural scenes. The method improves the accuracy
of small target detection by inferring a criterion for detecting small multiscale objects from
the nature of the average grayscale absolute difference maximum map (AGADMM) of a
natural scene [19]. Wu et al. suggested an improved small target detection network based
on the YOLO-v5, in which the multiscale anchor mechanism of Faster R-CNN was utilized
to make the network highly adaptable to different scenes, thus improving the accuracy of
the network for small target detection [20].

Considering the above problems, in this paper, we present a new Longitude latitude
cross attention-multipath dense composite network (LLAM-MDCNet) to overcome the dif-
ficulties of low detection accuracy due to the mixed distribution of adjacent different classes,
redundant feature interference, and high differences in object scales. Our contributions are
summarized as follows:

1. An object detection framework is presented based on a feature extraction network
called Multipath dense composite network (MDCN), which can substantially increase
the extraction of underlying and semantic features to enhance its extraction capa-
bility for information-rich regions. Eventually, the object detection accuracy of the
LLAM-MDCNet is improved for remote sensing images.

2. In the row, column, and diagonal directions, the Longitude Latitude Attention Mecha-
nism (LLAM) is presented and incorporated into the feature extraction network. First,
it is capable of suppressing irrelevant and redundant information and improving the
representation of high-level semantic feature information. Following that, irrelevant
sematic features in different directions are also considered, which helps to improve
the detection accuracy of irregular clusters of dead trees and the ability to detect small
clusters of interspersed rows.

3. An AugFPN is added in MDCN, yielding a more comprehensive representation of
image features with the combination of low-level texture features and high-level
semantic information. Consequently, the network’s detection effect for dead tree
cluster targets with high-scale differences is improved.

The workflow diagram of LLAM-MDCNet is shown in Figure 2. First, the remote
sensing images are preprocessed. Image preprocessing is divided into two parts: image
annotation and image augmentation by rotation, flip, random cropping, and brightness
transformation. Following that, the feature extraction network MDCN is utilized to extract
the features in the remote sensing images. Then, the target bounding box is generated by
RPN for the output features. The detection network consists of an ROI pooling layer and a
classification and regression layer. The ROI Pooling layer outputs its pooled features and
feeds them to two cascaded, fully connected layers for feature mapping before outputting
them to the classification and regression layers. The fully-connected layer is decomposed
into two sub-fully connected layers using singular value decomposition (SVD), which
accelerates the computation of the fully-connected layer and significantly reduces the
computations. The classification layer and regression layer adopt the same structure and
loss function calculation method as the correlation layer in the RPN, and further classify
and regress the candidate regions through the classification and regression network. Finally,
remove the redundant detection frames using the non-maximum suppression method to
obtain the final object detection results of forest remote sensing images for dead and old
tree clusters.
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2. Materials and Method
2.1. Data Acquisition

Due to the limited number of researchers working on ex-ante prevention and control
of forest fires through remote sensing image object detection, publicly available datasets of
dead tree cluster images in forests cannot be found yet. Consequently, we need to collect
forest image data with dead tree clusters before conducting the research in this paper. First,
we used DTI Mavic 3 (1080p, 60FPS) to capture 9766 images in different states at an altitude
of about 90 m. Almost every image included both healthy and dead trees. Next, to fit
the real scenarios and obtain images with smaller object targets, we raised the drone to
an altitude of 200 m to capture 9751 images. Further, to cover as many forests states as
possible, we collected forest stand types, including coniferous, deciduous broad-leaved, and
evergreen broad-leaved forests from the Xiaoxing&apos; an Ling in northeastern China, the
Qin Ling in central China, the Zepu Jinhuyang National Forest Park in northwestern China,
and the Hengduan Mountain Range in southwestern China, mainly using climatic zones as
divisions. These data are first cropped to an appropriate size and then precisely labeled by
experts in the field of forestry. Then these images are converted into VOC format (the same
as our open-source format for a more convenient comparison with other target detection
networks.) Before input to LLAM-DRNet, our VOC format data is converted into YOLO
format for easier reading.

To avoid the negative impact of height-width ratio mismatch on model training, we
cropped all images in the dataset to a uniform size. To facilitate the study, by filtering,
cropping, and normalizing the images to unify the pixel standards for depicting the real
forest environment, we ended up with the aerial dead tree clusters dataset, which includes
19,517 images (see Figure 3). Since healthy trees are sometimes present in patches in real
situations, only healthy trees are presented in some images in the dataset. In this paper, we
have realized that the presence of only healthy trees in a small number of images may lead
to an inter-class imbalance effect, and the detection of this issue will be discussed in the
Discussion section.

2.2. Longitude Latitude Cross Attention Multipath Dense Composite Network (LLAM-MDCNet)

The distribution of some dead trees in the forest is too scattered, and tiny dead trees
require the ability of small feature detection of the network. Healthy trees and dead trees
are interspersed, which poses a great challenge to the network’s ability to extract details
of dead trees. Tree withering is typically due to the lack of water or pest invasion, with
an inevitable withering stagnation. Timely detection of the forest dead trees percentage
within a certain range can alert the relevant forestry bureau to remedy the incompletely
dead vegetation. The timely felling of dead trees can largely reduce the risk of forest fires.
Therefore, the detection of dead tree clusters is of great practical importance.
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trees; (b) images including dead and old trees.

To address the above problems, in this paper we propose the Multipath Dense Network
(MDCN) is proposed in this paper to extract remote sensing image features, and the
overall structure is shown in Figure 4. The MDCN’s baseline is DenseNet, whose densely
connected module has powerful feature extraction and reuse capability, providing a solid
foundation for subsequent detailed feature extraction. Firstly, the same training set images
are simultaneously input into the DenseNet-based framework of the row-column direction
convolution and the diagonal direction convolution for feature extraction. Secondly, LLAM
is introduced in the row-column and diagonal directions after the second dense block of the
base network. When the baseline network module incorporates an attention mechanism,
some irrelevant, redundant information can be suppressed, and the representation of
information with high-level semantic features can be improved. The LLAM direction in
the row-column-dense path mainly considers the semantic features shown in the row and
column directions which helped the realization of the detection of regular dead tree clusters
in remote sensing images. The LLAM direction in the diagonal path mainly considers the
semantic features characterized on the left and right diagonals to detect irregular clusters
of dead trees in remote sensing images.

The combination of different multi-directional attention mechanisms in the two dif-
ferent paths not only enhances the network’s ability to detect small clusters of dead trees
scattered among healthy tree clusters but also to capture global features of the image. Thus,
it can effectively improve detection accuracy when clusters of dead trees are detected.
Further, low-level texture features and high-level semantic information are better com-
bined using AugFPN for up-sampling to fuse their features. The low-level texture features
can significantly characterize the contrast of the color features of healthy trees, and the
high-level semantic features can express the overall trend of irregular dead tree clusters.
Combining images at different levels improves the network’s detection effect of dead tree
clusters with high-scale differences. Then, the target bounding box is generated by RPN for
the output layer.

Finally, the final classification structure and location information of the target is ob-
tained. The object detection network consists of an ROI pooling layer and a classification
and regression layer. The ROI pooling layer outputs its pooled features and feeds them
to two cascaded fully connected layers for feature mapping before outputting them to the
classification and regression layers. Simultaneously, the fully connected layer is decom-
posed into two sub-fully connected layers using singular value decomposition to speed up
the computation of the fully connected layer and significantly reduce the computations.
The classification layer and regression layer adopt the same structure and loss function
calculation method in the correlation layer of the RPN, and further classify and regress the
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candidate regions through the classification regression network. And lastly, the redundant
detection frames are removed by using the non-maximal so as to obtain the final object
detection results of forest remote sensing images for dead and old tree clusters.
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As shown in Figure 4, LLAM-MDCNet mainly consists of MDCN, LLAM, and
AugFPN. The specific implementation of each method is described below.

2.2.1. Multipath Dense Composite Network (MDCN)

MDCN consists of two identical DenseNet skeletons in parallel, and feature extraction
is performed on the input image in each independent dense composite path. The structure
of MDCN mainly consists of Dense Blocks and Transitions. There are 4 Dense Blocks
in a DenseNet and multiple Bottleneck layers in a Dense Block. Normal convolutional
networks generate L connections in the layer L of the dense composite path. Still, the
densely connected module passes the feature overlay mapping from the previous layer
to the other subsequent layers using dense connections. Each layer is connected with all
previous layers in the channel dimension by concat, enabling the combination of multiple
features, reducing the number of parameters, and enhancing feature reuse. Therefore, in
the network with L layers, our network has L ∗ (L + 1)/2 connections. The expression for
the dense connection module is as follows, where XL represents the output feature map of
layer L.

XL = HL([X0, X1, X2, · · · , XL−1]) (1)

[X0, X1, X2, · · · , XL−1] represent the feature mapping connections of all previous lay-
ers before layer L, HL denotes the non-linear transformation function, including the batch
normalization layer, the activation function ReLU, the dropout layer, and the 3 × 3 convo-
lutional layer. MDCN employs a concat operation, which will make it likely to produce a
large number of output channels. To control the model complexity, the transition block is
introduced to not only halve the height and width of the input but also to vary the number
of channels using 1 × 1 convolution. MDCN connects each layer directly to all subsequent
layers to achieve feature reuse. During training, MDCN connects the feature maps at differ-
ent levels, which can effectively improve the gradient propagation, enhance the number of
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features extracted, and increase the available semantic information for classification. The
structure of mdcn is shown in Figure 5.
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2.2.2. Longitude Latitude Attention Mechanism (LLAM)

With the development of computer vision, various attention mechanisms have been
proposed to address the lack of attention of neural networks to high-level semantics,
which serves to ignore redundant features on the image that are not of interest, thus
making the computer pay more attention to useful information on the image [21–23]. This
selective attention mechanism is consistent with some of the mechanisms in discriminative
detail features. Therefore, for more complete extraction of the underlying features and
semantic features in the forest images, we introduce the Longitude latitude attention
mechanism (LLAM) with different attention directions in two paths of the Double path
dense composite path. The following figure shows the LLAM algorithm in row-column
and diagonal directions. The working principle of Llam is shown in Figure 6.
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Because the LLAM in MDCN only has directional differences, we introduce the
principle of our LLAM algorithm in row-column directions.
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• Step 1: LLAM operates on the upper layer of the input image to mine the shallow
texture features in the image. Then, LLAM assigns weight coefficients to the feature
from each row and column. Specifically, the input row-column feature weights Ca, Cb
are generated in the row and column directions first. The set of eigenvectors of the
vertices of the lth layer hl = [h1, h2, . . . , hN ]

T , N is the number of vertices in the image.
The weight matrix is W. The corresponding attention coefficient can be obtained for
each pixel, and the attention coefficient is ei,j = a ∗ (WThi, WThj). Then the weights
assigned to each pixel in each direction of the feature sequence j are obtained. Finally,
the softmax activation function is introduced to regularize the attention coefficients.
ei,j denotes the weight coefficient of each pixel assigned by the attention mechanism,
and j denotes the feature sequence. i denotes a vertex node pixel, and hj denotes the
hidden layer information of the feature sequence j.

Ci =
n

∑
j=1

exp(ei,j)

∑n
k=1 exp(ei,k)

hj (2)

• Step 2: The assigned weight coefficients are reassigned using the Matthew strategy
and feature reinforcement strategy, and deep features with more prominent semantic
features are generated by convolutional layers and average pooling. Specifically, the
extracted row-column weight features obtain the first reassigned weight Ca

′
by the

Matthew strategy. The formula for Matthew’s strategy is shown in 4. which will
deepen the impact of the high weight coefficients by multiplying by the minimum
term penalty. The base weights can be multiplied to further enlarge the larger weights
and further reduce the smaller weights. Thus, the redundant information with smaller
diameters remaining after weight assignment is further filtered out, and weights with
stronger information in multiple directions are extracted. The second part of the
reassignment weights is to take the row-column basic weight features and obtain
a second reassignment weight Cb

′
by a feature enhancement strategy. The formula

for the maximum weighting strategy is shown in Equation (4), where the maximum
feature is considered a valid feature and is added to the α multiplier of the minimum
value feature. In the equation, 0 ≤ a ≤ 1 is the condition. The method takes the
maximum value as the main feature and considers other subtle features, and fuses
the main features with the subtle features to obtain the integrated features. These
integrated features not only enhance the influence of the main factor on the results but
also reduce the loss of subtle features.

Ca
′
= Ca ∗ Cb −min(Ca, Cb) (3)

Cb
′
= max(Ca, Cb) + a ∗min(Ca, Cb) (4)

• Step 3: The softmax function is used to map the corresponding adjacent matrix for the
reassigned deep features. LLAM better constructs the relationship between the features
by deep mining the features and reassigning the original feature weights. Thus,
the accuracy of dead tree cluster detection is improved. Specifically, the maximum
of the four weight features [Ca, Cb, Ca

′
, Cb

′
] is matched by concatenate and used to

complement the results of the base image weight coefficients [Ca, Cb]. The four image
weight coefficients in LLAM integrate the processed feature information in a tandem
manner by the concatenate function. LLAM refers to the final attention mechanism in
the row-column direction.

LLAM = concatenate([Ca, Cb, Ca
′
, Cb

′
]) (5)

2.2.3. AugFPN

To preserve as much as possible the detailed features of dead tree clusters in images
so that the dead tree cluster features, regardless of size, can be effectively detected by the
MDCN and yield the correct detection results, we added AugFPN [24] to the network to fuse
the features of different scales. The reason is that although the forest cluster images input
into MDCN’s two paths extract a large number of forest cluster features by convolution,
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the perceptual field of image features becomes larger and inevitably accompanied by the
loss of small dead tree cluster features with the fragmented distribution. Therefore, in this
paper, we first concatenate the convolutional paths in row-column and diagonal directions
and add the AugFPN after the fused layers. This structure groups the layers that do not
change the size of the feature map into a stage in the forward propagation of the network,
and up-samples the feature map, then fuses the two and performs the convolution through
the lateral connection. The advantage of this is to use both the high-resolution information
of the lower layer features and the high semantic information of the higher layer features to
predict by fusing them. The schematic diagram is shown in Figure 7, where B1~4 represent
the four layers of MDCN with an added attention mechanism. M1~4 layers represent the
auxiliary losses of the four layers, and P represents the main loss. The same supervisory
signal is added to the features of each layer. In the following, the algorithm principle of
AugFPN is shown specifically.
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1. Bottom-up

First, the bottom-up feature extraction is performed by feeding the images into the
MDCN for feature extraction. The outputs of the convolution blocks conv2, conv3, conv4,
and conv5 are defined as {B1, B2, B3, B4}, and these are the outputs of the last residual block
in each stage. Next, the features learned by {B1, B2, B3, B4} are performed dimensionality
reduction by 1 × 1 convolution, and the downscaling is done to get {M1, M2, M3, M4} re-
spectively, until they have the same number of channels, and then the features are summed.
When the features are summed up, the expression ability of multiscale features will be weak-
ened because of the different semantic information contained. Therefore, the corresponding
feature map is obtained separately for each candidate region in {M1, M2, M3, M4}, and
classification and regression operations are made. Then a weighted sum is made between
the obtained loss and the loss of the network itself. The same supervision signal is imple-
mented on these feature maps by the consistent supervision mechanism so that the laterally
connected feature maps contain similar semantic information, which solves the problem of
weak multiscale feature expression arising from different semantic information.

2. Top-down feature fusion

Second, the more abstract and semantic high-level feature map is up-sampled, and
the result of the up-sampling is fused with the same size feature map generated from
the bottom-up. Since the two horizontally connected layers of features are the same
size, the bottom-level localization detail information is better utilized. Although the low-
level features are enhanced by the high-level features from the top layer during feature
fusion because the top-level features have performed 1×1 dimensionality reduction, it
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will inevitably result in the loss of M4 layer information. However, since the information
of C4 is more comprehensive, the structure of residual feature enhancement is used to
perform adaptive pooling of C4. Then the feature maps at each scale are performed 1 × 1
dimensionality reduction before up-sampling. The features after up-sampling are summed
according to the learned weights, and the obtaining M4 and M5 are fused. Different
contextual information is extracted using ratio-invariant adaptive pooling to reduce the
information loss of the highest-level features in AugFPN in terms of residuals during
top-down feature fusion.

3. After feature fusion

Finally, soft ROI selection is introduced to use ROI features in different pyramid levels
better to provide better ROI features for subsequent location refinement and classification.
Since the features of each region of interest (ROI) are selected based on the scale of the
proposal to determine the corresponding feature map, the feature information in the ignored
layers is then lost, which directly affects the final detection results. So similar to the adaptive
summation used in Residual Feature Augmentation, the features corresponding to an
arbitrary ROI feature map {P1, P2, P3, P4} are extracted from {M1, M2, M3, M4}. And then,
using the network to learn the weight parameters, these features from layers {P1, P2, P3, P4}
are summed, and the structure is used as the final feature of this ROI.

In summary, AugFPN makes a series of improvements based on the FPN. First,
AugFPN introduces consistency monitoring to reduce the semantic gap between features
at different scales before feature fusion. Secondly, ratio-invariant contextual information
is extracted by ASF in feature fusion to reduce information loss in feature mapping at the
highest pyramid level. Finally, a soft RoI selection method is used to perform maximum
pooling for non-uniform size inputs to obtain a fixed-size feature map for better extraction
and fusion of semantic features in images. The network, after adding the AugFPN, can
effectively identify the smaller clusters of dead trees with scattered distribution, which
can solve the problem of difficult detection due to the high-scale differences and the too
fragmented distribution of some dead tree clusters.

3. Results
3.1. Experimental Environment and Preparation

To ensure that the experiments in this paper are valid and fair, all the experiments are
conducted in the same environment and use the exact same hyperparameters in the model.

The hardware environment includes a CPU with R9-5950X|3.4GHz|16 cores and
32 threads; the GPU is RTX2060 with 6GB of video memory. The software environment
includes CUDA Toolkit 10.0; CUDNN V7.5.0; Python 3.6; torch 1.8.1; torchvision 0.9.1. The
uniform input of image size is 256 × 256, and translations, rotations, scaling, and adding
noise were performed during the input to extend the dataset. A total of 19,517 images
were obtained. In this paper, a 10-fold cross-validation method is employed for training.
Before training the network, considering the performance of hardware devices and the
training effect, a stochastic gradient descent (SGD) is utilized. The batch size is set to
16, the momentum parameter is set to 0.9, and the number of epochs is set to 15. The
Adam optimizer is employed in the model. Since changing the learning rate affects the
convergence speed and stability of the model, a callback function is included. The learning
rate is set to 0.0001 for the first 10 epochs, and the decay rate of the weights is set to 0.0005
for the last 5 epochs to improve the fitting speed.

3.2. Evaluation Metrics

To present our work clearly and robustly to the reader, in this subsection, we briefly
describe the model evaluation metrics involved in this paper and how they are computed.

True Positive (TP): positive in prediction, and positive in real.
False Positive (FP): positive in prediction, but negative in real.
False Negative (FN): negative in prediction, but positive in real.
True Negative (TN): negative in prediction, and negative in real.
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Accuracy: The percentage of the number of correctly detected samples to the number
of all samples.

Accuracy =
TN + TP

FP + TN + TP + FN
(6)

Precision: The percentage of correct positive samples detected to the number of all
positive predicted samples.

Precisoin =
TP

TP + FP
(7)

Recall: The percentage of correct positive samples detected to the actual number of
positive samples.

Recall =
TP

TP + FN
(8)

In addition to detection accuracy, researchers often need to explore the speed of object
detection algorithms, which is extremely important for some real-time detection scenarios.
A common metric for evaluating speed is Frame Per Second (FPS), the number of images
that can be processed per second.

3.3. Ablation Experiments

To objectively and independently evaluate the performance of each method proposed
in this paper, we implemented seven sets of ablation experiments for LLAM-MDCNET and
removed MDCN, LLAM, and AugFPN sequentially. The deleted implementation of MDCN
should adopt DenseNet as a replacement, and similarly, the deleted implementation of
AugFPN should adopt FPN as a replacement. The results are shown in Table 1.

Table 1. Experimental statistics of ablation for remote sensing image target detection of dead and old
trees using different sub-modules in LLAM-MDCNet.

Number Method AP (%) AR (%) FPS

1 MDCN + LLAM + AugFPN (LLAM-MDCNet) 87.25 51.91 66
2 MDCN + LLAM 86.01 49.32 66
3 MDCN + AugFPN 84.46 50.76 67
4 LLAM + AugFPN 85.16 50.71 79
5 MDCN 82.27 46.29 68
6 LLAM 83.24 45.66 77
7 AugFPN 80.97 48.27 77
8 DenseNet 78.46 44.59 78

• By comparing groups 1 and 2, we find that the enhancement of AR using AugFPN is
more obvious than AP. This is because using AugFPN enables the low-level texture
features to significantly contrast the color features of healthy trees with dead trees,
and the high-level semantic features to express the overall trend of irregular dead tree
clusters. Specifically, fewer small target positive samples are ignored, and the use of
AugFPN can improve the ability of the model to learn positive samples.

• Comparing groups 1 and 3, we find that the loss of accuracy by losing the LLAM
is significant. This may be because the combination of different multi-directional
attention mechanisms in two different paths not only makes the network stronger in
detecting small clusters of interspersed dead trees with healthy trees but also makes
the network much better at capturing global features of the images.

• By comparing groups 1 and 4, we find that removing the multipath dense composite
network leads to a certain decrease in both AP and AR and a slight increase in FPS.
This is not only because the parallel structure of the network substantially increases
the underlying features and semantic features that can be extracted but also because
the single-path network cannot fully exploit the LLAM.
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• The comparison of group 1 and groups 5, 6, 7, and 8 shows that the removal of MDCN,
LLAM, or AugFPN leads to a huge decline in AP and AR, and the superiority of
LLAM-MDCNet over DenseNet is obvious.

To give the reader a concrete picture of the usefulness of the proposed method in
remote sensing image detection of old and dead tree clusters, we analyze the performance
of several sets of ablation experiments on individual images, as shown in Table 2.

Table 2. Visual comparison of the test results.

Experimental Method Detection Result

MDCN + LLAM + AugFPN
(LLAM-MDCNet)
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As shown in Table 2, the distribution of dead trees and healthy trees in Figure a is
mixed, and the boundary is unclear. If DenseNet is used instead of MDCN, it is difficult to
fit the dead tree clusters, resulting in their omission. Thus, it shows that MDCN can greatly
improve the feature extraction ability. There are no dead and old trees in Figure b. Only
maple trees suspected to be dead and bare rock faces are present, and no false detection
occurs when LLAM is present. This indicates that LLAM is a powerful tool for reducing the
interference of redundant information. Scattered individual dead trees appear in the forest
in the upper right corner of Figure c. Small areas of dead trees are missed when AugFPN is
not present. AugFPN is also significant for forest fire prevention because these small areas
of dead trees can also be a fire source.
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The results of eight sets of ablation experiments fully demonstrate the contribution
of MDCN, the latitude-longitude attention mechanism, and AugFPN. LLAM-MDCNet is
more suitable than DenseNet for the object detection task of remote sensing images of dead
and old tree clusters.

3.4. Compared with the State-of-the-Art Methods

To further analyze the performance of LLAM-MDCNet, the experimental results based
on LLAM-MDCNet are compared with some state-of-the-art models. The currently popular
object detection methods for deep learning are mainly divided into two broad categories,
namely object detection methods with CNN or Transformer as the baseline. The models
involved in the comparison experiments are mainly from the post-2018 literature, and
the superior methods in the Kaggle competition and the models used are carefully tuned.
DANet adaptively integrates local features and global dependencies by attaching two
types of attention modules on top of the traditional expanded FCN, modeling semantic
interdependencies in the spatial and channel dimensions. The features at each location are
selectively aggregated by a weighted sum of features at all locations [25]. Deeplabv3+ in-
troduces the spatial pyramidal pooling (SPP) module or encoder-decoder structure to deep
neural networks to refine the target edges [26]. Ding, X et al. [27] propose the ACNet with
the asymmetric convolution block (ACB, Asymmetric Convolution Block) as a construction
block for CNN, which uses a one-dimensional asymmetric convolution kernel to augment
the square convolution kernel to improve the accuracy. DNL divides the original non-local
expression into pairwise and unary terms by mathematical transformation and decouples
the two so that they do not affect each other in terms of learning content and gradient
propagation [28]. OCRNet computes the relationship between each pixel and target region
and augments each pixel representation with object context representation [29]. UPerNet in-
troduces unified perceptual resolution to integrate the variability between different datasets
and learn different visual concepts from heterogeneous image annotations [30]. yolov4
uses Mosaic data augmentation means, SAT self-adversarial training, etc., to implement
an efficient and powerful model that allows anyone to use a 1080Ti or 2080Ti GPU to
train a fast and accurate object detection network [31]. YOLOv5 uses Focus and C3Net for
the backbone network, and two different C3Net and Detect are designed to achieve fast
detection [32]. Sparse R-CNN discards dense concepts such as anchor boxes or reference
points and starts directly from a sparse set of learnable proposals without the handle of
NMS [33]. RepPointsV2 introduces corner point detection and foreground heat map into
the pure regression target detection algorithm, prompting joint learning between tasks
to improve the network’s feature representation and obtain better joint predictions [34].
ViT-FRCNN attempts to detect and localize objects in an image by adding a ViT with
a detection-specific task head, demonstrating several known properties associated with
transformers, including pre-training capabilities and fast fine-tuning performance [35].
SETR uses pure Transformers instead of encoders based on stacked convolutional layers
to gradually reduce the spatial resolution. At the same time, it treats the input image
as a sequence of image patches and transforms the sequence using global self-attentive
modeling for discriminative feature representation learning [36]. YOLOS chooses a random
initial DET as a proxy for the target representation to avoid inductive bias in the presence of
prior knowledge in 2D structure and label assignment. At each forward propagation, it con-
structs an optimal even match between the DET and the real target [37]. DETR employs the
idea of sequence prediction similar to machine translation to suppress repetitive predictions
using self-attention, outperforming the traditional approach of target detection [38]. Table 3
gives their comparative experimental results on the dataset of forest dead tree clusters.
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Table 3. Comparison experiment between LLAM-MDCNet and SOTA models.

Baseline Method mAP mAP50 mAP75 AR FPS

CNN

DANet [25] 65.35 68.61 61.26 38.48 52
Deeplabv3+ [26] 64.15 67.99 60.08 37.94 47

ACNet [27] 66.46 69.58 62.85 38.45 44
DNL [28] 66.14 70.48 62.57 38.94 49

OCRNet [29] 65.87 68.50 61.81 38.41 54
UperNet [30] 79.54 81.81 75.67 39.76 57
YOLOv4 [31] 78.52 80.48 74.19 43.48 34
YOLOv5 [32] 70.65 72.84 68.81 42.15 122

Sparse R-CNN [33] 76.75 73.96 72.17 46.64 62
RepPointsV2 [34] 81.15 82.64 77.81 46.34 78
LLAM-MDCNet 87.25 89.01 84.34 50.30 66

Transformer

ViT-B-FRCNN [35] 85.85 86.10 81.66 49.20 21
SETR [36] 88.61 89.97 85.45 51.67 16

YOLOS [37] 86.91 88.95 84.71 50.68 27
DETR [38] 86.12 89.62 84.78 50.96 24

The results show that most of the Transformer-based models have significantly higher
accuracy than the CNN-based models, probably because the transformer structure gives
them a larger real-world receptive field. CNN-based models such as YOLOv5 cannot
meet the high accuracy requirements of the remote sensing image object detection of
dead and old tree clusters. If there is a missed detection, the ignored dead and old trees
may become a potential fire source. The Transformer-based model, on the other hand,
typically has very low FPS, and the real-time performance for dead tree detection is
relatively unsatisfactory. While LLAM-MDCNet shows average performance in terms of
FPS, the accuracy is comparable to each of the popular Transformer-based models, so the
LLAM-MDCNet proposed in this paper achieves the best speed-accuracy tradeoff among
the models. We identify possible reasons for the superior performance of our proposed
LLAM-MDCNet model:

1. MDCN can substantially increase the extraction of underlying and semantic features to
enhance its accurate extraction capability for more complex features and information-
rich regions. Eventually, the object detection accuracy of the LLAM-MDCNet is
improved for remote sensing images.

2. LLAM in row-column and diagonal directions can not only suppress the irrelevant and
redundant information but also improve the representation of high-level semantic fea-
ture information, which is beneficial for improving the detection accuracy of irregular
clusters of dead trees and the ability to detect small clusters of interspersed rows.

3. AugFPN can produce a more comprehensive representation of image features by com-
bining low-level texture features and high-level semantic information. Consequently,
the network’s detection effect for dead tree cluster targets with high-scale differences
is improved.

3.5. Interpretability of the Model

The experimental results in Sections 3.4 and 3.5 demonstrate that each of the sub-
modules in LLAM-MDCNet contributes to the outcomes. However, the above experiments
do not explain why LLAM-MDCNet works better than DenseNet. To visually analyze the
focus of our model, we used Grad-CAM to visualize the output of the last convolutional
layer of LLAM-MDCNet and DenseNet. The results of the Grad-CAM are shown in
Figure 8, and the colors on the plot (from blue to red) represent the degree of contribution
to the outcomes. The larger the contribution, the closer the color is to red.
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Clearly, the proposed LLAM-MDCNet (a basic network based on DenseNet) in this
paper pays close attention to the semantic regions relevant to the task. DenseNet focuses
more on shallow, significant features, such as grayish close to the dead trees, and does not
focus on small clusters of dead trees, as depicted in Figure 8. LLAM-MDCNet, on the other
hand, not only focuses on dead trees of all sizes but also activates healthy tree clusters
surrounding dead tree clusters. The outcomes of the LLAM-MDCNet demonstrate that
the method can fully exploit contextual information and avoid feature confusion between
valid semantic and redundant information.

4. Discussion

This paper makes an aerial dataset of dead tree clusters publicly available, which
includes various healthy trees, dead trees, and objects suspected to be dead trees in the
forest. Through several sets of experimental comparisons and analyses, it is verified that the
proposed LLAM-MDCNet is effective for the task of remote sensing image object detection
of dead and old trees, and addresses the three primary issues of “mixed distribution of
adjacent different classes”, “interference of redundant information”, and “high differences
in object scales”.

Hyperspectral imaging is a fine-grained technique capable of capturing and analyz-
ing point-by-point spectra over a spatial area. Because unique spectral “features” can be
detected at different spatial locations of individual objects, it can detect visually indis-
tinguishable substances. Classification and detecting ground objects using hyperspectral
or multispectral images is a typical application of computer vision technology in remote
sensing. However, we believe that in this paper hyperspectral images do not apply to
our method for the following reasons: (1) Hyperspectral images typically have a large
number of channels (much more than the three channels of RGB images), where only
partial information is useful. As a consequence, the information of these channels must
be filtered before being input into the network. (2) Since hyperspectral images contain
large and dense semantic information, deep learning methods are employed with a shallow
structure. This results in a smaller receptive field, which is inconsistent with our original
idea of using global contextual information. In conclusion, using hyperspectral images for
dead tree cluster detection is a good direction because hyperspectral images have richer
details than RGB images. Until then, a proven network is still required in machine learning
to harness it.
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It has been mentioned above that the presence of only healthy trees in images in the
dataset may lead to an inter-class imbalance effect. The inter-class imbalance problem refers
to the fact that when the dominance of a larger number of classes in backpropagation, the
detector tends to predict a larger number of classes due to the training error minimization
principle. In the practical application of actual forest fire prevention and control, the
image quality is uneven. Therefore, we need to fit the real situation as much as possible
to improve the robustness of the model. Obviously, we have to make a tradeoff between
inter-class imbalance and the risk of the dataset not fitting the real situation. We selected all
images with only healthy trees in the dataset. We added 0.5% of the total dataset with only
healthy trees in each experiment to observe the possible classification surface bias, shown
in Figure 9.
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Figure 9 shows that it is acceptable for the results obtained according to the classi-
fication plane to have a small deviation. LLAM-MDCNet is less sensitive to inter-class
imbalance, and even improves the overall accuracy by adding a small number of healthy
tree images. The reason is that while MDCN substantially increases the semantic features
that can be extracted by the network, the two parallel feature extraction networks can
complement and correct mutually during the backpropagation.

Analyzing samples of false detections can provide considerably beneficial insights into
the direction of network improvement. Therefore, we analyzed a sample of forest images
that showed severe false detection during the experiment. As shown in Figure 10a, large
areas of old and dead trees are ignored, and only pixels near healthy trees are detected
correctly. This is because the altitude of the UAV is too high when shooting, the forest area
contained in the image is too large, and there is a lack of reference between objects and
noise blurring between images. CNN-based models tend to lose output resolution when
predicting images with large sizes. This is because some degree of down-sampling of the
feature map along the network is required to increase the amount of context, leading to
blurring around the object’s edges. In Figure 10b, there are little red clusters in the dataset.
The UAV view is parallel to the ground when capturing this image, resulting in a lack
of contextual information and shape features. The interspersed rows of dead trees and
maple-red clusters suspected of being dead trees also raise various challenges for detection.
In the future, image denoising techniques and Transformer-based models can be considered
to improve the processing of such images. Further, increasing the diversity of data and
performing data cleaning are also essential components of our future work.
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5. Conclusions

In recent years, the frequent occurrence of forest fires has drawn the attention of
governments from all over the world due to global warming. Preventing forest fires has
become an essential means of protecting the ecosystem and maintaining people’s property
and safety. From finding possible clusters of dead trees as a starting point, this paper
combines deep learning with remote sensing images captured by UAVs. It proposes an
LLAM-MDCNet for dead and old tree clusters remote sensing image object detection
to improve the accuracy of their detection. Our methods include: proposing MDCN
to enhance the capability to detect information-rich regions and to address the “mixed
distribution of adjacent different classes” issue; LLAM is presented and incorporated
into the network, which is capable of suppressing irrelevant and redundant information
and improving the representation of high-level semantic feature information, addressing
the issue of “Interference of redundant information”; AugFPN can combine low-level
texture features and high-level semantic information to address the “High differences in
object scales” difficulty. Experiments on the dataset of forest dead tree clusters show that
LLAM-MDCNet has 87.25% mAP and an FPS of 66. LLAM-MDCNet has close performance
with the Transformer-related model in accuracy and is far superior in detection speed.
Therefore, it can be demonstrated that our proposed method is superior to the methods
compared in this paper.

In the future, we will make the collected dataset publicly available for other researchers
who study forest fire prevention, which is also a major contribution of this paper. We will
also focus on addressing the limitations of our work in this paper. An effective image pre-
processing algorithm is needed to improve the performance of detecting blurred and noisy
images. Simultaneously, more datasets are required to improve the algorithm’s accuracy
and performance to play a more important role in forest fire prevention and control and
ecosystem protection. Lastly, we will try to apply our algorithm to fire departments to make
more useful suggestions for forest fire prevention and the construction of forest firebreaks.
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