167 research outputs found

    The Emerging Trends of Multi-Label Learning

    Full text link
    Exabytes of data are generated daily by humans, leading to the growing need for new efforts in dealing with the grand challenges for multi-label learning brought by big data. For example, extreme multi-label classification is an active and rapidly growing research area that deals with classification tasks with an extremely large number of classes or labels; utilizing massive data with limited supervision to build a multi-label classification model becomes valuable for practical applications, etc. Besides these, there are tremendous efforts on how to harvest the strong learning capability of deep learning to better capture the label dependencies in multi-label learning, which is the key for deep learning to address real-world classification tasks. However, it is noted that there has been a lack of systemic studies that focus explicitly on analyzing the emerging trends and new challenges of multi-label learning in the era of big data. It is imperative to call for a comprehensive survey to fulfill this mission and delineate future research directions and new applications.Comment: Accepted to TPAMI 202

    Multilabel Classification for News Article Using Long Short-Term Memory

    Get PDF
    oai:ojs.sjia.ilkom.unsri.ac.id:article/14Multilabel text classification is a task of categorizing text into one or more categories. Like other machine learning, multilabel classification performance is limited when there is small labeled data and leads to the difficulty of capturing semantic relationships. In this case, it requires a multi-label text classification technique that can group four labels from news articles. Deep Learning is a proposed method for solving problems in multi-label text classification techniques. By comparing the seven proposed Long Short-Term Memory (LSTM) models with large-scale datasets by dividing 4 LSTM models with 1 layer, 2 layer and 3-layer LSTM and Bidirectional LSTM to show that LSTM can achieve good performance in multi-label text classification. The results show that the evaluation of the performance of the 2-layer LSTM model in the training process obtained an accuracy of 96 with the highest testing accuracy of all models at 94.3. The performance results for model 3 with 1-layer LSTM obtained the average value of precision, recall, and f1-score equal to the 94 training process accuracy. This states that model 3 with 1-layer LSTM both training and testing process is better.  The comparison among seven proposed LSTM models shows that model 3 with 1 layer LSTM is the best model

    A Survey on Text Classification Algorithms: From Text to Predictions

    Get PDF
    In recent years, the exponential growth of digital documents has been met by rapid progress in text classification techniques. Newly proposed machine learning algorithms leverage the latest advancements in deep learning methods, allowing for the automatic extraction of expressive features. The swift development of these methods has led to a plethora of strategies to encode natural language into machine-interpretable data. The latest language modelling algorithms are used in conjunction with ad hoc preprocessing procedures, of which the description is often omitted in favour of a more detailed explanation of the classification step. This paper offers a concise review of recent text classification models, with emphasis on the flow of data, from raw text to output labels. We highlight the differences between earlier methods and more recent, deep learning-based methods in both their functioning and in how they transform input data. To give a better perspective on the text classification landscape, we provide an overview of datasets for the English language, as well as supplying instructions for the synthesis of two new multilabel datasets, which we found to be particularly scarce in this setting. Finally, we provide an outline of new experimental results and discuss the open research challenges posed by deep learning-based language models

    FSD50K: an Open Dataset of Human-Labeled Sound Events

    Full text link
    Most existing datasets for sound event recognition (SER) are relatively small and/or domain-specific, with the exception of AudioSet, based on a massive amount of audio tracks from YouTube videos and encompassing over 500 classes of everyday sounds. However, AudioSet is not an open dataset---its release consists of pre-computed audio features (instead of waveforms), which limits the adoption of some SER methods. Downloading the original audio tracks is also problematic due to constituent YouTube videos gradually disappearing and usage rights issues, which casts doubts over the suitability of this resource for systems' benchmarking. To provide an alternative benchmark dataset and thus foster SER research, we introduce FSD50K, an open dataset containing over 51k audio clips totalling over 100h of audio manually labeled using 200 classes drawn from the AudioSet Ontology. The audio clips are licensed under Creative Commons licenses, making the dataset freely distributable (including waveforms). We provide a detailed description of the FSD50K creation process, tailored to the particularities of Freesound data, including challenges encountered and solutions adopted. We include a comprehensive dataset characterization along with discussion of limitations and key factors to allow its audio-informed usage. Finally, we conduct sound event classification experiments to provide baseline systems as well as insight on the main factors to consider when splitting Freesound audio data for SER. Our goal is to develop a dataset to be widely adopted by the community as a new open benchmark for SER research

    Text Classification

    Get PDF
    There is an abundance of text data in this world but most of it is raw. We need to extract information from this data to make use of it. One way to extract this information from raw text is to apply informative labels drawn from a pre-defined fixed set i.e. Text Classification. In this thesis, we focus on the general problem of text classification, and work towards solving challenges associated to binary/multi-class/multi-label classification. More specifically, we deal with the problem of (i) Zero-shot labels during testing; (ii) Active learning for text screening; (iii) Multi-label classification under low supervision; (iv) Structured label space; (v) Classifying pairs of words in raw text i.e. Relation Extraction. For (i), we use a zero-shot classification model that utilizes independently learned semantic embeddings. Regarding (ii), we propose a novel active learning algorithm that reduces problem of bias in naive active learning algorithms. For (iii), we propose neural candidate-selector architecture that starts from a set of high-recall candidate labels to obtain high-precision predictions. In the case of (iv), we proposed an attention based neural tree decoder that recursively decodes an abstract into the ontology tree. For (v), we propose using second-order relations that are derived by explicitly connecting pairs of words via context token(s) for improved relation extraction. We use a wide variety of both traditional and deep machine learning tools. More specifically, we used traditional machine learning models like multi-valued linear regression and logistic regression for (i, ii), deep convolutional neural networks for (iii), recurrent neural networks for (iv) and transformer networks for (v)

    Music emotion recognition: a multimodal machine learning approach

    Get PDF
    Music emotion recognition (MER) is an emerging domain of the Music Information Retrieval (MIR) scientific community, and besides, music searches through emotions are one of the major selection preferred by web users. As the world goes to digital, the musical contents in online databases, such as Last.fm have expanded exponentially, which require substantial manual efforts for managing them and also keeping them updated. Therefore, the demand for innovative and adaptable search mechanisms, which can be personalized according to users’ emotional state, has gained increasing consideration in recent years. This thesis concentrates on addressing music emotion recognition problem by presenting several classification models, which were fed by textual features, as well as audio attributes extracted from the music. In this study, we build both supervised and semisupervised classification designs under four research experiments, that addresses the emotional role of audio features, such as tempo, acousticness, and energy, and also the impact of textual features extracted by two different approaches, which are TF-IDF and Word2Vec. Furthermore, we proposed a multi-modal approach by using a combined feature-set consisting of the features from the audio content, as well as from context-aware data. For this purpose, we generated a ground truth dataset containing over 1500 labeled song lyrics and also unlabeled big data, which stands for more than 2.5 million Turkish documents, for achieving to generate an accurate automatic emotion classification system. The analytical models were conducted by adopting several algorithms on the crossvalidated data by using Python. As a conclusion of the experiments, the best-attained performance was 44.2% when employing only audio features, whereas, with the usage of textual features, better performances were observed with 46.3% and 51.3% accuracy scores considering supervised and semi-supervised learning paradigms, respectively. As of last, even though we created a comprehensive feature set with the combination of audio and textual features, this approach did not display any significant improvement for classification performanc

    A hybrid algorithm for Bayesian network structure learning with application to multi-label learning

    Get PDF
    We present a novel hybrid algorithm for Bayesian network structure learning, called H2PC. It first reconstructs the skeleton of a Bayesian network and then performs a Bayesian-scoring greedy hill-climbing search to orient the edges. The algorithm is based on divide-and-conquer constraint-based subroutines to learn the local structure around a target variable. We conduct two series of experimental comparisons of H2PC against Max-Min Hill-Climbing (MMHC), which is currently the most powerful state-of-the-art algorithm for Bayesian network structure learning. First, we use eight well-known Bayesian network benchmarks with various data sizes to assess the quality of the learned structure returned by the algorithms. Our extensive experiments show that H2PC outperforms MMHC in terms of goodness of fit to new data and quality of the network structure with respect to the true dependence structure of the data. Second, we investigate H2PC's ability to solve the multi-label learning problem. We provide theoretical results to characterize and identify graphically the so-called minimal label powersets that appear as irreducible factors in the joint distribution under the faithfulness condition. The multi-label learning problem is then decomposed into a series of multi-class classification problems, where each multi-class variable encodes a label powerset. H2PC is shown to compare favorably to MMHC in terms of global classification accuracy over ten multi-label data sets covering different application domains. Overall, our experiments support the conclusions that local structural learning with H2PC in the form of local neighborhood induction is a theoretically well-motivated and empirically effective learning framework that is well suited to multi-label learning. The source code (in R) of H2PC as well as all data sets used for the empirical tests are publicly available.Comment: arXiv admin note: text overlap with arXiv:1101.5184 by other author
    • …
    corecore