300 research outputs found

    Solving the waste collection problem from a multiobjective perspective: New methodologies and case studies

    Get PDF
    Fecha de lectura Tesis Doctoral: 19 de marzo de 2018.Economía Aplicada ( Matemáticas) Resumen tesis: El tratamiento de residuos es un tema de estudio por parte de las administraciones locales a nivel mundial. Distintos factores han de tenerse en cuenta para realizar un servicio eficiente. En este trabajo se desarrolla una herramienta para analizar y resolver el problema de la recogida de residuos sólidos en Málaga. Tras un análisis exhaustivo de los datos, se aborda el problema real como un problema de rutas multiobjetivo con capacidad limitada. Para los problemas multiobjetivo, no suele existir una única solución óptima, sino un conjunto de soluciones eficientes de Pareto. Las características del problema hacen inviable su resolución de forma exacta, por lo que se aplican distintas estrategias metaheurísticas para obtener una buena aproximación. En particular, se combinan las técnicas de GRASP, Path Relinking y Variable Neighborhood Search, que son adaptadas a la perspectiva multicriterio. Se trata de una aproximación en dos fases: una primera aproximación de la frontera eficiente se genera mediante un GRASP multiobjetivo. Tres son los métodos propuestos para la primera aproximación, dos de ellos derivados de la publicación de Martí et al. (2015) y el último se apoya en la función escalarizada de logro de Wierzbicki (Wierzbicki, 1980) para distintas combinaciones de pesos. A continuación, esta aproximación es mejorada con una versión de Path Relinking o Variable Neighborhood Search, con un punto de referencia diseñado para problemas multiobjetivo. Una vez generada la aproximación de la frontera eficiente, el proceso de obtención de la solución que más se adecúa a las preferencias de los gestores se basa en el desarrollo de un método interactivo sin trade – off, derivado de la filosofía NAUTILUS (Miettinen et al. 2010). Para evitar gastos de cómputo extensos, esta metodología se apoya en una pre - computación de los elementos de la frontera eficiente

    20 years of Greedy Randomized Adaptive Search Procedures with Path Relinking

    Full text link
    This is a comprehensive review of the Greedy Randomized Adaptive Search Procedure (GRASP) metaheuristic and its hybridization with Path Relinking (PR) over the past two decades. GRASP with PR has become a widely adopted approach for solving hard optimization problems since its proposal in 1999. The paper covers the historical development of GRASP with PR and its theoretical foundations, as well as recent advances in its implementation and application. The review includes a critical analysis of variants of PR, including memory-based and randomized designs, with a total of ten different implementations. It describes these advanced designs both theoretically and practically on two well-known optimization problems, linear ordering and max-cut. The paper also explores the hybridization of GRASP with PR and other metaheuristics, such as Tabu Search and Scatter Search. Overall, this review provides valuable insights for researchers and practitioners seeking to utilize GRASP with PR for solving optimization problems.Comment: 28 pages, 13 figure

    A Pareto-metaheuristic for a bi-objective winner determination problem in a combinatorial reverse auction

    Get PDF
    The bi-objective winner determination problem (2WDP-SC) of a combinatorial procurement auction for transport contracts comes up to a multi-criteria set covering problem. We are given a set B of bundle bids. A bundle bid b in B consists of a bidding carrier c_b, a bid price p_b, and a set tau_b of transport contracts which is a subset of the set T of tendered transport contracts. Additionally, the transport quality q_t,c_b is given which is expected to be realized when a transport contract t is executed by a carrier c_b. The task of the auctioneer is to find a set X of winning bids (X is subset of B), such that each transport contract is part of at least one winning bid, the total procurement costs are minimized, and the total transport quality is maximized. This article presents a metaheuristic approach for the 2WDP-SC which integrates the greedy randomized adaptive search procedure, large neighborhood search, and self-adaptive parameter setting in order to find a competitive set of non-dominated solutions. The procedure outperforms existing heuristics. Computational experiments performed on a set of benchmark instances show that, for small instances, the presented procedure is the sole approach that succeeds to find all Pareto-optimal solutions. For each of the large benchmark instances, according to common multi-criteria quality indicators of the literature, it attains new best-known solution sets.Pareto optimization; multi-criteria winner determination; combinatorial auction; GRASP; LNS

    AN INVESTIGATION OF METAHEURISTICS USING PATH- RELINKING ON THE QUADRATIC ASSIGNMENT PROBLEM

    Get PDF
    The Quadratic Assignment Problem (QAP) is a widely researched, yet complex, combinatorial optimization problem that is applicable in modeling many real-world problems. Specifically, many optimization problems are formulated as QAPs. To resolve QAPs, the recent trends have been to use metaheuristics rather than exact or heuristic methods, and many researchers have found that the use of hybrid metaheuristics is actually more effective. A newly proposed hybrid metaheuristic is path relinking (PR), which is used to generate solutions by combining two or more reference solutions. In this dissertation, we investigated these diversification and intensification mechanisms using QAP. To satisfy the extensive demands of the computational resources, we utilized a High Throughput Computing (HTC) environment and test cases from the QAPLIB (QAP test case repository). This dissertation consists of three integrated studies that are built upon each other. The first phase explores the effects of the parameter tuning, metaheuristic design, and representation schemes (random keys and permutation solution encoding procedures) of two path-based metaheuristics (Tabu Search and Simulated Annealing) and two population-based metaheuristics (Genetic Algorithms and Artificial Immune Algorithms) using QAP as a testbed. In the second phase of the study, we examined eight tuned metaheuristics representing two representation schemes using problem characteristics. We use problem size, flow and distance dominance measures, sparsity (number of zero entries in the matrices), and the coefficient of correlation measures of the matrices to build search trajectories. The third phase of the dissertation focuses on intensification and diversification mechanisms using path-relinking (PR) procedures (the two variants of position-based path relinking) to enhance the performance of path-based and population-based metaheuristics. The current research in this field has explored the unusual effectiveness of PR algorithms in variety of applications and has emphasized the significance of future research incorporating more sophisticated strategies and frameworks. In addition to addressing these issues, we also examined the effects of solution representations on PR augmentation. For future research, we propose metaheuristic studies using fitness landscape analysis to investigate particular metaheuristics\u27 fitness landscapes and evolution through parameter tuning, solution representation, and PR augmentation. The main research contributions of this dissertation are to widen the knowledge domains of metaheuristic design, representation schemes, parameter tuning, PR mechanism viability, and search trajectory analysis of the fitness landscape using QAPs

    GIMO : A multi-objective anytime rule mining system to ease iterative feedback from domain experts

    Get PDF
    Data extracted from software repositories is used intensively in Software Engineering research, for example, to predict defects in source code. In our research in this area, with data from open source projects as well as an industrial partner, we noticed several shortcomings of conventional data mining approaches for classification problems: (1) Domain experts’ acceptance is of critical importance, and domain experts can provide valuable input, but it is hard to use this feedback. (2) Evaluating the quality of the model is not a matter of calculating AUC or accuracy. Instead, there are multiple objectives of varying importance with hard to quantify trade-offs. Furthermore, the performance of the model cannot be evaluated on a per-instance level in our case, because it shares aspects with the set cover problem. To overcome these problems, we take a holistic approach and develop a rule mining system that simplifies iterative feedback from domain experts and can incorporate the domain-specific evaluation needs. A central part of the system is a novel multi-objective anytime rule mining algorithm. The algorithm is based on the GRASP-PR meta-heuristic but extends it with ideas from several other approaches. We successfully applied the system in the industrial context. In the current article, we focus on the description of the algorithm and the concepts of the system. We make an implementation of the system available. © 2020 The Author
    corecore