15 research outputs found

    Developing a person guidance module for hospital robots

    Get PDF
    This dissertation describes the design and implementation of the Person Guidance Module (PGM) that enables the IWARD (Intelligent Robot Swarm for attendance, Recognition, Cleaning and delivery) base robot to offer route guidance service to the patients or visitors inside the hospital arena. One of the common problems encountered in huge hospital buildings today is foreigners not being able to find their way around in the hospital. Although there are a variety of guide robots currently existing on the market and offering a wide range of guidance and related activities, they do not fit into the modular concept of the IWARD project. The PGM features a robust and foolproof non-hierarchical sensor fusion approach of an active RFID, stereovision and cricket mote sensor for guiding a patient to the X-ray room, or a visitor to a patient’s ward in every possible scenario in a complex, dynamic and crowded hospital environment. Moreover, the speed of the robot can be adjusted automatically according to the pace of the follower for physical comfort using this system. Furthermore, the module performs these tasks in any unconstructed environment solely from a robot’s onboard perceptual resources in order to limit the hardware installation costs and therefore the indoor setting support. Similar comprehensive solution in one single platform has remained elusive in existing literature. The finished module can be connected to any IWARD base robot using quick-change mechanical connections and standard electrical connections. The PGM module box is equipped with a Gumstix embedded computer for all module computing which is powered up automatically once the module box is inserted into the robot. In line with the general software architecture of the IWARD project, all software modules are developed as Orca2 components and cross-complied for Gumstix’s XScale processor. To support standardized communication between different software components, Internet Communications Engine (Ice) has been used as middleware. Additionally, plug-and-play capabilities have been developed and incorporated so that swarm system is aware at all times of which robot is equipped with PGM. Finally, in several field trials in hospital environments, the person guidance module has shown its suitability for a challenging real-world application as well as the necessary user acceptance

    Sensors and Systems for Indoor Positioning

    Get PDF
    This reprint is a reprint of the articles that appeared in Sensors' (MDPI) Special Issue on “Sensors and Systems for Indoor Positioning". The published original contributions focused on systems and technologies to enable indoor applications

    Taking the Temperature of Sports Arenas:Automatic Analysis of People

    Get PDF

    Intelligent home automation security system based on novel logical sensing and behaviour prediction

    Get PDF
    The thesis, Intelligent Home Automation Security System Based on Novel Logical Sensing and Behavior Prediction, was designed to enhance authentication, authorization and security in smart home devices and services. The work proposes a three prong defensive strategy each of which are analyzed and evaluated separately to drastically improve security. The Device Fingerprinting techniques proposed, not only improves the existing approaches but also identifies the physical device accessing the home cybernetic and mechatronic systems using device specific and browser specific parameters. The Logical Sensing process analyses home inhabitant actions from a logical stand point and develops sophisticated and novel sensing techniques to identify intrusion attempts to a home’s physical and cyber space. Novel Behavior prediction methodology utilizes Bayesian networks to learn normal user behavior which is later compared to distinguish and identify suspicious user behaviors in the home in a timely manner. The logical sensing, behavior prediction and device fingerprinting techniques proposed were successfully tested, evaluated and verified in an actual home cyber physical system. The algorithms and techniques proposed in the thesis can be easily modified and adapted into many practical applications in Industrial Internet of Things, Industry 4.0 and cyber-physical systems.Thesis (PhD)--University of Pretoria, 2017.Electrical, Electronic and Computer EngineeringPhDUnrestricte

    Advances in Human-Robot Interaction

    Get PDF
    Rapid advances in the field of robotics have made it possible to use robots not just in industrial automation but also in entertainment, rehabilitation, and home service. Since robots will likely affect many aspects of human existence, fundamental questions of human-robot interaction must be formulated and, if at all possible, resolved. Some of these questions are addressed in this collection of papers by leading HRI researchers

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts

    Diseño, construcción, monitorización y control de un módulo prototipo de edificación para ensayo de nuevos componentes y sistemas

    Get PDF
    In view of the difficulties with implementing the innovative components and systems conceived in the I3CON project on a dwelled building (because of their early stage of development), one of the main demonstration activities was building a Mock-up module to test the feasibility (in terms of physical integration and logical interoperability) of these components and systems, and evaluate their overall performance. The design of all the systems involved in the Mock-up has the aim to develop new and more efficient solutions for the common issues in housing and, at the same time, to allow the evaluation of these systems. The values to be measured and monitored are: water (hot and cold), electricity and energy consumptions; temperature (ambient and surface) and relative humidity degree, both indoor and outdoor; presence; water temperature and flow; CO2 concentration; and light level. This is done by means of a network of sensors, meters and actuators deployed throughout the Mock-up. The following components and systems have been developed by I3CON partners and are implemented in the Mock-up, namely: - Façade panels, by Dragados (DRA). - Electro-chromic windows, by Saint-Gobain Recherche (SGR). - Under-floor radiant heating, Water saving system and Domestic fire extinguishing system, by Uponor (UPO). - Multi-service trunking system, by the University of Loughborough (LOU). - Wireless sensor network, by Thales Research & Technologies (TRT). All these systems are controlled by the Building Operating System (BOS) developed by Lonix (LON). Besides, all that information handled by the BOS can be accessed through Mobile Productivity Tools developed by Intracom (ICOM) for carrying out operation and maintenance tasks. Regarding the architectural design of the Mock-up, the innovative effort has been aimed to the development of new prefabricated façade solutions adapting current manufacturing processes, such as the “Sandwich Framex” typology, and the improvement in the thermal and acoustical behaviour of the Mock-up envelope with passive strategies, e.g. by using Phase Change Materials (PCMs) or vegetation. The façade panels of the Mock-up were made up according to one of the following structural configurations, all of them making use of Glass-fibre Reinforced Concrete (GRC): - GRC Stud-frame: GRC shell attached to a metallic frame. Two panels feature this solution, with a special plasterboard interior sheathing enhanced with PCM micro-capsules whose behaviour will be compared to that of a conventional one. - GRC Sandwich: panel anchored to the main structure by means of cast-in channels and sliding bolt connections to accommodate the assembly tolerances. The innermost surface features a special pattern to improve the acoustical behaviour by diminishing the reverberation time. The outmost surface is covered with different kinds of light composite panels for aesthetics reasons. - Sandwich Framex: it is an evolution which comprises “indoor sandwich + metallic frame + external elements”. One of the main advantages of the Sandwich Framex is the flexibility of the external cladding, which may consist of a great variety of elements configured in a modular way over a common sub-structure (the steel frame) and can be installed so that they can be easily disassembled for maintenance or upgrade. Different external elements have been selected in response both to bio-climatic concepts and architectural trends, among others: photo-voltaic cells, vegetated modules and a variety of composite/laminated panels. Two of the Mock-up façades which are configured with this solution include, besides, PCM packed in plastic boxes within the sandwich core, in order to improve thermal behaviour. For the sake of a better thermal efficiency, visual comfort (in terms of glare) and privacy, an Electro-Chromic Glazing Unit (ECGU) has been provided in one of the Mock-up rooms. The ECGU is fitted into a standard window frame allowing electrical power and control cabling. The ECGU makes possible certain degrees of shading that are controlled by the BOS according to solar irradiance, presence and indoor temperature, and operated in conjunction with the HVAC system thanks to the integration of all the systems within the BOS. The Water Saving System consists in re-circulating the hot water only when it is needed. The system is connected to the sensor network in the building, and is activated whenever a person is within a predetermined area (kitchen or bathroom) or the water temperature inside the pipes is lower than a set value. Thanks to this solution, less water is wasted and there is less waiting time for hot water to be delivered. The Domestic Fire Extinguisher System stands out for its simplicity: the water supply for the toilet cistern passes through the sprinklers. Thus, every time the toilet is flushed, confirmation is provided that there is no impediment for the water to flow (e.g. incrustations due to hard water) and therefore the system would work if a fire started. The Under-Floor Heating (UFH) system has been installed over the floor concrete slab. Its main virtue is its reduced installation height which makes it especially suitable for renovation works. The use of Cross-linked Polyethylene (PEX) pipes for these systems, installed using the “pipe-in-pipe” method, facilitates the renovation of the pipes given the case. The Multi-Services Trunking System (MSTS) is a very innovative concept that comprises a set of runs for different kinds of media incorporated within a single vertical major artery and horizontal distribution nodes. The MSTS has been manufactured using rapid prototyping techniques, and a small portion has been installed in the Mock-up for proving the concept, delivering hot and cold water, air and electricity. Concerning the monitoring and control of the Mock-up, the following inputs are studied: - Consumptions measured with metering devices: Cold and hot water; Electricity. - Parameters measured by the WSN: CO2 concentration; Presence by means of Passive Infra-Red (PIR) technology; Relative Humidity (RH) degree; Light level; and Indoor ambient temperature. There is a gateway that converts the radio messages transmitted by the sensors into TCP/IP messages accessible from the BOS. - Sensors deployed at different layers of the façade panels: Ambient and surface temperatures; Relative humidity degree. They are intended to assess the overall performance of the envelope system, with a focus on the effect of PCMs and vegetation. - Parameters measured with wired sensors: Presence; Light level; Water temperature and flow in the pipes; and Ambient and surface temperature (indoor and outdoor). Based on the information gathered by the sensor network, the BOS controls the Mock-up handling the following signals: Readings from the metering devices; Inputs from the sensors located in the kitchen, the bathroom and the test rooms; Data from the HVAC and UFH systems (controlled individually for each room to allow comparisons between them), the heat pump and the water pumps (for consumption simulation); Signals from the façade panels’ temperature and relative humidity degree sensors. Remote access to the Mock-up monitoring and control systems is very important for the measurement plans. Internet connection plays an important role for accessing the data and carrying out dwelling usage simulations. Furthermore, the application of Mobile Productivity Tools (MPTs), for example a Personal Digital Assistant (PDA) carried out by the maintenance staff, makes possible that any relevant information about the equipment installed in the building (i.e. the Mock-up), such as the assembly drawings, location in the building lay-out, and any data accessible from the BOS, will be available in real time for the operator working on site. ____________________________________________________________________________________________________________En vista de las dificultades para implementar los innovadores componentes y sistemas concebidos en el proyecto I3CON en una vivienda habitada (debido a su temprano estado de desarrollo), una de las actividades principales de demostración fue construir un Módulo prototipo para ensayar la viabilidad (en términos de integración física e inter-operatividad lógica) de estos componentes y sistemas y evaluar su comportamiento global. El diseño de todos los sistemas del Módulo tiene como objetivo desarrollar nuevas y más eficientes soluciones a problemas comunes en vivienda y, al mismo tiempo, permitir la evaluación de dichos sistemas. Los valores a medir y monitorizar son: consumos de agua (caliente y fría), electricidad y energía; temperatura (ambiente y superficial) y grado de humedad relativo, tanto interior como exterior; presencia; temperatura y flujo de agua; concentración de CO2; y nivel de luz. Esto se hace mediante una red de sensores, contadores y actuadores desplegados a lo largo del Módulo. Los siguientes componentes y sistemas han sido desarrollados por socios de I3CON e implementados en el Módulo, a saber: - Paneles de fachada, por Dragados (DRA). - Ventanas electro-crómicas, por Saint-Gobain Recherche (SGR). - Calefacción por suelo radiante, Sistema de ahorro de agua y Sistema doméstico de extinción de incendios, por Uponor (UPO). - Sistema de conductos multi-servicio, por la Universidad de Loughborough (LOU). - Red de sensores inalámbricos, por Thales Research & Technologies (TRT). Todos estos sistemas se controlan mediante el Sistema Operativo del Edificio (BOS) desarrollado por Lonix (LON). Además, a toda esa información manejada por el BOS puede accederse a través de las Herramientas de Productividad Móviles de Intracom (ICOM) para operación y mantenimiento. Respecto al diseño arquitectónico del Módulo, el esfuerzo innovador se ha centrado en el desarrollo de nuevas soluciones de fachada prefabricada adaptando procesos de fabricación existentes, tales como la tipología “Sándwich Framex”, y en la mejora del comportamiento térmico y acústico de los cerramientos del Módulo mediante estrategias pasivas, e.g. usando Materiales de Cambio de Fase (PCMs) o vegetación. Los paneles de fachada del Módulo se configuraron según alguna de las siguientes soluciones estructurales, todas ellas usando Hormigón Reforzado con fibra de Vidrio (GRC): GRC Stud-frame: cáscara de GRC unida a un bastidor metálico. Dos paneles se configuran con esta solución, con la particularidad de un trasdosado interior de yeso-cartón con micro-cápsulas de PCM cuyo comportamiento se comparará con el de uno convencional. - GRC Sándwich: panel anclado a la estructura principal por medio de carriles embebidos y tornillería deslizante para acomodar las tolerancias de ensamblaje. La cara interior lleva un patrón especial para mejorar el comportamiento acústico disminuyendo el tiempo de reverberación. La cara exterior se termina con diferentes paneles ligeros de material compuesto por motivos estéticos. - Sándwich Framex: es una evolución que consiste en “sándwich interno + bastidor metálico + elementos externos”. Una de las principales ventajas del Sándwich Framex es la flexibilidad para los acabados exteriores, que pueden consistir en un gran variedad de elementos modulares sobre una sub-estructura común (el bastidor metálico) y ser instalados de manera que sean fácilmente desmontables para mantenimiento o renovación. Se han seleccionado distintos elementos exteriores en respuesta a conceptos bio-climáticos y tendencias arquitectónicas, entre otros: células foto-voltaicas, módulos vegetados y varios paneles de material compuesto/laminados. Dos fachadas del Módulo con esta solución incluyen además PCM empaquetado en contenedores de plástico dentro del núcleo del sándwich para mejorar el comportamiento térmico. En aras de una mejor eficiencia térmica, confort visual (deslumbramiento) y privacidad, se ha provisto una Unidad de Acristalamiento Electro-Crómico (ECGU) en uno de los recintos del Módulo. La ECGU se instala en una carpintería estándar que permita el cableado eléctrico y de control. La ECGU permite ciertos grados de oscurecimiento que se controlan por el BOS en función de la irradiación solar, presencia y temperatura interior, y se opera junto con el sistema de climatización gracias a la integración de todos los sistemas en el BOS. El Sistema de Ahorro de Agua consiste en recircular el agua caliente sólo cuando es necesario. El sistema está conectado a la red de sensores del edificio y se activa cuando una persona está dentro de un área determinada (cocina o baño) o si el agua de las tuberías baja de una cierta temperatura. Gracias a esta solución se desperdicia menos agua y hay que esperar menos tiempo a que salga agua caliente. El Sistema Doméstico de Extinción de Incendios destaca por su simplicidad: el agua que va a la cisterna pasa a través de los rociadores. Así, cada vez que se tira de la cadena, se confirma que no hay ningún impedimento al flujo de agua (e.g. incrustaciones de cal) y por lo tanto el sistema funcionaría si se iniciase un incendio. La Calefacción por Suelo Radiante (UFH) se ha instalado sobre el forjado de hormigón. Su principal virtud es su reducida altura, que lo hace especialmente indicado para rehabilitaciones. El uso de tuberías de Polietileno Reticulado (PEX) para estos sistemas, empleando el método de “tubo-en-tubo”, facilita su renovación llegado el caso. El Sistema de Conductos Multi-Servicio (MSTS) es un concepto muy innovador que consta de un conjunto de canalizaciones para distintos medios agrupados en una única arteria vertical y nodos de distribución horizontal. El MSTS se ha fabricado con técnicas de prototipado rápido y se ha instalado un pequeño segmento en el Módulo para demostrar el concepto, distribuyendo agua fría y caliente, aire y electricidad. En cuanto a la monitorización y control del Módulo, se estudian las siguientes entradas: - Consumos medidos con contadores: Agua fría y caliente; Energía eléctrica. - Parámetros medidos por la WSN: CO2; Presencia con tecnología Pasiva Infra-Roja (PIR); Grado de Humedad Relativa (RH); Nivel de luz; y Temperatura ambiente interior. Hay una pasarela que convierte los mensajes de radio transmitidos por los sensores en mensajes TCP/IP accesibles desde el BOS. - Sensores desplegados en las diferentes capas de las fachadas: Temperaturas ambiente y superficial; Grado de humedad relativa. Se pretende evaluar el comportamiento global del cerramiento, en especial el efecto de los PCMs y la vegetación. - Parámetros medidos con sensores cableados: Presencia; Nivel de luz; Temperatura y flujo de agua en las tuberías; y Temperaturas ambiente y superficial (interior y exterior). Basándose en la información recogida por la red de sensores, el BOS controla el Módulo manejando las siguientes señales: Lecturas de los aparatos contadores; Entradas de los sensores ubicados en cocina, baño y las habitaciones de ensayo; Datos de los sistemas de climatización y suelo radiante (controlados individualmente en cada habitación para poder hacer comparaciones), de la bomba de calor y las de agua (para simular consumos); Señales de temperatura y humedad relativa de los paneles de fachada. El acceso remoto a los sistemas de monitorización y control del Módulo es muy importante para el plan de medidas. La conexión a internet juega un papel fundamental para acceder a los datos y simular el uso de la vivienda. Además, la aplicación de Herramientas de Productividad Móviles (MPTs), por ejemplo una PDA que lleve el personal de mantenimiento, posibilita que información relevante acerca de los equipos instalados en el edificio (esto es, del Módulo), tales como dibujos de montaje, localización en el plano del edificio, y cualquier dato accesible desde el BOS, esté disponible en tiempo real para el operario trabajando en el sitio.Ingeniería Industria

    Holistic System Design for Distributed National eHealth Services

    Get PDF
    publishedVersio
    corecore