1,515 research outputs found

    Boost your career opportunities with the ESSR diploma

    No full text

    Applications of Supervised Machine Learning in Autism Spectrum Disorder Research: A Review

    Get PDF
    Autism spectrum disorder (ASD) research has yet to leverage big data on the same scale as other fields; however, advancements in easy, affordable data collection and analysis may soon make this a reality. Indeed, there has been a notable increase in research literature evaluating the effectiveness of machine learning for diagnosing ASD, exploring its genetic underpinnings, and designing effective interventions. This paper provides a comprehensive review of 45 papers utilizing supervised machine learning in ASD, including algorithms for classification and text analysis. The goal of the paper is to identify and describe supervised machine learning trends in ASD literature as well as inform and guide researchers interested in expanding the body of clinically, computationally, and statistically sound approaches for mining ASD data

    Incremental Value of Computed Tomography Perfusion for Final Infarct Prediction in Acute Ischemic Cerebellar Stroke

    Get PDF
    Background The diagnosis of ischemic cerebellar stroke is challenging because of nonspecific symptoms and very limited accuracy of commonly applied computed tomography (CT) imaging. Advances in CT perfusion imaging provide increasing value in the detection of posterior circulation stroke, but the prognostic value remains unclear. We aimed to identify imaging parameters that predict morphologic outcome in cerebellar stroke patients using advanced CT including whole‐brain CT perfusion (WB‐CTP). Methods and Results We selected all subjects with cerebellar WB‐CTP perfusion deficits and follow‐up‐confirmed cerebellar infarction from a consecutive cohort with suspected stroke who underwent WB‐CTP. Posterior‐circulation‐Acute‐Stroke‐Prognosis‐Early‐CT‐Score (pc‐ASPECTS) was determined on noncontrast CT, CT angiography source images, and on parametric WB‐CTP maps. Cerebellar perfusion deficit volumes on all maps and the final infarction volume on follow‐up imaging were quantified. Uni‐ and multivariate regression analyses were performed. Sixty patients fulfilled the inclusion criteria. pc‐ASPECTS on CT angiography source images (ß, −9.239; 95% CI, −14.220 to −4.259; P0.05). Conclusions In contrast to noncontrast CT and CT angiography, WB‐CTP imaging contains prognostic information for morphologic outcome in patients with acute cerebellar stroke

    Evaluation of an MRI-based screening pathway for prostate cancer

    Get PDF
    In recent years there has been a wealth of debate regarding prostate cancer screening, with a concurrent increase in new imaging techniques for prostate cancer diagnosis. Imaging has been the technique of choice in lung and breast cancer screening programmes but has not been explored for prostate cancer screening. Herein, this thesis explores the role of magnetic resonance imaging (MRI) as a new approach to screen for prostate cancer. Following an introduction to the current screening landscape, my thesis focuses on the development and validation of a fast MRI, known as a prostagram, that could serve as a viable image-based screening test. Evaluation of this new technique is performed within a prospective, population-based, blinded, cohort study which was conducted at seven primary care practices and two imaging centres. A diverse array of performance characteristics of fast MRI are compared to PSA. These encompass biopsy rates, cancer detection rates, diagnostic accuracy and patient reported experience measures. The second half of this thesis focuses on further optimising the fast MRI protocol for screening and exploring methods of integrating it into an alternative screening pathway. The outcomes point towards a pathway which combines a low threshold PSA and a fast MRI as yielding a more acceptable balance between benefits and harms. This is followed by the development of a risk tool to address the challenges of equivocal MRI lesions. Overall my thesis provides a balanced evaluation of fast MRI as a new screening test and the final chapter highlights outstanding challenges that must be addressed for fast MRI to progress as a legitimate screening modality. There is a requirement for all new screening tests to be evaluated in robust randomised controlled trials and the thesis concludes by setting out a phased research framework for fast MRI to enable a full evaluation over the next decade.Open Acces

    Novel Semi-Supervised Learning Models to Balance Data Inclusivity and Usability in Healthcare Applications

    Get PDF
    abstract: Semi-supervised learning (SSL) is sub-field of statistical machine learning that is useful for problems that involve having only a few labeled instances with predictor (X) and target (Y) information, and abundance of unlabeled instances that only have predictor (X) information. SSL harnesses the target information available in the limited labeled data, as well as the information in the abundant unlabeled data to build strong predictive models. However, not all the included information is useful. For example, some features may correspond to noise and including them will hurt the predictive model performance. Additionally, some instances may not be as relevant to model building and their inclusion will increase training time and potentially hurt the model performance. The objective of this research is to develop novel SSL models to balance data inclusivity and usability. My dissertation research focuses on applications of SSL in healthcare, driven by problems in brain cancer radiomics, migraine imaging, and Parkinson’s Disease telemonitoring. The first topic introduces an integration of machine learning (ML) and a mechanistic model (PI) to develop an SSL model applied to predicting cell density of glioblastoma brain cancer using multi-parametric medical images. The proposed ML-PI hybrid model integrates imaging information from unbiopsied regions of the brain as well as underlying biological knowledge from the mechanistic model to predict spatial tumor density in the brain. The second topic develops a multi-modality imaging-based diagnostic decision support system (MMI-DDS). MMI-DDS consists of modality-wise principal components analysis to incorporate imaging features at different aggregation levels (e.g., voxel-wise, connectivity-based, etc.), a constrained particle swarm optimization (cPSO) feature selection algorithm, and a clinical utility engine that utilizes inverse operators on chosen principal components for white-box classification models. The final topic develops a new SSL regression model with integrated feature and instance selection called s2SSL (with “s2” referring to selection in two different ways: feature and instance). s2SSL integrates cPSO feature selection and graph-based instance selection to simultaneously choose the optimal features and instances and build accurate models for continuous prediction. s2SSL was applied to smartphone-based telemonitoring of Parkinson’s Disease patients.Dissertation/ThesisDoctoral Dissertation Industrial Engineering 201

    Multiparametric Investigation of Dynamics in Fetal Heart Rate Signals

    Get PDF
    In the field of electronic fetal health monitoring, computerized analysis of fetal heart rate (FHR) signals has emerged as a valid decision-support tool in the assessment of fetal wellbeing. Despite the availability of several approaches to analyze the variability of FHR signals (namely the FHRV), there are still shadows hindering a comprehensive understanding of how linear and nonlinear dynamics are involved in the control of the fetal heart rhythm. In this study, we propose a straightforward processing and modeling route for a deeper understanding of the relationships between the characteristics of the FHR signal. A multiparametric modeling and investigation of the factors influencing the FHR accelerations, chosen as major indicator of fetal wellbeing, is carried out by means of linear and nonlinear techniques, blockwise dimension reduction, and artificial neural networks. The obtained results show that linear features are more influential compared to nonlinear ones in the modeling of HRV in healthy fetuses. In addition, the results suggest that the investigation of nonlinear dynamics and the use of predictive tools in the field of FHRV should be undertaken carefully and limited to defined pregnancy periods and FHR mean values to provide interpretable and reliable information to clinicians and researchers

    Machine learning in oral squamous cell carcinoma: current status, clinical concerns and prospects for future-A systematic review

    Get PDF
    Background: Oral cancer can show heterogenous patterns of behavior. For proper and effective management of oral cancer, early diagnosis and accurate prediction of prognosis are important. To achieve this, artificial intelligence (AI) or its subfield, machine learning, has been touted for its potential to revolutionize cancer management through improved diagnostic precision and prediction of outcomes. Yet, to date, it has made only few contributions to actual medical practice or patient care. Objectives: This study provides a systematic review of diagnostic and prognostic application of machine learning in oral squamous cell carcinoma (OSCC) and also highlights some of the limitations and concerns of clinicians towards the implementation of machine learning-based models for daily clinical practice. Data sources: We searched OvidMedline, PubMed, Scopus, Web of Science, and Institute of Electrical and Electronics Engineers (IEEE) databases from inception until February 2020 for articles that used machine learning for diagnostic or prognostic purposes of OSCC. Eligibility criteria: Only original studies that examined the application of machine learning models for prognostic and/or diagnostic purposes were considered. Data extraction: Independent extraction of articles was done by two researchers (A.R. & O.Y) using predefine study selection criteria. We used the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) in the searching and screening processes. We also used Prediction model Risk of Bias Assessment Tool (PROBAST) for assessing the risk of bias (ROB) and quality of included studies. Results: A total of 41 studies were published to have used machine learning to aid in the diagnosis/or prognosis of OSCC. The majority of these studies used the support vector machine (SVM) and artificial neural network (ANN) algorithms as machine learning techniques. Their specificity ranged from 0.57 to 1.00, sensitivity from 0.70 to 1.00, and accuracy from 63.4 % to 100.0 % in these studies. The main limitations and concerns can be grouped as either the challenges inherent to the science of machine learning or relating to the clinical implementations. Conclusion: Machine learning models have been reported to show promising performances for diagnostic and prognostic analyses in studies of oral cancer. These models should be developed to further enhance explainability, interpretability, and externally validated for generalizability in order to be safely integrated into daily clinical practices. Also, regulatory frameworks for the adoption of these models in clinical practices are necessary.Peer reviewe

    Med-e-Tel 2013

    Get PDF
    • 

    corecore