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ABSTRACT 

  

 The Quadratic Assignment Problem (QAP) is a widely researched, yet 

complex, combinatorial optimization problem that is applicable in modeling many 

real-world problems. Specifically, many optimization problems are formulated as 

QAPs. To resolve QAPs, the recent trends have been to use metaheuristics rather than 

exact or heuristic methods, and many researchers have found that the use of hybrid 

metaheuristics is actually more effective. A newly proposed hybrid metaheuristic is 

path relinking (PR), which is used to generate solutions by combining two or more 

reference solutions. In this dissertation, we investigated these diversification and 

intensification mechanisms using QAP. To satisfy the extensive demands of the 

computational resources, we utilized a High Throughput Computing (HTC) 

environment and test cases from the QAPLIB (QAP test case repository).  

 This dissertation consists of three integrated studies that are built upon each 

other. The first phase explores the effects of the parameter tuning, metaheuristic 

design, and representation schemes (random keys and permutation solution encoding 

procedures) of two path-based metaheuristics (Tabu Search and Simulated Annealing) 

and two population-based metaheuristics (Genetic Algorithms and Artificial Immune 

Algorithms) using QAP as a testbed. 

In the second phase of the study, we examined eight tuned metaheuristics 

representing two representation schemes using problem characteristics. We use 

problem size, flow and distance dominance measures, sparsity (number of zero entries 

in the matrices), and the coefficient of correlation measures of the matrices to build 

search trajectories.  
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 The third phase of the dissertation focuses on intensification and 

diversification mechanisms using path-relinking (PR) procedures (the two variants of 

position-based path relinking) to enhance the performance of path-based and 

population-based metaheuristics. The current research in this field has explored the 

unusual effectiveness of PR algorithms in variety of applications and has emphasized 

the significance of future research incorporating more sophisticated strategies and 

frameworks. In addition to addressing these issues, we also examined the effects of 

solution representations on PR augmentation. 

 For future research, we propose metaheuristic studies using fitness landscape 

analysis to investigate particular metaheuristics’ fitness landscapes and evolution 

through parameter tuning, solution representation, and PR augmentation. 

 The main research contributions of this dissertation are to widen the 

knowledge domains of metaheuristic design, representation schemes, parameter 

tuning, PR mechanism viability, and search trajectory analysis of the fitness landscape 

using QAPs. 
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CHAPTER ONE 

1. INTRODUCTION  

1.1 Research Motivation 

 

This dissertation is motivated by the extensive development of metaheuristics 

in the combinatorial optimization world and the field’s inability to point out why a 

particular metaheuristic is superior to another. What characteristics enable one 

method to outperform another? Are these differences due to the methods’ varying 

philosophical differences, problem characteristics, or the detailed metaheuristic design 

that extends the base implementation? In order to investigate these research questions, 

we utilize the Quadratic Assignment Problem (QAP), a very well known hard 

combinatorial optimization problem, as the testbed and investigate a wide variety of 

metaheuristic-design approaches.  Specific problem instances are taken from the 

QAPLIB problem repository.  

 

 

1.2 Research Contributions  

 

 This dissertation examines the effects of parameter tuning, solution 

representation, problem characteristics, and path relinking augmentation on four 

widely applied metaheuristics (Tabu Search, Simulated Annealing, Genetic, and 

Artificial Immune Algorithms) using the Quadratic Assignment Problem (QAP) as a 

testbed. The salient features of this study are summarized below: 

 Contribution to the QAP Knowledge Domain: QAP is one of the most 

mysteriously difficult combinatorial optimization problems with immense 
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practical importance.  Using QAP as a carrier, we investigate how 

metaheuristic design factors affect a particular algorithm’s performance. Using 

the results obtained, we classify selected problems from the QAPLIB as 

trivial, moderately difficult, and hard problem instances. This enables future 

researchers to investigate these problem characteristics in more detail to learn 

more about designing effective metaheuristics.  

 Large Numbers of Test Cases:  We utilize 130 test cases from the QAPLIB 

with problem sizes ranging 12-128 facilities/locations. Many of these 

problems are based on real-world data, which is helpful for practitioners when 

evaluating the true performance of a particular metaheuristic. Since the cluster 

of studies presented here uses a large number of test cases, this generates 

robust and replicable findings as opposed to many of the studies mentioned in 

the literature, which have used only a small number of test cases.  

 The Effects of Parameter Tuning:  An extensive parameter tuning procedure 

was carried out for the four selected metaheuristics to investigate the effects of 

parameter tuning on performance. Using a full factorial design framework, we 

identified metaheuristic design factors for each method and replicated each 

treatment in a high throughput computing environment. 

 The Effects of Solution Representation:  We investigated how the 

performance of a particular metaheuristic is affected by the solution 

representation scheme. We used random keys and permutation representation 

schemes and analyzed how each metaheuristic method is affected by each 

representation scheme.  
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 The Effects of Path Relinking Augmentation:  We implemented position-

based path relinking (POS_PR) mechanisms for the two representation 

schemes, and we completed comparison studies for each representation 

scheme.  We found that PR can be considered an efficient diversification 

mechanism and that metaheuristic designers should pay careful attention to 

representation schemes as well as the philosophical differences of a particular 

metaheuristic.  

 Performance Measures:  We used the number of fitness evaluations as an 

absolute measure and run time as a relative measure with the computation of 

average loss function values (average deviation from the best known solution). 

We use 50 replications to compute the average loss function values for each 

metaheuristic. 

 Problem Characteristics:  We investigated the performance of each tuned 

path-based and population-based metaheuristic using measures pertaining to 

their problem characteristics. We used problem size, flow and distance 

dominance measures, sparsity (number of zero entries in the matrices), and the 

coefficient of correlation measures of the matrices to build search trajectories. 

In order to compare and contrast each population-based method with the path-

based methods, we used Classification and Regression Tree (CART) tools. 

 Individual Search Trajectories:  The tuned algorithms were analyzed using 

individual search trajectories when stagnation occurs in the life cycle.  The 

search trajectories were also monitored for each metaheuristic and for each 

representation scheme.   
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 High Throughput Computing (HTC):  The full factorial design for the four 

algorithms with the large set of input files requiring 50 replications for each 

run took 1,022,852 computation hours. This large-scale computational study 

utilized an HTC environment, or else the experiment would have taken 116.6 

years of regular computing. The other experimental runs (problem 

characteristics and PR augmentation) also required extensive computational 

resources. As such, this dissertation was enabled by the HTC’s efficient 

computation architecture.  

 Parametric and Nonparametric Statistical Analysis: This extensive 

computational study utilized parametric and nonparametric (Friedman’s test 

and Mood Median test) statistical analysis tools and techniques using R
®
,
 
Mini 

Tab
®
, JMP

®
 statistical software to draw conclusions.  

 

 From this dissertation, we draw conclusions related to each of the categories 

listed above, which are explained in detail in each chapter of the dissertation.  

 

1.3 Dissertation Overview 

 

 

This dissertation consists of six chapters including the introduction and 

concluding remarks. Figure 1.1 depicts the layout of each chapter and how the 

chapters build on each other.  
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Figure 1.1: Overview of the Dissertation 
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CHAPTER TWO 

2. LITERATURE REVIEW   

 

2.1. Introduction  

 The Quadratic Assignment Problem (QAP) is a widely researched 

combinatorial optimization problem, due to its complexity as well as its practical and 

theoretical importance. In recent years, researchers have shown promising results in 

solving complex QAPs with metaheuristics, specifically focusing on the development 

of efficient algorithms. Widely applied metaheuristics, such as Genetic Algorithms, 

Tabu Search, and Simulated Annealing, have been applied to approximate solutions 

for many combinatorial problems for which optimal solutions from exact 

mathematical models are unavailable.  

  The second chapter of this dissertation begins with a thorough exploration of 

the previous research conducted in the field of QAPs, metaheuristics and Path-

Relinking. The literature review is organized as follows. In the first sub-section, the 

Quadratic Assignment Problem and related mathematical models are presented.  The 

resolution approaches proposed for QAPs are presented with a brief introduction to 

the exact mathematical models and approximation algorithms. The test cases and the 

lower bounds are discussed following the introduction to metaheuristics. This section 

elaborates on the evolution of metaheuristics, the hybridization of metaheuristics, and 

the inception of Path-Relinking procedures.  In the later sub-sections of the chapter, 

the computational framework and notations are introduced. The chapter concludes by 
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highlighting the significance of the dissertation and by laying the foundation for 

chapter 3 to investigate metaheuristics for QAPs.   

2.1.1. The Quadratic Assignment Problem (QAP)  

 

The Quadratic Assignment Problem (QAP) was first introduced as a 

mathematical model by Koopmans and Beckman in 1957 [54]. Many practical 

problems can be modeled as a QAP, including production line scheduling, assignment 

of gates to airplanes in airports, backboard wiring problems in electronics, campus 

and hospital layouts, typewriter keyboard designs, turbine runner balancing problems, 

processor-to-processor assignments in a distributed processing environment, and 

many others. On account of its diverse applications, its theoretical importance, and its 

overall complexity, QAP has been studied by many researchers around the world [58]. 

2.1.2. Mathematical Formulations 

 

 The mathematical formulation of the QAP takes different forms, including 

integer linear programming (IP) formulation, mixed integer linear programming 

formulation (MIP), formulation by permutations, tree formulation, and graph 

formulation. Generally, the IP format is used to formulate the QAP, which is usually 

described within the context of a facility location problem [58]. The intent of such 

QAPs is to assign facilities to locations in such a way that each facility is located in 

exactly one location and vice-versa. These decisions are represented by the decision 

variables, ikx , which take on the value 1 when the facility i is located in location k and 0 

otherwise. There are two data matrices associated with the problem: the distances, kpd , 

between locations k and p and the demand flows, ijf , between facilities i and j. The 
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facilities are assigned such that the sums of all possible distance-flow products are 

minimized [54].  The following is a standard integer programming formulation: 

, 1 , 1

min                                                                   (1)

n n

ij kp ik jp

i j k p

f d x x  

1

1

s.t.  1    1 ,                                                                        (2)

      1    1 ,                                                                         

n

ij

i

n

ij

i

x j n

x i n (3)

          0,1     1 , ,                                                               (4)ijx i j n

 

      Another complementary version to the general form was proposed by Lawler 

in 1963 by substituting the A, B, and C matrices with C= [ ijkpc ] to represent the total 

cost [58]. The Lawler formulation is as follows:  

, 1 , 1

min                                                                          (5)

n n

ijkp ik jp

i j k p

c x x  

. .       (2), (3) and (4)s t  

 The above discussed formulations only differ in how they are written, not in 

their intent. In a more general form, we can identify a QAP instance of order n by 

three matrices, A= [ ijf  ], B= [ kpd ], and C = [ ikc ], where the first two matrices define 

the flows and distances between the facilities and their locations, respectively. Matrix 

C is the allocation cost of facilities to locations, resulting in the following 

formulation: 

n

, 1 , 1 i,k=1

min     +                                                  (6)

n n

ij kp ik jp ik ik

i j k p

f d x x c x  

. .       (2), (3) and (4)s t  
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 The term quadratic stems from the formulation of the QAP as an integer 

optimization problem with a quadratic objective function stemming from the ik jpx x  

terms, as in equation (1).  

 The QAP is a NP-hard optimization problem; Sahni and Gonzales [79] show 

that unless P=NP, it is not possible to find an f-approximation algorithm for a constant 

f for this problem. Even with rapid growth in computational resources, solving 

relatively large instances (>20) of QAPs is considered intractable. Due to its high 

computation complexity, QAP was chosen as the first major test application for the 

GRIBB project (Great International Branch-and-Bound search), which intends to 

develop a software library for solving a large class of parallel search problems using a 

number of computers around the globe via the internet [58].  

 Many real world QAPs have problem sizes of more than 20 facilities or 

locations to be assigned; hence, the use of heuristic methods has been common in 

recent years [5]. Before the 1980s, most of the proposed heuristic methods were 

problem and domain specific. However, recently, more research studies have begun to 

look at classes of heuristics, widely known as metaheuristics, as being applicable for 

more generalized contexts [11]. In the absence of optimal solutions, these methods 

provide fairly good solutions within reasonable timeframes [2].  

2.1.3. Variants of QAPs 

 As the knowledge base has grown in the QAP literature, several 

augmentations have been proposed. One such variant to the original QAP includes 

Steinberg’s [81] Quadratic Bottleneck Problem (QBAP), which is related to the 

backboard wiring problem. In this problem n components are allocated to individual 
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locations with the objective to minimize the maximum length of wire needed to 

connect two given components. Other variants include Pierskalla’s [74] Quadratic 

three-dimensional Assignment Problem (Q3AP) for data transmission system design 

and Hansen and Lih’s [43] Quadratic Semi-Assignment Problem (QSAP).  These 

problems are extensions to the classical QAP and have shown a wide spectrum of 

applications.  

 Other combinatorial problems that can be formulated as QAPs include the 

Graph Partitioning Problem (GPP) [35], the Maximum Clique Problem (MCP) [7], 

the famous Travelling Salesman Problem (TSP) [29], and the Packing Problem in 

graphs [58]. These problems can be formulated as QAPs with use of relevant data 

matrices. Understanding the relationship between these problems and QAP allows 

researchers to gain insights into QAPs behavior, complexity, and possible resolution.  

2.1.4. Applying QAPs 

 From the vast body of research published on applying QAP, the following 

summary was created to highlight the importance of investigating this problem 

domain (Table 2.1). 

Table 2.1: Some Applications of QAP from the Literature, Adapted from [58] 

Research Studies Description of the QAP Application 

Steinburg (1961) Backboard wiring problems 

Heffley (1972,1982) Economic problems  

Francis and White (1974) Decision framework for assigning new facilities 

Geoffrion and Graves (1976) Scheduling problems  

Pollatscheck et al. (1976) Typewriter keyboards and control panels   

Krarup and Pruzan (1978)  Archeology  

Hurbert (1987) Statistical analysis  

Forsberg et al. (1994) Analysis of reaction chemistry  

Dickey and Hopkins (1972)  Assignment of buildings at a university  

Elshafei (1977) Hospital planning  

Bos (1993) Forest parks  
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Benjaafar (2002) Minimizing work-in-progress (WIP)  

Ben-David and Malah (2005) Error control in communication via index assignment 

problems 

Wess and Zeitlhofer (2004) Memory layout optimization in signal processors 

2.1.5. Solution Approaches 

 Since its inception, many researchers have investigated possible methods to 

solve QAP, to obtain both optimal and near optimal solutions. With the absence of 

tractable exact mathematical models, heuristics have become increasingly preferred in 

recent years [6] and many researchers have shown the efficiency of these methods to 

generate fairly good solutions within reasonable timeframes.  

      The following two sub-sections summarize the two broad categories of resolution 

approaches: exact mathematical approaches and approximation algorithms.  

2.1.6. Exact Mathematical Approaches 

 Using the classical mathematical modeling techniques, exact mathematical 

models generate optimal solutions for a given optimization problem. In the case of 

QAP, the most popular exact mathematical solution methods include branch-and-

bound techniques, cutting planes, and dynamic programming. Table 2.2 presents a 

summary of these methods [58].   

Table 2.2: Summary of the Solution Methods for QAP Adapted from [58] 

Research Studies Solution Method 

Gavett & Plyter (1966), Nugent et al.(1968),  

Graves & Whinston (1970), Pierce & Crowston (1971), 

Burkard & Stratman (1978), Bazaraa & Elshafei (1979), 

Mirchandani & Obata (1979), Roucairol (1979), Burkard 

& Derigs (1980), Edwards (1980),  

Bazaraa & Kirca (1983), Kaku & Thompson (1986), 

Pardalos & Crouse (1989), Burkard (1991),  

Branch-and-bound 
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Laursen (1993), Mans et al. (1995),  

Bozer and Suk-Chul (1996), Pardalos et al. (1997), 

Brüngger et al. (1998), Ball et al. (1998),  

Spiliopoulos & Sofianopoulou (1998),  

Brixius & Anstreicher (2001), Hahn et al. (2001a,b) 

Roucairol (1987), Pardalos & Crouse (1989),  

Mautor & Roucairol (1994a), Brüngger et al. (1997), 

Clausen & Perregaard (1997) 

Branch-and-bound with 

parallel implementation 

Christofides & Benavent (1989),Urban (1998) Dynamic programming  

Bazaraa & Sherali (1980), Kaufman & Broeckx (1978), 

Bazaraa & Sherali (1980, 1982) , Burkard & Bonniger 

(1983) 

Cutting planes  

Miranda et al. (2005) Benders decomposition  

Padberg & Rinaldi (1991) Branch-and-cut technique 

Jünger & Kaibel (2000, 2001a,b), Padberg & Rijal 

(1996), Kaibel (1998), Blanchard et al. (2003) 

Investigation of properties 

of polytopes 

 

 Even with the rapid development of computational recourses, an exact 

solution for any QAP instance of size n=20 was not found until the mid-1990s when 

Mautor and Roucairol [63] presented an exact optimal solution to the nug16 QAP [18] 

for the first time. Table 2.3 depicts a brief history of the exact solutions of several 

problem instances of QAPLIB [47].  

Table 2.3: History of Solutions for Some Problem Instances of QAPLIB 

Problem Instance  Research Study  

Nug16 Mautor &  Roucairol (1994) 

Nug20 Clausen &Perregaard (1997) (Branch-and-bound technique 

and 960 min of computation and 16 processors) 

Nug25 Marzetta & Brüngger (1999)  (Dynamic programming and 

parallel implementation with  64 and 128 processors and 30 

days of computation)  

Nug25 Anstreicher & Brixius (2001) (Convex quadratic 

programming relaxation within a branch-and-bound 
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algorithm with 6.7 wall-clock time) 

Kra30a Hahn & Krarup (2001)  (99 days of computational time on a 

sequential workstation) 

Ste36b and Ste36c   Nystrom (1999) (Distributed programming environment 

with 22 processors. The solution took approximately 60 

days for Ste36b and 200 days for Ste36c of computation 

time) 

Ng30, Nug28, 

Nug30, Kra30b, 

and Tho30 

Anstreicher et al. (2002) (7 days to complete on a 

computational grid with an average of 650 computers 

simultaneously processing) 

 

2.1.7. Approximation Algorithms 

For the last three decades, the use of heuristics or approximation algorithms 

has increased drastically [76]. Various sub-categories of metaheuristics have delivered 

promising results in solving complex QAPs in recent research [6]. Table 2.4 depicts a 

brief summary of the heuristics applicable for solving QAPs.    

Table 2.4: Summary of the Heuristics Applicable for QAP Adapted from [58] 

Research Studies Heuristics/  

Metaheuristics  
Gilmore (1962), Armour & Buffa (1963), Buffa et al. (1964), Sarker 

et al. (1995, 1998), Tansel & Bilen (1998), Burkard (1991), Arkin et 

al.(2001), Gutin and Yeo (2002),Yu &Sarker (2003) 

Constructive 

methods 

Burkard & Bonniger, (1983), West (1983), Nissen & Paul (1995) 
Enumerative 

methods 
Heider (1973), Mirchandani & Obata( 1979), Bruijs (1984), Pardalos 

et al. (1993), Burkard & Cela (1995), Li & Smith (1995), Anderson 

(1996), Talbi et al.(1998a), Deineko &Woeginger (2000) ,Misevicius 

(2000), Mills et al.(2003) 

Improvement 

methods 

Burkard & Rendl(1984),Wilhelm & Ward (1987), Connolly (1990),  

Abreu et al. (1999), Bos (1993), Yip & Pao (1994), Burkard and 

C`ela (1995), Peng et al. (1996), Tian et al. (1996, 1999), Mavridou 

&  Pardalos (1997), Chiang & Chiang (1998), Misevicius (2000b, 

2003c), Tsuchiya et al. (2001), Siu & Chang (2002), Baykasoglu 

(2004). 

Simulated 

Annealing 

Bui & Moon (1994), Tate  & Smith (1995), Mavridou & Pardalos 

(1997), Kochhar et al. (1998), Tavakkoli-Moghaddain & Shayan 

(1998), Gong et al. (1999), Drezner & Marcoulides (2003), El-Baz 

(2004), Wang & Okazaki (2005), Drezner (2005a) 

Genetic 

Algorithms 
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Cung et al. (1997) Scatter Search 
Maniezzo & Colorni (1995, 1999), Colorni et al. (1996), Dorigo et al. 

(1996), Gambardella et al. (1999), Stu¨tzle & Dorigo (1999), Stu¨ tzle 

& Holger (2000), Talbi et al. (2001), Middendorf et al. (2002), 

Solimanpur et al. (2004), Randall (2004),Ying & Liao (2004), Acan 

(2005) 

Ant colony 

Optimization 

Skorin-Kapov (1990, 1994),Taillard (1991), Bland & Dawson (1991), 

Rogger et al. (1992), Chakrapani & Skorin-Kapov (1993), Misevicius 

(2003a, 2005), Drezner (2005b) 
Tabu Search 

Li et al. (1994b), Feo & Resende (1995), Resende et al. (1996), 

Fleurent & Glover (1999), Ahuja et al. (2000), Pitsoulis et al. (2001), 

Rangel et al. (2000), Oliveira et al. (2004) 

Greedy 

Randomized 

Adaptive Search 

Procedure 

(GRASP) 

2.1.8. Lower Bounds 

 Several lower bounds have been proposed in the literature. These methods are 

the building blocks for the branch-and-bound methods and are essential for heuristics 

to evaluate the solution quality. The lower bound proposed by Gilmore in 1962 and 

then by Lawler in 1963, which is now known as the Gilmore and Lawler bound 

(GLB), is widely applied to determine lower bound for QAPs due to its effectiveness 

in small problem instances [58]. However for large test cases, this method proves to 

have inferior results. Another category of bounds was proposed for Mixed Integer 

Linear Programming (MILP) formulations of QAPs. These lower bounds are based on 

GLB reformulations, interior point methods, variance reduction bounds, graph 

formulations, spectral bounds, semi-definite programming, and reformulation-

linearization bounds [5], [17], [58]. 

 

2.1.9. Input Data and Characteristics 

The characteristics of the data matrices of the QAP (flow and the distance 

matrices) play an important role in obtaining a good solution for a given QAP [86]. 
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For a single objective QAP, one flow and one distance matrix are used.  In order to 

differentiate categories of problem instances, researchers have proposed flow 

dominance (fd) and distance dominance (dd) measures using the coefficient of 

variations in the data matrices [64]. The following formulae have been used for 

computing the flow and distance dominance measures, where n is the size of the 

problem and bij is the i
th 

 and j
th 

 value of the flow or distance matrices [88]. 

 

(Distance or Flow ) = 100                                                (7)f

 

                  where 

2

2 2
1 1 1 1

1 1
  and =                      (8)

1ij

n n n n

ij

i j i j

b b
n n

 

 Using these measures one can describe the characteristics of given data 

matrices, where high fd and dd measures indicate that the majority of the data is 

clustered among a few facilities. If the entries are equally sized, fd is low; however, 

for irregular instances fd values are high. The fd values are also an indication of how 

local optimum solutions are scattered. For example, high fd values suggest that there 

are few small local optima and few large local optima, which create difficulties for 

local search algorithms. Randomly generated problem instances using a uniform 

distribution for the flows and distances show low fd and dd values. Real-world 

problems and non-uniformly generated random instances show high fd and dd values.  

 Another important measure is the sparsity of the data matrices. This is 

associated with the number of zero elements in the flow and distance matrices. 

Problems with sparse data matrices are less likely to realize improvements through 
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pair-wise interchanges, as the data matrices are dominated by zero elements and 

interchanges cannot reduce the total costs drastically [31].  

 A repository of problem instances called QAPLIB, which was compiled by 

Burkard et al.[18], presents more than 135 input files related to QAP. These instances 

consist of symmetric, asymmetric, and rectangular data from pseudorandom number 

generation as well as from actual data collected from hospital layouts, backboard 

wiring problems, and many other real-world applications. These problems have either 

been optimally solved by exact mathematical methods or have been approximated by 

metaheuristics. The problem sizes range from 12 to 256, with 50 problem instances up 

to size 20 being optimally solved to date [77].   

2.2. Metaheuristics 

 The term metaheuristics was first proposed by Glover [37] to refer to a broad 

class of algorithmic concepts used for optimization and problem solving. According 

to Voß et al. [88] ―a metaheuristic is an iterative master process that guides and 

modifies the operations of subordinate heuristics to efficiently produce high quality 

solutions.‖  

 Some of the metaheuristic techniques are based on natural process metaphors 

and some are based on theoretical and experimental considerations [76]. The 

metaheuristics that are inspired by nature include Genetic Algorithms (GA) (the most 

popular process) [3], [13], [44] Simulated Annealing (SA) [12], [50], [61] Scatter 

Search (SS) [21], [42] and Ant Colony Optimization (ACO) [36]. The other category 

of metaheuristics that has been applied to QAP settings includes Tabu Search (TS) 
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[12], [37], [45], [46] the Greedy Randomized Adaptive Search Procedure (GRASP) 

[34], and Variable Neighborhood Search (VNS).  

2.2.1. The Evolution of Metaheuristics 

 

 The broad class of metaheuristics can be further categorized into sub-groups 

based on their philosophical differences, which are apart from their differences in the 

inspirational metaphors. Generally the nature-inspired metaheuristics to QAPs 

incorporate randomness. Based on their search mechanisms, these broad categories 

can be further broken down into population-based and path-based subsets [11], [75], 

[76]. Population-based metaheuristics consist of Genetic Algorithms, Ant Colonies, 

and Scatter Search algorithms, which consider ways to coalesce and extend the 

elements of the solutions that already exist. On the other hand, path-based algorithms, 

such as Tabu Search and Simulated Annealing, incorporate strategies to transform a 

single solution. 

Research conducted in the field of metaheuristics includes two paradigms. The 

first paradigm takes several known metaheuristics as a subset of several general 

methodologies to explore new problems or extend previous problem instances with 

less emphasis on metaheuristic design. The other paradigm thoroughly redesigns and 

tunes one design to evaluate its impact on one or more test problems. By 

incorporating these methodologies, researchers attempt to contribute to the field of 

metaheuristics by building robust designs that resolve complex combinatorial 

optimization problems. 
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2.2.2. The Hybridization of Metaheuristics 

Recent trends have focused on hybridizing pure metaheuristic strategies to 

exploit the resolving power of the designs in terms of solution quality and efficiency. 

A number of algorithms have been reported that do not completely follow the 

concepts of a single traditional metaheuristic; rather, they combine various 

algorithmic ideas, sometimes going beyond the boundaries of traditional 

metaheuristics. These approaches are commonly referred to as hybrid metaheuristics 

[77], [82], [86], [91]. Researchers’ motivation behind hybridizing different 

algorithmic concepts is usually to obtain better performing systems that exploit and 

unite the advantages of the pure strategies through synergy. 

Hybridization is approached via several forms starting with what we hybridize 

(i.e., which kind of algorithms should be combined). We might combine any of the 

following: 

(a)  Different metaheuristic strategies  

(b) Metaheuristics with certain algorithms specific for the problem we are 

considering 

 (c) Metaheuristics with other more general techniques coming from fields like 

Operations Research (OR) and Artificial Intelligence (AI). 

 Then, the level or the strength of the retaining identities should also be also 

considered. The third property to consider is the order of execution followed by the 

control strategy, which determines the combinations via integrative (coercive) and 

collaborative means [75].        

Several researchers have investigated the concept of hybridization in the QAP 

context [58]. In a recent study, Drenzner [30] states that the importance of 
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hybridization within the QAP context is to enhance the solution quality and the 

immense opportunities available for future research. Table 2.5 depicts some possible 

components available for the hybridization of the most commonly known 

metaheuristics [72].  

Table 2.5: Key Components of Popular Metaheuristics 

Metaheuristics 

Possible Components for Hybridization 

OF: Output function  
 IF: Input function 
IM: Improvement method 
SCM: Solution combination method 

ACO 

OF: Derivation of new solution candidates by considering a 
 pheromone matrix 
SCM: Implicitly via the pheromone matrix 
IF: Updates of the pheromone matrix 

GA 
OF, IF: Selection techniques 
SCM: Crossover operators 
IM: Mutation operators, repair schemes, decoding functions 

PR 
OF, IF: Selection techniques 
SCM: Crossover operators 
IM: Mutation operators, repair schemes, decoding functions 

SS 

IF: Diversification generation methods, subset generation 
 methods 
IM: Improvement methods  
SCM: Solution combination methods OF: Reference set update 

methods 
SA IF: Acceptance criterion, annealing schedule 

TS 

 

IM, IF: Consideration and maintenance of Tabu list, 
aspiration criteria 

 

 

2.3. Path Relinking (PR) 

  

First proposed by Glover [38], path relinking (PR) is a novel instance of 

traditional evolutionary metaheuristics that stems from Scatter search. PR embodies 

principles and strategies that have still not been emulated by other evolutionary 

methods, a fact that proves to be advantageous for solving a variety of complex 

problems [41]. 
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 Similar to other evolutionary metaheuristics, PR operates with a population of 

solutions, rather than with a single solution at a time, and employs procedures for 

―combining‖ these solutions to create new solutions [38]. Two of the most 

distinguishing features of PR are its alliance with Tabu Search (TS) and its adoption 

of the principle that a search can benefit by incorporating special forms of adaptive 

memory. Path-based metaheuristics, such as TS, can utilize PR techniques to explore 

neighborhoods effectively. This enables researchers to combine solutions of good 

quality to generate intelligent neighborhood search paths. For population-based 

metaheuristics the possibilities for utilizing PR are endless. It can be incorporated via 

crossover and mutation operators, elite reproduction, combining generations and 

populations of solutions through tunneling, and much more.  

 Since the inception of the PR concept, researchers have investigated its 

applicability in different contexts, including vehicle routing, arc routing, financial 

product design, neural network training, job shop scheduling, crew scheduling, flow 

shop scheduling, unconstrained optimization, optimization simulation, multi-objective 

assignment problems, and quadratic assignment problems [41]. These studies have 

contributed several improved methods for solving a variety of classical problems. 

 The theory behind the PR concept originates from SS, which combines a 

certain set of solutions, the reference set, to create new solutions. The main 

mechanism for combining solutions is through a linear combination of two other 

solutions. In a similar way, convex and non-convex combinations of both original and 

new reference solutions create more solutions, thereby generating a more complete 

reference set [38][39].  
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2.3.1. Path Relinking Framework  

 

 In the PR framework, from a spatial orientation, the process of generating 

linear combinations from a reference solution set may be characterized as generating 

paths between and beyond these solutions, where solutions on such paths also serve as 

sources for generating additional paths. Such combinations generate paths between 

and beyond selected solutions in a neighborhood space rather than in a Euclidean 

space [39]. 

 

 

 

 

 

Figure 2.1 Path Relinking: Original path shown by the heavy line and a 

possible relinked path shown by the dotted line
 [38]  

 

 Figure 2.1 depicts path creation that join two selected solutions x′ and x″, 

which restricts the attention to the part of the path that lies ―between‖ the solutions 

and produces a solution sequence: x′ = x(l), x(2), …, x(r) = x″. To reduce the number 

of options to be considered, the solution x (i + 1) may be created from x (i) at each 

step by choosing a move that leaves a reduced number of moves remaining to reach x. 

This policy permits a significant number of alternative choices for generating the next 

solution for each step. 

2.3.2. PR and Scatter Search Strategies  

 PR strategies have demonstrated promising results in assignment problems [4], 

[92]. Exploring such problems, Alfandariet et al. [4] and Yagiura et al. [92] 

x
’ 

Objective 

Function 

 

x
’’ 

2D Solution Space 
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investigated the Generalized Assignment Problem (GAP) using PR concepts. In the 

literature, problem instances of Generalized Assignment Problem (GAP) can be 

categorized into several types (A through E) depending on the problem characteristics 

and type D and E are known to be very difficult. PR strategies were able to generate 

solutions that are not only highly effective in general but are also especially effective 

for solving types D and E instances [92]. These researchers also suggest that adopting 

more sophisticated strategic rules could result in better performance and that pursuing 

possibilities related to these rules is an important direction for further research. 

Furthermore, the PR approach is quite powerful even in its simplest form and is not 

sensitive to slight changes in the rules and parameters involved in its framework [42].  

Therefore, exploration of such mechanisms in the QAP context supports the 

development of more robust metaheuristics.  

 Scatter search has been applied in the context of QAP and has yielded highly 

effective solutions, even though many variants of SS have not even been fully 

exploited [39]. Recently, sequential and parallel PR-based TS algorithms have been 

proposed for QAP, and the computational results have demonstrated highly attractive 

outcomes [45], [46]. James et al. [45] investigated QAP in the context of PR, and the 

authors encourage additional follow-up studies that examine more complete and 

advanced forms of PR that make use of more sophisticated processes for managing 

the reference set and for creating combination solutions. 
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2.3.3. Recent Advances in QAP domains  

 PR has been applied to QAP with Greedy Randomized Adaptive Procedures 

(GRASP) and has shown to significantly improve the time to find a target solution 

[71].  

 As a form of path-crossover in GAs, PR strategies have been applied to the 

QAP context and have shown very promising results by finding the best known 

solutions to all the problems tested [3]. Ahuja et al. [3] developed a greedy Genetic 

Algorithm was proposed and tested on test cases of QAPLIB with problem sizes less 

than 100.  The authors suggest that by incorporating more efficient and advanced PR 

mechanisms, better solutions can be obtained.  

 In a subsequent study, a more rigorous analysis was carried out with different 

crossover operators [69].  Misevičius and Kilda [67] used ten different crossover 

operators, including swap path crossover (SPX), which is related to PR. The study 

used nine random and ten real-world test cases of QAPLIB for which SPX generated 

very effective solutions.  

 A recent study addressed the important issue of search bias of crossover 

operators using QAP [86].  Thierens [86] compared random PR and greedy PR 

crossover operators with uniform permutation crossovers (UPX) using five problem 

instances [65] and PR-based crossover operators generated solutions effectively and 

efficiently.  
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2.4. Computational Resources 

 In order to solve large and complex QAPs, past research has often utilized 

parallel processing hardware [5]. Table 2.6 depicts the computation demands of a 

selected few complex QAP instances.  While these computational methods are very 

promising the capabilities of these supercomputers are emerging and thus create 

issues related to costs and availability. An alternative for this method is the High-

Throughput Computing (HTC) environment, which utilizes multiple machines that are 

interfaced with some form of a communication network. The terms ―metacomputing‖ 

and ―grid computing‖ refer to a very large scale distributed computation associated 

with machines which are geographically dispersed [9].  

Table 2.6: Recently-solved large QAPs
 [9] 

Problem Bound Platform CPU days 

kra30a Dual -LP Serial 99 

    

kra30b/32 
Quadratic programming bounds 

(QPB) 
Distributed 1527/5536 

    

nug27/28/30 
Quadratic programming bounds 

(QPB) 
Distributed 113/722/3999 

ste36a Gilmore-Lawler bound (GLB) Serial 18 
ste36b/c Gilmore-Lawler bound (GLB) Distributed 60/200 
tai25a Dual -LP Serial 394 

tho30 
Quadratic programming 

bounds(QPB) 
Distributed 8997 

 

 Condor is a specialized high-throughput computing system for compute-

intensive tasks [57]. Condor can be used to build grid-style computing environments 

that cross administrative boundaries. Its "flocking" technology allows multiple 

Condor computer installations to work together and incorporates many of the 

emerging grid-based computing methodologies and protocols. While providing 

functionality similar to that of a more traditional batch-queuing system, Condor's 
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novel architecture allows it to succeed in areas where traditional scheduling systems 

fail. Condor can be used to manage a cluster of dedicated computer nodes. In 

addition, unique mechanisms enable Condor to effectively harness wasted CPU power 

from otherwise idle desktop workstations [78]. 

2.5. Notation and Terminology  

Table 2.7 presents a summary of the notations used throughout this dissertation.    

Table 2.7 Summary of Notations  

 

Notation  Description  
n The size of an instance of the QAP  
A The flow matrix  
B The distance matrix  
dd Distance dominance  

D&I Diversification and Intensification mechanisms  
fd Flow dominance  

GA Genetic Algorithm 
IA Artificial immune Algorithm  
PR Path-Relinking 

QAP (A,B) An instance of the QAP with flow matrix A and distance matrix B  
SA 
SS 

Simulated Annealing  
Scatter Search  

TS Tabu Search  

2.6. Significance of the Dissertation   

This dissertation contributes to three diverse but integrated categories of the 

metaheuristic domain:  

i. Parameter tuning processes, representation scheme, and metaheuristic 

design 

ii. Investigation of performance of metaheuristics using detailed problem 

characteristics 

iii. Diversification and Intensification mechanisms for intelligent searches via 

PR mechanisms   
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 Using three integrated studies, layers of the above mentioned metaheuristic 

categories will be examined. Findings from each proceeding study will be integrated 

into the succeeding study to continuously improve the proposed algorithms. 

The overall findings of this dissertation will be applicable for general 

metaheuristic development, large-scale computational comparisons, extensive 

parameter tuning procedures, broad metaheuristic design rules, combinatorial 

optimization, and unified framework for QAP-related metaheuristics.  
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CHAPTER THREE  

3. INVESTIGATION OF METAHEURISTICS ON QAP  

3.1. Introduction  

 The Quadratic Assignment Problem (QAP) is widely researched due to its 

complexity and its practical and theoretical importance. In recent years, 

metaheuristics have shown promising results in solving complex QAPs, with 

researchers specifically focusing on the development of efficient algorithms. 

However, less emphasis has been given to exploring why certain methods outperform 

others. This study utilizes two path-based metaheuristics (Tabu Search and Simulated 

Annealing) and population-based metaheuristics (Genetic Algorithms and Artificial 

Immune Algorithms) that are widely applied in solving QAPs and investigates the 

impact of parameter tuning, solution representation, and metaheuristic design on 

performance. An extensive parameter-tuning process is carried out in a high 

throughput computing environment with 130 test cases from the QAPLIB (QAP test 

cases). The comparative studies are followed by nonparametric and parametric 

statistical analyses, and conclusions are drawn with indications for possible future 

research.  

3.2. Metaheuristic Comparison Studies  

 The earliest comparison of several metaheuristics dates back to 1993 [80] in 

which Tabu Search (TS), Simulated Annealing (SA), Genetic Algorithms (GA), and 

several other heuristics were compared using the hydraulic turbine runner-balancing 

problem (a special case of QAP). This study mainly evaluated the applicability of 
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metaheuristics when real data was used. Battiti and Tecchiolli [12] utilized SA and 

Reactive TS and compared their performance based on run-time and number-of-

fitness-function evaluations using five problem instances (size < 50) rather than 

design parameters or generic characteristics. Using eight metaheuristics implemented 

on a unified computer system called ALGODESK, Maniezzo et al. [61] compared 

performance using eight problem instances. Merz and Freisleben [64] used GA, TS, 

and memetic algorithms (MA) for QAP, focusing on comparing the performance of 

an improved MA to others using eleven problems taken from the QAPLIB [18].  

 These studies either investigated parameter tuning or conducted a 

comparative analysis using multiple metaheuristics to draw conclusions regarding the 

superiority of a particular algorithm(s), specifically analyzing those with fewer 

problem instances. However, less emphasis was given to evaluating the effects of 

parameter tuning, solution representation, metaheuristics design, and the underlying 

characteristics of the algorithms using a large set of problems instances. In order to 

fill this gap in the literature, our study designed and utilizes high throughput 

computational resources to complete the extensive computational experiments 

successfully. The research questions/statements addressed in this chapter include the 

following: 

 What is the significance of solution representations (random keys and 

permutations-solution-encoding procedures) on the performance of each path-

based and population-based algorithm? 

 What is the significance of parameter tuning on the performance of each path-

based and population-based algorithm? 
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 Categorize the 130 input files from QAPLIB as trivial, moderate, or hard 

problems.  

 This chapter is organized as follows: We begin with the implementation of 

the four algorithms and related sub-sections. Then we move on to discuss the 

performance measures, experimental results, and finally the conclusions and possible 

extensions to this research.   

3.3. Implementation of the Four Metaheuristics  

 In this section, a detailed description of the implementation of the four 

algorithms is presented.  For this study, we have implemented the metaheuristics as 

they were proposed by the original authors without any other modifications with the 

intention being to study the match between the inherent characteristics and the 

performance of the algorithms in their original form.    

3.3.1. Simulated Annealing Algorithm (SA) 

 

Simulated Annealing was developed based on the analogy of annealing solids to 

mimic optimization problems [50]. This metaphor is used for modeling optimization 

problems in which the particles represent the solutions and the level of energy refers 

to the value of the fitness or the objective function. An abstract description of a 

generic SA is given in Figure 3.1.  

Initialize a candidate solution s 

Initialize the temperature, cooling schedule, and the number of iterations 

While the temperature has not reached the equilibrium, 

                  s
new

 =local search 

                         If s
new

 is accepted based on criterion , 

                               then move towards s
new

 

                Update the temperature and record solutions 

 

Figure 3.1: Implementation of a Generic SA 
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3.3.2. Tabu Search Algorithm (TS) 

 Tabu Search (TS) has been widely applied to many optimization problems 

[37][38] and is based on the underlying metaphor of human memory to track solution 

trajectories. The efficient search strategies inherent in this method yield remarkably 

good solutions for hard optimization problems. A generic TS implementation [37] is 

presented in Figure 3.2. 

Initialize a candidate solution s 

Initialize the tabu list and number of iterations 

While number of iterations has not reached the maximum,  

      Create a neighborhood  s
new

 =local search(es) 

If s
new

 is accepted based on tabu list or aspiration criterion, 

    then move towards s
new  

Update the tabu list and record solutions 

 

Figure 3.2: Implementation of a Generic TS 

3.3.3. Genetic Algorithm (GA) 

 The Genetic Algorithm (GA) is considered one of the most widely researched 

methodologies. It was originally proposed by Holland [44] and uses the metaphor of 

survival of fittest. GAs have been implemented and applied in a wide spectrum of 

optimization problems [3]. An abstract description of a simple GA is given in Figure 

3.3. 

Initialize the population (p0) of candidate solutions     

gen=0 

While number of generations has not reached the maximum,  

     gen=gen+1 

     Create a set of solutions (m) via crossover   from pgen-1 

     Create a set of solutions (n) from via mutation  

      For each   

              Evaluate the fitness      

Figure 3.3: Implementation of a Generic GA 
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3.3.4. Artificial Immune Algorithm (IA) 

 Artificial Immune Algorithms (IA) have been implemented and applied in 

optimization problems, especially scheduling and bio-engineering applications [15]. 

IA uses the metaphor of the human immune system. The antibodies and antigens of 

the human body’s defensive system are used for building the optimization model. 

Although the basic implementation of IA is similar to GA, the main differences 

between them lie in the manner the solutions are selected for diversification and 

intensification mechanisms using affinity computations [1]. An abstract description of 

an IA is given below in Figure 3.4. 

Initialize the population (p) of candidate solutions     

While number of generations has not reached the maximum,  

       Compute fitness function values  

       Compute Affinity values    where  

       (k size of the sequence of the antibody, i being the solution in concern and j 

being the reference solution) 

       Use elite reproduction  

       Create the mating pool using Affinity threshold         

 

Figure 3.4: Implementation of a Generic IA 

 

  For each algorithm, we tested three different neighborhoods on the 

permutations (local searches): inversion, transposition, and displacement (Figure 3.5). 

Our preliminary analyses of the simulation runs verified the findings of Dreo et al. 

[31]; the worst performance was observed for the inversion and displacement 

methods. Therefore, we implemented the transposition technique in all of the 

algorithms.  
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Figure 3.5: Neighborhoods on Permutations (Inversion, Transposition, and 

Displacement, respectively) 

 

3.4. Input Data  

 We used 130 test cases from the QAPLIB problem repository (all test cases 

except Tai150b, Tai256c, and Tho150) ranging from problem sizes 12 to 128 

(Please refer to Appendix A for a detailed description of the test cases.) These 

instances consisted of symmetric, asymmetric, and rectangular data from 

pseudorandom number generation and actual data collected from hospital layouts, 

backboard wiring problems, and many other real-world applications [17]. These 

problems have been either optimally solved by exact mathematical methods or 

approximated by metaheuristics. In order to utilize a unified performance 

measure, a loss-function value was computed. The loss-function is computed 

using the deviation of a particular solution from the best-known solution found in 

the literature. This can be computed using the following equation.  

( )
Loss-function=                      (1)

Solution Best known

Best known
 

 

When a particular problem was optimally solved, the optimal value was used.  In all 

other cases, however, the best-known values in the literature were considered.  

 

 



33 
 

3.5. The Two Solution Representation Schemes  

The solution representations of the algorithms utilize a random-keys 

representation following Bean [13] and a permutation representation following Tate 

and Smith [85]. These representations enable the exploration of solutions without 

violating the feasibility conditions.  Figure 3.6 illustrates how crossover operations of 

solutions can generate infeasible solutions.  

 
 

 

 

 

 

 

 

 

 

 

Figure 3.6: Infeasibility Issues with Permutation-Solution Representation 

In order to overcome these issues, Tate and Smith [85] proposed a modified 

permutation representation scheme. The four metaheuristics were implemented using 

this solution encoding procedure.  Figure 3.7 depicts how this method has addressed 

eliminating infeasibility through crossover operations.  

 

 

 

 

 

 

 

 

 

 

Sequence: 4 – 2 – 1– 3– 5 

Figure 3.7: New Solution Generation Using Permutation Representation 

4 3 1 2 5 

5 2 1 3 4 

4 3 1 3 4 

5 2 1 2 5 

4 3 1 2 5 

5 2 1 3 4 

- - 1 - 5 

4 2 1 - 5 

3 

4 2 1 3 5 

Parent 1  

Parent 2 

New Child 1* 

Crossover Point  

New Child 2* 

*Both children generated are infeasible 

Parent 1  

Parent 2 

Common locations 

Random Choice* 

*For each position, randomly pick one out of the two parents. If 

a particular assignment is already allocated, leave it blank. 
Leftover 

New Child  
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 An alternative representation scheme to aid combinatorial optimization 

problems was first proposed in scheduling-related applications. This representation is 

well suited for permutation-based problems, as it helps ensure feasibility. Figure 3.8 

illustrates a feasible solution generated by the random-keys solution in which the 

individuals are strings of real-valued numbers (random keys) in the interval of [0, 1]. 

These keys are sorted to generate the sequence or permutation of facilities to be 

assigned to locations (see Figure 3.8). In this study, all four of the metaheuristics were 

implemented using random-keys solution representations.     

 
 

   

   

 

 

 

 

 

 

                          

Sequence: 4 – 2 – 1– 3– 5 
 

Figure 3.8: Illustration of Random-Keys Representation 

3.6. High Throughput Computing (HTC) 

 Due to the difficulty of optimally solving complex QAPs, researchers often 

utilize high-performance computers or parallel processing [58]. Recently, James et al. 

[45] and James et al. [46] used sequential and parallel TS as well as cooperative TS 

for QAP. Anstreicher et al. [5] used a large-scale computational grid to optimally 

solve a few of the most well-known hard test cases using a branch-and-bound 

algorithm. High throughput computing (HTC) is an alternative to high-performance 

computing that operates with a geographically dispersed pool of computers, which are 

integrated via a communication network [57]. For our study, we have utilized a 

specific HTC environment—Condor—which is implemented at Clemson University 

0.25 0.19 0. 67 0.05 0.89 

0.05 0.19 0.25 0. 67 0.89 

S = 

S (1) S (2) S (3) S (4) S (5) 

Initialization  

S` = 

S (4) S (2) S (1) S (3) S (5) 

Sorting 

Random Keys 
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with 730 Windows and 771 Linux machines. The Windows machines have either 

dual-core or quad-core processors with the majority having 64-bit quad-core Intel 

Xeons with 3GHz processors and 8 gigabytes of RAM.  The 730 Windows machines 

provide 2,370 cores, meaning that 2,370 jobs can be run simultaneously. The Linux 

machines can run up to 6,168 jobs simultaneously.  These machines are a mixture of 

Intel and AMD processors with a clock rate of 2.3GHz per core and either 12 or 16 

gigabytes of RAM.  

 For all four of the algorithms, each treatment on the experimental design was 

replicated 50 times for each input file (130 files) and for each representation scheme 

on Condor. The final loss-function values were computed by averaging the 50 

replications. Each replication utilized pseudorandom numbers from independent non-

overlapping streams, which were generated from a Mersenne Twister [62]. The first 

phase of the study required approximately 1,022,852 hours of computation time but 

actually took fewer than 60 days of clock time due to Condor’s efficiency. The 

extensive computations carried out for this study were comparable to 116.6 years of 

computations on a single machine.  

3.7. Performance Measures 

 In the literature, there are two performance measures that have been widely 

used to consider the efficiency of algorithms: the run time of the algorithm as a 

relative measure [11] and number-of-fitness evaluations as an absolute measure [12]. 

However, run times are highly correlated with the configurations of the machine. The 

Condor environment allows the use of dissimilar machines, so we prefer to utilize 

number-of-fitness evaluations as the performance measure. In this study, the effect of 
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the number-of-fitness evaluations on performance is first examined in the comparison 

study of path-based algorithms and is then evaluated in the population-based 

comparison. When the size of the population and the number of generations are 

varied, the total number of fitness evaluations is held as a constant.  

In order to evaluate the solution quality of each method, a success rate was 

computed. Three measures were introduced: the number of times the best-known 

solution was found for each input file for each replication, the number of times a 

solution found within 1% of the best-known solution, and the number of times a 

solution found within 5% of the best-known solution. These measures will give 

insight into how each method performs when the average loss-function values show 

only marginal differences.  

3.8. Parameter Tuning using Design of Experiments (DOE) 

 Barr et al. [11] and Coy et al. [20] indicate the importance of parameter 

tuning in evolutionary algorithms. Specifically, Coy et al. [20] utilized a four-step 

design of experiment-based procedure of a Vehicle Routing Problem (VRP). Further, 

Birattari [16] investigated the effects of parameter tuning from a machine-learning 

perspective, including solving QAP using a local search for one of the test cases. In 

recent literature, Adenso-Daz and Laguna [2] proposed a Taguchi fractional factorial 

experiment-based procedure called CALIBRA, which can tune up to five design 

factors. In addition, the following studies have used the design-of-experiment 

approach to investigate the impact of parameter tuning on performance using 

different problem domains. For example, Park and Kim [73] identified several design 

factors for SA using a nonlinear response-surface method with the Simplex method. 
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Using TS, Xu et al. [90] developed a five-design factor-tuning procedure for the 

Steiner Tree-Star problem. Finally, Deb and Agrawal [23] investigated four structural 

properties of problems related to testing GAs.  

 Based on the algorithmic descriptions above, we have selected several 

parameters for each metaheuristic of interest.  Table 3.1 shows the range of parameter 

values considered for each design factor.  

Table 3.1: Parameters for the Experimental Design of the Four Metaheuristics  

Metaheuristic Parameter Range of the Parameters 

SA 

Initial Temperature 10
-3 

, 10
-2

, 10
-1

, 10, 10
3
, 10

5 

Cooling Schedule 0.3, 0.5, 0.80, 0.95, 0.99 

Number of Iterations 10, 10
3
, 10

5
, 10

6
 ,10

9 

TS 

Tabu List 5, 10, 15, 20, 25, 30 

Neighborhood Size 10, 15, 20, 25, 30 

Number of Iterations 10, 10
3
, 10

5
, 10

6
, 10

9 

GA 

Population Size 10, 10
2
, 10

3
, 10

4 

Crossover Probability 0.5, 0.8, 0.9 

Mutation Probability 0.15, 0.5, 0.8 ,0.9 

Number of Generations 10, 10
2
, 10

3
, 10

4
, 10

5 

IA 

Population Size 10
2
, 10

3
, 10

4 

Crossover Probability 0.5, 0.8, 0.9 

Mutation Probability 0.15, 0.5, 0.8, 0.9 

Affinity Threshold 0.3, 0.5, 0.8, 0.9, 0.98 

Affinity Adjustment 0.01, 0.3, 0.5, 0.8 

Number of Generations 10, 10
2
, 10

3
, 10

4
, 10

5 

 

 Each metaheuristic with the respective representation scheme was replicated 

50 times using 130 input files. The average loss-function values, variances, and 

success rates were compared using nonparametric/parametric statistical analysis 

techniques.  
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3.9. Experimental Results 

The experimental results are presented separately for each representation 

scheme. Depending on the representation scheme, the most appropriate parameters for 

each design factor varied.  In the full factorial design, the average loss-function values 

over the 50 replications were compared for each treatment. The treatments that 

showed very similar performance were discarded, while for graphical visualizations, 

the treatments with significant differences were presented.    

3.9.1  Simulated Annealing  

The metaheuristic design factors considered for SA included the initial 

temperature, the cooling schedule, and the number of iterations. See Figure 3.9 and 

Table 3.2 for selected treatments of SA for each representation.  

 

 

 

 

 

 

Figure 3.9: Box-Plots for SA with Different Treatments Using Two Representations 

 

Table 3.2: SA with Different Treatments Using Two Representations 

Representation Scheme Treatment Number 

Parameters 

(Temperature, Cooling factor, 

Number of Iterations ) 

Random Keys 

SA-1 10
3
,0.99,10

3 

SA-2 10
5
,0.95,10

5
 

SA-3 10
5
,0.99,10

3
 

SA-4 10
5
,0.99,10

5
 

SA-7SA-6SA-5SA-4SA-3SA-2SA-1
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SA-5 10
5
,0.90,10

6
 

SA-6 10
3
,0.8,10

3
 

SA-7 10
5
,0.99,10

3
 

Permutation 

SA-1 10
5
,0.90,10

6
 

SA-2 10
4
,0.90,10

6
 

SA-3 10
3
,0.90,10

6
 

SA-4 10
5
,0.80,10

6
 

SA-5 10
3
,0.80,10

6
 

SA-6 10
2
,0.80,10

6
 

SA-7 10
5
,0.50,10

6
 

SA-8 10
4
,0.50,10

6
 

SA-9 10
3
,0.50,10

6
 

SA-10 10
2
,0.50,10

6
 

 

 

It was found that as the number of iterations increases, the average loss-

function values were significantly improved. However, in order to carry out a fair 

comparison, the number of iterations that a particular metaheuristic was executed 

remained constant. For both representations, SA performed well with high initial 

temperatures and low cooling schedules irrespective of the number of iterations, 

whereas, low initial temperatures and low cooling schedules had an adverse effect on 

performance. When the initial temperature was reduced up to a threshold, holding the 

cooling schedule and the number of iterations constant, the loss-function values 

significantly improved. It was found that for SA, the best treatment for the random 

keys and the permutations were the same. In other words, even though there is a 

statistically significant difference in the parameter-tuning process for SA for the 

different representations, once tuned, the effects of the representation scheme had no 

effect on loss function.  Figure 3.10 depicts box plots with the average loss-function 

values and problem size. As shown, treatment number seven performs better with 

respect to these two measures. It can be seen that for all the treatments, most of the 

outliers are clustered around problem sizes >100. 
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Figure 3.10: Box-Plots with Average Loss and Problem Size for SA with Random 

Keys 

 

Out of the selected treatments that showed significant differences among their 

average loss-function values, the best treatment was selected using the Mood median 

test and nonparametric multiple comparison among the medians. Figure 3.11 depicts 

the confidence intervals of these treatments.  Using the Mood median test results, the 

tuned treatments were selected. As seen in Figure 3.10, for the random-keys 

representation (left), treatment number seven had the lowest median value. The same 

procedure was applied for the permutation-solution representation, and treatment 

seven was again selected.   

 

 



41 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Mood Median Test for SA with Random-Keys (left) permutation (right) 

3.9.2 Tabu Search  

 

The metaheuristic design factors considered for TS include tabu list, 

neighborhood size and number of iterations. Similar to SA, when number of iterations 

increased the loss-function values improved.  The number of iterations used for SA 

was also used for TS, but other design factors varied.  

As one would expect, when the size of the neighborhood increased, the search 

space expanded, thus decreasing the loss function. This phenomenon was true for the 

random keys; however, when the neighborhood size was increased from 10 to 30 (10, 

15, 20, 25, and 30), significant improvement was not shown at 30 for the permutation 

representation. The tabu list, size varied from 5 to 20, and the best parameter was 10 

for the random keys and 15 for the permutation.  When the neighborhood size and 

number of iterations were held constant, increasing the tabu list adversely affected the 

loss function. Furthermore, smaller tabu lists created favorable outcomes for the loss 

function.  It was noted that an interaction effect exists between the size of the 
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neighborhood and the size of the tabu list and careful consideration should be given to 

these parameters. Since, major changes in one metaheuristic factor cause the other 

factor to drastically affect performance adversely. Figure 3.12 and Table 3.3 depict 

the box-plots of the TS for each representation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Box-Plots for TS with Different Treatments Using Two Representations 

 

Table 3.3:  TS with Different Treatments Using Two Representations 

Representation 

Scheme 
Treatment Number 

Parameters 

(Size of Neighbors, Tabu List, 

Number of Iterations ) 

Random Keys 

TS-1 20,10,10
5 

TS -2 25,15,10
5
 

TS -3 25,05,10
3
 

TS -4 20,20,10
5
 

TS -5 30,10,10
6
 

TS -6 20,20,10
5
 

TS -7 30,10,10
3
 

TS -8 30,10,10
2
 

Permutation 

TS -1 30,10,10
2
 

TS -2 20,15,10
6
 

TS -3 20,05,10
6
 

TS -4 25,10,10
6
 

TS -5 25,15,10
5
 

TS -6 25,05,10
6
 

TS -7 30,10,10
6
 

TS -8 30,15,10
3
 

TS -9 30,05,10
6
 

TS -10 30,20,10
6
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 The Mood median test was used again to select the treatment with the lowest 

median value. From the statistical analysis, it was concluded that the permutation 

solution representation was more suitable for TS than the random-keys representation. 

Figure 3.13 depicts the performance of each TS treatment with various problem sizes.  

 

 

 

 

 

 

 

 

Figure 3.13: Performance of TS with the Permutations for Different Problem Sizes  

 Figure 3.14 shows the confidence intervals and the median values of the TS 

for each representation. From these comparative statistical analyses, TS permutation 

treatment number five was selected as the lowest median loss-function value.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: Mood Median Test for TS with Random Keys (left) and Permutation 

(right) 
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3.9.3  Genetic Algorithms   

 

Metaheuristic design factors for GAs include population size, crossover 

probability, mutation probability, and number of generations. In this study, as the 

number of generations increased, the loss-function values significantly improved 

(Figure 3.15 and Table 3.4). In order to compare the loss-function values of SA and 

TS, the number of fitness evaluations (number of generations X population size) were 

held constant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15: Box-Plots for GA with Different Treatments Using Two Representations 

 

Table 3.4: GA with Different Treatments Using Two Representations 

 

Representation 

Scheme 
Treatment Number 

Parameters 

(Population Size, Generations, 

Crossover, Mutation ) 

Random Keys 

GA-1 10
3
, 10

3
,0.8,0.15

 

GA -2 10
3
, 10

3
,0.5,0.15 

GA -3 10
3
, 10

3
,0.9,0.15 

GA -4 10
3
, 10

3
,0.8,0.5 

GA -5 10
3
, 10

3
,0.8,0.8 

GA -6 10
2
, 10

4
,0.8,0.8 

GA -7 10
4
, 10

2
,0.8,0.8 
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GA -8 10
2
, 10

4
,0.9,0.9 

GA -9 10
4
, 10

2
,0.9,0.9 

Permutation 

GA -1 10
3
, 10

3
,0.8,0.15 

GA -2 10
3
, 10

3
,0.5,0.15 

GA -3 10
3
, 10

3
,0.9,0.15 

GA -4 10
3
, 10

3
,0.8,0.5 

GA -5 10
3
, 10

3
,0.8,0.8 

GA -6 10
2
, 10

4
,0.8,0.8 

GA -7 10
4
, 10

2
,0.8,0.8 

GA -8 10
2
, 10

4
,0.9,0.9 

GA -9 10
4
, 10

2
,0.9,0.9 

  

 Unlike the path-based metaheuristics, the population-based methods were less 

affected by the parameter-tuning process for a given representation scheme. However, 

for GA, the permutation representation was better suited than the random–keys 

representation. For the random-keys representation, GA performed well with a higher 

number of generations, a higher crossover, and higher mutation probabilities. For the 

permutation representation, the population size was equally important as the number 

of generations and the higher crossover probability, but a very low mutation 

probability managed to find the lowest loss-function values unlike in the other 

treatments. For both representations, higher crossover probabilities resulted in lower 

loss-function values. In addition, the mutation probability needed to be less than the 

crossover probability for each representation, meaning that an iteration effect exists 

between the two.  Figure 3.16 depicts the Mood median test results for the selected 

treatments of the two GAs and the respective median values and confidence intervals.  
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Figure 3.16: Mood Median Test for GA with Random Keys (left) and Permutation 

(right) 

 

3.9.4  Immune Algorithm  

 

Similar to GAs, for artificial Immune Algorithms, the metaheuristic design 

factors considered include population size, crossover and mutation probabilities, and 

the number of generations. The design factors that are specific to IA include affinity 

threshold and affinity adjustment. These design factors allow IAs to diversify and 

simultaneously control the diversification to prohibit the over-dominance of certain 

good solutions in a particular IA population. From Figure 3.17 and Table 3.4, it is 

evident that the random keys representation creates less variability within the 

parameter-tuning process as opposed to the permutation-representation scheme. 

Hence, the statistical analysis showed that the permutation representation 

outperformed the random keys representation (p<0.05). Selected treatments are 

depicted in Figure 3.17 and Table 3.5) for each representation.    
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Figure 3.17: Box-Plot for IA with Different Treatments Using Two Representations 

 

 

Table 3.5: IA with Different Treatments Using Two Representations 

 

Representation 

Scheme 
Treatment Number 

Parameters 

(Population Size, Generations, Crossover, 

Mutation, Affinity Threshold, Affinity 

Adjustment ) 

Random Keys 

IA-1 10
3
, 10

3
,0.5,0.15,0.98,0.5

 

IA -2 10
3
, 10

3
,0.5,0.15,0.98,0.3 

IA -3 10
3
, 10

3
,0.5,0.15,0.98,0.05 

IA -4 10
3
, 10

3
,0.5,0.15,0.90,0.5 

IA -5 10
3
, 10

3
,0.5,0.15,0.98,0.8 

IA -6 10
3
, 10

3
,0.5,0.5,0.98,0.5 

IA -7 10
3
, 10

3
, 0.9,0.5,0.98,0.8 

IA -8 10
3
, 10

3
, 0.5,0.9,0.98,0.8 

IA -9 10
4
, 10

2
, 0.9,0.9,0.98,0.8 

IA-10 10
2
, 10

4
, 0.9,0.9,0.98,0.8 

Permutation 

IA -1 10
3
, 10

3
, 0.5,0.15,0.98,0.5 

IA -2 10
3
, 10

3
, 0.5,0.15,0.98,0.3 

IA -3 10
3
, 10

3
, 0.5,0.15,0.98,0.05 

IA -4 10
3
, 10

3
, 0.5,0.15,0.90,0.5 

IA -5 10
3
, 10

3
, 0.5,0.15,0.98,0.8 

IA -6 10
3
, 10

3
, 0.5,0. 5,0.98,0.5 

IA -7 10
3
, 10

3
, 0.9,0. 5,0.98,0.8 

IA -8 10
3
, 10

3
, 0.5,0.9,0.98,0.8 

IA -9 10
4
, 10

2
, 0.9,0.9,0.98,0.8 

IA-10 10
2
, 10

4
, 0.9,0.9,0.98,0.8 
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Some interesting observations were noted based on these analyses. For both 

representations, the affinity thresholds and adjustments required higher values to 

generate competitive loss-function values. For the random-keys representation, a 

higher crossover probability and a lower mutation probability were more appropriate, 

while for the permutation representation, the opposite held true.  Figure 3.18 shows 

the Mood median test results for IA for both representations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18: Mood Median Test for IA with Random Keys (left) and Permutation 

(right) 

3.10  Comparison Study using Parametric and Non-Parametric 

Statistics  

Since the loss function values measure the deviation from the best-known 

value, the distributions of the values are skewed a great deal; hence, nonparametric 

statistical analysis techniques are more suitable than parametric techniques.   

Thorough analysis of the residual plots further confirms this phenomenon. However 

to improve the power of the statistical analysis, parametric (one-way Analysis of 

Variance: ANOVA) as well as non-parametric statistical analysis (Friedman’s test and 

Mood median test) techniques were utilized. When the two methods’ results 
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contradict, three underlying assumptions were checked for normality (independence, 

distribution of the residual plots, and the homogeneity or equality of the variances).  

Table 3.6 depicts the summary of the statistical analyses for each metaheuristic. 

Table 3.6: Summary of the Parametric and Non-Parametric Statistical Analyses 

 

After analyzing the significance of parameter tuning on each metaheuristic, a 

comparative analysis has been carried out among the best tuned representation for 

each method. Table 3.7 depicts the results of the summary of the comparative analysis 

for each metaheuristic. 

Table 3.7: Summary of the Comparative Analysis.  

Metaheuristic Representation 
Statistical Analysis 

( Significance of Parameter Tuning) Conclusion 
One-Way ANOVA Friedman’s Test 

SA 
Random Keys Significant (p<0.05) 

Significant 

(p<0.05) 
Significant 

Permutation Significant (p<0.05) 
Not Significant 

(p>0.05) 
Not 

Significant 

TS 
Random Keys Significant (p<0.05) 

Significant 

(p<0.05) 
Significant 

Permutation Significant (p<0.05) 
Significant 

(p<0.05) 
Significant 

GA 
Random Keys 

Not Significant 

(p>0.05) 
Not Significant 

(p>0.05) 
Not 

Significant 

Permutation 
Not Significant 

(p>0.05) 
Not Significant 

(p>0.05) 
Not 

Significant 

IA 
Random Keys 

Not Significant 

(p>0.05) 
Not Significant 

(p>0.05) 
Not 

Significant 

Permutation Significant (p<0.05) 
Significant 

(p<0.05) 
Significant 

Metaheuristic 
Best 

Representation 

Comparative Statistical Analysis 
(selecting the best) Conclusion 

One-way ANOVA Friedman’s test 

SA 
Random Keys/ 

Permutation 
(indifferent) 

Not Significant 

(p>0.05) 
 

Not Significant 

(p>0.05) 

 

Not 

Significant 
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For the four tuned metaheuristics that the Friedman’s test found, IA with 

permutation outperformed the rest (p<0.05). One interesting observation was that 

even though the IA-based random-keys metaheuristic was the worst among the eight 

initial treatments, it significantly improved with permutation representation scheme.  

Hence, permutation-based IA outperformed the rest.   

 Table 3.8 summarizes the best and worst cases of each method’s parameter-

tuning procedures. The comparative measures include average loss-function value, 

standard deviation, number of times the best-known solution was found, and the 

number of times the solutions found within 1% and 5% of the best-known solution.   

 

Table 3.8: Best and Worst Case Scenarios of Parameter Tuning (130 files and 50 

replications)  

 

Method 

Random Keys Permutation 

Average 

(Standard 

Deviation) 

Percentage of Number of 

Times within 1% of 

Best-Known  Solution 

Average 

(Standard 

Deviation) 

Percentage of Number of 

Times within 5% of 

Best-Known Solution 

0% 1% 5% 0% 1% 5% 

SA-Best 
0.1911 

(0.2975) 
10.74% 13.63% 33.68% 

0.1911 

(0.2970) 
10.70% 13.60% 33.68% 

SA-Worst 
0.5309 

(0.8221) 
1.65% 1.83% 12.91% 

0.22705 

(0.3468) 
8.98% 10.17% 29.78% 

TS-Best 
0.0546 

(0.0840) 
17.65% 35.92% 74.94% 

0.0004 

(0.0006) 
23.29% 43.22% 80.05% 

TS-Worst 
0.0990 

(0.1472) 
10.25% 22.34% 57.92% 

0.0006 

(0.0009) 
16.00% 32.28% 72.22% 

GA-Best 
0.0023 

(0.0034) 
8.11% 8.57% 28.54% 

0.0015 

(0.0026) 
15.60% 21.88% 39.12% 

TS Permutation 
Not Significant 

(p>0.05) 
 

Significant 

(p<0.05) 

 

Significant 
 

GA Permutation 
Significant 

(p<0.05) 

Significant 

(p<0.05) 

 

Significant 
 

IA Permutation 
Significant 

(p<0.05) 
Significant 

(p<0.05) 
Significant 
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GA-Worst 
0.0030 

(0.0043) 
5.06% 5.55% 23.74% 

0.0022 

(0.0037) 
13.86% 14.22% 33.37% 

IA-Best 
0.0023 

(0.0035) 
8.22% 8.85% 28.78% 

0.0001 

(0.0005) 
36.78% 53.03% 82.43% 

IA-Worst 
0.0042 

(0.0060) 
2.12% 2.63% 16.78% 

0.0009 

(0.0016) 
18.69% 30.55% 50.31% 

 

 From Table 3.4, it was evident that although the best SA (treatment that gave 

the lowest loss-function value) was not affected by the representation scheme, when 

the worst two treatments were compared, the permutation representation performed 

better than the random-keys representation, and the success rate also improved.  

 When TS-best and TS-worst were compared, the permutation representation 

outperformed the random-keys representation for each measure.  It was noted that TS-

worst with permutation was as competitive as TS-best with random keys; hence, the 

importance of selecting a suitable representation scheme is highlighted.  This 

phenomenon is also true for both GA and IA.  From Table 3.4, it was noted that 

selecting the most suitable solution representation and parameter-tuning procedure 

can significantly improve solution quality, up to 80% for TS and IA.  

3.11 Categorization of QAPLIB Input files  

For the parameter-tuning procedure, we used 130 input files from the QAPLIB 

problem repository dedicated to QAP related research. Table 3.9 presents the 

summary of those problem instances, including the domain, problem size, authors, 

and data-generation procedures. 
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Table 3.9: Summary of the QAPLIB Input files  

# 
Number 

of files 

Proble

m size 
Name Authors Context Remarks 

1 9 26 Bur26* 

R.E. Burkard 

and J. 

Offermann 

Real world  Asymmetric matrices 

2 14 12 to 25 Chr* 

N. Christofides 

and E. 

Benavent 

Random 

One matrix is the adjacency matrix 

of a weighted tree; the other is that of 

a complete graph 

3 1 19 Els19 A.N. Elshafei Real world 
Hospital and the flow of patients 

between those locations 

4 19 
16 to 

128 
Esc* 

B. Eschermann 

and H.J. 

Wunderlich 

Real world 

Application in computer science 

from the testing of self-testable 

sequential circuits 

5 5 12 to 20 Had* 

S.W. Hadley, 

F. Rendl and 

H. Wolkowicz 

Random 

Manhattan distances of a connected 

cellular complex in the plane; flow 

matrix are drawn uniformly from the 

interval [1,n] 

6 3 30 to 32 Kra* 
J. Krarup and 

P.M. Pruzan 
Real world 

The instances contain real-world data 

and were used to plan the Klinikum 

Regensburg in Germany 

7 16 20 Lipa* 
Y. Li and P.M. 

Pardalos 
Random 

The generators provide asymmetric 

instances with known optimal 

solutions 

8 14 12 Nug* 

C.E. Nugent, 

T.E. Vollmann 

and J. Ruml 

Random 

The distance matrix contains 

Manhattan distances of rectangular 

grids 

9 3 12 to 20 Rou* C. Roucairol Random 
The entries of the matrices are 

chosen from the interval [1,100] 

10 3 12 to 20 Scr* 

M. Scriabin 

and R.C. 

Vergin 

Random 
The distances of these problems are 

rectangular 

11 13 
42 to 

100 
Sko* 

J. Skorin-

Kapov 
Random 

The distances of these problems are 

rectangular, and the entries in the 

flow matrices are pseudorandom 

numbers 

12 3 36 Ste* L. Steinberg Real world 

The three instances model the 

backboard wiring problem; the 

distances in the first one are 

Manhattan and  Euclidean 

13 11 
12 to 

100 
Taib* E.D. Taillard Real world Taixxb are asymmetric  

13 13 
12 to 

100 
Taia* E.D. Taillard Random 

Taixxa are uniformly  randomly 

generated 

14 3 30 to 50 Tho30 

U.W. 

Thonemann 

and A. Bölte 

Random 
The distances of these instances are 

rectangular 

Total Number of Input Files = 130 

 

Out of the 130 files, 46 problem instances are real-world problems. These 

problems have been accumulated from backboard wiring problems, computer science 

applications, circuit board designs, and many facility location problems, including 

hospital layouts. The parameter-tuning procedure was extended to analyze how each 
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tuned metaheuristic would behave depending on the domain of the input files (real-

world problems or pseudo-randomly generated problems). Figure 3.19 depicts how 

each of the eight tuned metaheuristics performed for the real-world problems.  

 
 

Figure 3.19: Eight Tuned Metaheuristics with 46 Real-World Problems  

Irrespective of the method or the representation, it is clearly evident from 

Figure 3.19 that some problem instances were trivial. Therefore, these problem 

instances (Bur* and some of the Esc*) were discarded and were not included in 

further analyses. Figure 3.20 depicts how each eight of the tuned metaheuristics 

performed for the pseudo-randomly generated problems. This visualization includes 

84 input files.   
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Figure 3.20: Eight Tuned Metaheuristics with 84 Pseudo-Randomly Generated 

Problems 

 

From Figure 3.20 it is evident that a few of the problems instances were trivial 

(Had*, Rou* and some Nug* and Tai* problems). Similar to the real-world problems, 

in this case some clusters of the hard problems were visible. These problems were 

considered for further analyses in later chapters.  Table 3.10 depicts the categorization 

of the input files based on the parameter-tuning procedures, including hard, moderate, 

and trivial cases for further analyses.  
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Table 3.10: Summary of the QAPLIB Input Files After Classification 

 (Optimally Solved Problems are Boldfaced)  

Category 

Average 

loss-

function 

value 

Number 

of files 

File Names 

Trivial Problems 

for 

Metaheuristics  

< 5% 53 

 Bur26a Bur26b Bur26c Bur26d Bur26e Bur26f 

Bur26g Bur26h Bur26  

 Esc16a Esc16b Esc16c Esc16d Esc16e Esc16f 

Esc16g Esc16h Esc16i Esc16j Esc32c Esc32e Esc32f  

 Had12 Had14 Had16 Had18 Had20  

 Lipa20a Lipa30a Lipa40a Lipa50a Lipa60a Lipa70a 

Lipa80a Lipa90a  

 Nug12 Nug14 Nug15 Nug16a Nug16b Nug17 Nug18  

 Rou12 Rou15 Rou20  

 Scr12  

 Tai12a Tai12b Tai15a Tai15b Tai17 Tai64 Tho50 

Moderately 

Difficult Problems 

for 

Metaheuristics  

5%< 

>20% 
63 

 Chr12a Chr12b Chr12c Chr18b Chr22a Chr22b  

 Els16 Esc32d Esc32g Esc64a  

 Kra30a Kra30b Kra32  

 Lipa20b Lipa30b Lipa40b Lipa50b Lipa60b 

Lipa70b Lipa80b Lipa90b  

 Nug20 Nug21 Nug22 Nug24 Nug25 Nug27 Nug30  

 Scr15 Scr20  

 Sko42 Sko49 Sko56 Sko64 Sko72 Sko81 Sko90 

Sko100a Sko100b Sko100c Sko100d Sko100e 

Sko100f  

 Tai20a Tai20b Tai25a Tai25b Tai30a Tai30b Tai35a 

Tai35b Tai40a Tai40b Tai50a Tai50b Tai60a Tai60b 

Tai80a Tai80b Tai100b Tai100a  

 Tho30 Tho40 

Hard Problems 

for 

Metaheuristics 

>20% 14 

 Chr15a Chr15b Chr15c Chr18a Chr20a Chr20b 

Chr20c Chr22c  

 Esc32a Esc32b Esc128  

 Ste36a Ste36b Ste36c 

Total Number of Files 
130 

Files 
 

 

The thorough parameter-tuning process allowed us to differentiate trivial 

problems from more complex instances. We found that more than 53 problem 

instances can be easily solved by careful parameter setting.  

In [83], the authors considered four categories of problem instances depending 

on the way the problems are generated.  They classify 37 problems extracted from 
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QAPLIB as class I (random problems with entries uniformly distributed), class II 

(random flows on Manhattan grids), class III (real-life instances stemming from 

practical applications), and class IV (instances randomly created to resemble real-life 

problems).  The authors compared the runtimes and solution quality of their newly 

proposed iterated local search-based algorithm (ES) with two state-of-the-art 

metaheuristics, namely Robust Tabu Search (Ro-TS) and Ant System (MMAS) [83]. 

We compared the solutions obtained from this extensive parameter-tuning procedure 

with the above three metaheuristic procedures to determine the solution quality and 

how far one method can be improved by merely adjusting the tuning process rather 

than augmenting  any greedy, adaptive or other functional procedures.  

Tables 3.11-3.14 depict the eight tuned metaheuristics (average loss-function 

values over 50 replications) and class I through IV problem instances according to 

[83].  

Table 3.11 Eight Tuned Metaheuristics and Class I Problem Instances 
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G
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S
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T
S
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K

  

T
S

-P
M

 

A
V

G
 Category 

According 

to Table 3.6 

Category 

According to 

Stutzle           
( 2006) 

Tai20a 9.53% 11.36% 11.49% 1.43% 9.83% 9.83% 2.56% 1.97% 7.25% Moderate 

Class I 

Tai25a 9.98% 12.06% 12.22% 2.76% 10.72% 10.72% 2.65% 2.31% 7.93% Moderate 

Tai30a 9.79% 12.09% 11.97% 3.15% 10.89% 10.89% 2.80% 2.29% 7.98% Moderate 

Tai35a 10.67% 12.88% 13.03% 3.90% 12.12% 12.12% 2.65% 2.76% 8.77% Moderate 

Tai40a 11.12% 13.28% 13.24% 4.58% 12.53% 12.53% 2.91% 3.12% 9.16% Moderate 

Tai50a 11.46% 13.65% 13.69% 5.31% 13.00% 13.00% 3.19% 3.59% 9.61% Moderate 

Tai60a 11.27% 13.43% 13.40% 5.69% 12.85% 12.85% 3.15% 3.76% 9.55% Moderate 

Tai80a 10.01% 11.89% 11.85% 5.44% 11.57% 11.57% 2.57% 3.32% 8.53% Moderate 
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Table 3.12 Eight Tuned Metaheuristics and Class II Problem Instances 

N
am

e 

G
A

-P
M

 

G
A
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K
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IA
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T
S

-R
K

 

T
S

-P
M

 

A
V

G
 Category 

According 

to Table 
3.6 

Category 

According 

to Stutzle 
( 2006) 

Nug30 11.92% 16.23% 16.41% 1.59% 14.45% 14.45% 1.65% 1.25% 9.74% Moderate 

Class II 

Sko42 12.51% 15.88% 16.22% 2.65% 14.95% 14.95% 1.66% 1.57% 10.05% Moderate 

Sko49 11.25% 15.17% 15.21% 2.80% 14.33% 14.33% 1.70% 1.68% 9.56% Moderate 

Sko56 12.00% 15.42% 15.63% 3.62% 14.77% 14.77% 1.72% 1.56% 9.94% Moderate 

Sko64 11.23% 14.58% 14.62% 3.81% 13.79% 13.79% 1.64% 1.61% 9.38% Moderate 

Sko72 11.01% 14.32% 14.34% 4.01% 13.82% 13.82% 1.63% 1.57% 9.31% Moderate 

Sko81 10.48% 13.71% 13.78% 4.07% 13.38% 13.38% 1.48% 1.27% 8.95% Moderate 

Sko90 10.61% 13.69% 13.71% 4.29% 13.36% 13.36% 1.56% 1.37% 8.99% Moderate 

Sko100a 10.47% 13.18% 13.13% 4.38% 12.77% 12.77% 1.36% 1.26% 8.66% Moderate 

 

Table 3.13 Eight Tuned Metaheuristics and Class III Problem Instances 

N
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S
A
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K

 

S
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T
S

-R
K

  

T
S

-P
M

 

A
V

G
 Category 

According 
to Table 

3.6 

Category 

According 
to Stutzle 

(2006) 

Bur26a 0.90% 1.92% 1.84% 0.03% 1.46% 1.46% 0.20% 0.16% 0.99% Trivial  

Class III 

Bur26b 0.89% 1.89% 1.92% 0.01% 1.47% 1.47% 0.32% 0.20% 1.02% Trivial  

Bur26c 1.01% 2.08% 2.13% 0.01% 1.63% 1.63% 0.20% 0.18% 1.11% Trivial  

Bur26d 0.89% 2.12% 2.10% 0.00% 1.61% 1.61% 0.25% 0.12% 1.09% Trivial  

Bur26e 0.89% 2.17% 2.11% 0.01% 1.61% 1.61% 0.16% 0.10% 1.08% Trivial  

Bur26f 0.92% 1.88% 1.92% 0.01% 1.47% 1.47% 0.26% 0.24% 1.02% Trivial  

Bur26g 0.96% 2.43% 2.36% 0.00% 1.76% 1.76% 0.31% 0.22% 1.23% Trivial  

Bur26h 0.90% 1.96% 1.97% 0.01% 1.52% 1.52% 0.19% 0.18% 1.03% Trivial  

Kra30a 17.41% 25.69% 25.89% 3.13% 22.72% 22.72% 4.35% 3.58% 15.69% Moderate 

Kra30b 14.58% 23.98% 24.42% 1.88% 21.57% 21.57% 2.73% 1.89% 14.08% Moderate 

Ste36a 54.10% 58.83% 60.19% 5.70% 53.91% 53.91% 4.72% 4.46% 36.98% Hard  

Ste36b 89.97% 150.78% 154.68% 8.22% 130.96% 130.96% 11.22% 9.27% 85.76% Hard  
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Table 3.14 Eight Tuned Metaheuristics and Class IV Problem Instances 
N

am
e 

 

G
A

-P
M

 

G
A

-R
K

 

IA
-R

K
 

IA
-P

M
 

S
A

-R
K

 

S
A

-P
M

 

T
S

-R
K

  

T
S

-P
M

 

A
V

G
 Category 

According 

to Table 
3.6 

Category 

According 

to Stutzle 
(2006) 

Tai20b 5.54% 9.05% 9.08% 0.06% 7.21% 7.21% 14.14% 14.72% 8.38% Moderate 

Class IV 

Tai25b 15.12% 26.43% 25.03% 0.27% 17.84% 17.84% 16.18% 9.12% 15.98% Moderate 

Tai30b 13.78% 22.67% 23.51% 0.41% 17.50% 17.50% 9.88% 12.46% 14.71% Moderate 

Tai35b 13.00% 27.16% 26.12% 0.98% 21.51% 21.51% 7.00% 6.56% 15.48% Moderate 

Tai40b 23.05% 34.87% 34.55% 1.60% 29.89% 29.89% 8.21% 6.57% 21.08% Moderate 

Tai50b 20.80% 33.80% 33.37% 2.57% 30.19% 30.19% 5.53% 4.20% 20.08% Moderate 

Tai60b 21.49% 35.67% 35.89% 3.70% 33.37% 33.37% 6.30% 4.20% 21.75% Moderate 

Tai80b 22.91% 33.74% 34.21% 6.95% 32.44% 32.44% 4.20% 3.49% 21.30% Moderate 

Tai100b 9.48% 11.25% 11.28% 5.52% 11.04% 11.04% 2.36% 3.52% 8.19% Moderate 

  

The best percentage deviation values from the best-known solutions are boldfaced 

in each table.  It should be noted that out of the eight methods, IA-PM, TS-RK, and 

TS-PM have shown promising results as opposed to the GAs and SAs.  

 Table 3.15 shows the comparison of the aforementioned three state-of-the-art 

methods and the best tuned methods from Tables 3.11-3.14 for each problem class. In 

the Table 3.15, each tuned metaheuristic (IA-PM, TS-RK, and TS-PM) with the 

minimum percentage of deviation from the best-known values are presented.  These 

tuned metaheuristics yielded very promising results when compared to other state-of-

the-art methods that have in-built greedy adaptive diversification and intensification 

mechanisms.   
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Table 3.15 Comparison of the Best Tuned Metaheuristics with State-of-the-Art Methods 

(LS: Iterated Local Search, Ro-TS: Robust Tabu Search and MMAS: Ant Systems) 

(T: Trivial Problems for Metaheuristics, M: Moderately Difficult Problems for Metaheuristics, and H: Hard Problems for 

Metaheuristics according to Table 3.6) 

 

 

Class I Class II Class III Class IV 

 
Tuned 

(MIN) 
LS 

Ro-

TS 

MMA

S 
 

Tuned 

(MIN) 
LS 

Ro-

TS 

MMA

S 
 

Tuned 

(MIN) 
LS Ro-TS 

MMA

S 
 

Tuned 

(MIN) 
LS Ro-TS MMAS 

Tai20a 

(M) 
0.00 

(IA-PM) 
0.344 0.108 0.428 

Nug30 

(M) 

0.070 

(TS-PM) 
0.007 0.013 0.042 

Bur26a 

(T) 
0.00 

(IA-PM) 
0.00 0.002 0.00 

Tai20b 

(M) 
0.00 

(IA-PM) 
0.00 0.00 0.00 

Tai25a 

(M) 

0.780 

(TS-PM) 
0.656 

0.274 

 
1.751 

Sko42 

(M) 

0.470 

(TS-PM) 
0.000 0.025 0.104 

Bur26b 

(T) 
0.00 

(IA-PM) 
0.00 0.002 0.00 

Tai25b 

(M) 
0.00 

(IA-PM) 
0.00 0.00 0.00 

Tai30 

(M)a 

0.860 

(TS-PM) 
0.668 

0.426 

 
1.286 

Sko49 

(M) 

0.740 

(TS-PM) 
0.068 0.076 0.150 

Bur26c 

(T) 
0.00 

(IA-PM) 
0.00 0.002 0.00 

Tai30b 

(M) 

0.141 

(IA-PM) 
0.00 0.107 0.00 

Tai35 

(M)a 

1.251 

(TS-RK) 
0.901 

0.426 

 
1.568 

Sko56 

(M) 

0.640 

(TS-PM) 
0.071 0.088 0118 

Bur26d 

(T) 
0.00 

(IA-PM) 
0.00 0.002 0.00 

Tai35b 

(M) 

0.307 

(IA-PM) 
0.00 0.064 0.00 

Tai40a 

(M) 

1.802 

(TS-RK) 
1.082 

0.589 

 
1.131 

Sko64 

(M) 

0.610 

(TS-PM) 
0.057 0.071 0.243 

Bur26e 

(T) 
0.00 

(IA-PM) 
0.00 0.002 0.00 

Tai40b 

(M) 

0.397 

(IA-PM) 
0.00 0.531 0.00 

Tai50a 

(M) 

2.047 

(TS-RK) 
1.211 

0.990 

 
1.900 

Sko72 

(M) 

0.810 

(TS-PM) 
0.085 0.146 0.243 

Bur26f 

(T) 
0.00 

(IA-PM) 
0.00 0.002 0.00 

Tai50b 

(M) 

1.008 

(IA-PM) 
0.033 0.342 0.002 

Tai60a 

(M) 

1.964 

(TS-RK) 
1.305 

1.125 

 
2.484 

Sko81 

(M) 

0.540 

(TS-PM) 
0.082 0.136 0.223 

Bur26g 

(T) 
0.00 

(IA-PM) 
0.00 0.002 0.00 

Tai60b 

(M) 

1.423 

(IA-PM) 
0.00 0.417 0.005 

Tai80a 

(M) 

1.802 

(TS-RK) 
1.029 

0.900 

 
2.103 

Sko90 

(M) 

0.690 

(TS-PM) 
0.128 0.128 0.288 

Bur26h 

(T) 
0.00 

(IA-PM) 
0.00 0.002 0.00 

Tai80b 

(M) 

0.810 

(TS-PM) 
0.383 1.031 0.096 

     
Sko100

a(M) 

0.650 

(TS-PM) 
0.109 0.128 0.191 

Kra30a 

(M) 

0.903 

(IA-PM) 
0.00 0.268 0.314 

Tai100

b(M) 

1.654 

(TS-RK) 
0.083 0.512 0.142 

          
Kra30b 

(M) 

0.175 

(IA-PM) 
0.008 0.023 0.049      

          
Ste36a 

(H) 

2.687 

(TS-PM) 
0.015 

 
0.155 0.181      

          
Ste36b 

(H) 

3.280 

(IA-PM) 
0.00 0.081 0.00      
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In order to investigate the effects of the random-keys representations on the 

performance of GAs, we compared the greedy genetic algorithm developed by Ahuja 

et al. [3] with the tuned GA-RK.  Ahuja et al. [3] compared 11 problem instances 

from the QAPLIB (Kra30b, Lipa50a, Lipa60a, Lipa70a, Lipa80a, Sko49, Sko90, 

Sko100a, Tho30, Wil50, and Wil100) and reported that the average deviation from 

the best known value is 11%.  Table 3.16 and Figure 3.21 depict the comparison of 

the results of the tuned GA-RK with the greedy genetic algorithm with the nine 

problem instances from this study (Wil50 and Wil100 are not considered for this 

study).   

Table 3.16 Comparison of Results of the Tuned GA-RK with the Greedy Genetic 

Algorithm 

 Problem 

Percentage Deviation from the Best-Known Value 

Greedy Genetic 

Algorithm [3] 

Tuned Random-Keys Genetic 

Algorithm (GA-RK) 

1 Kra30b 30.00% 20.35% 

2 Lipa50a 02.50% 02.21% 

3 Lipa60a 02.50% 02.00% 

4 Lipa70a  02.45% 01.82% 

5 Lipa80a  02.40% 01.63% 

6 Sko49  17.60% 13.99% 

7 Sko90 15.10% 13.31% 

8 Sko100a 14.90% 11.89% 

9 Tho30 25.00% 16.89% 

Average Deviation % 12.49% 09.34% 
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Figure 3.21: Tuned GA-RK with the Greedy Genetic Algorithm 

 

3.12 Conclusions 

 

In this chapter, four metaheuristics were investigated using two representation 

schemes on the QAP.  The extensive parameter-tuning process significantly improves 

the performance of any given metaheuristic. However, it was found that the 

representation scheme plays an important role as well. In the case of IA, this was 

particularly evident.  

Statistical analysis concluded that path-based metaheuristics, such as SA and 

TS, are more robust to representation schemes than population-based metaheuristics.  

IA was significantly improved once the permutation representation was introduced. 

Even though random-keys representation became competitive in other combinatorial 

optimization problems, such as scheduling, the permutation representation is more 

suitable for cases like QAPs.  
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Based on the results of the parameter-tuning procedure, QAPLIB problems 

were categorized into three phases, including trivial problems, moderately hard 

problems, and hard problems. For further analysis in later chapters, the moderate and 

hard problems were only considered, while the trivial problems were discarded.  

  In order to carry out a firm comparison study, we utilized the four classes of 

problems from the literature and compared the results of the tuned metaheuristics with 

these classes in addition to comparing the solution quality with the three state-of-the-

art metaheuristics. Investigating the parameter-tuning process and the representation 

scheme played an important role in determining solution quality and yielded 

promising results compatible with the integration of more sophisticated diversification 

and intensification mechanisms.  Overall, TS with both representation schemes and 

IA with permutation representation seemed to outperform the rest of the 

metaheuristics investigated here. Finally, we compared the performance of our tuned 

random-keys GA with the greedy GA initially developed by Ahuja et al. [3]. The 

underlying results of this comparison indicated that the tuned GA outperformed the 

greedy GA for the selected problem instances.  
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CHAPTER FOUR 

4. COMPARISON STUDY: SOLUTION REPRESENTATION  

4.1 Introduction 

In this chapter, we investigate the performance of each tuned path-based and 

population-based metaheuristic using measures pertaining to problem characteristics. 

We use problem size, flow and distance dominance measures, sparsity (number of 

zero entries in the matrices), and the coefficient of correlation measures of the 

matrices to build search trajectories.  

The broad objectives of this chapter include the following: 

 Classify the selected problem instances of the QAPLIB based on the 

aforementioned measures using classification and regression trees (CART) 

 Identify the determinants of  a difficult  problem  instance 

 Identify the characteristics that are common (unique) to each path-based and 

population-based method   

 Identify pillars to build a unified framework for the selected metaheuristics to 

aid future research on the QAP  

 In this chapter we integrate the findings of chapter 3 in which we extensively 

tuned four metaheuristics using two representation schemes. In this chapter, we begin 

with the eight tuned metaheuristics and perform an overall comparison study to 

visualize the spread of the data. This is presented via a series of box-plots 

representing each metaheuristic method with respect to each representation scheme. 

 The rest of this chapter unfolds as follows: In section 2, a detailed comparison 

study is carried out with measures on problem characteristics. These measures include 
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the aforementioned size of the problem, flow and distance dominance, sparsity of the 

matrices, and correlation between the flow and distance matrices. Section 3 discusses 

the results obtained from section 2, and the chapter concludes with a chapter summary 

and conclusions to lay the foundation for chapter 5.   

4.2 Initial Comparison 

We begin by comparing each path-based metaheuristics (SA and TS) and 

population-based metaheuristic (GA and IA) developed using random keys. These 

four tuned methods were statistically evaluated to identify any significant 

characteristics pertaining to philosophical differences. First of all, the average loss 

function values of the four random-keys-based metaheuristics are depicted in the box 

plots of Figures 4.1 and 4.2. For statistical analysis, Friedman’s test was used utilizing 

the MiniTab
®
 and R

®
 statistical packages. The Friedman’s test results indicate that 

TS-RK outperformed SA-RK (p < 0.001).  In Figure 4.1, it is clearly noticeable that 

the spread of the data is very narrow in TS-RK whereas, for SA-RK, the spread is 

very wide. In Figure 4.2, the population-based comparison is shown with GA-RK and 

IA-RK. However, the visualization from this particular graph does not provide 

enough evidence to select a winning method out of the two. Furthermore, we were 

unable to conclude if there was any statistical difference between the two population-

based algorithms (GA-RK and IA-RK).  
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TS-RK 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 4.1: Box Plots of the Path-Based Random Keys—SA-RK (left) and TS-

RK (right) 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Box Plots of the Population-Based Random Keys—GA-RK (left) and 

IA-RK (right)  
 
 

Next, the average deviations of the permutation representations were 

compared. Figures 4.3 and 4.4 depict the box-plot visualizations of the four methods. 

For statistical analysis, the Friedman’s test results indicate that TS-PM outperformed 
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SA-PM (p < 0.001) in path-based analysis and that for population-based analysis, IA-

PM outperformed GA-PM (p < 0.001). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3: Box Plots of the Path-Based Permutations—SA-PM (left) and TS-PM 

(right) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Box Plots of the Population-Based Permutations—GA-PM (left) and 

IA-PM (right) 

 

 Unlike the random keys, the permutation representation tends to show a 

significant difference in terms of improving the solution quality. Specifically, for 
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population-based methods, a drastic improvement in solution quality was observed.  

The initial comparison study concludes with the identification of the best 

metaheuristic for each path-based and population-based method. For example, out of 

SA-RK and TS-RK, TS-RK was selected since it yielded the fewest average loss-

function values. In the case of GA-RK and IA-RK, GA-RK was selected even though 

there was no statistically significant difference between the two. However, there were 

fewer outliers in GA-RK. The following Figure 4.5 depicts the box plots of the four 

methods. When all four methods were compared, IA-PM outperformed the rest (p < 

0.001). 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Overall Comparison of TS-RK, GA-RK, TS-PM, and IA-PM 

 

 In the next section, the metaheuristics are further analyzed using different 

performance measures. This analysis will be used for identifying the detailed 

characteristics of each method and how each metaheuristic’s performance is affected 

by attributes pertaining to data matrices.  
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4.3 Detailed Comparison 

In this section, the performance of the eight tuned metaheuristics (GA-RK, 

GA-PM, IA-RK, IA-PM, SA-RK, SA-PM, TS-RK, and TS-PM) is analyzed using the 

problem characteristics mentioned before. For this analysis, we will use the hard 

problem instances discussed in chapter 3 (Table 3.6).   

This detailed analysis is presented in the form of three separate studies with a 

path-based comparison, a population-based comparison, and an overall comparison 

for the 14 input files from the QAPLIB. These problem instances were found to be 

very difficult to solve with the extensive parameter-tuning process and were presented 

in the problem classification in chapter 3 and are presented here in Table 4.1.  

Table 4.1: Hard Problems for Parameter Tuning (14 Files)   

 

Using this detailed comparison study; we intend to compare the solutions 

generated by the eight methods using the aforementioned input file characteristics. 

File Names Problem Size 
Flow Dominance 

(fd) 

Distance Dominance 

(dd) 
Sparsity 

Coefficient of 

Correlation 

Chr15a 15 69.8909 327.68 0.808 0.163783 

Chr15b 15 69.8909 327.68 0.808 0.029836 

Chr15c 15 69.8909 327.68 0.808 0.012951 

Chr18a 18 63.1960 351.13 0.839 -0.006276 

Chr20a 20 59.4589 346.37 0.855 0.014580 

Chr20b 20 59.4589 346.37 0.855 -0.171070 

Chr20c 20 65.7126 346.37 0.855 0.088583 

Chr22c 22 57.9713 424.26 0.883 0.014315 

Esc32a 32 69.2714 281.56 0.667 -0.063071 

Esc32b 32 69.2714 208.26 0.601 -0.190368 

Esc128 128 52.0396 1153.90 0.929 0.258538 

Ste36a 36 400.305 55.64 0.706 -0.077467 

Ste36b 36 400.305 100.79 0.706 -0.077467 

Ste36c 36 400.305 55.90 0.706 -0.107290 
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This process enables us to generate insights as to why these 14 input files were 

identified as difficult problems to solve.   

4.4 Performance Measures  

 

The performance measures of the comparison study include the size of the 

problem, flow and distance measures, sparsity of the matrices, and correlation of the 

flow and distance dominance measures. The problem sizes range from 15 to 128 and 

represent Chr*, Esc*, and Ste* problem instances of the QAPLIB. The flow and 

distance dominance measures ( ,fd dd ) were computed for the 14 files using the 

following mathematical equations (1 and 2). 

(Distance or Flow ) = 100                                                (1)f  

2

2 2
1 1 1 1

1 1
  and =                      (2)

1ij

n n n n

ij

i j i j

b b
n n

 

 According to Stützle, (2006) [83], the sparsity of the flow and distance 

matrices plays an important role and can be defined by the number of zero elements in 

each matrix. The following formula was used to compute the sparsity measures (
pS ) 

for each input file (3 and 4).  

0

2

0

(Sparsity of matrices) =                                                (3)

       (number of zero elements),   (size of the matrix)

p

n
S

n

n n  

(Sparsity ) =  (  ) (distance )                      (4)p p pS S flow matrix S matrix  

As another measure to compare the characteristics of the input data, we use the 

coefficient of correlation ( 2r ) between the two matrices. This enables us to analyze 
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the data matrices and the possible correlation measures between the two data 

matrices. The following formula was used for the correlation analysis.    

2

2

2 2
2 2

( )
                                                     (5)

( )( )

xy nxy
r

x nx y ny  

The analysis is presented in two separate sections depending on the two broad 

categories of the metaheuristics: namely, the path-based comparison and the 

population-based comparison. In a later section, we compare the two categories and 

present the findings. 

4.4.1 Path-based Comparison   

 

We began the path-based comparison study by analyzing the problems size. 

Figure 4.6 depicts how each path-based metaheuristic method performed with respect 

to its problem size. It is clearly noticeable that the performance of SA-RK and SA-PM 

are directly affected by the size of the problem, which is not the case, however, for 

TS-RK and TS-PM. 

 

Figure 4.6:  Performance of the Path-Based Metaheuristics with Problem Size 

Figure 4.7 and 4.8 present the flow and distance dominance measures for the 

four methods. The input files selected show either a very high dominance measure or 
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a very low dominance measure, which can be observed for both measures. It should 

be noted that TS-RK and TS-PM are quite robust for flow and distance dominance 

measures as opposed to SA-RK and SA-PM.  Specifically, the latter two show erratic 

behaviors for the two dominance measures.  

Figure 4.7:  Performance of the Path-Based Metaheuristics with Flow Dominance (fd) 

Figure 4.8:  Performance of the Path-Based Metaheuristics with Distance Dominance 

(dd) 

Figure 4.9 depicts the sparsity measures for the 14 input files. Generally, 

higher sparsity values indicate that the problems are based on real-world problems, 

while lower values indicate that the problems are pseudo randomly generated [83]. It 
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is clearly visible that when the sparsity values are high, SA-RK and SA-PM tend to 

show inferior results. The same phenomenon is applicable to TS-RK and TS-PM; 

however the effect is less significant.    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9:  Performance of the Path-Based Metaheuristics with Sparsity of 

Matrices 

 

 

 

Figure 4.10 depicts the correlation measures for the 14 input files. For TS-RK 

and TS-PM, when the correlation coefficients are positive, the performance tends to 

degrade. For SA-RK and SA-PM, we cannot indentify a specific pattern. However, 

when the correlation is high, the performance can be adversely affected.  
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Figure 4.10:  Performance of the Path-Based Metaheuristics with Correlation of the 

Matrices 

 

As we summarize the path-based comparison, it is clear that the TS is more 

robust to all of the problem characteristics than the SA. TS is well suited for QAP-like 

problem instances irrespective of the domain (randomly generated or reality based).   

4..2 Population-based Comparison   

 

 The population-based comparison study begins with problem size. Figure 4.11 

depicts how each population-based metaheuristic method performs with respect to 

problem size. The performance of GA-RK, GA-PM, and IA-RK are directly affected 

by the size of the problem as opposed to IA-PM. There is a significant difference in 

the performance of IA with respect to the two different representation schemes. IA-

PM does much better than the rest of the population-based methods irrespective of the 

size of the problem.  
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Figure 4.11:  Performance of the Population-Based Metaheuristics with Problem 

Size  

 

 

Figure 4.12 and 4.13 present the flow and distance dominance measures for 

the four population-based methods.  From the figures, it is evident that higher 

flow/distance dominance measures create problems for the GAs and IA-RK methods. 

However, IA-PM is quite robust to these measures as opposed to the rest.  
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Figure 4.12:  Performance of the Population-Based Metaheuristics with Flow 

Dominance (fd) 

 

 

 

 

Figure 4.8:  Performance population-based metaheuristics with Distance 

dominance (dd) 

 

 

 

 

 

 

 

 

 

 

Figure 4.13:  Performance of the Population-Based Metaheuristics with Distance 

Dominance (dd) 

 

 

Figure 4.14 depicts the performance vs. sparsity measures for population-

based methods. It is clearly visible that when the sparsity values are high, GAs and 

IA-RK tend to show inferior results. However, IA-PM is less affected by this 

measure.  
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Figure 4.14: Performance of the Population-Based Metaheuristics with Sparsity of the 

Matrices 

 

Figure 4.15 depicts the correlation measures, and a significant difference in 

performance can be seen for IA-PM. For the other methods, higher correlation causes 

the performance to degrade. However, when the correlation is high, the performance 

can be adversely affected. It is clearly noticeable that GA-RK and IA-RK show 

similar performance for each correlation value with GA-PM doing slightly better than 

GA-RK at the end.  

 

 

 

 

 

 

 

 

Figure 4.15: Performance of the Population-Based Metaheuristics with Correlation 

Measures 
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This concludes the population-based comparison. The next section analyzes 

the methods using Classification and Regression Trees (CART) tools. This next 

section is presented as an overall comparison to generate more insights.   

4.7 Classification and Regression Trees (CART)  

 In this phase, we analyze the eight metaheuristics and the selected problem 

characteristics using CART tools and two approaches. In the first phase, we use all of 

the problem instances (130 files from the QAPLIB), while in the second phase, we 

use on the hard problems (discussed earlier in this chapter).  The results of these two 

phases will be used to identify the determinants of trivial problem instances.  

4.5.1 Overall Comparison- Phase I   

 

For the CART analysis, there were two dependent variables, which we 

analyzed separately with the JMP
®
 statistical package. The two variables included the 

type of algorithm and the loss-function values for each method, and the independent 

variables were problem size, flow dominance, distance dominance, sparsity, and 

coefficients of correlation. Figure 4.16 depicts the CART graph for the 130 input files 

with the type of algorithm as the dependent variable. According to figure 4.16, the 

first criterion for partition is the loss-function value by which the eight methods can 

be clearly separated by high (loss > 0.605) and low (loss < 0.605) values. The second 

splitting criterion is the distance dominance measure. Likewise, the partitioning 

process can be performed for as many as partitions we require. The key here is to 

identify the determinants of trivial and hard problems. According to this CART 
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analysis, the importance of each independent criterion can be ordered as follows: 

distance dominance, coefficient of correlation, problem size, sparsity, representation 

scheme, and flow dominance. When loss function is considered as the dependent 

variable, the following results are obtained and are also presented in Figure 4.17. 

From this analysis, the prominent criterion is sparsity followed by the distance 

dominance.  

From the overall comparison of the 130 input files, it is clear that sparsity, 

distance dominance, and representation scheme are important determinants of 

performance as opposed to the rest.
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Figure 4.16: Partition by Metaheuristic Method for the 130 Input Files  

(GARK-1, IARK-2, SARK-3, TSRK-4, GAPM-5, IAPM-6, SAPM-7, and TSPM-8) 
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 Figure 4.17: Partition by Loss Function for the 130 Input Files  

(GARK-1, IARK-2, SARK-3, TSRK-4, GAPM-5, IAPM-6, SAPM-7, and TSPM-8) 
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In order to see how each method behaves, the CART analysis was carried out 

for each metaheuristic.  Table 4.2 depicts each method with each criterion considered 

when the splits were made.  These criteria were ordered in terms of their importance: 

criterion 1 being the most important and criterion 5 being the least important.  It can 

be seen that for many methods, sparsity plays an important role in determining the 

performance, while distance dominance plays the least important role.    

 

Table 4.2: CART Analysis for Each Metaheuristic for the 130 Files 

 

Metaheuristic 

Criteria for CART Analysis  

Criterion 1 

(1
st
 spilt)  

Criterion 2 

(2
nd

 spilt) 

Criterion 3 

(3
rd

 spilt) 

Criterion 4 

(4
th

 spilt) 

Criterion 5 

(5
th

 spilt) 

GA-RK Sparsity 
Flow 

dominance 

Problem 

size 

Coefficient 

of 

Correlation 

Distance 

dominance 

GA-PM 
Flow 

dominance 

Coefficient 

of 

Correlation 

Distance 

dominance 
Sparsity 

Problem 

size 

IA-RK Sparsity 
Flow 

dominance 

Problem 

size 

Coefficient 

of 

Correlation 

Distance 

dominance 

IA-PM 

Coefficient 

of 

Correlation 

Sparsity 
Problem 

size 

Distance 

dominance 

Flow 

dominance 

SA-RK Sparsity 
Flow 

dominance 

Problem 

size 

Coefficient 

of 

Correlation 

Distance 

dominance 

SA-PM Sparsity 
Flow 

dominance 

Problem 

size 

Coefficient 

of 

Correlation 

Distance 

dominance 

TS-RK Sparsity 

Coefficient 

of 

Correlation 

Flow 

dominance 

Distance 

dominance 

Problem 

size 

TS-PM 

Coefficient 

of 

Correlation 

Sparsity 
Problem 

size 

Flow 

dominance 
Distance 

dominance 
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4.5.2 Overall Comparison- Phase II   

 

 In the second phase, we use the hard (14 files total) instances from the 130 

problems (discussed earlier in this chapter) and analyze them using the CART tools. 

Figure 4.18 depicts the CART graph for the 14 input files with the algorithm name as 

the dependent variable. According to figure 4.18, the first criterion for partition is the 

loss-function value; the eight methods can be clearly separated by high (loss > 0.370) 

and low (loss < 0.370) values. The second splitting criterion is the size of the 

problems followed by the sparsity and flow dominance measures. In Figure 4.19, we 

consider loss function as the dependent variable, and the most prominent criterion for 

partitioning is sparsity followed by the coefficient of correlation and flow dominance 

measures. One important observation is that we can clearly partition the space by 

looking at the metaheuristics method as well. In this case, there is a performance 

difference between the best performing metaheuristics; for example, look at the 

performance difference between metaheuristic number 4 (TSRK) and metaheuristic 

numbers 6 and 8 (IAPM and TSPM). In a later stage of the partition, the difference 

between metaheuristics 3, 5, and 7 (SARK, GAPM, and SAPM) are highlighted in 

contrast to 1 and 2 (GARK-1, and IARK).   

 From this analysis, as the importance of each criterion can be summarized as 

follows: sparsity, representation scheme, size of problem, coefficient of correlation, 

flow dominance, and distance dominance.  
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Figure 4.18: Partition by the Metaheuristics Method for the 14 Input Files (Hard Problems)  

(GARK-1, IARK-2, SARK-3, TSRK-4, GAPM-5, IAPM-6, SAPM-7, and TSPM-8) 
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Figure 4.19: Partition by Loss Function for the 14 Input Files (Hard Problems) 

(GARK-1, IARK-2, SARK-3, TSRK-4, GAPM-5, IAPM-6, SAPM-7, and TSPM-8) 

 



85 
 

The same individual analysis was carried out for each method for the 14 input 

files. Table 4.3 depicts each method and each criterion considered when the splits 

were made.  It can clearly be seen that in contrast to Table 4.2, this analysis does not 

use the entire set of criteria, meaning that the splitting process ends with only one 

criterion. Also, it is evident that for the GAs and IAs (population-based methods), 

sparsity and flow dominance play an important role in determining performance. For 

the path-based methods, sparsity and the size of the problem determine the 

performance.  

 

Table 4.3: CART Analysis for Each Metaheuristic for the 14 Files 

 

Metaheuristic 

Criteria for CART Analysis 

Criterion 1 

(1
st
 spilt)  

GA-RK Flow dominance>=69.27 

GA-PM Sparsity>=0.839 

IA-RK Sparsity>=0.839 

IA-PM Flow dominance>=65.71 

SA-RK Sparsity>=0.855 

SA-PM Sparsity>=0.855 

TS-RK Problem size>=32 

TS-PM Problem size>=32 

 

4.6 Overall Comparison- Findings 

 

The aforementioned analyses raise the following questions:  

 Are path-based metaheuristic approaches more suitable for QAPs?  

 Are population-based metaheuristics not suitable for these problems?  

 Are permutation representations more suitable than random keys 

representation schemes?  

 What unique features govern the efficiency of an algorithm, and what do the 

search trajectories look like?  
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 To explore solutions to the above questions, the next phase of this study 

examines the individual search paths of each algorithm. For this analysis, we use the 

14 hard problems discussed before and track the individual search trajectories of each 

metaheuristic method.  

 The individual search trajectories of the eight methods were tracked using a 

different computer program with which every non-overlapping best solution was 

recorded. Each method used the same number of fitness evaluations to create a fair 

comparison. These 14 files are presented in one of three figures depending on the 

domain of the problem. Figure 4.20 shows the eight Chr* files, figure 4.21 shows the 

three Esc* files, and figure 4.22 depicts the three Ste* files.  These graphs have been 

plotted using the value fitness function and the number of best solutions found per 

metaheuristic method. From Figures 4.20, 4.21, and 4.22, it can be seen that the path-

based methods start with less attractive solutions than the population-based methods. 

However, as time passes, the path-based methods improve drastically as compared to 

the population-based methods in terms of the number of best solutions found and the 

overall quality of the solutions.  This phenomenon is common to all the hard 

problems. In terms of final performance, at the end of each run, TS-RK, TS-PM, and 

IA-PM outperform the rest of the methods.  When efficiency is taken into 

consideration, IA-PM does better than the two TSs. where the number of good 

solutions were found with less exploration of the search space, IA-PM was able to 

find the best known solution most of the time whereas, for the two TSs, the best 

known solutions were found after a full exploration of the search space.  
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Figure 4.20: Search Trajectories of the Eight Chr* Files  
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Figure 4.21: Search Trajectories of the Three Esc* Files  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22: Search Trajectories of the Three Ste* Files  
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4.7 Conclusion  

In chapter 4, the overall analysis clearly suggests that TS and IA-PM have a 

built-in capability to execute diversification and intensification mechanisms 

effectively unlike the other algorithms and that this feature appears to make TS and 

IA-PM very effective.  

GAs and IAs tend to begin the search with more attractive solutions than SAs 

and TSs, mainly due to their population-based nature. However, as the number of 

fitness evaluations increases, TS takes over and the loss function drops more sharply 

than the rest. Furthermore, unlike TSs and IA-PM, the other algorithms show 

indications of stagnation in their early stages of execution. In TS, the stagnation 

effects are shown in later stages. In the case of IA-PM, stagnation is not quite visible 

in any part of the search trajectory. Similar observations are noted for all of the input 

files.  

 

This study investigated how the performance of an algorithm is affected by 

problem characteristics using 14 hard problem instances for parameter tuning.  The 

comparison studies addressed four research questions and led to the following 

findings. 

 First, we used the CART analysis tools to classify the problems in terms of 

the selected problem characteristics (size of the problem, flow and distance measures, 

sparsity of the matrices, and correlation of the flow and distance dominance 

measures).  We used the 130 files as well as the 14 hard problems for this analysis. 

We identified sparsity as the prominent characteristic for determining performance. 

This phenomenon is true for the entire set of problems (130 files) as well as for the 14 

hard problems. Higher sparsity measures indicated that the problems originated from 
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real-world data. Therefore, if a particular metaheuristic can sustain its performance 

with higher sparsity values, this indicates its appropriateness to solve similar real-

world problems.  

The findings of this chapter lay a foundation for further research studies on 

improving the individual search trajectories of less intelligent algorithms. More 

emphasis should be given to open new directions for the hybridizations of particular 

metaheuristics especially to solve real-world problems. We can further explore 

promising new research opportunities due to the power of grid-computing resources.  

Utilizing efficient diversification and intensification methods, such as path-

relinking to population-based algorithms, can generate better solutions. In the next 

chapter, such diversification and intensification mechanisms are explored within the 

context of QAPs. 

 

 

 

 

 

 

 

 

 

 

 

 



91 
 

CHAPTER FIVE 

5. POSITION-BASED PATH RELINKING (POS_PR) AUGMENTATION  

5.1 Introduction 

In this chapter, we investigate the effects of Path-Relinking (PR) augmentation 

on the performance of each tuned path-based and population-based metaheuristic. 

Specifically, we look at the implementation of position-based PR (POS_PR) 

mechanisms on the eight metaheuristics discussed in chapters 3 and 4.  This 

implementation process will be followed by a detailed analysis of how each method 

has improved and re-classify the input files according to trivial, moderate, and hard 

problems based on the new results.  

The broad objectives of this chapter include the following: 

 Implement of POS_PR for the two representation schemes 

 Compare their performance against the generic-tuned implementations 

discussed in chapters 3 and 4.  

 Classify problem instances of the QAPLIB based on classification and 

regression trees (CARTs) 

 Compare the results with the problem instance classification discussed in 

chapter 3 and report any improvements 

 In this chapter we integrate the findings of chapters 3 and 4 in which we 

extensively tuned four metaheuristics using two representation schemes. In this 

chapter, we begin with the eight tuned metaheuristics and diversify and intensify the 

search trajectory using the aforementioned POS_PR mechanisms. The rest of the 

chapter unfolds as follows: in section 1, an introduction to the implementation of the 

PR mechanisms is given with respect to the two representation schemes. In section 2, 



92 
 

the results are compared, and in section 3, the classification tables are constructed. 

The chapter concludes with a chapter summary and conclusions that lay the 

foundation for chapter 6.   

5.2 The Use of Diversification Mechanisms in Metaheuristics  

 Unlike exact mathematical models, the stochastic nature of metaheuristics 

requires efficient search mechanisms to explore the search space, and depending on 

the nature of the metaheuristic, the strategies utilized may differ. Specifically, the 

inspiration or the metaphor behind the implementation of a particular metaheuristic 

determines the extent of the diversification and intensification (D&I) of the search 

(Figure 5.1). Figure 5.1, illustrates that metaheuristic A has a stronger intensification 

capabilities to modify a given solution to find a better one in the neighborhood. 

However, it lacks the ability to explore diverse search regions at the same time. 

Therefore, it becomes trapped in one of the local optima. 

 

 

 

 

 

 

 

 

 

Figure 5.1:  An Illustration of Diversification and Intensification Mechanisms  
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   On the other hand, metaheuristic B—with its strong diversification 

mechanisms—explores different regions of the solution space and escapes from the 

local optima to find the best global solution. In other words, diversification is the 

capability of a particular metaheuristic to explore different search territories and 

intensification; on the other hand, however, is the ability to improve or modify a given 

solution to generate a better outcome [49]. 

   From the previous chapter, it is evident that pure randomizations are not very 

effective at tackling hard problem instances. Therefore, investigating intelligent 

mechanisms that utilize strong intensification and diversification mechanisms is 

important and relevant. The objective of such investigations is to optimize the 

mapping process of the metaheuristic search to the actual shape of the fitness 

landscape for the problem at hand. PR is one such diversification mechanism that can 

be used to expand the search trajectory.  

5.3 Implementation of POS_PR for Metaheuristics  

The PR concept was first proposed by Glover [38] and stems from scatter 

search. PR embodies principles and strategies that are still not emulated by other 

evolutionary methods but are advantageous for solving a variety of complex 

problems. Like other evolutionary methods, PR operates with a population of 

solutions rather than with a single solution at a time and employs procedures for 

―combining‖ these solutions to create new ones [38]. One of the most distinguishing 

features of PR is its alliance with TS and its adoption of the principle that search can 

benefit by incorporating special forms of adaptive memory. For population-based 

metaheuristics, this can be incorporated via crossover and mutation operators, elite 

reproduction, combining generations, and populations of solutions through tunneling 
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and many other techniques. There are only a few variants of PR procedures proposed 

in the literature. A form of PR was proposed by [45] for QAP and recently, position-

based PR and sequence-based PR were investigated by [93] for a multiple-facility 

layout problem. In the last section of this chapter, we compare our results with these 

PR-based variants to comment on the quality of solutions.  

In this study, we have implemented POS_PR mechanisms for the two 

representation schemes. Figure 5.2 illustrates an implementation of the POS_PR 

mechanism.  In this illustration, one solution is selected as the initial solution, and one 

of the elite solutions is selected as the guiding solution.  The procedure begins by 

starting at the first position of the guiding solution and comparing it to the same 

position of the initial solution. If the two are the same, one can proceed to the next 

position. In this case, the guiding solution has number 6 (refer to Figure 5.2; first cell 

of the guiding solution) and the initial solution has number 1(refer again to Figure 5.2; 

first cell of the initial solution). Since the two numbers are not the same, we must look 

for number 6 in the initial solution, which is stored at position 6. Therefore, we swap 

numbers 6 and 1 to make the initial solution’s first position the same as the guiding 

solution’s first position. We repeat this procedure until we reach the last position of 

the guiding solution.  

 

 

 

 

 

 

Figure 5.2: An Illustration of POS_PR Implementation  

 

  Initial Solution  Guiding Solution  
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As we can see in Figure 5.2, the concept of POS_PR can easily be 

implemented for permutation-based representations. However, for random keys, such 

implementation requires some additional refinement as explained in section 5.2.1. 

We consider two variants of POS_PR depending on the way the initial 

solution is selected, as depicted in Figure 5.3.  

 

 

   

 

 

 

 

 

 

 

 

 

Figure 5.3: An Illustration of POS_PR for Variant I and Variant II 

 

For variant I, out of the elite solutions, we randomly pick the guiding solution, 

and at every iteration, we path-relink the best solution for a particular generation’s 

population. In variant II, the selection of guiding solutions remains the same; 

however, we path-relink every member of the population to diversify the search.  
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5.3.1 Implementation of POS_PR for Random Keys  

 

Implementing POS_PR for random keys requires some additional 

considerations. In order to generate solutions in between the relinked path of the 

initial and guiding solutions, we use a position identifier. Figure 5.4 shows the pseudo 

code implementation of the random keys-based POS_PR.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Pseudo Code of the Implementation of Random Keys-Based POS_PR 

Variant II 

 

 

Figure 5.5 illustrate how random keys POS_PR implementation is 

implemented using an example.  

 

Initialize the population using random keys (p0) of candidate solutions     

 gen =0 

 While number of generations have not reached the maximum ( ) 

  Find the best solution of  

   Find the generation best genbest  

                        If  genbest 

                           Store this in the pool of guiding solutions ( ) 

                           For     

                                 Randomly select guiding elite solution from   

                                       For each sequence of the guiding solution    

              Compute identifiers for each sequence of   

          For each sequence of the       

                                Compare the sequences and the resulting random keys  

                                         Do until positions of identifiers of each sequence     

                                                                      Swap if   

                                                                         Evaluate the intermediary solutions  

      Create a set of solutions (m) via crossover   from pgen-1 

      Create a set of solutions (n) from via mutation  

       For each   

        Sort the Random Keys     

Evaluate the fitness   
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Figure 5.5: An Illustration of POS_PR Implementation  
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5.3.2 Implementation of POS_PR for Permutation    

 

 

 The POS_PR for permutation-based metaheuristics followed the same 

procedure explained in Figure 5.2. Since the solution representation itself dealt with 

numbers that are interchangeable, it did not cause any additional constraints. Figure 

5.6 shows the pseudo code implementation of the permutation-based POS_PR.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Pseudo Code of the Implementation of Permutation-Based POS_PR 

Variant I and Variant II 

 

In the following sections, the results of the comparison studies will be 

presented. The performance of the four tuned random keys-based metaheuristics and 

the four tuned permutation-based metaheuristics will be compared with their 

POS_PR-augmented implementations.  The performance of each metaheuristic will be 

Initialize the population using permutation (p0) of candidate solutions     

 gen =0 

 While number of generations have not reached the maximum ( ) 

  Find the best solution of  

   Find the generation best genbest  

                        If  genbest 

                           Store this in the pool of guiding solutions ( ) 

                           For     

                                 Randomly select guiding elite solution from   

                                       For each sequence of the guiding solution    

                For Variant I   For each sequence of the       

 For Variant II   For each sequence of the       

                                             Compare the sequences and the resulting solution   

                                                                         Swap if   or    

                                                                         Evaluate the intermediary solutions  

      Create a set of solutions (m) via crossover   from pgen-1 

      Create a set of solutions (n) from via mutation  

       For each  

Evaluate the fitness   
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evaluated based on problem characteristics, and the results will be compared with the 

input-file classifications presented in chapters 3 and 4. Any improvements in the 

solution quality or performance will be presented separately for path-based 

metaheuristics and population-based metaheuristics. Section 5.3 presents the results of 

the comparison study for random keys.     

5.4 Comparison: Random Keys 

In the comparison study for the random keys-based metaheuristics, the 

performance of the tuned population-based methods (GA-RK and IA-RK) will be 

compared against their POS_PR augmentations. We use the moderate and the hard 

problems identified in chapters 3 and 4 for this analysis. In the following section, the 

two path-based methods (TS-RK and SA-RK) will be analyzed using the same 

process of the aforementioned test cases. All the graphs presented here depict average 

loss functions values over 50 replications.  

5.4.1 Path-Based Methods  

 

The path-based methods showed some erratic behavior as depicted in graphs 

5.7 and 5.8.  From Figure 5.8, it is evident that POS_PR augmentation did not 

improve the performance of either SA or TS.  
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Figure 5.7: The Performance of POS_PR_SA-RK, POS_PR_TS-RK, SA-RK, 

and TS-RK for the 63 Moderate Problems  

 

 

The same analysis was carried out for the 14 hard problems, the results of 

which are depicted in Figure 5.8.  The same scenario can be seen for SA and TS.  

Based on the results, PR–based diversification mechanisms are not suited for random 

keys-based SAs or TSs implemented in the QAP context. The performance of the SAs 

and TSs were not significantly improved by the POS_PR 

diversification/intensification mechanisms but were actually adversely affected by 

these mechanisms as Figures 5.7 and 5.8 show.   
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Figure 5.8: The Performance of POS_PR_SA-RK, POS_PR_TS-RK, SA-RK, 

and TS-RK for the 14 Hard Problems  

 

 

 

5.4.2   Population-Based Methods 

 

The performance of POS_PR_GA-RK and POS_PR_IA-RK will be compared 

with GA-RK and IA-RK.  Figure 5.9 depicts the performance of these four methods 

for the 63 moderate problems discussed in chapter 3. 
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Figure 5.9: The Performance of POS_PR_GA-RK, POS_PR_IA-RK, GA-RK, 

and IA-RK for the 63 Moderate Problems  

 

It is clearly visible from Figure 5.9 that GA-RK and IA-RK drastically 

improved with the POS_PR augmentation.  Many of the problems that were identified 

as moderate problems in the chapter 3 can be re-classified as trivial problems due to 

this performance improvement. The GAs showed significantly more improvement 

than the IAs; thus, POS_PR can be considered a well-suited diversification 

mechanism to expand the search space.  

The same analysis was carried out for the 14 hard problems. Figure 5.10 

depicts the performance of the two population-based random keys implementations.  
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Figure 5.10: The Performance of POS_PR_GA-RK, POS_PR_IA-RK, GA-RK, 

and IA-RK for the 14 Hard Problems  

 

POS_PR significantly improved the performance of the population-based 

metaheuristics for the hard problem instances with the improvement varying between 

25.16% and 69.25%. The performance improvements for the GAs were slightly 

higher than that for the IAs, as observed in the moderate problem analysis as well.  

In order to present a summary of the results obtained by these two analyses, 

we created Table 5.1. Throughout the 63 problem instances, the GAs showed positive 

improvement. Considering the problem categories, the GAs’ performance was 

significantly improved for the Chr*, Els*, Esc* Nug*, Sko*, Tai*, and Tho* 

problems. In the case of IA, even though POS_PR helped this method to perform 

better in most of the problem categories, for Chr* it caused a slight deterioration in 

performance. Considering its overall performance, POS_PR can be considered a 

promising method for improving random keys population-based metaheuristics. In the 

case of path-based metaheuristics, as Table 5.1 shows, the SAs’ and TSs’ 

performance were adversely affected by the augmentation. Except for a few problem 
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instances, most of these two groups’ performance was negatively impacted. Hence, 

POS_PR is not very suitable for random keys-based SA/TS in the QAP context. The 

performance improvement was computed using the following formula.  

_  _ _                                                         (1)

_  _ _                                                           (2)

_  _ _            

GA RK loss GA RK PR loss

IA RK loss IA RK PR loss

SA RK loss SA RK PR loss                                               (3)

_  _ _                                                          (4)TS RK loss TS RK PR loss

 

Table 5.1 Summary of the Performance Improvements of the 63 Moderate 

Problems Using POS_PR for Random Keys Representation  

 
Problem Name Difference in performance improvement (+) / deterioration (-)  as a percentage 

GA  IA SA TS 

Chr12a 

Chr12b 

Chr12c 

Chr18b 

Chr22a 

Chr22b 

14.36% 

12.06% 

2.71% 

21.94% 

14.23% 

13.13% 

-9.83% 

-11.38% 

-12.06% 

13.75% 

9.90% 

9.73% 

-8.84% 

-9.44% 

-7.29% 

-8.99% 

-4.97% 

-3.73% 

-1.18% 

27.57% 

1.22% 

-2.10% 

-4.22% 

-6.82% 

Els19 15.33% -1.22% -7.09% 9.61% 

Esc32d 

Esc32g 

Esc64a 

14.58% 

12.14% 

26.52% 

12.48% 

9.77% 

20.62% 

-4.00% 

-3.17% 

-8.00% 

0.42% 

2.30% 

0.00% 

Kra30a 

Kra30b 

Kra32 

14.08% 

14.67% 

12.58% 

10.85% 

11.03% 

11.09% 

-2.57% 

-1.79% 

-2.23% 

-3.97% 

-8.18% 

-9.85% 

Lipa20b 

Lipa30b 

Lipa40b 

Lipa50b 

Lipa60b 

Lipa70b 

Lipa80b 

Lipa90b 

3.43% 

2.93% 

2.69% 

2.19% 

2.04% 

1.70% 

1.57% 

1.46% 

2.63% 

2.76% 

2.76% 

2.58% 

2.31% 

2.12% 

2.11% 

1.86% 

-0.99% 

-0.67% 

-0.49% 

-0.41% 

-0.27% 

-0.27% 

-0.24% 

-0.20% 

-9.73% 

-6.28% 

-6.22% 

-4.55% 

16.70% 

18.20% 

19.19% 

9.64% 

Nug20 

Nug21 

Nug22 

Nug24 

Nug25 

Nug27 

Nug30 

7.14% 

8.79% 

10.79% 

8.96% 

8.73% 

7.56% 

9.25% 

5.12% 

6.50% 

6.66% 

6.41% 

6.52% 

6.56% 

6.43% 

-1.64% 

-2.36% 

-1.97% 

-1.82% 

-1.82% 

-1.79% 

-1.19% 

-0.78% 

-3.92% 

-1.07% 

-3.14% 

-4.05% 

-4.41% 

-7.26% 

Scr15 

Scr20 

6.77% 

16.64% 

5.34% 

14.49% 

-4.15% 

-4.15% 

-3.15% 

-12.06% 

Sko42 

Sko49 

Sko56 

Sko64 

Sko72 

Sko81 

Sko90 

Sko100a 

Sko100b 

Sko100c 

Sko100d 

Sko100e 

Sko100f 

7.56% 

6.85% 

6.82% 

5.84% 

5.57% 

5.40% 

4.94% 

4.45% 

4.41% 

4.51% 

4.24% 

4.56% 

4.57% 

5.71% 

5.11% 

5.07% 

4.47% 

4.01% 

3.73% 

3.59% 

3.24% 

3.35% 

3.13% 

3.31% 

3.39% 

3.15% 

-1.05% 

-0.86% 

-0.90% 

-0.62% 

-0.47% 

-0.47% 

-0.38% 

-0.41% 

-0.35% 

-0.45% 

-0.42% 

-0.43% 

-1.38% 

-5.70% 

-5.88% 

-6.55% 

-5.97% 

-6.22% 

-4.24% 

-6.30% 

-6.07% 

-5.93% 

-7.47% 

-5.72% 

-6.90% 

-6.25% 
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Tai20a 

Tai20b 

Tai25a 

Tai25b 

Tai30a 

Tai30b 

Tai35a 

Tai35b 

Tai40a 

Tai40b 

Tai50a 

Tai50b 

Tai60a 

Tai60b 

Tai80a 

Tai80b 

Tai100b 

Tai100a 

4.36% 

5.80% 

3.80% 

16.43% 

3.67% 

14.32% 

3.54% 

19.06% 

3.34% 

22.11% 

2.89% 

21.68% 

2.83% 

22.65% 

2.03% 

16.98% 

1.62% 

15.06% 

3.18% 

-3.23% 

3.97% 

7.46% 

3.67% 

5.92% 

4.00% 

9.20% 

3.80% 

14.62% 

3.53% 

14.50% 

3.20% 

13.71% 

2.59% 

11.40% 

2.09% 

9.71% 

-1.20% 

-1.68% 

-1.35% 

-6.12% 

-1.00% 

-6.23% 

-0.95% 

-3.99% 

-0.98% 

-3.17% 

-0.82% 

-3.53% 

-0.64% 

-1.17% 

-0.78% 

-0.97% 

-0.90% 

-1.23% 

-1.93% 

4.94% 

-5.59% 

1.97% 

-3.41% 

-0.81% 

-4.55% 

-1.18% 

-5.39% 

-3.66% 

-5.78% 

-4.57% 

-6.19% 

5.32% 

-6.29% 

-5.58% 

-4.92% 

-6.90% 

Tho30 

Tho40 

12.56% 

12.15% 

8.19% 

9.48% 

-2.11% 

-1.34% 

--7.12% 

-2.75% 

 

 

The Table 5.2 depicts the summary of the comparison for the 14 hard 

problems. As noted in the previous table, the GAs shows a positive significant 

improvement throughout the three problem categories. Unlike the moderate problems, 

the POS_PR-augmented IA metaheuristics demonstrate the ability to perform well. 

However, the SAs and TSs present a totally different scenario, yielding deteriorations 

for all of the problem instances.  

Table 5.2 Summary of the Performance Improvements of the 14 Hard Problems 

Using POS_PR for Random Keys Representation  

 
Problem Name Difference in performance improvement (+) / deterioration (-)  as a percentage 

GA  IA  SA  TS  

Chr15a 

Chr15b 

Chr15c 

Chr18a 

Chr20a 

Chr20b 

Chr20c 

Chr22c 

25.16% 

44.41% 

36.42% 

64.82% 

44.17% 

59.03% 

92.44% 

69.25% 

13.00% 

25.25% 

12.25% 

49.84% 

40.36% 

35.61% 

56.40% 

57.40% 

-18.74% 

-27.17% 

-19.48% 

-24.19% 

-16.50% 

-16.89% 

-31.75% 

-18.61% 

3.81% 

-6.91% 

-14.84% 

-27.98% 

-14.47% 

-27.19% 

-56.47% 

-71.26% 

Esc32a 

Esc32b 

Esc128 

46.74% 

37.29% 

49.25% 

47.60% 

31.29% 

54.19% 

-8.80% 

-6.05% 

-18.56% 

-25.75% 

-25.71% 

-38.13% 

Ste36a 

Ste36b 

Ste36c 

35.54% 

96.33% 

34.16% 

27.06% 

82.17% 

24.42% 

-7.15% 

-16.54% 

-3.75% 

-22.61% 

-44.80% 

-12.63% 
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5.5 Comparison: Permutations 

 In the comparison study for the permutation-based metaheuristics, the 

performances of the tuned population-based methods (GA-PM and IA-PM) are 

compared with their POS_PR augmentations. For this analysis, we used the moderate 

and hard problems identified before and conducted a comparison study similar to the 

one presented in the previous sections. This analysis is followed by the section on the 

two path-based methods (TS-PM and SA-PM).  

5.5.1 Path-Based Methods 

Similar to the random keys POS_PR implementation, SA shows marginal 

improvement (see Figure 5.11). It is evident from these results and from the previous 

findings that POS_PR augmentation is not suitable for SA irrespective of the 

representation scheme.  However, TS shows some significant improvement overall 

and some marginal improvement for a few instances, especially for the Sko*, and 

Tai* problem categories.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: The Performance of POS_PR_SA-PM, POS_PR_TS-PM, SA-PM, 

and TS-PM for the 63 Moderate Problems  
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As shown in Figure 5.12, it is evident that the solution quality of SA was not 

improved by the POS_PR augmentation as was the case in the previous cases. 

However, for TS, the POS_PR augmentation certainly improves the solutions’ 

quality.  It is more appropriate to conclude that the new diversification mechanisms, 

including POS_PR, enhance the exploratory abilities of TS with respect to 

permutation-based implementations as opposed to random keys.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: The Performance of POS_PR_SA-PM, POS_PR_TS-PM, SA-PM, 

and TS-PM for the 14 Moderate Problems  

 

 

5.5.2 Population-Based Methods 

 

Figure 5.13 shows that GA-PM was significantly improved for the 63 

moderate problem instances except for the seven Lipa* problems. These problems 

were pseudo-randomly generated with known optimal solutions [18]. It is surprising 

to see that the performance of all of the other methods, including IA-PM and the 

POS_PR augmentations of the GA and IA, deteriorated for these problems. Unlike the 

random keys implementation, IA did not gain any significant improvements from the 

new diversification mechanism.  
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Figure 5.13: The Performance of POS_PR_GA-PM, POS_PR_IA- PM, GA- PM, 

and IA- PM for the 63 Moderate Problems  

 

 

The same analysis has been carried out with the 14 hard problems and the 

results are depicted in Figure 5.14.  Similar to the previous case, POS_PR 

augmentation to GA has outperformed the GA-PM. However, IA-PM was as good as 

its POS_PR augmentation.  
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Figure 5.14: The Performance of POS_PR_GA-PM, POS_PR_IA- PM, GA- PM, 

and IA- PM for 14 Hard Problems  

 

It can be seen that even though POS_PR significantly improved both GA-RK 

and IA-RK, the permutation-based IA was unaffected by the same procedure.  As 

such, we can conclude that once a particular method has fully exploited the ability to 

diversify by nature or by the implemented representation scheme, an attempt to 

embed additional diversification/intensification creates marginal returns.  Tables 5.3 

and 5.4 summarize the results of these analyses and performance improvement is 

calculated using following formula.  

 

_  _ _                                                         (5)

_  _ _                                                           (6)

_  _ _            

GA PM loss GA PM PR loss

IA PM loss IA PM PR loss

SA PM loss SA PM PR loss                                               (7)

_  _ _                                                          (8)TS PM loss TS PM PR loss
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Table 5.3 Summary of the Performance Improvement of Moderate Problems 

Using POS_PR for Permutation Representation  

 
Problem Name Difference in performance improvement (+) / deterioration (-)  as a percentage 

GA IA SA TS 

Chr12a 

Chr12b 
Chr12c 

Chr18b 

Chr22a 
Chr22b 

13.06% 

8.62% 
11.85% 

20.83% 

18.10% 
18.87% 

0.00% 

0.00% 
-0.07% 

0.05% 

0.12% 
-0.06% 

-13.45% 

-20.07% 
-9.19% 

-2.45% 

-5.34% 
-1.38% 

9.63% 

25.90% 
5.95% 

0.96% 

3.79% 
1.69% 

Els19 26.05% -0.03% -3.76% 27.40% 

Esc32d 

Esc32g 
Esc64a 

11.06% 

7.81% 
10.45% 

-0.04% 

0.03% 
0.00% 

1.04% 

0.47% 
-0.03% 

1.26% 

0.59% 
0.00% 

Kra30a 

Kra30b 

Kra32 

13.88% 

12.57% 

13.80% 

0.04% 

0.15% 

-0.06% 

0.24% 

0.15% 

0.27% 

3.41% 

1.89% 

3.35% 

Lipa20b 

Lipa30b 

Lipa40b 
Lipa50b 

Lipa60b 

Lipa70b 
Lipa80b 

Lipa90b 

0.00% 

-2.71% 

-12.51% 
-18.46% 

-21.22% 

-22.24% 
-23.49% 

-23.83% 

0.00% 

-0.05% 

-0.67% 
0.02% 

-0.01% 

-0.02% 
-0.01% 

0.02% 

-0.47% 

0.01% 

0.11% 
0.00% 

0.19% 

0.14% 
0.02% 

0.19% 

1.45% 

7.68% 

11.85% 
14.49% 

18.26% 

18.81% 
20.30% 

21.78% 

Nug20 
Nug21 

Nug22 

Nug24 
Nug25 

Nug27 

Nug30 

7.69% 
8.54% 

8.32% 

9.94% 
9.45% 

9.38% 

9.85% 

-0.04% 
-0.01% 

0.04% 

0.03% 
0.11% 

0.03% 

0.02% 

-0.51% 
-0.28% 

-1.30% 

-0.54% 
-0.34% 

-0.46% 

-0.90% 

0.92% 
1.04% 

0.96% 

1.13% 
0.52% 

1.49% 

1.25% 

Scr15 
Scr20 

10.81% 
20.30% 

0.00% 
0.04% 

-1.15% 
-0.17% 

3.37% 
0.81% 

Sko42 

Sko49 
Sko56 

Sko64 

Sko72 
Sko81 

Sko90 

Sko100a 
Sko100b 

Sko100c 

Sko100d 
Sko100e 

Sko100f 

9.07% 

7.74% 
7.95% 

6.78% 

6.37% 
5.93% 

5.67% 

5.28% 
5.07% 

5.30% 

5.24% 
5.25% 

5.03% 

0.09% 

-0.24% 
0.07% 

0.22% 

-0.07% 
0.02% 

-0.02% 

-0.11% 
-0.05% 

0.01% 

-0.01% 
-0.07% 

-0.02% 

-0.74% 

0.09% 
0.03% 

-0.13% 

-0.19% 
0.26% 

0.01% 

-0.03% 
-0.37% 

-0.12% 

0.02% 
-0.42% 

-0.06% 

0.62% 

0.90% 
0.42% 

0.66% 

1.02% 
0.47% 

0.65% 

0.48% 
0.58% 

0.47% 

0.57% 
0.50% 

2.54% 

Tai20a 

Tai20b 
Tai25a 

Tai25b 
Tai30a 

Tai30b 

Tai35a 
Tai35b 

Tai40a 

Tai40b 
Tai50a 

Tai50b 

Tai60a 
Tai60b 

Tai80a 

Tai80b 
Tai100b 

Tai100a 

7.31% 

5.43% 
6.66% 

14.88% 
6.03% 

13.00% 

6.15% 
12.12% 

5.85% 

19.60% 
5.46% 

16.56% 

4.87% 
16.44% 

3.98% 

14.47% 
3.43% 

12.07% 

0.00% 

-0.02% 
0.19% 

-0.04% 
0.03% 

0.04% 

0.07% 
-0.05% 

0.10% 

0.25% 
0.01% 

-0.01% 

-0.05% 
-0.01% 

-0.01% 

0.03% 
0.04% 

0.10% 

0.05% 

-0.79% 
0.38% 

-2.98% 
0.16% 

-3.25% 

-0.05% 
-1.53% 

0.06% 

1.21% 
0.43% 

-1.03% 

-0.14% 
-1.14% 

-0.15% 

0.17% 
0.07% 

-0.98% 

1.97% 

13.78% 
2.24% 

7.60% 
2.03% 

10.93% 

2.23% 
4.60% 

2.06% 

4.40% 
3.28% 

1.46% 

3.34% 
4.20% 

1.70% 

1.04% 
2.43% 

2.60% 

Tho30 

Tho40 

11.85% 

13.01% 

0.00% 

-0.07% 

0.18% 

0.01% 

1.43% 

1.96% 
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Table 5.4 Summary of the Performance Improvement of Hard Problems Using 

POS_PR for Permutation Representation  

 
Problem Name Difference in performance improvement (+) / deterioration (-)  as a percentage 

GA-PM IA- PM  SA- PM  TS- PM  

Chr15a 

Chr15b 

Chr15c 

Chr18a 

Chr20a 

Chr20b 

Chr20c 

Chr22c 

43.98% 

51.33% 

52.76% 

85.74% 

69.12% 

68.14% 

100.10% 

98.25% 

-0.01% 

-0.42% 

1.27% 

-1.43% 

0.20% 

-0.75% 

-0.29% 

-1.48% 

-3.94% 

-17.85% 

-8.05% 

-17.30% 

-12.04% 

-4.64% 

-5.79% 

-10.61% 

8.02% 

21.40% 

21.24% 

16.32% 

11.98% 

4.59% 

23.69% 

13.11% 

Esc32a 

Esc32b 

Esc128 

51.75% 

72.10% 

131.06% 

0.52% 

-0.29% 

0.44% 

3.35% 

7.95% 

20.44% 

4.52% 

7.48% 

1.63% 

Ste36a 

Ste36b 

Ste36c 

47.78% 

80.46% 

34.64% 

-0.01% 

-0.04% 

0.21% 

-3.49% 

-0.25% 

-1.32% 

4.46% 

9.13% 

3.87% 

 

The comparison studies carried out for the two representation schemes showed 

that in order for the POS_PR implementation to be successful, the implementer 

should carefully evaluate the philosophical differences (i.e., path-based metaheuristic 

or population-based metaheuristic) and the representation scheme that were utilized.  

It was evident that from the 77 problem instances considered, SA yielded marginal 

returns irrespective of the representation scheme. In the path-based analysis, it was 

found out that the POS_PR implementations are more beneficial when permutation 

representations are used rather than random keys. The random keys GA and IA were 

significantly improved by POS_PR, and the POS_PR-augmented TS-PM 

outperformed the rest of the augmentations with improvement in the solution quality. 

This metaheuristic was able to generate <0.5% of the best known value for almost all 

of the instances out of the 63 moderate problems and <1% of the best known values 

for the 14 hard problems.  
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5.6  Classification using CARTs 

In this section, we investigate the criterion taken into consideration when the 

quality of a particular solution is determined. Figures 5.15-5.16 show the rankings of 

each criterion for representation based on the philosophical differences for the 

moderate and hard problems discussed previously.  
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Figure 5.15: Partition by Metaheuristic Method for the 63 Moderate Problems  

Top: Population-Based Methods (GARK-PR-1, GARK-2, IARK-PR-3, IARK-4, GAPM-PR-5, GAPM-6, IAPM-PR-7, and IAPM -8) 

Bottom: Path-Based Methods (SARK-PR-1, SARK-2, TSPM-PR-3, TSPM-4, SAPM-PR-5, SAPM-6, TSRK-PR-7, and TSRK -8) 
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Figure 5.16: Partition by Metaheuristic Method for 14 Hard Problems.  

Top: Population-Based Methods (GARK-PR-1, GARK-2, IARK-PR-3, IARK-4, GAPM-PR-5, GAPM-6, IAPM-PR-7, and IAPM -8) 

Bottom: Path-Based Methods    (SARK-PR-1, SARK-2, TSPM-PR-3, TSRK-4, SAPM-PR-5, SAPM-6, TSRK-PR-7, and TSPM -8)  



115 
 

From Figures 5.15 and 5.16, it is evident that the underlining criterion for 

determining solution quality varies drastically depending on the metaheuristic 

method. In Figure 5.15, the population-based metaheuristics are compared with the 

two representation schemes for the 63 moderate problems. The prominent criterion for 

partition is the representation method; the CART analysis shows ―Algorithm >=5,‖ 

and according to the legend, key 5 and higher are the permutation-based 

implementations.  Another interesting finding is that ―Algorithm>=7‖ is also 

considered as a partitioning criterion. This means that methods that are represented by 

legend keys 7 and 8 yield better solutions than the rest of the methods (Algorithm>=7: 

IAPM-PR-7 and IAPM-8).  Figure 5.15 also shows that in the path-based analysis, the 

first splitting criterion for partitioning was ―Algorithm>=3,‖ referring to SARK-PR, 

SARK, and TSPM-PR (SARK-PR-1, SARK-2, TSPM-PR-3). These methods yielded 

the best quality solutions.  

When Figure 5.16 is considered, the population-based methods determined 

that the most prominent splitting criterion was ―Algorithm>=5.‖ This means that there 

exists a difference in solution quality between the following methods: GAPM-PR, 

GAPM, IAPM-PR, IAPM, and the rest. In the lower levels of the splitting criteria 

hierarchy, the CART analysis yielded ―Algorithm>=7,‖ which can be interpreted as 

IAPM-PR making IAPM the most competitive method in the analysis.  

For the path-based metaheuristic analysis, the first splitting criterion can be 

identified as ―Algorithm>=3,‖ referring to SARK-PR, SARK, and TSPM-PR (SARK-

PR-1, SARK-2, TSPM-PR-3). It can be observed from Figures 5.15 and 5.16 that the 

best performing methods are similar for the hard and moderate problems.  However, 

when the problem characteristics are considered, for the population-based methods, 
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the sparsity of the data matrices determines whether a particular problem is a 

moderate or a hard problem to be solved. For path-based metaheuristics, distance 

dominance and the size of the problem play a major role as opposed to the sparisity of 

the matrices.  

   In the following section, we compare the best POS_PR-augmented methods 

indentified in this chapter with a few state-of-the-art algorithms previously developed 

for QAPs.  

5.7 Comparison with state-of-the-art PR-based methods  

In the literature, there are few prominent studies that have investigated the 

QAPs using PR-based diversification strategies. Out of these studies, the Greedy 

Genetic Algorithms developed by Ahuja et al. [3] are considered the first to develop 

such a strategy. In this study, path-crossover operators were used, and the authors 

claim that their new strategy is a genetic algorithmic variant of the PR strategies 

initially proposed by Glover [38].  In our state-of-the-art comparison study, we name 

this method GGA to represent the Greedy Genetic Algorithm. The second method 

considered is the GRASP embedded PR algorithm developed by Oliveira et al. [71]. 

In this method, a few problems (eight problem instances from the QAPLIB) were 

considered and with run times reaching 25%, 50%, and 75% of the best known 

solution. We consider this method due to the emerging nature of GRASP and PR as 

new metaheuristic method.  James et al. [45] proposed a sequential and parallel PR-

based TS algorithm for QAP in 2005. They used more than 100 problem instances 

from the QAPLIB with a computation experiment that was quite comprehensive. For 

our comparison study, we utilized the sequential PR-based TS method since 
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comparing parallel implementations with the rest of the methods would not provide 

any fair results/conclusions.  In the following tables (Tables 5.5-5.6), we abbreviate 

the sequential PR-based TS as SeqPR. Table 5.5 summarizes the findings for the 63 

moderate problem classifications.  

 

Table 5.5 Comparison with State-of-the-Art PR-Based Methods for the Moderate 

Problems (The Best Percentage Deviation Values from the Best Known Solutions are 

Boldfaced)     

 

Problem 

name 

GA-PM-

PR 

IA-PM-

PR 

SA-PM-

PR 

TS-PM-

PR 

SeqPR (James 

et al.,2005) 

GRASP with PR 

(Oliveira et 

al.,2004) 

GGA (Ahuja 

et al., 2000) 

Chr12a 

Chr12b 

Chr12c 

Chr18b 

Chr22a 

Chr22b 

0.000% 

0.000% 

0.000% 

0.000% 

1.917% 

0.581% 

0.000% 

0.000% 

0.000% 

0.000% 

1.235% 

1.421% 

0.000% 

0.000% 

0.000% 

0.000% 

12.541% 

10.268% 

0.000% 

0.000% 

0.000% 

0.000% 

1.592% 

2.648% 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

75.000% 

- 

0.000% 

0.000% 

0.000% 

0.000% 

0.750% 

0.000% 

Els19 0.000% 0.000% 2.749% 0.000% 0.000% - 0.000% 

Esc32d 

Esc32g 

Esc64a 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

9.000% 

3.196% 

8.621% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

- 

- 

- 

0.000% 

0.000% 

0.000% 

Kra30a 

Kra30b 

Kra32 

1.339% 

0.252% 

1.421% 

1.350% 

0.558% 

1.759% 

11.350% 

12.000% 

12.356% 

0.175% 

0.000% 

0.000% 

0.000% 

- 

- 

75.000% 

- 

- 

0.000% 

0.000% 

- 

Lipa20b 

Lipa30b 

Lipa40b 

Lipa50b 

Lipa60b 

Lipa70b 

Lipa80b 

Lipa90b 

0.000% 

0.000% 

0.000% 

0.000% 

19.902% 

21.584% 

23.005% 

23.385% 

0.000% 

0.000% 

3.763% 

16.033% 

20.320% 

21.369% 

22.457% 

22.464% 

14.208% 

19.157% 

22.183% 

22.512% 

24.426% 

25.110% 

26.320% 

26.542% 

1.472% 

1.145% 

1.015% 

0.806% 

0.771% 

0.700% 

0.643% 

0.000% 

- 

- 

- 

- 

- 

- 

- 

0.000% 

- 

- 

- 

- 

- 

- 

- 

- 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

Nug20 

Nug21 

Nug22 

Nug24 

Nug25 

Nug27 

Nug30 

0.000% 

0.000% 

0.000% 

0.000% 

0.107% 

0.000% 

1.078% 

0.000% 

0.000% 

0.000% 

0.000% 

0.053% 

0.038% 

0.719% 

2.879% 

3.774% 

4.616% 

5.791% 

5.342% 

5.808% 

8.328% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.138% 

0.000% 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

75.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.070% 

Scr15 

Scr20 

0.000% 

0.025% 

0.000% 

0.000% 

4.122% 

5.777% 

0.000% 

0.797% 

- 

- 

- 

- 

- 

0.000% 

Sko42 

Sko49 

Sko56 

Sko64 

Sko72 

Sko81 

Sko90 

Sko100a 

Sko100b 

Sko100c 

Sko100d 

2.277% 

2.660% 

2.856% 

3.522% 

3.514% 

3.994% 

4.163% 

4.808% 

4.495% 

4.345% 

3.665% 

1.809% 

2.035% 

1.556% 

2.693% 

3.275% 

3.350% 

3.474% 

3.626% 

3.445% 

3.763% 

3.690% 

11.447% 

10.126% 

10.639% 

10.046% 

10.327% 

9.959% 

10.851% 

10.109% 

10.748% 

10.569% 

10.222% 

0.958% 

0.784% 

1.142% 

0.954% 

0.545% 

0.808% 

0.725% 

0.785% 

0.768% 

1.122% 

0.861% 

0.025% 

0.071% 

0.066% 

0.054% 

0.111% 

0.060% 

0.134% 

0.092% 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

0.250% 

0.210% 

0.020% 

0.220% 

0.290% 

0.200% 

0.270% 

0.210% 

0.140% 

0.200% 

0.170% 
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Sko100e 

Sko100f 

4.610% 

4.414% 

3.830% 

3.309% 

10.666% 

8.614% 

1.066% 

1.134% 

- 

- 

- 

- 

0.240% 

0.290% 

Tai20a 

Tai20b 

Tai25a 

Tai25b 

Tai30a 

Tai30b 

Tai35a 

Tai35b 

Tai40a 

Tai40b 

Tai50a 

Tai50b 

Tai60a 

Tai60b 

Tai80a 

Tai80b 

Tai100b 

Tai100a 

0.304% 

0.000% 

1.752% 

0.000% 

2.706% 

0.149% 

3.407% 

0.427% 

4.234% 

0.575% 

4.720% 

2.647% 

5.617% 

2.197% 

5.486% 

6.815% 

5.370% 

5.909% 

0.000% 

0.000% 

0.642% 

0.069% 

1.758% 

0.000% 

2.675% 

0.344% 

3.583% 

0.152% 

4.580% 

1.040% 

5.004% 

1.980% 

4.797% 

4.263% 

5.024% 

4.844% 

5.733% 

3.188% 

6.878% 

5.801% 

7.428% 

5.784% 

8.925% 

8.594% 

9.628% 

13.166% 

10.185% 

18.461% 

10.849% 

25.966% 

9.972% 

22.417% 

9.172% 

23.007% 

0.000% 

0.943% 

0.069% 

1.524% 

0.256% 

1.532% 

0.529% 

1.960% 

1.054% 

2.174% 

0.312% 

2.737% 

0.418% 

0.000% 

1.623% 

2.457% 

1.096% 

0.524% 

0.246% 

0.000% 

0.640% 

0.000% 

0.614% 

0.000% 

0.109% 

0.037% 

1.109% 

0.000% 

1.263% 

0.062% 

1.416% 

0.042% 

1.109% 

- 

- 

0.966% 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

Tho30 

Tho40 

0.604% 

2.776% 

0.571% 

2.415% 

9.405% 

14.659% 

0.590% 

0.324% 

- 

- 

75.000% 

- 

0.000% 

0.320% 

 

 

For this comparison study, we selected the best implementations from each 

method. For example, for GA, the combination of PR with PM yielded the best 

results. Following this process, we presented GA-PM-PR, IA-PM-PR, SA-PM-PR, 

and TS-PM-PR for the analysis. From Table 5.4, we see that our implementations are 

as good as the state-of-the-art methods. Furthermore, our results are more robust, as 

the other studies did not replicate their experiments as frequently as we did (50 

replications).  GA-PM-PR, IA-PM-PR, and TS-PM-PR were found to have good 

solutions and are, thus, good competitors for SeqPR and GGA.  In addition, TS-PM-

PR was able to provide better solutions for the Kra32, Nug30, Sko100d, Tai20a, 

Tai25a, Tai30a, Tai50a, Tai60a, Tai60b, Tai80b, Tai100b, and Tai100a problems.   

Table 5.6 depicts the same analysis carried out for the 14 hard problems. In 

this analysis, we compared our four methods with the three state-of-the-art methods in 

the literature. The SeqTS was taken out of the analysis since they did not consider 

these 14 problems for that specific computational study. Similar to the previous case, 
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GA-PM-PR, IA-PM-PR, and TS-PM-PR generated solutions that were as good as the 

other methods. TS-PM-PR was able to provide very competitive solutions for the 

Chr15a, Chr15b, Chr15c, Chr22c, Esc32a, Esc32b, Esc128, Ste36a, Ste36b, and 

Ste36c problem instances.  

When the run times are considered, all the four of the methods recorded quite 

impressive times since, except for the POS_PR implementation procedures, the 

methods do not have any initialization heuristics, greedy speedups, multi-start 

initializations, or other adaptive techniques embedded in their individual main 

programs.  

Table 5.6 Comparison with State-of-the-Art PR-Based Methods for the Hard 

Problems (The Best Percentage Deviation Values from the Best Known Solutions are 

Boldfaced)     

 

Problem name GA-PM-PR IA-PM-PR SA-PM-PR TS-PM-PR 
GRASP with PR 

(Oliverira et al.,2004) 

GGA (Ahuja et al., 

2000) 

Chr15a 

Chr15b 

Chr15c 

Chr18a 

Chr20a 

Chr20b 

Chr20c 

Chr22c 

0.000% 

0.000% 

0.000% 

0.000% 

1.460% 

5.048% 

0.000% 

12.698% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

6.440% 

0.000% 

8.377% 

1.152% 

0.000% 

16.372% 

33.646% 

29.562% 

21.323% 

15.953% 

69.442% 

0.000% 

0.000% 

0.000% 

3.586% 

0.183% 

5.396% 

4.724% 

9.747% 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

Esc32a 

Esc32b 

Esc128 

4.615% 

9.524% 

6.250% 

3.077% 

0.000% 

15.625% 

46.154% 

45.238% 

96.875% 

0.000% 

0.000% 

0.000% 

- 

- 

- 

0.000% 

0.000% 

0.000% 

Ste36a 

Ste36b 

Ste36c 

2.645% 

2.183% 

1.290% 

1.953% 

3.104% 

1.792% 

35.482% 

57.797% 

30.846% 

0.000% 

0.143% 

0.000% 

75.000% 

- 

- 

0.270% 

- 

- 

 

 

Compared to the PR-based methods discussed earlier, we carried out a detailed 

state-of-the-art comparison analysis for the six metaheuristics mentioned in the 

literature. These methods include the multi-start diversified TS (DivTS) by James et 

al., 2009 [47]; the Robust Tabu Search (RTS) by Taillard, 1991 [84]; the GRASP by 

Pardalos et al., 1994 [56]; the ant colony-based local search algorithm (ACO-GL/LS) 
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by Tseng and Liang, 2006 [87]; the integrated GA-based TS (GA/TS) by Misevičius, 

2004 [69];  and the local search metaheuristic (ILS3) by Stützle, 2006 [83]. These 

methods have been widely cited by the literature to be very competitive in solving 

QAPs.  

In Table 5.7, we present the 47 QAPs extracted from the QAPLIB that stem 

from real-life problems. Comparing the performance of real-life problems allows us to 

generate insights into how our best performing method (TS-PM-PR) would react to 

general real-life problems, which will enable practitioners to weigh the pros and cons 

of the method.   

Table 5.7 Comparison with Long-Run Solutions of State-of-the-Art 

Metaheuristics for Real-Life Problems (The Best Percentage Deviation Values from 

the Best Known Solutions are Boldfaced)   

 

*DivTS: Multi-Start Diversified TS (James et al., 2009) [47], RTS: Robust Tabu Search (Taillard, 

1991) [84], GRASP (Pardalos et al., 1994) [56], ACO-GL/LS (Tseng and Liang, 2006) [87], GA/TS 

(Misevičius, 2004) [69], and ILS3 (Stützle, 2006) [83] 
 

Problem 

name 

DivTS* RTS* GRASP* ACO-

GL/LS* 

GA/TS* ILS3* TS-PM-

PR 

TS-PM-PR 

(Run Time in 

Sec ) 

Bur26a 

Bur26b 

Bur26c 

Bur26d 

Bur26e 

Bur26f 

Bur26g 

Bur26h 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

  0.000% 

0.000% 

0.000% 

0.001% 

0.000% 

0.000% 

0.000% 

0.000% 

24.203 

24.765 

33.188 

41.766 

25.031 

44.265 

25.015 

36.500 

Chr12a 

Chr12b 

Chr12c 

Chr15a 

Chr15b 

Chr15c 

Chr18a 

Chr18b 

Chr20a 

Chr20b 

Chr20c 

Chr22a 

Chr22b 

Chr25a 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.200% 

0.000% 

0.000% 

0.152% 

0.943% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.400% 

0.000% 

0.000% 

0.213% 

0.601% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

3.133% 

0.000% 

0.552% 

1.421% 

4.636% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.870% 

0.000% 

0.000% 

0.000% 

0.000% 

  0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

3.586% 

0.000% 

0.183% 

5.396% 

4.724% 

1.592% 

2.648% 

9.747% 

12.296 

21.156 

16.187 

28.312 

14.610 

18.859 

16.703 

32.031 

22.218 

22.859 

59.156 

39.953 

30.718 

49.203 

Kra30a 

Kra30b 

Kra32 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

 

0.000% 

0.000% 

0.000% 

0.000% 

0.089 % 

0.019% 

 0.175% 

0.000% 

0.000% 

32.906 

36.734 

44.344 

Ste36a 0.000% 0.000% 0.651% 0.000%   0.000% 49.031 
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Ste36b 

Ste36c 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.188% 

0.000% 

0.000% 

0.149% 

0.000% 

0.143% 

0.000% 

48.890 

46.734 

Esc16a 

Esc16b 

Esc16c 

Esc16d 

Esc16e 

Esc16f 

Esc16g 

Esc16h 

Esc16i 

Esc16j 

Esc32a 

Esc32b 

Esc32c 

Esc32d 

Esc32e 

Esc32f 

Esc32g 

Esc64a 

Esc128 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.066% 

 

 

 

 

 

 

 

 

 

 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

 

 

 

 

 

9.521% 

0.000% 

0.051% 

 

 

0.227% 

0.000% 

 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

0.000% 

42.750 

15.111 

16.546 

18.437 

16.250 

25.200 

25.296 

22.218 

23.656 

23.703 

41.406 

44.860 

41.203 

34.703 

32.671 

33.593 

299.410 

201.670 

1222.100 

 

 

Table 5.6 depicts the long-run percentage deviations from the best known 

values of the six metaheuristics compared with TS-PM-PR. The last column contains 

information on the run times of our method (the computational configurations include 

Microsoft Windows XP, Intel
®
 Pentium

®
 4 CPU 3.00 GHz 2.99 GHz, and 1.00 GB of 

RAM). The solutions recorded for each method are from James et al., 2009 [47], and 

the values are presented for longer running times.  Therefore, our method was able to 

generate good solutions within very reasonable time frames. Hence, our solutions 

have proven to be a very competitive metaheuristic.  

5.8 Conclusions   

In conclusion, this chapter investigated the effects of POS_PR augmentation 

on the performance of each tuned path-based and population-based metaheuristic.  

Based on the results obtained, we carried out separate analyses for each representation 

method.  Furthermore, detailed analyses were performed to demonstrate how the 

previous classifications of problems (moderate vs. hard problems) were improved due 
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to our new diversification mechanisms. These results generated some interesting 

findings. To begin with, the GAs, IAs, and TSs were significantly improved 

irrespective of the representation schemes used. Many of the moderate problems can 

now be re-classified as trivial, while many of the hard problems can be regrouped as 

either trivial or moderate problems. One interesting observation was recorded 

regarding the performance of the SAs. They were not improved by the POS_PR 

augmentation for either representation scheme, and most often, the augmentation 

deteriorated the quality of the solutions. Some possible reasons for this phenomenon 

to occur can be highlighted based on fitness evaluations and associated randomness 

when creating solutions. When random keys representation was used for path-based 

methods to create initial solutions and for the POS_PR solution combination 

procedures, the associated randomness is higher compared to permutation encoding 

scheme. Because the number of solutions evaluated at a given time is fewer than the 

population-based methods. This causes the deterioration of the performance and 

permutation representation has less randomness allied; hence, creates more successful 

solutions from POS_PR augmentation. 

The comparison analysis followed with CART classifications to identify the 

splitting criterion. Representation scheme played an important role in determining the 

quality of a particular solution. From the CART analysis figures, it was found that the 

best performing methods are common for the hard and moderate problems.  However, 

when attention was given to problem characteristics, population-based methods were 

more susceptible to the sparsity of the data matrices; whereas, path-based 

metaheuristics were dominated or controlled by distance dominance and the size of 

the problem as opposed to by the sparisity of the matrices. In order to see the positive 
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effects of POS_PR for path-based metaheuristics, permutation-based representation 

schemes should be implemented.  

This chapter concluded with a comparison study carried out with a few state-

of-the-art PR-based diversification methods. These included the Greedy Genetic 

Algorithm (GGA) [3], GRASP with PR [71], and Sequential PR (SeqPR) [45] from 

the literature. The results yielded that the POS_PR-augmented methods were as 

competitive as these methods and that TS-PM-PR generated competitive solutions for 

quite a number of the problem instances.  Finally, using six competitive 

metaheuristics and 47 real-world problems, we carried out a detailed comparison of 

solution quality. The winning TS-PM-PR seems to be very competitive in terms of 

solution quality as well as run time compared to the other state-of-the-art 

metaheuristics.    

 This study lays the foundation for many research studies that can focus on 

different variants of PR mechanisms to generate better solutions irrespective of 

problem characteristics or representation schemes.   
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CHAPTER SIX 

6. CONCLUDING REMARKS 

6.1. Introduction  

In this concluding chapter, we compare the overall results of the preceding 

chapters, present a discussion of the results, and provide directions for future research. 

The chapter is organized as follows. We begin by summarizing the results generated 

by the parameter tuning procedures discussed in chapter 3. This section is followed by 

the effects of the solution representations and problem characteristics on the 

performance of metaheuristics, as presented and discussed in chapter 4. Next, we 

discuss the importance of PR augmentation, which was presented in chapter 5, and 

then summarize the overall findings of the dissertation.  Finally, we present some 

future directions for research on fitness landscape analysis and conclude the chapter 

with a discussion of our results.  

 

6.2. Effects of Parameter Tuning on Performance   

 

 

  An extensive parameter tuning procedure was carried out for the four 

selected metaheuristics to investigate the effects of parameter tuning on performance. 

Using a full factorial design framework, we identified metaheuristic design factors for 

each method by replicating each treatment in a high throughput computing 

environment. It was found that parameter tuning does significantly improve the 

quality of the solutions for both the path-based metaheuristics and population-based 

metaheuristics. Using parametric and non-parametric statistical analysis tools, we 

tested the statistical significance of the results. We also found that some metaheuristic 

design factors are less sensitive to parameter changes than others. Specifically, 
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cooling schedule for SA, neighborhood size for TS, mutation probability for GA, and 

affinity adjustments for IA were less responsive to parameter tuning.  Further, some 

methods showed significant interaction effects between two metaheuristic design 

factors. Specifically, the size of the neighborhood and the size of the tabu list for TS 

and affinity threshold and affinity adjustment for IA.  

6.3. Effects of Solution Representation on Performance   

 

During the parameter tuning process, we investigated how the performance of 

a particular metaheuristic is affected by the solution representation scheme. We found 

that permutation-based representation schemes are affected less by tuning than by the 

random keys. This phenomenon was significantly more visible for the path-based 

metaheuristics than for the population-based metaheuristic methods. One interesting 

observation was irrespective of the philosophical differences (whether it is a path-

based method or a population-based method), permutation representation schemes 

outperformed random keys representations for many QAP instances.  Even though 

random keys representations are widely applied in other combinatorial optimization 

problems, such as scheduling, the permutation representation is more suitable for 

cases like QAPs.  

Based on the results of the parameter tuning procedure and the performance of 

each method for each representation scheme, 130 QAPLIB problems were 

categorized into three categories: trivial problems, moderately difficult problems, and 

hard problems. A comparison study was carried out using four problem classes from 

the literature, and the tuned metaheuristics were evaluated in each of these categories. 

The extensive parameter tuning procedure generated competitive solutions for certain 
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QAPs, and the representation scheme played an important role in determining solution 

quality.  

Overall, TS with both representation schemes and IA with permutation 

representation outperform the rest of the metaheuristics investigated in this 

dissertation. In chapter 3, we concluded the comparison study by carrying out a 

comparison study with the greedy GA initially developed by Ahuja et al.[3]. The 

underlying results of this comparison study indicated that the tuned GA developed 

here outperformed the greedy GA for the selected problem instances.  

6.4. Effects of Problem Characteristics on Performance   

 

 In chapter 4, the moderate and the hard problems that were classified in 

chapter 3 were carefully analyzed using in-depth problem characteristics. These 

measures included problem size, flow and distance dominance measures, sparsity, and 

coefficient of correlation measures. In order to compare and contrast each population-

based method with the path-based methods, we used Classification and Regression 

Tree (CART) tools. The moderately difficult and hard problems identified in the 

chapter 3 were considered for these analyses. We found that the sparsity of the data 

matrices, flow dominance, and the size of the problem play an important role in 

determining a particular metaheuristic’s performance.  

 The findings from chapter 4 raised the following research questions: (1) are 

path-based metaheuristic approaches more suitable for QAPs? (2) Are population-

based metaheuristics unsuitable for these problems? and (3) when deciding on the 

most suitable representation scheme, are permutation representations more suitable 

than random keys representations? In order to answer these questions, we carried out 



127 
 

a search trajectory analysis for all of the hard and the moderate problems (77 input 

files) and recorded the best solution for each method found along the search path.  

The results of the overall analysis suggest that TS and IA-PM have built-in 

diversification and intensification mechanisms unlike the other algorithms and that 

this feature appears to make TS and IA-PM very effective for QAPs. GAs and IAs use 

their population-based nature and begin the search trajectory with more competitive 

solutions than the SAs and TSs. As the number of fitness evaluations increase, the 

solution quality of TS dominates the other methods, and the deviation from the best 

known solution drops more sharply than the rest. The TSs and IA-PM show less 

stagnation than the other methods.  

The findings of this chapter lay the foundation for further research studies on 

improving individual search trajectories for less intelligent metaheuristics. In chapter 

5, a diversification method based on PR was proposed to improve the solution quality 

of the less diversified metaheuristics, by expanding their search space.  

6.5. Effects of PR Mechanisms on Performance   

 

In chapter 5, we implemented POS_PR mechanisms for the two representation 

schemes. Two comparison studies were carried out for the two representation 

schemes.  

In the random keys POS_PR comparison study, we found that for all of the 

moderate and hard problem instances, GA and IA showed positive improvement. 

Considering the overall performance, POS_PR can be considered a promising method 

for improving random keys population-based metaheuristics. In the case of path-based 

metaheuristics, the SAs’ and TSs’ performances were adversely affected by the 
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augmentation. Except for a few problem instances, the recorded performances were 

negative. Hence, POS_PR is not very suitable for random keys-based SA/TS in the 

QAP context.  

In the comparison study for permutation-based metaheuristics, the 

performances of the tuned population-based methods (GA-PM and IA-PM) were 

compared with their POS_PR augmentations. 

In the comparison study for the permutation-based metaheuristics, the 

performances of the tuned population-based methods (GA-PM and IA-PM) and the 

two path-based methods (TS-PM and SA-PM) were compared with their POS_PR 

augmentations. It was evident that from the 77 problem instances considered, SA 

yielded marginal returns irrespective of the representation scheme. In the path-based 

analysis, we found that POS_PR implementations are more beneficial when 

permutation representations are used rather than random keys. Random keys GA and 

IA were significantly improved by POS_PR and POS_PR, and the augmented TS-PM 

outperformed the rest with more than 90% improvement in solution quality.  

From the CART analysis, we found that the best performing methods are the 

same for both the hard and moderate problems. In such cases, IAPM, TSPM, IAPM-

PR, and TSPM-PR are the most competitive metaheuristics. However, when problem 

characteristics are considered for population-based methods, the sparsity of the data 

matrices determines whether a particular problem is considered a moderately difficult 

problem or a hard problem to solve. For path-based metaheuristics, distance 

dominance and the size of the problem play a bigger role than the sparsity of the 

matrices.  
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To conclude the analysis, we compared the best performing metaheuristics 

found (TSPM-PR) with other state-of-the-art PR-based metaheuristics discussed in 

the literature (SeqPR, GRASP with PR, and GGA).  We found that TSPM-PR was 

able to find better solutions to 19 problem instances, thus proving it to be superior to 

the other PR-based methods proposed in the literature. In order to conclude the 

chapter, we consider six more state-of-the-art metaheuristics mentioned in the 

literature to solve the QAPs (DivTS: Multi-Start Diversified TS (James et al., 2009) 

[47], RTS: Robust Tabu Search (Taillard, 1991) [84], GRASP (Pardalos et al., 1994) 

[56], ACO-GL/LS (Tseng and Liang, 2006) [87], GA/TS (Misevičius, 2004) [69], and 

ILS3(Stützle,2006) [83]), comparing their solutions with ours. Compared to the long-

run solutions obtained by these methods, TSPM-PR did very well, recording fairly 

short run times. Hence, this method is a very competitive PR-based metaheuristic.   

6.6. Representation Scheme, Parameter Tuning, and PR Augmentation  

 We utilized three approaches in this dissertation to improve the solution 

quality of the two selected population-based metaheuristics and the two path-based 

metaheuristics. Namely, we investigated the following:  

 Effects of representation scheme 

 Effects parameter tuning 

 Effects of augmenting a diversification  method 

 In each chapter, we saw how these three procedures affected the performance 

of each metaheuristic. We found that irrespective of the philosophical differences 

(whether the method is a path-based metaheuristic or a population-based 

metaheuristic), all four methods benefited from permutation-based representation 



130 
 

schemes.  It can be concluded that for the selected problem domain, random keys 

representation is not very suitable. However, once the parameter tuning process was 

carried out, the random keys-based methods showed significant improvement, while 

the permutation-based metaheuristics showed less improvement, meaning that the 

representation scheme itself was more robust to parameter changes. From the overall 

analysis, TS was found to be more robust out of the other three methods, and GA and 

IA were significantly improved by the parameter tuning procedures.  

 When PR augmentation was considered, we saw some significant 

improvement in solution quality in TS, GA, and IA as opposed to SA. SA’s 

performance was least affected by the representation scheme, and the PR 

augmentation caused it to create worse solutions. GA was significantly improved by 

the PR augmentation irrespective of the representation scheme. PR augmented 

permutation-based TS outperformed the rest.  We found this metaheuristic to be very 

competitive compared to the rest of the PR-based methods in the literature, and when 

compared to other state-of-the-art methods, it generated fairly good solutions within a 

very quick time span.    

 Based on the results of the three chapters, the 130 input files of the QAPLIB 

can be reorganized based on the appropriateness of the metaheuristics capable of 

solving them. The following Table 6.1 depicts Bur* files of the QAPLIB using 

possible rankings of metaheuristics matched with problem characteristics.  
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Table 6.1: Classification of Bur* Files of QAPLIB with POS_PR Augmentation and Problem Characteristics 

    Flow Dominance (FD): LOW (<=60), Moderate (60-200), and High (200>)  

    Distance Dominance (DD): LOW (<=100), Moderate (100-200), and High (200>) 

    Sparsity: LOW (<=0.5), Moderate (0.5-0.7), and High (0.7>) 

    Coefficient of Correlation: LOW (<= 0.1), Moderate ( 0.1 -  0.5), and High ( >0.5) 

    Problem Size: LOW (<=40), Moderate (40-75), and High (75>)

Name  
Ranking of Metaheuristics ( Based on the Average Deviation from the Best-Known) 

FD DD Sparsity 

Correlation  

N: Negative 

P: Positive  

Problem Size 
Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 

Bur26a TS-PM-PR IA-PM-PR GA-PM-PR GA-RK-PR IA-RK-PR SA-PM-PR  SA-RK-PR  TS-RK-PR HIGH LOW LOW LOW (N) LOW 

Bur26b TS-PM-PR IA-PM-PR GA-PM-PR GA-RK-PR IA-RK-PR SA-PM-PR  SA-RK-PR  TS-RK-PR HIGH LOW LOW LOW (N) LOW 

Bur26c TS-PM-PR IA-PM-PR GA-PM-PR GA-RK-PR IA-RK-PR SA-PM-PR  SA-RK-PR  TS-RK-PR HIGH LOW LOW LOW (N) LOW 

Bur26d TS-PM-PR IA-PM-PR GA-PM-PR GA-RK-PR IA-RK-PR SA-PM-PR  SA-RK-PR  TS-RK-PR HIGH LOW LOW LOW (P) LOW 

Bur26e TS-PM-PR GA-PM-PR IA-PM-PR GA-RK-PR IA-RK-PR SA-PM-PR  SA-RK-PR  TS-RK-PR HIGH LOW LOW LOW (P) LOW 

Bur26f TS-PM-PR IA-PM-PR GA-PM-PR GA-RK-PR IA-RK-PR SA-PM-PR  SA-RK-PR  TS-RK-PR HIGH LOW LOW LOW (N) LOW 

Bur26g TS-PM-PR IA-PM-PR GA-PM-PR GA-RK-PR IA-RK-PR SA-PM-PR  SA-RK-PR  TS-RK-PR HIGH LOW LOW LOW (P) LOW 

Bur26h TS-PM-PR GA-PM-PR IA-PM-PR GA-RK-PR IA-RK-PR SA-PM-PR  SA-RK-PR  TS-RK-PR HIGH LOW LOW LOW (N) LOW 

Bur26 ALL ALL ALL ALL ALL ALL ALL ALL LOW LOW LOW LOW (P) LOW 
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 The rest of the input files are presented in Appendix G and from Table 6.1 it is 

clearly visible that for Bur* instances, TS-PM-PR is the most appropriate method. 

These files consist of high FD values but low in rest of the problem characteristics. It 

is interesting to note that the same TS with RK (TS-RK-PR) performs worse, 

comparatively to the other methods for the same set of problems. Hence, once again 

highlights the importance of using the most appropriate solution encoding procedures. 

 With these findings at hand, we present some future research directions and 

possible extensions to this dissertation in the next section.  

6.7. Fitness Landscape Analysis  

 As a possible future extension for this dissertation, we propose a fitness 

landscape analysis study.  In the previous chapters, we investigated how search 

trajectories change when representation schemes or diversification mechanisms 

change.  We clearly saw that search trajectories shifted downward (resulting in low 

fitness function values) with improvements in the number of solutions found or the 

ability to find more diversified solutions.   To illustrate this point, Figures 6.1- 6.3 

were created using three input files in order to compare how the exploration of the 

search spaces improved by POS_PR augmentation.  

 

 

 

 

 



133 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Search Trajectory Comparison of TS for Chr15a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Search Trajectory Comparison of TS for Chr15b 

 

 

 

 

 

 

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

F
it

n
es

s 
fu

n
ct

io
n

 

Number of solutions found 

Chr15a

TS-RK TS-PM Best-known TS-PM-PR TS-RK-PR

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

F
it

n
es

s 
fu

n
ct

io
n

 

Number of solutions found 

Chr15b

TS-RK TS-PM Best-known TS-PM-PR TS-RK-PR



134 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Search Trajectory Comparison of TS for Chr20a 

 

  

Using these three figures, we can see that TS-PM-PR found the best known 

solutions with fewer solutions and minimal stagnation in the search trajectory. The 

diversified areas are highlighted using circles, and it is clearly evident that POS_PR 

augmentation creates an efficient beginning for each search path.  

The search trajectory of a particular metaheuristic has to be closely matched to 

the actual fitness landscape of a problem. Thus, when designing metaheuristics, we 

need to minimize the gap in the actual fitness landscape and the shape of the search 

trajectory.  

Future research can be done in this area to actually model the search trajectory 

of particular metaheuristic using different modeling techniques. Using different 
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parameter tuning procedures, we can predict how closely we can mimic the actual 

fitness landscape.  

In this endeavor, researchers could investigate the Fitness Distance Correlation 

(FDC), which measures the extent to which the fitness function values are correlated 

with the distance to a global optimum. These measures and other modeling/ statistical 

analysis techniques can be used to carefully project a search trajectory that can be 

closely superimposed onto the actual fitness landscape of any combinatorial 

optimization problem.  

 

____END____ 
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APPENDICES 

APPENDIX A: Test Cases of the Initial Comparison  
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Bur26a 26 

R.E. Burkard and J. 

Offermann 

 

(OPT) 

Asymmetric 

Bur26b 26 (GRASP) 

Bur26c 26 (GRASP) 

Bur26d 26 (GRASP) 

Bur26e 26 (GRASP) 

Bur26f 26 (GRASP) 

Bur26g 26 (GRASP) 

Bur26h 26 (GRASP) 

Bur26 26 (GRASP) 

Chr12a 12 

N. Christofides and E. 

Benavent 

(OPT) 

One matrix is the 

adjacency matrix of a 

weighted tree the other 

that of a complete graph 

Chr12b 12 (OPT) 

Chr12c 12 (OPT) 

Chr15a 15 (OPT) 

Chr15b 15 (OPT) 

Chr15c 15 (OPT) 

Chr18a 18 (OPT) 

Chr18b 18 (OPT) 

Chr20a 20 (OPT) 

Chr20b 20 (OPT) 

Chr20c 20 (OPT) 

Chr22a 22 (OPT) 

Chr22b 22 (OPT) 

Chr22c 25 (OPT) 

Els19 19 A.N. Elshafei (OPT) 

hospital and the flow of 

patients between those 

locations 

Esc16a 16 

 

B. Eschermann and H.J. 

Wunderlich 

(OPT) 

application in computer 

science, from the 

testing of self-testable 

sequential circuits 

Esc16b 16 (OPT) 

Esc16c 16 (OPT) 

Esc16d 16 (OPT) 

Esc16e 16 (OPT) 

Esc16f 16 (OPT) 

Esc16g 16 (OPT) 
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Esc16h 16 (OPT) 

Esc16i 16 (OPT) 

Esc16j 16 (OPT) 

Esc32a 32 (Ro-TS) 

Esc32b 32 (Ro-TS) 

Esc32c 32 (SIM-1) 

Esc32d 32 (Ro-TS) 

Esc32e 32 (OPT) 

Esc32f 32 (OPT) 

Esc32g 32 (OPT) 

Esc64a 64 (SIM-1) 

Esc128 128 (GRASP) 

Had12 
12 

S.W. Hadley, F. Rendl 

and H. Wolkowicz 

(OPT) 

Manhattan distances of 

a connected cellular 

complex in the plane  

and flow matrix are 

drawn uniformly from 

the interval [1,n] 

Had14 
14 (OPT) 

Had16 
16 (OPT) 

Had18 
18 (OPT) 

Had20 
20 (OPT) 

Kra30a 

30 
J. Krarup and P.M. 

Pruzan 
(OPT) 

The instances contain 

real world data and 

were used to plan the 

Klinikum Regensburg 

in Germany. 

Kra30b 30 
J. Krarup and P.M. 

Pruzan 

J. Krarup and P.M. 

Pruzan 

(OPT) The instances contain 

real world data and 

were used to plan the 

Klinikum Regensburg 

in Germany. 

 

Kra32 

32 (OPT) 

Lipa20a 20 

Y. Li and P.M. Pardalos 

(OPT) 

The generators provide 

asymmetric instances 

with known optimal 

solutions. 

Lipa20b 20 (OPT) 

Lipa30a 30 (OPT) 

Lipa30b 30 (OPT) 

Lipa40a 40 (OPT) 

Lipa40b 40 (OPT) 

Lipa50a 50 (OPT) 

Lipa50b 50 (OPT) 

Lipa60a 60 (OPT) 

Lipa60b 60 (OPT) 

Lipa70a 70 (OPT) 

Lipa70b 70 (OPT) 

Lipa80a 80 (OPT) 
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Lipa80b 80 (OPT) 

Lipa90a 90 (OPT) 

Lipa90b 90 (OPT) 

Nug12 12 

 

C.E. Nugent, T.E. 

Vollmann and J. Ruml 

(OPT) 

The distance matrix 

contains Manhattan 

distances of rectangular 

grids. 

 

Nug14 14 (OPT) 

Nug15 15 (OPT) 

Nug16a 16 (OPT) 

Nug16b 16 (OPT) 

Nug17 17 (OPT) 

Nug18 18 (OPT) 

Nug20 20 (OPT) 

Nug21 21 (OPT) 

Nug22 22 (OPT) 

Nug24 24 (OPT) 

Nug25 25 (OPT) 

Nug27 27 (OPT) 

Nug30 30 (OPT) 

Rou12 12 

C. Roucairol 

 

(OPT) The entries of the 

matrices are chosen 

from the interval 

[1,100]. 

 

Rou15 15 (OPT) 

Rou20 
20 (OPT) 

Scr12 12 

M. Scriabin and R.C. 

Vergin 

(OPT) The distances of these 

problems are 

rectangular. 
Scr15 15 (OPT) 

Scr20 

20 (OPT) 

The distances of these 

problems are 

rectangular.Taixxa are 

uniformly generated 

Sko42 42 

J. Skorin-Kapov 

Ro-TS) 

The distances of these 

problems are 

rectangular and the 

entries in flow matrices 

are pseudorandom 

numbers. 

Sko49 49 Ro-TS) 

Sko56 56 Ro-TS) 

Sko64 64 Ro-TS) 

Sko72 72 Ro-TS) 

Sko81 81 (GEN) 

Sko90 90 Ro-TS) 

Sko100a 100 (GEN) 

Sko100b 100 (GEN) 

Sko100c 100 (GEN) 

Sko100d 100 (GEN) 

Sko100e 100 (GEN) 

Sko100f 100 (GEN) 

Ste36a 36 L. Steinberg (OPT) 

The three instances 

model the backboard 

wiring problem. The 

distances in the first one 
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are Manhattan, 

Ste36b 36 (OPT) 

The three instances 

model the backboard 

wiring problem. The 

distances in the second 

squared Euclidean 

Ste36c 36 (OPT) 

The three instances 

model the backboard 

wiring problem. The 

distances in the third 

one Euclidean distances 

(multiplied by 1000). 

Tai12a 12 

E.D. Taillard 

(OPT) 
Taixxa are uniformly 

generated 

Tai12b 12 (OPT) 
Taixxb are asymmetric 

and randomly generated 

Tai15a 15 (OPT) 
Taixxa are uniformly 

generated 

Tai15b 15 (OPT) 
Taixxb are asymmetric 

and randomly generated 

Tai17 17 (OPT) 
Taixxa are uniformly 

generated 

Tai20a 20 (OPT) 
Taixxa are uniformly 

generated 

Tai20b 20 (OPT) 
Taixxb are asymmetric 

and randomly generated 

Tai25a 25 (Ro-TS) 
Taixxa are uniformly 

generated 

Tai25b 25 (OPT) 
Taixxb are asymmetric 

and randomly generated 

Tai30a 30 (Ro-TS) 
Taixxa are uniformly 

generated 

Tai30b 30 (Ro-TS) 
Taixxb are asymmetric 

and randomly generated 

Tai35a 35 (Ro-TS) 
Taixxa are uniformly 

generated 

Tai35b 35 (Ro-TS) 
Taixxb are asymmetric 

and randomly generated 

Tai40a 40 (Re-TS) 
Taixxa are uniformly 

generated 

Tai40b 40 (Ro-TS) 
Taixxb are asymmetric 

and randomly generated 

Tai50a 50 (GEN) 
Taixxa are uniformly 

generated 

Tai50b 50 (Ro-TS) 
Taixxb are asymmetric 

and randomly generated 

Tai60a 60 (Ro-TS) 
Taixxa are uniformly 

generated 

Tai60b 60 (Ro-TS) 
Taixxb are asymmetric 

and randomly generated 

Tai64 64 (Ro-TS) 

Taixxc occur in the 

generation of grey 

patterns 

Tai80a 80 (Ro-TS) 
Taixxa are uniformly 

generated 
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OPT: Optimally Solved 

GRASP: Greedy Randomized Adaptive Search Procedure  

Ro-TS: Robust Tabu Search 

SIM-1: Simulated Annealing I 

GEN: Genetic Hybrids  

SIM-2: Simulated Annealing II  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tai80b 80 (Ro-TS) 
Taixxb are asymmetric 

and randomly generated 

Tai100b 100 (Re-TS) 
Taixxa are uniformly 

generated 

Tai100a 100 (Ro-TS) 
Taixxb are asymmetric 

and randomly generated 

Tho30 30 

U.W. Thonemann and 

A. Bölte 

(OPT) The distances of these 

instances are 

rectangular. 

The distances of these 

instances are 

rectangular. 

Tho40 40 (SIM-2) 

Tho50 50 
M.R. Wilhelm and T.L. 

Ward 
(SIM-2) 

The distances of these 

problems are 

rectangular. 
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APPENDIX B: Average Losses of Random Keys-based Metaheuristics (After 

Parameter Tuning)  

 

N
am

e 

Average Loss (L) of Algorithms 

L=(Value obtained –Best Known)/Best Known 
 

G
A

-R
K

 

IA
-R

K
 

S
A

-R
K

 

T
S

-R
K

 

Bur26a 0.0192 0.0184 0.0146 0.0020 

Bur26b 0.0189 0.0192 0.0147 0.0032 

Bur26c 0.0208 0.0213 0.0163 0.0020 

Bur26d 0.0212 0.0210 0.0161 0.0025 

Bur26e 0.0217 0.0211 0.0161 0.0016 

Bur26f 0.0188 0.0192 0.0147 0.0026 

Bur26g 0.0243 0.0236 0.0176 0.0031 

Bur26h 0.0196 0.0197 0.0152 0.0019 

Bur26 0.0000 0.0000 0.0000 0.0000 

Chr12a 0.2917 0.2139 0.0849 0.1739 

Chr12b 0.2252 0.1892 0.0611 0.3724 

Chr12c 0.1550 0.1472 0.0413 0.1047 

Chr15a 0.5907 0.6261 0.3701 0.1752 

Chr15b 0.9604 0.8934 0.5690 0.3337 

Chr15c 0.7993 0.7590 0.4875 0.2933 

Chr18a 1.3320 1.2990 0.9348 0.2828 

Chr18b 0.3349 0.3498 0.2263 0.0195 

Chr20a 1.0384 1.0639 0.8098 0.1974 

Chr20b 0.9651 0.9268 0.6938 0.1284 

Chr20c 1.6919 1.6656 1.2430 0.4531 

Chr22a 0.3082 0.2937 0.2446 0.0553 

Chr22b 0.3058 0.3026 0.2389 0.0564 

Chr22c 1.6234 1.6132 1.3442 0.2679 

Els19 0.2231 0.2403 0.1485 0.2838 

Esc16a 0.0165 0.0165 0.0006 0.0000 

Esc16b 0.0000 0.0000 0.0000 0.0000 

Esc16c 0.0235 0.0178 0.0033 0.0000 

Esc16d 0.0625 0.0875 0.0000 0.0000 

Esc16e 0.0200 0.0157 0.0000 0.0014 

Esc16f 0.0000 0.0000 0.0000 0.0100 

Esc16g 0.0169 0.0077 0.0000 0.0000 

Esc16h 0.0000 0.0000 0.0000 0.0000 

Esc16i 0.0000 0.0000 0.0000 0.0000 

Esc16j 0.0000 0.0000 0.0000 0.0000 

Esc32a 0.9714 0.9606 0.8382 0.0809 

Esc32b 0.9105 0.9319 0.8510 0.1238 

Esc32c 0.0630 0.0950 0.0665 0.0000 

Esc32d 0.2470 0.2604 0.2094 0.0242 

Esc32e 0.0000 0.0000 0.0000 0.0000 

Esc32f 0.0000 0.0000 0.0000 0.0000 

Esc32g 0.1787 0.1840 0.1462 0.0276 
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Esc64a 0.4231 0.4228 0.3576 0.0000 

Esc128 1.8419 2.1531 2.0281 0.0250 

Had12 0.0140 0.0133 0.0035 0.0025 

Had14 0.0183 0.0190 0.0097 0.0038 

Had16 0.0257 0.0254 0.0170 0.0022 

Had18 0.0280 0.0273 0.0205 0.0047 

Had20 0.0340 0.0354 0.0272 0.0053 

Kra30a 0.2569 0.2589 0.2272 0.0435 

Kra30b 0.2398 0.2442 0.2157 0.0273 

Kra32 0.2674 0.2759 0.2510 0.0359 

Lipa20a 0.0386 0.0386 0.0343 0.0194 

Lipa20b 0.2004 0.1993 0.1846 0.0590 

Lipa30a 0.0322 0.0322 0.0304 0.0154 

Lipa30b 0.2252 0.2240 0.2163 0.1351 

Lipa40a 0.0266 0.0265 0.0253 0.0119 

Lipa40b 0.2511 0.2502 0.2443 0.1517 

Lipa50a 0.0237 0.0236 0.0228 0.0105 

Lipa50b 0.2484 0.2485 0.2438 0.1709 

Lipa60a 0.0211 0.0210 0.0203 0.0091 

Lipa60b 0.2644 0.2635 0.2600 0.1812 

Lipa70a 0.0188 0.0187 0.0183 0.0080 

Lipa70b 0.2707 0.2709 0.2682 0.1970 

Lipa80a 0.0171 0.0171 0.0167 0.0071 

Lipa80b 0.2807 0.2810 0.2778 0.2065 

Lipa90a 0.0157 0.0157 0.0154 0.0066 

Lipa90b 0.2817 0.2813 0.2794 0.2105 

Nug12 0.0379 0.0386 0.0140 0.0156 

Nug14 0.0685 0.0630 0.0423 0.0184 

Nug15 0.0817 0.0811 0.0536 0.0104 

Nug16a 0.0863 0.0844 0.0606 0.0188 

Nug16b 0.0923 0.1028 0.0761 0.0180 

Nug17 0.0940 0.0955 0.0670 0.0138 

Nug18 0.1024 0.1019 0.0796 0.0158 

Nug20 0.1161 0.1139 0.0907 0.0187 

Nug21 0.1382 0.1378 0.1107 0.0174 

Nug22 0.1398 0.1369 0.1118 0.0193 

Nug24 0.1552 0.1550 0.1325 0.0196 

Nug25 0.1448 0.1472 0.1259 0.0107 

Nug27 0.1587 0.1538 0.1338 0.0197 

Nug30 0.1623 0.1641 0.1445 0.0165 

Rou12 0.0523 0.0473 0.0183 0.0203 

Rou15 0.0974 0.0916 0.0689 0.0272 
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Rou20 0.1045 0.1027 0.0848 0.0155 

Scr12 0.0526 0.0531 0.0159 0.0297 

Scr15 0.1590 0.1719 0.1218 0.0601 

Scr20 0.2961 0.3018 0.2316 0.0328 

Sko42 0.1588 0.1622 0.1495 0.0166 

Sko49 0.1517 0.1521 0.1433 0.0170 

Sko56 0.1542 0.1563 0.1477 0.0172 

Sko64 0.1458 0.1462 0.1379 0.0164 

Sko72 0.1432 0.1434 0.1382 0.0163 

Sko81 0.1371 0.1378 0.1338 0.0148 

Sko90 0.1369 0.1371 0.1336 0.0156 

Sko100a 0.1318 0.1313 0.1277 0.0136 

Sko100b 0.1302 0.1311 0.1273 0.0146 

Sko100c 0.1369 0.1371 0.1331 0.0158 

Sko100d 0.1299 0.1325 0.1283 0.0148 

Sko100e 0.1373 0.1390 0.1343 0.0159 

Sko100f 0.1295 0.1298 0.1262 0.0142 

Ste36a 0.5883 0.6019 0.5391 0.0472 

Ste36b 1.5078 1.5468 1.3096 0.1122 

Ste36c 0.5281 0.5285 0.4705 0.0511 

Tai12a 0.0824 0.0741 0.0425 0.0351 

Tai12b 0.0437 0.0325 0.0093 0.0960 

Tai15a 0.0703 0.0669 0.0480 0.0183 

Tai15b 0.0103 0.0095 0.0061 0.0030 

Tai17 0.0954 0.0928 0.0736 0.0250 

Tai20a 0.1136 0.1149 0.0983 0.0256 

Tai20b 0.0905 0.0908 0.0721 0.1414 

Tai25a 0.1206 0.1222 0.1072 0.0265 

Tai25b 0.2643 0.2503 0.1784 0.1618 

Tai30a 0.1209 0.1197 0.1089 0.0280 

Tai30b 0.2267 0.2351 0.1750 0.0988 

Tai35a 0.1288 0.1303 0.1212 0.0265 

Tai35b 0.2716 0.2612 0.2151 0.0700 

Tai40a 0.1328 0.1324 0.1253 0.0291 

Tai40b 0.3487 0.3455 0.2989 0.0821 

Tai50a 0.1365 0.1369 0.1300 0.0319 

Tai50b 0.3380 0.3337 0.3019 0.0553 

Tai60a 0.1343 0.1340 0.1285 0.0315 

Tai60b 0.3567 0.3589 0.3337 0.0630 

Tai64 0.0525 0.0508 0.0270 0.0049 

Tai80a 0.1189 0.1185 0.1157 0.0257 

Tai80b 0.3374 0.3421 0.3244 0.0420 
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Tai100b 0.1125 0.1128 0.1104 0.0236 

Tai100a 0.3282 0.3286 0.3155 0.0429 

Tho30 0.1951 0.1983 0.1721 0.0224 

Tho40 0.2326 0.2354 0.2151 0.0208 

Tho50 0.0859 0.0850 0.0798 0.0100 
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APPENDIX C: Average Losses of Permutation-based Metaheuristics (After 

Parameter Tuning)  

 

N
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e 
 

Average Loss (L) of Algorithms 

L=(Value obtained –Best Known)/Best 

Known 
 

G
A

-P
M

 

IA
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Bur26a 0.0090 0.0003 0.0146 0.0016 

Bur26b 0.0089 0.0001 0.0147 0.0020 

Bur26c 0.0101 0.0001 0.0163 0.0018 

Bur26d 0.0089 0.0000 0.0161 0.0012 

Bur26e 0.0089 0.0001 0.0161 0.0010 

Bur26f 0.0092 0.0001 0.0147 0.0024 

Bur26g 0.0096 0.0000 0.0176 0.0022 

Bur26h 0.0090 0.0001 0.0152 0.0018 

Bur26 0.0000 0.0000 0.0000 0.0000 

Chr12a 0.1329 0.0000 0.0849 0.0963 

Chr12b 0.0862 0.0000 0.0611 0.2590 

Chr12c 0.1234 0.0014 0.0413 0.0595 

Chr15a 0.4632 0.0126 0.3701 0.0802 

Chr15b 0.5568 0.0095 0.5690 0.2140 

Chr15c 0.5964 0.0849 0.4875 0.2124 

Chr18a 0.9952 0.0764 0.9348 0.1991 

Chr18b 0.2094 0.0005 0.2263 0.0096 

Chr20a 0.8325 0.1092 0.8098 0.1216 

Chr20b 0.8137 0.1058 0.6938 0.0999 

Chr20c 1.1091 0.0550 1.2430 0.2842 

Chr22a 0.2332 0.0383 0.2446 0.0538 

Chr22b 0.2367 0.0442 0.2466 0.0434 

Chr22c 1.2522 0.2159 1.3442 0.2286 

Els19 0.2622 0.0009 0.1485 0.2740 

Esc16a 0.0024 0.0000 0.0006 0.0000 

Esc16b 0.0000 0.0000 0.0000 0.0000 

Esc16c 0.0080 0.0000 0.0033 0.0000 

Esc16d 0.0200 0.0000 0.0000 0.0000 

Esc16e 0.0043 0.0000 0.0000 0.0000 

Esc16f 0.0000 0.0000 0.0000 0.0000 

Esc16g 0.0215 0.0000 0.0000 0.0000 

Esc16h 0.0000 0.0000 0.0000 0.0000 

Esc16i 0.0000 0.0000 0.0000 0.0000 

Esc16j 0.0000 0.0000 0.0000 0.0000 

Esc32a 0.6455 0.1062 0.8382 0.0452 

Esc32b 0.8929 0.1281 0.8510 0.0748 

Esc32c 0.0074 0.0000 0.0665 0.0000 

Esc32d 0.1106 0.0002 0.2094 0.0126 

Esc32e 0.0000 0.0000 0.0000 0.0000 
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Esc32f 0.0000 0.0000 0.0000 0.0000 

Esc32g 0.0819 0.0011 0.1462 0.0059 

Esc64a 0.1045 0.0000 0.3576 0.0000 

Esc128 1.5388 0.3631 2.0281 0.0163 

Had12 0.0072 0.0000 0.0035 0.0043 

Had14 0.0129 0.0000 0.0097 0.0026 

Had16 0.0167 0.0000 0.0170 0.0003 

Had18 0.0200 0.0000 0.0205 0.0021 

Had20 0.0214 0.0000 0.0272 0.0033 

Kra30a 0.1741 0.0313 0.2272 0.0358 

Kra30b 0.1458 0.0188 0.2157 0.0189 

Kra32 0.1682 0.0326 0.2510 0.0335 

Lipa20a 0.0343 0.0011 0.0343 0.0160 

Lipa20b 0.0000 0.0000 0.1846 0.0292 

Lipa30a 0.0286 0.0157 0.0304 0.0128 

Lipa30b 0.0000 0.0325 0.2163 0.0883 

Lipa40a 0.0233 0.0142 0.0253 0.0123 

Lipa40b 0.0000 0.1583 0.2443 0.1287 

Lipa50a 0.0207 0.0132 0.0228 0.0111 

Lipa50b 0.0000 0.1891 0.2438 0.1530 

Lipa60a 0.0183 0.0119 0.0203 0.0098 

Lipa60b 0.0000 0.2082 0.2600 0.1903 

Lipa70a 0.0164 0.0109 0.0183 0.0087 

Lipa70b 0.0000 0.2183 0.2682 0.1951 

Lipa80a 0.0150 0.0100 0.0167 0.0080 

Lipa80b 0.0000 0.2302 0.2778 0.2095 

Lipa90a 0.0138 0.0094 0.0154 0.0075 

Lipa90b 0.0000 0.2337 0.2794 0.2178 

Nug12 0.0302 0.0000 0.0140 0.0100 

Nug14 0.0500 0.0002 0.0423 0.0141 

Nug15 0.0560 0.0000 0.0536 0.0040 

Nug16a 0.0584 0.0005 0.0606 0.0100 

Nug16b 0.0716 0.0000 0.0761 0.0064 

Nug17 0.0639 0.0008 0.0670 0.0067 

Nug18 0.0717 0.0023 0.0796 0.0113 

Nug20 0.0831 0.0012 0.0907 0.0092 

Nug21 0.0900 0.0017 0.1107 0.0104 

Nug22 0.0846 0.0012 0.1118 0.0096 

Nug24 0.1111 0.0070 0.1325 0.0113 

Nug25 0.1029 0.0049 0.1259 0.0052 

Nug27 0.1071 0.0094 0.1338 0.0163 

Nug30 0.1192 0.0159 0.1445 0.0125 

Rou12 0.0351 0.0000 0.0183 0.0142 
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Rou15 0.0747 0.0003 0.0689 0.0197 

Rou20 0.0822 0.0055 0.0848 0.0108 

Scr12 0.0370 0.0000 0.0159 0.0273 

Scr15 0.1143 0.0000 0.1218 0.0337 

Scr20 0.2158 0.0054 0.2316 0.0161 

Sko42 0.1251 0.0265 0.1495 0.0157 

Sko49 0.1125 0.0280 0.1433 0.0168 

Sko56 0.1200 0.0362 0.1477 0.0156 

Sko64 0.1123 0.0381 0.1379 0.0161 

Sko72 0.1101 0.0401 0.1382 0.0157 

Sko81 0.1048 0.0407 0.1338 0.0127 

Sko90 0.1061 0.0429 0.1336 0.0137 

Sko100a 0.1047 0.0438 0.1277 0.0126 

Sko100b 0.1007 0.0423 0.1273 0.0135 

Sko100c 0.1069 0.0460 0.1331 0.0159 

Sko100d 0.1005 0.0430 0.1283 0.0143 

Sko100e 0.1053 0.0464 0.1343 0.0156 

Sko100f 0.0998 0.0426 0.1262 0.0367 

Ste36a 0.5410 0.0570 0.5391 0.0446 

Ste36b 0.8997 0.0822 1.3096 0.0927 

Ste36c 0.3864 0.0403 0.4705 0.0387 

Tai12a 0.0579 0.0000 0.0425 0.0241 

Tai12b 0.0269 0.0000 0.0093 0.0743 

Tai15a 0.0539 0.0006 0.0480 0.0092 

Tai15b 0.0064 0.0000 0.0061 0.0024 

Tai17 0.0744 0.0067 0.0736 0.0172 

Tai20a 0.0953 0.0143 0.0983 0.0197 

Tai20b 0.0554 0.0006 0.0721 0.1472 

Tai25a 0.0998 0.0276 0.1072 0.0231 

Tai25b 0.1512 0.0027 0.1784 0.0912 

Tai30a 0.0979 0.0315 0.1089 0.0229 

Tai30b 0.1378 0.0041 0.1750 0.1246 

Tai35a 0.1067 0.0390 0.1212 0.0276 

Tai35b 0.1300 0.0098 0.2151 0.0656 

Tai40a 0.1112 0.0458 0.1253 0.0312 

Tai40b 0.2305 0.0160 0.2989 0.0657 

Tai50a 0.1146 0.0531 0.1300 0.0359 

Tai50b 0.2080 0.0257 0.3019 0.0420 

Tai60a 0.1127 0.0569 0.1285 0.0376 

Tai60b 0.2149 0.0370 0.3337 0.0420 

Tai64 0.0183 0.0011 0.0270 0.0060 

Tai80a 0.1001 0.0544 0.1157 0.0332 
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Tai80b 0.2291 0.0695 0.3244 0.0349 

Tai100b 0.0948 0.0552 0.1104 0.0352 

Tai100a 0.2027 0.0759 0.3155 0.0312 

Tho30 0.1397 0.0144 0.1721 0.0202 

Tho40 0.1733 0.0347 0.2151 0.0228 

Tho50 0.0638 0.0147 0.0798 0.0086 
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APPENDIX D: Problem Characteristics of the 130 QAPLIB Instances  
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Bur26a 26 274.947 15.0854 0.0000000 0.223373 0.223373 

Bur26b 26 274.947 15.9127 0.0000000 0.223373 0.223373 

Bur26c 26 228.396 15.0854 0.0000000 0.257396 0.257396 

Bur26d 26 228.396 15.9127 0.0000000 0.257396 0.257396 

Bur26e 26 253.995 15.0854 0.0000000 0.312130 0.312130 

Bur26f 26 274.947 15.9127 0.0000000 0.223373 0.223373 

Bur26g 26 253.995 15.9127 0.0000000 0.312130 0.312130 

Bur26h 26 279.894 15.0854 0.0000000 0.211538 0.211538 

Bur26 26 60.000 60.000 0.0000000 0.0000000 0.0000000 

Chr12a 12 63.427 309.055 0.847222 0.0972222 0.7499998 

Chr12b 12 63.427 309.055 0.847222 0.0972222 0.7499998 

Chr12c 12 63.427 309.055 0.847222 0.0972222 0.7499998 

Chr15a 15 69.8909 327.68 0.875556 0.0666667 0.8088893 

Chr15b 15 69.8909 327.68 0.875556 0.0666667 0.8088893 

Chr15c 15 69.8909 327.68 0.875556 0.0666667 0.8088893 

Chr18a 18 63.196 351.138 0.895062 0.0555556 0.8395064 

Chr18b 18 56.9507 356.87 0.895062 0.0555556 0.8395064 

Chr20a 20 59.4589 346.373 0.9050000 0.0500000 0.8550000 

Chr20b 20 59.4589 346.373 0.9050000 0.0500000 0.8550000 

Chr20c 20 65.7126 346.373 0.9050000 0.0500000 0.8550000 

Chr22a 22 66.9564 421.056 0.913223 0.0454545 0.8677685 

Chr22b 22 66.9564 421.056 0.913223 0.0454545 0.8677685 

Chr22c 25 57.9713 424.268 0.923200 0.0400000 0.8832000 

Els19 19 531.017 52.1017 0.0526316 0.689751 0.6371194 

Esc16a 16 84.7981 170.383 0.7031250 0.312500 0.3906250 

Esc16b 16 84.7981 75.6532 0.28125 0.312500 0.0312500 

Esc16c 16 84.7981 133.361 0.601563 0.312500 0.289063 

Esc16d 16 84.7981 235.686 0.835938 0.312500 0.523438 

Esc16e 16 84.7981 249.464 0.835938 0.312500 0.523438 

Esc16f 16 84.7981 249.464 1.000000 0.312500 0.687500 

Esc16g 16 84.7981 254.62 0.835938 0.312500 0.523438 

Esc16h 16 84.7981 151.184 0.101563 0.312500 0.210937 

Esc16i 16 84.7981 296.854 0.882813 0.312500 0.570313 

Esc16j 16 84.7981 322.515 0.90625 0.312500 0.593750 

Esc32a 32 69.2714 281.567 0.855469 0.312500 0.667969 

Esc32b 32 69.2714 208.268 0.789063 0.312500 0.601563 
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Esc32c 32 69.2714 200.266 0.744141 0.187500 0.556641 

Esc32d 32 69.2714 235.484 0.824219 0.187500 0.636719 

Esc32e 32 69.2714 1091.4 0.988281 0.187500 0.800781 

Esc32f 32 69.2714 849.785 0.982422 0.187500 0.794922 

Esc32g 32 69.2714 187.852 0.724609 0.187500 0.537109 

Esc64a 64 59.1612 571.567 0.968262 0.109375 0.858887 

Esc128 128 52.0396 1153.98 0.992432 0.0625000 0.929932 

Had12 12 50.8555 63.3506 0.0833333 0.0833333 0.0000000 

Had14 14 49.5829 66.7922 0.0714286 0.0714286 0.0000000 

Had16 16 48.4975 64.9555 0.0625000 0.0625000 0.0000000 

Had18 18 47.2052 63.7798 0.0555556 0.0555556 0.0000000 

Had20 20 46.0146 64.3235 0.0500000 0.0500000 0.0000000 

Kra30a 30 149.98 49.2257 0.0333333 0.633333 0.5999997 

Kra30b 30 149.98 49.9925 0.0333333 0.633333 0.5999997 

Kra32 32 49.0145 164.222 0.677734 0.031250 0.646484 

Lipa20a 20 45.6447 39.7857 0.0975000 0.050000 0.047500 

Lipa20b 20 45.6447 68.9274 0.1075000 0.050000 0.057500 

Lipa30a 30 42.9374 32.1813 0.0655556 0.0333333 0.0322223 

Lipa30b 30 42.9374 64.0566 0.0677778 0.0333333 0.0344445 

Lipa40a 40 42.0834 27.7437 0.049375 0.0250000 0.024375 

Lipa40b 40 42.0834 64.1591 0.051875 0.0250000 0.026875 

Lipa50a 50 41.1717 24.7485 0.039600 0.0200000 0.019600 

Lipa50b 50 41.1717 61.7666 0.041200 0.0250000 0.021200 

Lipa60a 60 42.0981 22.5525 0.0330556 0.0166667 0.0163889 

Lipa60b 60 42.0981 60.457 0.0311111 0.0166667 0.0144444 

Lipa70a 70 41.9168 20.8536 0.0283673 0.0142857 0.0140816 

Lipa70b 70 41.9168 60.3477 0.0302041 0.0142857 0.0159184 

Lipa80a 80 42.2546 19.4886 0.0248438 0.0125000 0.0123438 

Lipa80b 80 42.2546 60.1628 0.0257812 0.0125000 0.0132812 

Lipa90a 90 41.8468 18.3608 0.0220988 0.0111111 0.0109877 

Lipa90b 90 41.8468 60.0246 0.0216049 0.0111111 0.0104938 

Nug12 12 116.987 57.0900 0.0833333 0.3750000 0.2916667 

Nug14 14 103.832 56.8944 0.0714286 0.306122 0.2346934 

Nug15 15 106.713 56.7082 0.0666667 0.333333 0.2666663 

Nug16a 16 100.935 57.4464 0.0625000 0.273438 0.2109380 

Nug16b 16 115.822 54.8795 0.0625000 0.34375 0.2812500 

Nug17 17 105.009 56.3567 0.0588235 0.301038 0.2422145 

Nug18 18 104.372 55.0199 0.0555556 0.302469 0.2469134 

Nug20 20 103.775 54.17 0.0500000 0.295000 0.245000 

Nug21 21 117.194 57.4498 0.047619 0.378685 0.331066 

Nug22 22 114.334 64.1521 0.0454545 0.367769 0.3223145 

Nug24 24 112.881 54.177 0.0416667 0.357639 0.3159723 

Nug25 25 110.851 53.0755 0.0400000 0.3600000 0.3200000 

Nug27 27 58.6547 111.479 0.360768 0.037037 0.323731 

Nug30 30 112.479 52.7545 0.0333333 0.348889 0.3155557 

Rou12 12 71.7881 67.2871 0.0833333 0.0972222 0.0138889 

Rou15 15 69.227 68.8924 0.0666667 0.0755556 0.0088889 
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Rou20 20 64.4326 65.6508 0.055000 0.060000 0.0050000 

Scr12 12 57.09 257.382 0.611111 0.0833333 0.5277777 

Scr15 15 55.0436 248.302 0.626667 0.0666667 0.5600003 

Scr20 20 54.17 254.652 0.690000 0.0500000 0.6400000 

Sko42 42 108.483 51.9576 0.0238095 0.316327 0.2925175 

Sko49 49 109.379 51.5496 0.0204082 0.324448 0.3040398 

Sko56 56 110.53 51.4637 0.0178571 0.323342 0.3054849 

Sko64 64 108.377 51.1829 0.015625 0.323242 0.307617 

Sko72 72 107.128 51.1362 0.0138889 0.312886 0.2989971 

Sko81 81 106.606 50.9328 0.0123457 0.306813 0.2944673 

Sko90 90 107.528 50.9077 0.0111111 0.315802 0.3046909 

Sko100a 100 106.641 50.7545 0.0100000 0.313800 0.3038000 

Sko100b 100 108.368 50.7545 0.0100000 0.317200 0.3072000 

Sko100c 100 108.072 50.7545 0.0100000 0.325600 0.3156000 

Sko100d 100 109.191 50.7545 0.0100000 0.326600 0.3166000 

Sko100e 100 110.399 50.7545 0.0100000 0.326800 0.3168000 

Sko100f 100 108.337 50.7545 0.0100000 0.324600 0.3146000 

Ste36a 36 400.305 55.6458 0.0277778 0.734568 0.7067902 

Ste36b 36 400.305 100.79 0.0277778 0.734568 0.7067902 

Ste36c 36 400.305 55.9034 0.0277778 0.734568 0.7067902 

Tai12a 12 75.0259 69.5492 0.0833333 0.111111 0.0277777 

Tai12b 12 300.652 79.4872 0.111111 0.493056 0.3819450 

Tai15a 15 70.7203 63.9191 0.0755556 0.0844444 0.0088888 

Tai15b 15 313.633 262.898 0.0666667 0.506667 0.4400003 

Tai17 17 68.9928 64.2971 0.0795848 0.0726644 0.0069204 

Tai20a 20 64.9035 67.0207 0.0650000 0.0650000 0.0000000 

Tai20b 20 333.231 128.254 0.0500000 0.4600000 0.4100000 

Tai25a 25 64.2969 61.8130 0.0432000 0.0560000 0.0128000 

Tai25b 25 310.400 87.0155 0.0400000 0.4272000 0.3872000 

Tai30a 30 63.2111 58.0009 0.0400000 0.0466667 0.0066667 

Tai30b 30 323.909 85.1987 0.0355556 0.465556 0.4300004 

Tai35a 35 61.5701 61.6406 0.0432653 0.0383673 0.004898 

Tai35b 35 309.621 78.6582 0.0285714 0.5526530 0.5240816 

Tai40a 40 60.2352 63.1039 0.0387500 0.0337500 0.0050000 

Tai40b 40 317.219 66.746 0.0250000 0.5275000 0.5025000 

Tai50a 50 62.2491 60.7488 0.0328000 0.0240000 0.0088000 

Tai50b 50 313.914 73.4436 0.0200000 0.5676000 0.5476000 

Tai60a 60 60.8573 61.4126 0.0238889 0.0272222 0.0033333 

Tai60b 60 317.823 76.8319 0.0166667 0.5644440 0.5477773 

Tai64 64 127.835 482.103 0.9587400 0.0156250 0.943115 

Tai80a 80 60.3793 59.2238 0.0228125 0.0212500 0.0015625 

Tai80b 80 323.174 64.046 0.0125000 0.5648440 0.552344 

Tai100b 100 60.3121 59.338 0.0180000 0.0212000 0.0032000 

Tai100a 100 321.342 80.4247 0.0100000 0.5615000 0.5515000 

Tho30 30 137.863 59.2507 0.0333333 0.517778 0.4844447 

Tho40 40 155.544 53.202 0.0250000 0.610000 0.5850000 

Tho50 50 66.6628 54.1983 0.0200000 0.120800 0.1008000 
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APPENDIX E: Average Losses of Random Keys-based Metaheuristics (After 

POS_PR Augmentation)  

 

N
am

e 

Average Loss (L) of Algorithms 

L=(Value obtained –Best 

Known)/Best Known 
 

G
A

-R
K

-P
R

 

IA
-R

K
-P

R
 

S
A

-R
K

-P
R

 

T
S

-R
K

-P
R

 

Bur26a 0.0056 0.0072 0.0173 0.0238 

Bur26b 0.0054 0.0088 0.0188 0.0299 

Bur26c 0.0053 0.0094 0.0207 0.0321 

Bur26d 0.0035 0.0089 0.0209 0.0291 

Bur26e 0.0054 0.0093 0.0209 0.0300 

Bur26f 0.0051 0.0078 0.0176 0.0241 

Bur26g 0.0057 0.0092 0.0228 0.0322 

Bur26h 0.0057 0.0092 0.0189 0.0258 

Bur26 0.0000 0.0000 0.0000 0.0000 

Chr12a 0.1481 0.3122 0.1734 0.9827 

Chr12b 0.1046 0.3030 0.1555 0.9639 

Chr12c 0.1279 0.2678 0.1142 0.6302 

Chr15a 0.3391 0.4961 0.5575 1.3633 

Chr15b 0.5163 0.6409 0.8407 1.7759 

Chr15c 0.4351 0.6365 0.6823 1.5300 

Chr18a 0.6838 0.8007 1.1767 1.6429 

Chr18b 0.1155 0.2122 0.3162 0.4780 

Chr20a 0.5967 0.6602 0.9748 1.2647 

Chr20b 0.3748 0.5708 0.8627 1.1689 

Chr20c 0.7675 1.1017 1.5605 2.4316 

Chr22a 0.1659 0.1947 0.2943 0.4064 

Chr22b 0.1745 0.2053 0.2838 0.3630 

Chr22c 0.9309 1.0391 1.5303 1.8231 

Els19 0.0698 0.2525 0.2194 0.6961 

Esc16a 0.0035 0.0294 0.0141 0.0500 

Esc16b 0.0000 0.0000 0.0000 0.0010 

Esc16c 0.0005 0.0098 0.0160 0.0718 

Esc16d 0.0150 0.0750 0.0250 0.1975 

Esc16e 0.0214 0.0714 0.0086 0.0957 

Esc16f 0.0000 0.0000 0.0000 -1.0000 

Esc16g 0.0000 0.0692 0.0092 0.1877 
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Esc16h 0.0000 0.0007 0.0000 0.0229 

Esc16i 0.0000 0.0086 0.0000 0.1571 

Esc16j 0.0000 0.0700 0.0000 0.2500 

Esc32a 0.5040 0.4846 0.9262 0.9200 

Esc32b 0.5376 0.6190 0.9114 0.8781 

Esc32c 0.0009 0.0310 0.0914 0.1206 

Esc32d 0.1012 0.1356 0.2494 0.2480 

Esc32e 0.0000 0.0000 0.0000 1.2600 

Esc32f 0.0000 0.1067 0.0000 0.5067 

Esc32g 0.0574 0.0863 0.1779 0.1629 

Esc64a 0.1579 0.2166 0.4376 0.4248 

Esc128 1.3494 1.6113 2.2138 2.0294 

Had12 0.0040 0.0089 0.0106 0.0381 

Had14 0.0028 0.0071 0.0151 0.0441 

Had16 0.0037 0.0112 0.0247 0.0402 

Had18 0.0072 0.0148 0.0275 0.0358 

Had20 0.0085 0.0145 0.0333 0.0502 

Kra30a 0.1161 0.1504 0.2529 0.2457 

Kra30b 0.0930 0.1339 0.2336 0.2480 

Kra32 0.1416 0.1650 0.2733 0.2619 

Lipa20a 0.0304 0.0318 0.0374 0.0413 

Lipa20b 0.1661 0.1730 0.1945 0.2043 

Lipa30a 0.0258 0.0256 0.0317 0.0320 

Lipa30b 0.1959 0.1964 0.2230 0.2255 

Lipa40a 0.0213 0.0212 0.0264 0.0258 

Lipa40b 0.2243 0.2226 0.2491 0.2442 

Lipa50a 0.0195 0.0191 0.0234 0.0225 

Lipa50b 0.2264 0.2227 0.2479 0.2388 

Lipa60a 0.0176 0.0171 0.0210 0.0196 

Lipa60b 0.2440 0.2404 0.2627 0.2486 

Lipa70a 0.0161 0.0154 0.0187 0.0224 

Lipa70b 0.2536 0.2496 0.2709 0.2586 

Lipa80a 0.0147 0.0142 0.0170 0.0212 

Lipa80b 0.2650 0.2598 0.2803 0.2671 

Lipa90a 0.0136 0.0132 0.0157 0.0196 

Lipa90b 0.2671 0.2627 0.2814 0.2709 

Nug12 0.0253 0.0461 0.0323 0.0947 

Nug14 0.0361 0.0529 0.0558 0.0968 

Nug15 0.0300 0.0496 0.0739 0.1364 

Nug16a 0.0412 0.0557 0.0802 0.1207 

Nug16b 0.0418 0.0677 0.0902 0.1357 

Nug17 0.0384 0.0542 0.0855 0.1265 
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Nug18 0.0434 0.0625 0.0955 0.1343 

Nug20 0.0447 0.0627 0.1071 0.1415 

Nug21 0.0502 0.0728 0.1343 0.1592 

Nug22 0.0319 0.0703 0.1315 0.1588 

Nug24 0.0656 0.0909 0.1507 0.1647 

Nug25 0.0575 0.0820 0.1441 0.1523 

Nug27 0.0830 0.0882 0.1517 0.1573 

Nug30 0.0698 0.0998 0.1564 0.1693 

Rou12 0.0388 0.0524 0.0407 0.0926 

Rou15 0.0626 0.0723 0.0872 0.1348 

Rou20 0.0634 0.0702 0.0994 0.1147 

Scr12 0.0422 0.0703 0.0455 0.1504 

Scr15 0.0913 0.1184 0.1633 0.2452 

Scr20 0.1297 0.1569 0.2730 0.3627 

Sko42 0.0832 0.1052 0.1600 0.1568 

Sko49 0.0831 0.1009 0.1518 0.1449 

Sko56 0.0860 0.1055 0.1567 0.1417 

Sko64 0.0874 0.1015 0.1441 0.1321 

Sko72 0.0875 0.1033 0.1428 0.1357 

Sko81 0.0832 0.1006 0.1385 0.1222 

Sko90 0.0875 0.1012 0.1374 0.1306 

Sko100a 0.0872 0.0989 0.1318 0.1185 

Sko100b 0.0861 0.0977 0.1308 0.1192 

Sko100c 0.0918 0.1057 0.1376 0.1242 

Sko100d 0.0875 0.0994 0.1324 0.1173 

Sko100e 0.0918 0.1051 0.1385 0.1288 

Sko100f 0.0838 0.0983 0.1401 0.1292 

Ste36a 0.2329 0.3313 0.6106 0.6105 

Ste36b 0.5444 0.7251 1.4749 1.5574 

Ste36c 0.1865 0.2843 0.5079 0.5186 

Tai12a 0.0623 0.0860 0.0674 0.1354 

Tai12b 0.0141 0.0792 0.0319 0.2208 

Tai15a 0.0442 0.0564 0.0631 0.0921 

Tai15b 0.0049 0.0060 0.0115 0.5088 

Tai17 0.0657 0.0684 0.0908 0.1164 

Tai20a 0.0699 0.0831 0.1103 0.1291 

Tai20b 0.0325 0.1231 0.0890 0.3515 

Tai25a 0.0826 0.0825 0.1207 0.1329 

Tai25b 0.1000 0.1757 0.2395 0.5111 

Tai30a 0.0842 0.0830 0.1189 0.1205 

Tai30b 0.0835 0.1759 0.2373 0.3452 

Tai35a 0.0934 0.0903 0.1307 0.1287 
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Tai35b 0.0810 0.1692 0.2550 0.3266 

Tai40a 0.0993 0.0944 0.1351 0.1287 

Tai40b 0.1276 0.1994 0.3306 0.3368 

Tai50a 0.1076 0.1017 0.1382 0.1279 

Tai50b 0.1212 0.1887 0.3373 0.3307 

Tai60a 0.1059 0.1020 0.1350 0.1291 

Tai60b 0.1302 0.2217 0.3454 0.3220 

Tai64 0.0066 0.0700 0.0601 0.0877 

Tai80a 0.0986 0.0926 0.1235 0.1155 

Tai80b 0.1676 0.2282 0.3341 0.2883 

Tai100b 0.0963 0.0919 0.1194 0.1047 

Tai100a 0.1776 0.2315 0.3278 0.3074 

Tho30 0.0694 0.1164 0.1933 0.2172 

Tho40 0.1111 0.1406 0.2285 0.2196 

Tho50 0.0443 0.0545 0.0848 0.0844 
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APPENDIX F: Average Losses of Permutation-based Metaheuristics (After POS_PR 

Augmentation)  

 

 

N
am

e 

Average Loss (L) of Algorithms 

L=(Value obtained –Best 

Known)/Best Known 
 

G
A

-P
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R
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-P

M
-P

R
 

S
A

-P
M

-P
R
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S

-P
M

-P
R

 

Bur26a 0.001 0.000 0.016 0.000 

Bur26b 0.000 0.000 0.018 0.000 

Bur26c 0.000 0.000 0.018 0.000 

Bur26d 0.000 0.000 0.018 0.000 

Bur26e 0.000 0.000 0.018 0.000 

Bur26f 0.000 0.000 0.016 0.000 

Bur26g 0.000 0.000 0.020 0.000 

Bur26h 0.000 0.000 0.016 0.000 

Bur26 0.000 0.000 0.000 0.000 

Chr12a 0.002 0.000 0.219 0.000 

Chr12b 0.000 0.000 0.262 0.000 

Chr12c 0.005 0.002 0.133 0.000 

Chr15a 0.023 0.013 0.410 0.000 

Chr15b 0.043 0.014 0.747 0.000 

Chr15c 0.069 0.072 0.568 0.000 

Chr18a 0.138 0.091 1.108 0.036 

Chr18b 0.001 0.000 0.251 0.000 

Chr20a 0.141 0.107 0.930 0.002 

Chr20b 0.132 0.113 0.740 0.054 

Chr20c 0.108 0.058 1.301 0.047 

Chr22a 0.052 0.037 0.298 0.016 

Chr22b 0.048 0.045 0.260 0.026 

Chr22c 0.270 0.231 1.450 0.097 

Els19 0.002 0.001 0.186 0.000 

Esc16a 0.000 0.000 0.024 0.000 

Esc16b 0.000 0.000 0.000 0.000 

Esc16c 0.000 0.000 0.017 0.000 

Esc16d 0.000 0.000 0.050 0.000 

Esc16e 0.000 0.000 0.001 0.000 

Esc16f 0.000 0.000 0.000 0.000 

Esc16g 0.000 0.000 0.014 0.000 
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Esc16h 0.000 0.000 0.010 0.000 

Esc16i 0.000 0.000 0.040 0.000 

Esc16j 0.000 0.000 0.015 0.000 

Esc32a 0.128 0.101 0.805 0.000 

Esc32b 0.172 0.131 0.771 0.000 

Esc32c 0.000 0.000 0.074 0.000 

Esc32d 0.000 0.001 0.199 0.000 

Esc32e 0.000 0.000 0.280 0.000 

Esc32f 0.000 0.000 0.233 0.000 

Esc32g 0.004 0.001 0.142 0.000 

Esc64a 0.000 0.000 0.358 0.000 

Esc128 0.228 0.359 1.824 0.000 

Had12 0.000 0.000 0.006 0.000 

Had14 0.000 0.000 0.021 0.000 

Had16 0.000 0.000 0.022 0.000 

Had18 0.000 0.000 0.025 0.000 

Had20 0.000 0.000 0.030 0.018 

Kra30a 0.035 0.031 0.225 0.002 

Kra30b 0.020 0.017 0.214 0.000 

Kra32 0.030 0.033 0.248 0.000 

Lipa20a 0.007 0.002 0.035 0.000 

Lipa20b 0.000 0.000 0.189 0.015 

Lipa30a 0.018 0.016 0.030 0.000 

Lipa30b 0.027 0.033 0.216 0.011 

Lipa40a 0.015 0.014 0.025 0.000 

Lipa40b 0.125 0.165 0.243 0.010 

Lipa50a 0.014 0.013 0.023 0.000 

Lipa50b 0.185 0.189 0.244 0.008 

Lipa60a 0.013 0.012 0.020 0.008 

Lipa60b 0.212 0.208 0.258 0.008 

Lipa70a 0.012 0.011 0.019 0.008 

Lipa70b 0.222 0.219 0.267 0.007 

Lipa80a 0.011 0.010 0.017 0.008 

Lipa80b 0.235 0.230 0.278 0.006 

Lipa90a 0.010 0.009 0.015 0.014 

Lipa90b 0.238 0.234 0.277 0.000 

Nug12 0.001 0.000 0.022 0.000 

Nug14 0.001 0.000 0.054 0.000 

Nug15 0.000 0.000 0.059 0.000 

Nug16a 0.005 0.001 0.069 0.000 

Nug16b 0.000 0.000 0.077 0.000 

Nug17 0.004 0.001 0.073 0.000 
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Nug18 0.007 0.001 0.079 0.000 

Nug20 0.006 0.002 0.096 0.000 

Nug21 0.005 0.002 0.114 0.000 

Nug22 0.001 0.001 0.125 0.000 

Nug24 0.012 0.007 0.138 0.000 

Nug25 0.008 0.004 0.129 0.000 

Nug27 0.013 0.009 0.138 0.001 

Nug30 0.021 0.016 0.154 0.000 

Rou12 0.001 0.000 0.036 0.000 

Rou15 0.005 0.000 0.078 0.002 

Rou20 0.014 0.007 0.083 0.000 

Scr12 0.000 0.000 0.046 0.000 

Scr15 0.006 0.000 0.133 0.000 

Scr20 0.013 0.005 0.233 0.008 

Sko42 0.034 0.026 0.157 0.010 

Sko49 0.035 0.030 0.142 0.008 

Sko56 0.041 0.036 0.147 0.011 

Sko64 0.045 0.036 0.139 0.010 

Sko72 0.046 0.041 0.140 0.005 

Sko81 0.046 0.041 0.131 0.008 

Sko90 0.049 0.043 0.134 0.007 

Sko100a 0.052 0.045 0.128 0.008 

Sko100b 0.050 0.043 0.131 0.008 

Sko100c 0.054 0.046 0.134 0.011 

Sko100d 0.048 0.043 0.128 0.009 

Sko100e 0.053 0.047 0.138 0.011 

Sko100f 0.049 0.043 0.127 0.011 

Ste36a 0.063 0.057 0.574 0.000 

Ste36b 0.095 0.083 1.312 0.001 

Ste36c 0.040 0.038 0.484 0.000 

Tai12a 0.000 0.000 0.051 0.000 

Tai12b 0.000 0.000 0.020 0.000 

Tai15a 0.004 0.001 0.060 0.000 

Tai15b 0.000 0.000 0.008 0.000 

Tai17 0.015 0.006 0.081 0.007 

Tai20a 0.022 0.014 0.098 0.000 

Tai20b 0.001 0.001 0.080 0.009 

Tai25a 0.033 0.026 0.103 0.001 

Tai25b 0.002 0.003 0.208 0.015 

Tai30a 0.038 0.031 0.107 0.003 

Tai30b 0.008 0.004 0.208 0.015 

Tai35a 0.045 0.038 0.122 0.005 
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Tai35b 0.009 0.010 0.230 0.020 

Tai40a 0.053 0.045 0.125 0.011 

Tai40b 0.034 0.013 0.287 0.022 

Tai50a 0.060 0.053 0.126 0.003 

Tai50b 0.042 0.026 0.312 0.027 

Tai60a 0.064 0.057 0.130 0.004 

Tai60b 0.050 0.037 0.345 0.000 

Tai64 0.002 0.001 0.031 0.021 

Tai80a 0.060 0.055 0.117 0.016 

Tai80b 0.084 0.069 0.323 0.025 

Tai100b 0.061 0.055 0.110 0.011 

Tai100a 0.082 0.075 0.325 0.005 

Tho30 0.021 0.014 0.170 0.006 

Tho40 0.043 0.035 0.215 0.003 

Tho50 0.018 0.015 0.081 0.003 
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APPENDIX G: Classification of QAPLIB Using POS_PR Augmentation and Problem Characteristics  

Flow Dominance (FD): LOW (<=60), Moderate (60-200), and High (200>)   

Distance Dominance (DD): LOW (<=100), Moderate (100-200), and High (200>)  

Sparsity: LOW (<=0.5), Moderate (0.5-0.7), and High (0.7>) 

Coefficient of Correlation: LOW (<= 0.1), Moderate ( 0.1 -  0.5), and High ( >0.5) 

Problem Size: LOW (<=40), Moderate (40-75), and High (75>) 

 

 

Name Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 FD DD Sparsity 

Correlation 

N: Negative 

P: Positive 

Problem Size 

Bur26a 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
HIGH LOW LOW LOW (N) LOW 

Bur26b 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
HIGH LOW LOW LOW (N) LOW 

Bur26c 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
HIGH LOW LOW LOW (N) LOW 

Bur26d 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
HIGH LOW LOW LOW (P) LOW 

Bur26e 
TS-PM-

PR 

GA-PM-

PR 

IA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
HIGH LOW LOW LOW (P) LOW 

Bur26f 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
HIGH LOW LOW LOW (N) LOW 

Bur26g 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
HIGH LOW LOW LOW (P) LOW 

Bur26h 
TS-PM-

PR 

GA-PM-

PR 

IA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
HIGH LOW LOW LOW (N) LOW 

Bur26 ALL ALL ALL ALL ALL ALL ALL ALL LOW LOW LOW LOW (P) LOW 

Chr12a 
IA-PM-

PR 

TS-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

SA-RK-

PR 

SA-PM-

PR 

IA-RK-

PR 

TS-RK-

PR 
LOW HIGH HIGH LOW (N) LOW 

Chr12b 
GA-PM-

PR 
IA-PM-

PR 
TS-PM-

PR 
GA-RK-

PR 
SA-RK-

PR 
SA-PM-

PR 
IA-RK-

PR 
TS-RK-

PR 
LOW HIGH HIGH LOW (N) LOW 

Chr12c 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

SA-RK-

PR 

GA-RK-

PR 

SA-PM-

PR 

IA-RK-

PR 

TS-RK-

PR 
LOW HIGH HIGH MODERATE (N) LOW 

Chr15a 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
GA-RK-

PR 
SA-PM-

PR 
IA-RK-

PR 
SA-RK-

PR 
TS-RK-

PR 
LOW HIGH HIGH MODERATE (P) LOW 
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Name Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 FD DD Sparsity 

Correlation 

N: Negative 

P: Positive 

Problem Size 

Chr15b 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
LOW HIGH HIGH LOW (P) LOW 

Chr15c 
TS-PM-

PR 
GA-PM-

PR 
IA-PM-

PR 
GA-RK-

PR 
SA-PM-

PR 
IA-RK-

PR 
SA-RK-

PR 
TS-RK-

PR 
LOW HIGH HIGH LOW (P) LOW 

Chr18a 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
LOW HIGH HIGH LOW (N) LOW 

Chr18b 
IA-PM-

PR 
TS-PM-

PR 
GA-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
TS-RK-

PR 
LOW HIGH HIGH MODERATE (N) LOW 

Chr20a 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
LOW HIGH HIGH LOW (P) LOW 

Chr20b 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
TS-RK-

PR 
LOW HIGH HIGH MODERATE (N) LOW 

Chr20c 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
LOW HIGH HIGH LOW (P) LOW 

Chr22a 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
SA-RK-

PR 
SA-PM-

PR 
TS-RK-

PR 
LOW HIGH HIGH LOW (N) LOW 

Chr22b 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
LOW HIGH HIGH LOW (P) LOW 

Chr22c 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
TS-RK-

PR 
LOW HIGH HIGH LOW (P) LOW 

Els19 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

IA-RK-

PR 

TS-RK-

PR 
HIGH LOW MODERATE MODERATE (N) LOW 

Esc16a 
GA-PM-

PR 
IA-PM-

PR 
TS-PM-

PR 
GA-RK-

PR 
SA-RK-

PR 
SA-PM-

PR 
IA-RK-

PR 
TS-RK-

PR 
MODERATE MODERATE LOW LOW (N) LOW 

Esc16b ALL ALL ALL ALL ALL ALL ALL ALL MODERATE MODERATE LOW MODERATE (P) LOW 

Esc16c 
GA-PM-

PR 

IA-PM-

PR 

TS-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-RK-

PR 

SA-PM-

PR 

TS-RK-

PR 
MODERATE MODERATE LOW MODERATE (N) LOW 

Esc16d 
GA-PM-

PR 
IA-PM-

PR 
TS-PM-

PR 
GA-RK-

PR 
SA-RK-

PR 
SA-PM-

PR 
IA-RK-

PR 
TS-RK-

PR 
MODERATE HIGH MODERATE MODERATE (P) LOW 

Esc16e 
GA-PM-

PR 

IA-PM-

PR 

TS-PM-

PR 

SA-PM-

PR 

SA-RK-

PR 

GA-RK-

PR 

IA-RK-

PR 

TS-RK-

PR 
MODERATE HIGH MODERATE LOW (N) LOW 

Esc16f ALL ALL ALL ALL ALL ALL ALL ALL MODERATE HIGH MODERATE LOW (P) LOW 

Esc16g 
GA-RK-

PR 

GA-PM-

PR 

IA-PM-

PR 

TS-PM-

PR 

SA-RK-

PR 

SA-PM-

PR 

IA-RK-

PR 

TS-RK-

PR 
MODERATE HIGH MODERATE MODERATE (N) LOW 

Esc16h 
GA-RK-

PR 

SA-RK-

PR 

GA-PM-

PR 

IA-PM-

PR 

TS-PM-

PR 

IA-RK-

PR 

SA-PM-

PR 

TS-RK-

PR 
MODERATE MODERATE LOW MODERATE (P) LOW 

Esc16i 
GA-RK-

PR 

SA-RK-

PR 

GA-PM-

PR 

IA-PM-

PR 

TS-PM-

PR 

IA-RK-

PR 

SA-PM-

PR 

TS-RK-

PR 
MODERATE HIGH MODERATE LOW (N) LOW 
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Name Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 FD DD Sparsity 

Correlation 

N: Negative 

P: Positive 

Problem Size 

Esc16j 
GA-RK-

PR 

SA-RK-

PR 

GA-PM-

PR 

IA-PM-

PR 

TS-PM-

PR 

SA-PM-

PR 

IA-RK-

PR 

TS-RK-

PR 
MODERATE HIGH MODERATE LOW (N) LOW 

Esc32a 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
IA-RK-

PR 
GA-RK-

PR 
SA-PM-

PR 
TS-RK-

PR 
SA-RK-

PR 
LOW HIGH MODERATE LOW (N) LOW 

Esc32b 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

TS-RK-

PR 

SA-RK-

PR 
LOW HIGH MODERATE MODERATE (N) LOW 

Esc32c 
GA-PM-

PR 
IA-PM-

PR 
TS-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
TS-RK-

PR 
LOW HIGH MODERATE LOW (N) LOW 

Esc32d 
GA-PM-

PR 

TS-PM-

PR 

IA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

TS-RK-

PR 

SA-RK-

PR 
LOW HIGH MODERATE LOW (N) LOW 

Esc32e 
GA-RK-

PR 
IA-RK-

PR 
SA-RK-

PR 
GA-PM-

PR 
IA-PM-

PR 
TS-PM-

PR 
SA-PM-

PR 
TS-RK-

PR 
LOW HIGH HIGH LOW (N) LOW 

Esc32f 
GA-RK-

PR 

SA-RK-

PR 

GA-PM-

PR 

IA-PM-

PR 

TS-PM-

PR 

IA-RK-

PR 

SA-PM-

PR 

TS-RK-

PR 
LOW HIGH HIGH LOW (N) LOW 

Esc32g 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
SA-PM-

PR 
TS-RK-

PR 
SA-RK-

PR 
LOW MODERATE MODERATE LOW (N) LOW 

Esc64a 
GA-PM-

PR 

IA-PM-

PR 

TS-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

TS-RK-

PR 

SA-RK-

PR 
LOW HIGH HIGH LOW (N) MODERATE 

Esc128 
TS-PM-

PR 
GA-PM-

PR 
IA-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
SA-PM-

PR 
TS-RK-

PR 
SA-RK-

PR 
LOW HIGH HIGH MODERATE (P) HIGH 

Had12 
GA-PM-

PR 

IA-PM-

PR 

TS-PM-

PR 

GA-RK-

PR 

SA-PM-

PR 

IA-RK-

PR 

SA-RK-

PR 

TS-RK-

PR 
LOW LOW LOW MODERATE (P) LOW 

Had14 
GA-PM-

PR 
IA-PM-

PR 
TS-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
SA-RK-

PR 
SA-PM-

PR 
TS-RK-

PR 
LOW LOW LOW MODERATE (P) LOW 

Had16 
GA-PM-

PR 

IA-PM-

PR 

TS-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
LOW LOW LOW MODERATE (P) LOW 

Had18 
IA-PM-

PR 
TS-PM-

PR 
GA-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
TS-RK-

PR 
LOW LOW LOW MODERATE (P) LOW 

Had20 
IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

TS-PM-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
LOW LOW LOW MODERATE (P) LOW 

Kra30a 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
SA-PM-

PR 
TS-RK-

PR 
SA-RK-

PR 
MODERATE LOW MODERATE LOW (N) LOW 

Kra30b 
GA-RK-

PR 

IA-RK-

PR 

SA-RK-

PR 

TS-RK-

PR 

GA-PM-

PR 

IA-PM-

PR 

SA-PM-

PR 

TS-PM-

PR 
MODERATE LOW MODERATE LOW (N) LOW 

Kra32 
TS-PM-

PR 

GA-PM-

PR 

IA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

TS-RK-

PR 

SA-RK-

PR 
LOW MODERATE MODERATE LOW (N) LOW 

Lipa20a 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
LOW LOW LOW MODERATE (P) LOW 

Lipa20b 
GA-PM-

PR 
IA-PM-

PR 
TS-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
TS-RK-

PR 
LOW LOW LOW HIGH (N) LOW 
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Name Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 FD DD Sparsity 

Correlation 

N: Negative 

P: Positive 

Problem Size 

Lipa30a 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

IA-RK-

PR 

GA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
LOW LOW LOW MODERATE (P) LOW 

Lipa30b 
TS-PM-

PR 
GA-PM-

PR 
IA-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
TS-RK-

PR 
LOW LOW LOW HIGH (N) LOW 

Lipa40a 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

IA-RK-

PR 

GA-RK-

PR 

SA-PM-

PR 

TS-RK-

PR 

SA-RK-

PR 
LOW LOW LOW MODERATE (P) MODERATE 

Lipa40b 
TS-PM-

PR 
GA-PM-

PR 
IA-PM-

PR 
IA-RK-

PR 
GA-RK-

PR 
SA-PM-

PR 
TS-RK-

PR 
SA-RK-

PR 
LOW LOW LOW HIGH (N) MODERATE 

Lipa50a 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

IA-RK-

PR 

GA-RK-

PR 

TS-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 
LOW LOW LOW MODERATE (P) MODERATE 

Lipa50b 
TS-PM-

PR 
GA-PM-

PR 
IA-PM-

PR 
IA-RK-

PR 
GA-RK-

PR 
TS-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
LOW LOW LOW HIGH (N) MODERATE 

Lipa60a 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

IA-RK-

PR 

GA-RK-

PR 

TS-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 
LOW LOW LOW MODERATE (P) MODERATE 

Lipa60b 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
IA-RK-

PR 
GA-RK-

PR 
TS-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
LOW LOW LOW HIGH (N) MODERATE 

Lipa70a 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

IA-RK-

PR 

GA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
LOW LOW LOW MODERATE (P) MODERATE 

Lipa70b 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
IA-RK-

PR 
GA-RK-

PR 
TS-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
LOW LOW LOW HIGH (N) MODERATE 

Lipa80a 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

IA-RK-

PR 

GA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
LOW LOW LOW MODERATE (P) HIGH 

Lipa80b 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
IA-RK-

PR 
GA-RK-

PR 
TS-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
LOW LOW LOW HIGH (N) HIGH 

Lipa90a 
IA-PM-

PR 

GA-PM-

PR 

IA-RK-

PR 

GA-RK-

PR 

TS-PM-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
LOW LOW LOW MODERATE (P) HIGH 

Lipa90b 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
IA-RK-

PR 
GA-RK-

PR 
TS-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
LOW LOW LOW HIGH (N) HIGH 

Nug12 
IA-PM-

PR 

TS-PM-

PR 

GA-PM-

PR 

SA-PM-

PR 

GA-RK-

PR 

SA-RK-

PR 

IA-RK-

PR 

TS-RK-

PR 
MODERATE LOW LOW LOW (N) LOW 

Nug14 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
TS-RK-

PR 
MODERATE LOW LOW LOW (P) LOW 

Nug15 
IA-PM-

PR 

TS-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
MODERATE LOW LOW LOW (P) LOW 

Nug16a 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
MODERATE LOW LOW MODERATE (P) LOW 

Nug16b 
GA-PM-

PR 

IA-PM-

PR 

TS-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
MODERATE LOW LOW LOW (P) LOW 

Nug17 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
TS-RK-

PR 
MODERATE LOW LOW MODERATE (P) LOW 
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Name Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 FD DD Sparsity 

Correlation 

N: Negative 

P: Positive 

Problem Size 

Nug18 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
MODERATE LOW LOW MODERATE (P) LOW 

Nug20 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
TS-RK-

PR 
MODERATE LOW LOW MODERATE (P) LOW 

Nug21 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
MODERATE LOW LOW LOW (P) LOW 

Nug22 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
TS-RK-

PR 
MODERATE LOW LOW LOW (P) LOW 

Nug24 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
MODERATE LOW LOW LOW (P) LOW 

Nug25 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
TS-RK-

PR 
MODERATE LOW LOW LOW (P) LOW 

Nug27 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
LOW MODERATE LOW MODERATE (P) LOW 

Nug30 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
TS-RK-

PR 
MODERATE LOW LOW LOW (P) LOW 

Rou12 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

SA-PM-

PR 

GA-RK-

PR 

SA-RK-

PR 

IA-RK-

PR 

TS-RK-

PR 
MODERATE LOW LOW LOW (P) LOW 

Rou15 
IA-PM-

PR 
TS-PM-

PR 
GA-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
TS-RK-

PR 
LOW LOW LOW LOW (P) LOW 

Rou20 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
LOW LOW LOW LOW (P) LOW 

Scr12 
GA-PM-

PR 
IA-PM-

PR 
TS-PM-

PR 
GA-RK-

PR 
SA-RK-

PR 
SA-PM-

PR 
IA-RK-

PR 
TS-RK-

PR 
LOW HIGH MODERATE LOW (N) LOW 

Scr15 
IA-PM-

PR 

TS-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
LOW HIGH MODERATE MODERATE (N) LOW 

Scr20 
IA-PM-

PR 
TS-PM-

PR 
GA-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
TS-RK-

PR 
LOW HIGH MODERATE LOW (N) LOW 

Sko42 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

TS-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 
MODERATE LOW LOW LOW (P) MODERATE 

Sko49 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
SA-PM-

PR 
TS-RK-

PR 
SA-RK-

PR 
MODERATE LOW LOW LOW (P) MODERATE 

Sko56 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

TS-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 
MODERATE LOW LOW LOW (P) MODERATE 

Sko64 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

TS-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 
MODERATE LOW LOW LOW (P) MODERATE 

Sko72 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

TS-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 
MODERATE LOW LOW LOW (P) MODERATE 

Sko81 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
TS-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
MODERATE LOW LOW LOW (P) HIGH 
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Name Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 FD DD Sparsity 

Correlation 

N: Negative 

P: Positive 

Problem Size 

Sko90 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

TS-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 
MODERATE LOW LOW LOW (P) HIGH 

Sko100a 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
TS-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
MODERATE LOW LOW LOW (P) HIGH 

Sko100b 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

TS-RK-

PR 

SA-RK-

PR 

SA-PM-

PR 
MODERATE LOW LOW LOW (P) HIGH 

Sko100c 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
TS-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
MODERATE LOW LOW LOW (P) HIGH 

Sko100d 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

TS-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 
MODERATE LOW LOW LOW (P) HIGH 

Sko100e 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
TS-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
MODERATE LOW LOW LOW (N) HIGH 

Sko100f 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

TS-RK-

PR 

SA-RK-

PR 
MODERATE LOW LOW LOW (P) HIGH 

Ste36a 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
SA-PM-

PR 
TS-RK-

PR 
SA-RK-

PR 
HIGH LOW HIGH LOW (N) LOW 

Ste36b 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
HIGH MODERATE HIGH LOW (N) LOW 

Ste36c 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
TS-RK-

PR 
HIGH LOW HIGH MODERATE (N) LOW 

Tai12a 
IA-PM-

PR 

TS-PM-

PR 

GA-PM-

PR 

SA-PM-

PR 

GA-RK-

PR 

SA-RK-

PR 

IA-RK-

PR 

TS-RK-

PR 
MODERATE LOW LOW MODERATE (P) LOW 

Tai12b 
GA-PM-

PR 
IA-PM-

PR 
TS-PM-

PR 
GA-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
IA-RK-

PR 
TS-RK-

PR 
HIGH MODERATE LOW MODERATE (P) LOW 

Tai15a 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
MODERATE LOW LOW LOW (P) LOW 

Tai15b 
GA-PM-

PR 
IA-PM-

PR 
TS-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
TS-RK-

PR 
HIGH HIGH LOW MODERATE (P) LOW 

Tai17 
IA-PM-

PR 

TS-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
LOW LOW LOW MODERATE (P) LOW 

Tai20a 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
TS-RK-

PR 
LOW LOW LOW LOW (P) LOW 

Tai20b 
IA-PM-

PR 

GA-PM-

PR 

TS-PM-

PR 

GA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

IA-RK-

PR 

TS-RK-

PR 
HIGH MODERATE LOW LOW (N) LOW 

Tai25a 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

IA-RK-

PR 

GA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
LOW LOW LOW LOW (P) LOW 

Tai25b 
GA-PM-

PR 

IA-PM-

PR 

TS-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
HIGH MODERATE LOW LOW (P) LOW 

Tai30a 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
IA-RK-

PR 
GA-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
TS-RK-

PR 
LOW LOW LOW MODERATE (P) LOW 
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Name Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 FD DD Sparsity 

Correlation 

N: Negative 

P: Positive 

Problem Size 

Tai30b 
IA-PM-

PR 

GA-PM-

PR 

TS-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
HIGH MODERATE LOW LOW (P) LOW 

Tai35a 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
IA-RK-

PR 
GA-RK-

PR 
SA-PM-

PR 
TS-RK-

PR 
SA-RK-

PR 
LOW LOW LOW LOW (P) LOW 

Tai35b 
GA-PM-

PR 

IA-PM-

PR 

TS-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
HIGH MODERATE MODERATE LOW (N) LOW 

Tai40a 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
IA-RK-

PR 
GA-RK-

PR 
SA-PM-

PR 
TS-RK-

PR 
SA-RK-

PR 
LOW LOW LOW MODERATE (P) MODERATE 

Tai40b 
IA-PM-

PR 

TS-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
HIGH LOW LOW LOW (P) MODERATE 

Tai50a 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
IA-RK-

PR 
GA-RK-

PR 
SA-PM-

PR 
TS-RK-

PR 
SA-RK-

PR 
LOW LOW LOW LOW (P) MODERATE 

Tai50b 
IA-PM-

PR 

TS-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

TS-RK-

PR 

SA-RK-

PR 
HIGH MODERATE MODERATE LOW (N) MODERATE 

Tai60a 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
IA-RK-

PR 
GA-RK-

PR 
TS-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
LOW LOW LOW LOW (P) MODERATE 

Tai60b 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

TS-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 
HIGH MODERATE MODERATE LOW (P) MODERATE 

Tai64 
IA-PM-

PR 
GA-PM-

PR 
GA-RK-

PR 
TS-PM-

PR 
SA-PM-

PR 
SA-RK-

PR 
IA-RK-

PR 
TS-RK-

PR 
MODERATE HIGH HIGH MODERATE (P) MODERATE 

Tai80a 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

IA-RK-

PR 

GA-RK-

PR 

TS-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 
LOW LOW LOW LOW (P) HIGH 

Tai80b 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
TS-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
HIGH LOW MODERATE LOW (P) HIGH 

Tai100b 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

IA-RK-

PR 

GA-RK-

PR 

TS-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 
LOW LOW LOW LOW (P) HIGH 

Tai100a 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
TS-RK-

PR 
SA-PM-

PR 
SA-RK-

PR 
HIGH MODERATE MODERATE LOW (P) HIGH 

Tho30 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

SA-RK-

PR 

TS-RK-

PR 
MODERATE LOW LOW LOW (N) LOW 

Tho40 
TS-PM-

PR 
IA-PM-

PR 
GA-PM-

PR 
GA-RK-

PR 
IA-RK-

PR 
SA-PM-

PR 
TS-RK-

PR 
SA-RK-

PR 
MODERATE LOW MODERATE LOW (P) MODERATE 

Tho50 
TS-PM-

PR 

IA-PM-

PR 

GA-PM-

PR 

GA-RK-

PR 

IA-RK-

PR 

SA-PM-

PR 

TS-RK-

PR 

SA-RK-

PR 
LOW LOW LOW LOW (P) MODERATE 
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