3,644 research outputs found

    Intelligent Multimodal Framework for Human Assistive Robotics Based on Computer Vision Algorithms

    Full text link
    [EN] Assistive technologies help all persons with disabilities to improve their accessibility in all aspects of their life. The AIDE European project contributes to the improvement of current assistive technologies by developing and testing a modular and adaptive multimodal interface customizable to the individual needs of people with disabilities. This paper describes the computer vision algorithms part of the multimodal interface developed inside the AIDE European project. The main contribution of this computer vision part is the integration with the robotic system and with the other sensory systems (electrooculography (EOG) and electroencephalography (EEG)). The technical achievements solved herein are the algorithm for the selection of objects using the gaze, and especially the state-of-the-art algorithm for the efficient detection and pose estimation of textureless objects. These algorithms were tested in real conditions, and were thoroughly evaluated both qualitatively and quantitatively. The experimental results of the object selection algorithm were excellent (object selection over 90%) in less than 12 s. The detection and pose estimation algorithms evaluated using the LINEMOD database were similar to the state-of-the-art method, and were the most computationally efficient.The research leading to these results received funding from the European Community's Horizon 2020 programme, AIDE project: "Adaptive Multimodal Interfaces to Assist Disabled People in Daily Activities" (grant agreement No: 645322).Ivorra Martínez, E.; Ortega Pérez, M.; Catalán, JM.; Ezquerro, S.; Lledó, LD.; Garcia-Aracil, N.; Alcañiz Raya, ML. (2018). Intelligent Multimodal Framework for Human Assistive Robotics Based on Computer Vision Algorithms. Sensors. 18(8). https://doi.org/10.3390/s18082408S18

    Assistive robotics: research challenges and ethics education initiatives

    Get PDF
    Assistive robotics is a fast growing field aimed at helping healthcarers in hospitals, rehabilitation centers and nursery homes, as well as empowering people with reduced mobility at home, so that they can autonomously fulfill their daily living activities. The need to function in dynamic human-centered environments poses new research challenges: robotic assistants need to have friendly interfaces, be highly adaptable and customizable, very compliant and intrinsically safe to people, as well as able to handle deformable materials. Besides technical challenges, assistive robotics raises also ethical defies, which have led to the emergence of a new discipline: Roboethics. Several institutions are developing regulations and standards, and many ethics education initiatives include contents on human-robot interaction and human dignity in assistive situations. In this paper, the state of the art in assistive robotics is briefly reviewed, and educational materials from a university course on Ethics in Social Robotics and AI focusing on the assistive context are presented.Peer ReviewedPostprint (author's final draft

    Multimodal Signal Processing and Learning Aspects of Human-Robot Interaction for an Assistive Bathing Robot

    Full text link
    We explore new aspects of assistive living on smart human-robot interaction (HRI) that involve automatic recognition and online validation of speech and gestures in a natural interface, providing social features for HRI. We introduce a whole framework and resources of a real-life scenario for elderly subjects supported by an assistive bathing robot, addressing health and hygiene care issues. We contribute a new dataset and a suite of tools used for data acquisition and a state-of-the-art pipeline for multimodal learning within the framework of the I-Support bathing robot, with emphasis on audio and RGB-D visual streams. We consider privacy issues by evaluating the depth visual stream along with the RGB, using Kinect sensors. The audio-gestural recognition task on this new dataset yields up to 84.5%, while the online validation of the I-Support system on elderly users accomplishes up to 84% when the two modalities are fused together. The results are promising enough to support further research in the area of multimodal recognition for assistive social HRI, considering the difficulties of the specific task. Upon acceptance of the paper part of the data will be publicly available

    Empowering and assisting natural human mobility: The simbiosis walker

    Get PDF
    This paper presents the complete development of the Simbiosis Smart Walker. The device is equipped with a set of sensor subsystems to acquire user-machine interaction forces and the temporal evolution of user's feet during gait. The authors present an adaptive filtering technique used for the identification and separation of different components found on the human-machine interaction forces. This technique allowed isolating the components related with the navigational commands and developing a Fuzzy logic controller to guide the device. The Smart Walker was clinically validated at the Spinal Cord Injury Hospital of Toledo - Spain, presenting great acceptability by spinal chord injury patients and clinical staf

    Towards safety in physically assistive robots: eating assistance

    Get PDF
    Safety is one of the base elements to build trust in robots. This paper studies remedies to unavoidable collisions using robotics assistive feeding as an example task. Firstly, we propose an attention mechanism so the user can control the robot using gestures and thus prevent collisions. Secondly, when unwanted contacts are unavoidable we compare two safety strategies: active safety, using a force sensor to monitor maximum allowed forces; and passive safety using compliant controllers. Experimental evaluation shows that the gesture mechanism is effective to control the robot. Also, the impact forces obtained with both methods are similar and thus can be used independently. Additionally, users experimenting on purpose impacts declared that the impact was not harmful.Peer ReviewedPostprint (author's final draft
    corecore