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Abstract

There is an abundance of text data in this world but most of it is raw. We need

to extract information from this data to make use of it. One way to extract this

information from raw text is to apply informative labels drawn from a pre-defined

fixed set i.e. Text Classification. In this thesis, we focus on the general problem of

text classification, and work towards solving challenges associated to binary/multi-

class/multi-label classification. More specifically, we deal with the problem of (i)

Zero-shot labels during testing; (ii) Active learning for text screening; (iii) Multi-

label classification under low supervision; (iv) Structured label space; (v) Classifying

pairs of words in raw text i.e. Relation Extraction.

For (i), we use a zero-shot classification model that utilizes independently

learned semantic embeddings. Regarding (ii), we propose a novel active learning

algorithm that reduces problem of bias in naive active learning algorithms. For (iii),

we propose neural candidate-selector architecture that starts from a set of high-recall

candidate labels to obtain high-precision predictions. In the case of (iv), we proposed

an attention based neural tree decoder that recursively decodes an abstract into the

ontology tree. For (v), we propose using second-order relations that are derived

by explicitly connecting pairs of words via context token(s) for improved relation

extraction.

We use a wide variety of both traditional and deep machine learning tools. More

specifically, we used traditional machine learning models like multi-valued linear

regression and logistic regression for (i, ii), deep convolutional neural networks for

(iii), recurrent neural networks for (iv) and transformer networks for (v).
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The work in this thesis has been focused on the problem extracting information

from unstructured (or raw) text. This information can be extracted in multiple

ways but all of those ways involve labeling the unstructured data with pre-defined

informative labels. In this thesis we have tackled some of the issues encountered in

automating this process. Despite the fact that the proposed methods in this work are

general enough to be used in any field, we apply ourselves to the task of extracting

information from biomedical text e.g. biomedical abstracts or doctor’s notes. These

methods can have significant implications for academic research, public health and

commercial entities.

There has been a recent push in the academic community for the use of AI in

healthcare, one possible use-case for which is extracting information from millions

of published biomedical papers. The methods proposed in this thesis can be used

to automate this process of extracting information that can be used in wide-ranging

applications, including but not limited to drug discovery and systematic review. Our

novel use of software (e.g. Metamap) for more accurate structured text tagging can

also help the academic research community to handle low-resource tasks that at

times plague biomedical research problems.

The research presented in this work has the potential to make an impact on

the general public health as well. An important prerequisite to formulating public

health guidelines is to conduct Systematic Reviews. The process of conducting these

reviews at present requires extensive human-effort, making it an expensive process,

which in turn limits its use. We have made significant progress in making this process

more automated. We think this can lead to reduced cost for systematic reviews in the
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future, making the assessment of different health interventions feasible, in addition

to other things.

The work in this thesis not only impacts the academic research community and

public health, as mentioned above, but can also make an impact commercially. The

superior text-tagging can be used to assist in the process of drug-discovery, to extract

important bits of structured information from millions of freely available biomedical

papers, that can then be used to come up with better candidate drugs. In fact, one

of our work on relation extraction is of particular interest to multiple health-tech

companies working towards drug-discovery.
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Chapter 1

Introduction

There is a lot of text available over the internet. Albeit most of it is in the form of

unstructured raw data. This unstructured text contains a lot of useful information that

needs to be manually extracted, but this manual process can be expensive. Hence

there is a need for methods that do automatic information extraction. One such

method involves applying labels that encode the details contained in the text. These

labels can then be used for tasks like categorizing the text, summarizing the content

and easing searchability. This task of assigning labels to free text is called Text

Classification.

The labels are drawn from a pre-defined set. This pre-defined set is usually

hand-crafted based on the task at hand and/or the knowledge of the domain. The size

of the label set depends on the coarseness of the task. If the information that needs

to be extracted is general then the label set is usually small. In fact when the label set

contains just two labels it is referred to as Binary Classification. When it contains

more than two labels it is called Multi-class Classification. One more category is

Multi-label Classification or text-tagging that refers to the situation where multiple

labels are applied to a single piece of text. In this thesis we deal with different aspects

of text classification, few of which are:

• If the training data does not contain all the labels defined in the label set, can

we still predict those zero-shot labels?

• If the training data is small and the output space vast and structured, can we

still perform multi-label classification?
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• Can we leverage the ontology better than other methods for hierarchical

classification?

• Can we do better than directly using context representations generated by

encoders for relation extraction?

1.1 Applications
There is no dearth of unstructured text in the age of the internet. There are thou-

sands of papers published every year that need to be summarized, informative

blog-posts that need to be remembered, millions of posts shared every day over

Facebook/Twitter/LinkedIn that contain useful information, websites that need to be

tagged/bookmarked. All of these tasks can be done using text classification. We can

not overstate the usefulness of an accurate text classification system. Therefore, we

have focused our attention on some of the specific aspects of text classification. We

mention some of the many applications of text classification below:

• Zero-Shot Text Classification. At times the training data needs to be man-

ually labeled. This makes it expensive to obtain large quantities of labeled

training data. This leads to the problem of unseen labels, especially when the

label space is large, since not all of the labels can be found in a small train

set. This is a problem in a number of areas that require expensive manual

annotations like biomedical/clinical text tagging, URL bookmarking, paper

abstract categorization etc.

• Structured Text Tagging. There are times when the output space is structured

which means that the labels are related to each other via some well defined

structure. For example, in clinical text annotations the labels might come from

a medical ontology, or the labels might be organized in different categories

like PICO (standing for Population, Intervention/Control and Outcomes).

• Citation Screening. Systematic review is the task of summarizing findings

of different clinical and social science studies. While systematic reviews are

mostly applied in the biomedical or healthcare context, they can be used in
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other areas where an assessment of a precisely defined subject would be helpful.

Having said that, to the best of our knowledge, they are not used in Computer

Science. The first step of a systematic review task is to identify all the studies

that are relevant to the review in question, and need to be summarized. This is

basically the binary classification of abstracts into relevant and non-relevant

categories. It is an essential first step in summarizing the studies for various

purposes e.g. policy formulation. In fact, this can be compared to the problem

of searching for documents relevant to a given query - a well-studied problem

in the field of Information Retrieval -, the only difference being that the query

in this case is the review topic, and it is fixed for a given review.

• Text Summarization. Text tagging can be used for summarizing the contents

of an unstructured piece of text e.g. yelp reviews, clinical text, etc. The

unstructured piece of text can be tagged with very specific labels that are

hand-crafted to summarize the information contained therein.

1.2 Motivations
Text tagging requires labeled data to train the classification model. In fact, it would

not be wrong to say that the learned model gets better with the quantity of data

available for training. But obtaining labeled data is expensive and time consuming,

which means that when labeled data is small then there would be plenty of labels

that would not be observed during training. This led to our first work on zero-shot

classification (ZSC) for text using independently learned semantic embeddings. This

can be especially useful in clinical text tagging due to expensive nature of labeled

data and missing labels. While most works on zero-shot classification at the time

were focused on images [5, 6], we explore it for text. Though, there have been some

works on zero-shot text classification in the recent past [7, 8].

Text classification has proved useful in the field of systematic reviews (SRs).

These SRs are used to summarize the results of different clinical and social science

studies. The first step in a systematic review is to identify all the studies relevant

to the review question, unfortunately, this task is still performed manually. Lately,
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there have been some attempts to reduce this manual effort using active learning. In

active learning the model is updated after every few iterations using newly labeled

data. It works by selecting a small number of documents that are manually annotated

after each iteration and these are then used to train the classifier. Documents to

be annotated are selected based on the relevance scores generated by the classifier.

We noticed that this way of selecting documents would bias the classifier early on

into selecting documents that are similar to the ones it was trained on during initial

iterations. One straightforward way of reducing this bias is to perform uncertainty

based sampling, but unfortunately, only naive active learning algorithm has been

used for citation screening in SRs. Therefore, we introduce a novel active learning

algorithm that would help the classifier explore different topics, as opposed to simply

selecting the most relevant documents or randomly sampling studies that the classifier

is uncertain on. Also, we find that simple feature extraction models perform well

for the task of systematic reviews contrary to the claims of a previously published

results [9].

PICO (Population, Intervention/Control and Outcome) annotations are an im-

portant application of structured multi-label text tagging. It involves the task of

automatically annotating free clinical texts with concepts that describe complimen-

tary (yet, correlated) clinically salient aspects of the underlying trials. This specific

problem poses a few unique challenges. One issue was the size (≈300K labels)

of the output space due to a large medical vocabulary. On top of that, the lack

of annotated data in this domain makes the task even more harder. We propose a

neural candidate-selector architecture that heuristically generates a high-recall list of

candidate concepts and then filters it out to obtain the final high-precision predictions.

This approaches leverages external information in the form of a software called

Metamap [10].

At times labels are drawn from pre-defined tree structure (i.e., ontology) for

multi-label text tagging. There are approaches that can indirectly leverage these

structures in the label space using either node embeddings trained on the structure

or inducing a graph structure in the output space during learning. But none of the
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previous approaches directly used the given ontology. Hence we design a seq-to-tree

model that takes as input a piece of free text and decodes into a tree-structured

ontology. It leads to predictions that are more coherent with the ontology.

The task of classifying pairs of words into their relation type is called Relation

Extraction (RE). Apart from tagging text with informative labels, relations between

different words contained therein can give structured information. We propose a

model that utilizes indirect relations between words, in addition to, more direct

relations that are computed by traditional state-of-the-art models. We get an indirect

relation between two words by connecting them via a context token, and call it a

second-order relation. For comparison, some past works have used a pre-defined

list of trigger words for extracting relations [11, 12], but these trigger words are

relation/task/data/language specific. They also have to be hand designed and are

often not exhaustive. In contrast, we do not require a pre-defined list of trigger words,

but train the model to infer the connecting word given an unstructured piece of text.

1.3 Contributions
Our focus in this work is on the general task of text classification. We deal with

different aspects of text classification like: 1) Zero-shot labels; 2) Insufficient labeled

data for training; 3) Text tagging using structured ontology; 4) Relation Extraction

using Explicit Context Conditioning. Here we enlist the specific contributions that

we made during our efforts to solve the above problems.

1.3.1 Zero-shot Text Classification

A traditional classifier can not assign zero-shot labels due to absence of information

about them. Zero-shot classifier remedies that by using independently learned

semantic representations for those labels. These embeddings help establish a relation

between the seen and unseen labels, which can then be used to assign a zero-shot

label to an instance based on its similarity to the seen labels, and the similarities

between the seen and unseen labels. Hence the quality of these semantic embeddings

is crucial to the task of zero-shot classification. Unfortunately, as these embeddings

have been trained on an unrelated task, therefore, they can be extremely noisy. To
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address this, we re-train these embeddings using the labeled training data for the task

at hand, before using them for zero-shot classification. It leads to an improvement in

the results when compared with using independently learned embeddings.

1.3.2 Text Classification for Citation Screening

The task of summarizing the contents of clinical and social science studies is known

as Systematic Reviews (SR). The first step in a SR is to extract studies relevant to the

topic at hand, and this is done using active learning [13, 14, 15, 16]. Traditionally,

these active learning methods for citation screening start from a small set of annotated

documents to train a classifier. Afterwards, they iteratively select k documents that

get the highest scores for relevance from the classifier. These documents are then

manually annotated and used to retrain the classifier. But this method of document

selection would get biased towards giving higher scores to documents that are similar

to the previously annotated ones. We proposed a method that explores different

topics during the beginning of the active learning process. It can be said that our

method sacrifices performance in the beginning to explore the topic space, which

leads to better results in terms of work-saved by the end of the process. While

systematic reviewing can used for any field of work that requires an assessment of a

precise subject, to the best of our knowledge, they are not used in Computer Science.

1.3.3 Automatic Structured Clinical Text Annotation

We consider the task of automatic structured clinical text annotation. This important

problems comes with specific challenges of its own. Those challenges are: the lack of

sufficient labeled data, vast output space, correlated labels contained in disjoint sets

and zero-shot labels. We propose a model that achieves good results over a clinical

dataset under the constraint of these problems. The specific contribution of this work

was a novel method for multilabel classification into multiple distinct, but correlated

label sets using a neural model that considers ‘candidate’ label tuples, conditioned on

the text being annotated. Our approach addresses training data sparsity by reframing

the annotation task as a two step process in which we first generate a set of candidate

annotations relevant to the input text, and then we select and group these annotations.
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In our case, we generate candidates using both (a) a multitask model directly trained

to generate candidate concepts, and, (b) the MetaMap tool [10]. We then use a neural

discriminative model to infer plausible triplets of concepts from the unstructured

candidate set, conditioned on the free-text being annotated.

1.3.4 Structured Text Tagging from Ontology

We focus on the task of assigning labels drawn from a tree structured vocabulary, i.e

an ontology. These tree structured vocabs can be an important source of information

and need to be leveraged. Attempts have been made in the past to use this structure

for superior text tagging, but these attempts have been focused on learning structure

aware representations for tags or induce a tree structure in the output space. We

try to directly use the given ontology by training a decoder to traverse the tree

structure downwards from the root activating and recursively expanding pertinent

child nodes/tags. We should mention that the proposed method only works for

ontologies that are strictly tree-structured and not DAGs.

1.3.5 Relation Extraction using Explicit Context Conditioning

We focus on the task of labeling relations between groups of entities in text, known

as Relation Extraction. Most current RE models learn context-aware representations

of the target entities that are then used to establish relation between them. This

works well for intra-sentence RE, and we call them first-order relations. However,

this methodology can sometimes fail to capture complex and long dependencies.

To address this, we hypothesize that at times two target entities can be explicitly

connected via a context token. We refer to such indirect relations as second-order

relations, and describe an efficient implementation for computing them. These

second-order relation scores are then combined with first-order relation scores. We

should mention here that our model identifies the connecting context tokens based

on the input text, in contrast to using a pre-defined list of trigger words [11, 12] that

indicate existence of a relation between two entities. Our empirical results show

that the proposed method leads to state-of-the-art performance over two biomedical

datasets.
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1.4 Literature Review

There has been an abundance of data ever since the Internet came into existence,

lots of data (i.e. image/text/audio/video) is generated every second, and instantly

shared across the world. The need for automatic information extraction from this

unstructured raw data is what provided motivation for advancements in the field of

machine learning (ML) and pattern recognition [17]. There are two broad categories

of problems that have received a lot of attention in machine learning: 1) Classification

[18] and 2) Regression [19]. In this thesis we focus on the problem of classification,

more specifically text classification, which requires assigning label(s) to input from

a pre-defined set of labels. This is in contrast to regression that requires predicting a

real number as target e.g. the amount of rain on a day or the age of a person.

The first few ML classification models were based on recognizing patterns in

the data using clustering [20]. They would basically cluster similar data points and

assign any new sample to the cluster that most resembled it. It was assumed that

the sample was an average (mean) of data points in that cluster in many aspects.

There were also some works on using nearest neighbours (NN) for classification

[21], where the new sample was considered an average of its nearest neighbours.

These nearest neighbours were computed based on some distance metric defined

over the space of input samples e.g. euclidean space.

Afterwards, tree based ML models e.g. Gradient Boosted Decision Trees [22] or

Random Forest Classifier [23], achieved lots of success and gained popularity. At the

same time, there was a shift towards more sophisticated non-linear models to divide

data points into distinct groups based on there similarities in a projected space e.g.

Kernel Hilbert Space. These machines used support vectors to draw a margin between

distinct groups, and were called Support Vector Machines [24, 25]. These models

provided excellent theoretical guarantees on convergence [26] and generalization

[27], and were widely used in the past. There was also some research on deep

learning [28, 29, 30] but they did not receive a lot of attention at the time. More

recently, there has been a shift towards deep neural networks for machine learning

[31, 32]. These deep neural networks have achieved state-of-the-art performance in
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many natural language understanding tasks [33, 34, 35].

In this thesis, we have focused on different types of text classification e.g. multi-

class or multi-label [36, 37], and problems associated with these types e.g. lack of

labeled data [38] or structured output space [39], using both traditional machine

learning and newer deep learning based models. We dedicate a separate chapter for

every problem (or group of problems) associated with these issues. Despite the fact

that most of these chapters can be categorized under text classification, they still

required (slightly) differing literature reviews. For this reason, we provide a more

detailed literature review in each chapter for the specific problem(s) discussed

in that chapter.

1.5 Organization
The rest of the thesis is organized as follows.

Chapter 2. We discusses our work on zero-shot text classification.

Chapter 3. We discusses our work on active learning for binary text classification

for the task of citation screening.

Chapter 4. We discuss our work on automatic structured clinical text annotation i.e.

PICO (Population, Intervention/Control, Outcome) annotations.

Chapter 5. We discuss our work on biomedical text tagging when the labels are

drawn from a tree structured vocabulary i.e. Ontology.

Chapter 6. We present our work on relation extraction (RE) from unstructured text.

While text classification involves classifying sequences of words, RE is the task of

classifying groups of words into the relations between them.

Chapter 7. Then we present the conclusions of our progress till now, the gaps still

left in the literature and discuss our proposals for fixing them.



Chapter 2

Neighborhood Sensitive Mapping for

Zero-Shot Classification

One of the most prominent areas of research in machine learning is classification.

In a traditional setting, the problem of classification consists of training a model to

approximate a target function f : X → Y where at least a sample for each y ∈ Y

is presented to the training algorithm. A common problem faced by many systems,

especially in their early stage is the absence of training instances for all possible

classes. In such cases, a traditional classifier cannot, in fact, assign class labels

that have not been observed in the training set. This is one of the main reasons for

the growth of a research area, zero-shot classification, studying how classification

can be done also using unseen labels. In a zero-shot setting [6], we are given a

subset Ŷ ⊂ Y of the labels for which we do not observe any corresponding training

instance. Still, the function f that we train must be able to correctly assign labels also

on Ŷ . There is a growing need for using classification systems in order to automate

different online and offline tasks, often having labels that are yet to be observed in

the training data. Based on the definitions given by Palatucci et al. [6], we address

the following general research question: “Given a semantic encoding of a large set

of concept labels, can we build a classifier to recognize labels that were omitted from

the training set?”

To correctly deal with unseen labels, one possibility is to establish relationship

between seen and unseen labels. One of the earliest works in zero-shot classification
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[6] proposes a method based on creating semantic embeddings for words based on

co-occurrences of labels in dictionaries and human feedback on label properties.

More recently, the progress made in learning semantic embeddings (e.g. word2vec

[40]) has provided a method for encoding the semantic meaning of words. Therefore,

classification tasks where the label set is made up of meaningful words can be used

to establish such inter-label relationships. An input is mapped to the label embedding

space, and then, a nearest neighbors approach is used to predict the correct label,

including from those not seen in the training set. Unfortunately, these methods that

are aimed at “directly learning” a mapping from the input to a semantic space may

suffer from two major problems.

First, the target semantic space may be hard to learn due to the noise. This is

because similarity between word embeddings of two labels may not correspond to

the similarity between their respective inputs. Such a situation can occur because

the word embeddings for labels were constructed using an independent dataset (i.e.

google news). As an example, if two words (labels) occur together in google news

corpora - that was used to learn the word embeddings - then they would have similar

embedding representation, with no regards to their similarity in the input space.

Hence, semantic space representations (i.e. word embeddings) for labels can vary

significantly based on the dataset used to learn them, and this could be a problem in

zero-shot classification.

Second, nearest neighbor classifiers for zero-shot classification are not designed

to take into account the neighborhood of a given label in the embedding space. This

basically means that labels that have really close neighbors should be learned with

more accuracy at the expense of labels that are isolated in their neighborhood.

We address the two above mentioned problems in a step-wise manner. Firstly,

we need to fine-tune label embeddings based on the task. Secondly, we need to

develop a neighborhood sensitive mapping that can reduce the risk of error for a

nearest neighbor classifier during zero-shot classification.

Our main contributions in this study are:

1. Learning data-dependent embeddings for labels
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2. Neighborhood sensitive mapping to reduce classification error

2.1 Related Works
There has been active research in the area of zero-shot classification in the recent

past. Originally, the problem was defined in its current form by Palatucci et al.

[6], where they address the problem by embedding the set of labels into a semantic

space used then to extrapolate information about unseen labels. Given an object

in the dataset, they firstly predict the set of semantic features (in the embedding

space) corresponding to that input, and then they find the nearest class in the labels

embedding. They also develop a generalization bound on the error for zero-shot

classification using a nearest neighbour classifier. A following work [41] proposed a

multi-label max-margin classifier with applications to zero-shot classification. By

means of a correlation matrix between different labels they are able to predict unseen

labels. The method, specifically designed for multi-label classification, explicitly

reduces the hamming loss between prediction vectors and the label vectors.

There are numerous practical applications where unseen images need to be

classified. As a result, zero-shot classification has found considerable interest in the

area of image recognition and classification. Another such work [42] develops an

approach specifically based on learning attribute for animals (e.g. color, eating habits

etc.). These attributes are not unique to a single animal, and therefore, can be learned

from the available training data. One more work [43] proposed a method specifically

targeting images, that focuses on exploiting co-occurrences of visual concepts in

images for knowledge transfer. At the same time, Jayaraman et al. [44] propose an

approach for zero-shot classification, for when image attributes are unreliable, and

use the error tendencies of the different attributes to develop a linear discriminant

model. There have been many such attribute based learning methods for visual

recognition that have been developed in the past [45, 46, 47, 48, 49, 50], to point to

a few.

Unfortunately, there are situations when such attribute information is not easily

available, and therefore, we need to build a semantic space for labels. Building such
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a space may lead to an additional overhead and it may also require an extensive

knowledge of the domain in which labels are defined. For these reasons, the learned

semantic embeddings may not even be of the required high quality. To address

these concerns, a general methodology to learn word embeddings is presented by

Mikolov et al. [40]. The technique, known as word2vec, has made a advances in both

efficiency and quality of the vectors learned. These vector representations are easily

available for billions of words trained on terabytes of Google News and Wikipedia

data. By using semantic embeddings learned using word2vec, Norouzi et al. [51]

proposed ConSE, a zero-shot image classification system specifically tested on image

classification. ConSE uses a convolution network to embed an image into a vector

space and uses a convex combination of nearest label embeddings to construct the

prediction vector. It assumes that the set of predicted labels is disjoint to the set of

seen labels, an assumption that is neither valid in the real world nor in our work.

Another work [52] proposed a linear regression model for zero-shot classification

that also relies on independently learned semantic embeddings. This work is very

similar in practice to the model of Palatucci et al. [6]. Another work [53] proposed

to learn semantic embeddings for labels from scratch without using independently

learned semantic embeddings, which differentiates it from our work.

An interesting work based on semi-supervised learning [54] proposed a max-

margin multi-class zero-shot classifier with the assumption that unlabeled data is

available during training, an assumption that is not made in the paper defining the

problem of zero-shot classification and that, therefore, we are not making in this

chapter as well. One very recent work [5] proposes to learn semantic similarity

embeddings for zero-shot classification, such that, each source or target label is

represented as a mixture of seen label proportions. The method does well to predict

unseen labels when the set of possible labels does not include seen labels, since the

model is biased towards predicting seen labels. But, the method does not perform

as well in the real world scenarios where it is not possible to distinguish between

an unseen and a seen label at test time. Contrary to this, we work on a method

that focuses on learning an accurate mapping from input data to the semantic space
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representation of labels, which leads to better accuracy in predicting the correct label.

2.2 Proposed Method
In this section, we present our two step approach to zero-shot classification. We

first describe the method to learn the proposed data-dependent embeddings that

we refer to as property embeddings. Afterwards, we present how to minimize the

classification error for nearest neighbour zero-shot multi-class classification using

these property embeddings.

2.2.1 Property Embeddings

Most previous methods either assume the presence of reliable attribute information

for labels [52] or directly use noisy word embeddings [51]. While some other

methods make assumptions about the availability of unlabeled data during training

[54], when in fact, this is often not possible in the real world. On the other hand,

semantic embeddings like word2vec [40] and Glove [55], or more recently FastText

[56] - while easy to obtain - are generally learned independently of the task at

hand. Consequently, these embeddings are noisy, and therefore, can lead to inferior

performance on the task at hand. Hence, we attempt to re-learn the label embeddings

(obtained using word2vec on google news) explicitly using task data, and refer to

them as property embeddings.

There is a one-to-one correspondence between labels and their property em-

beddings i.e. each label has a label embedding and a property embedding. These

property embeddings encode labels such that: 1) the new property embeddings can

be learnt from the input; 2) the similarities among labels in the label embeddings

space are preserved in the property embedding space as much as possible. This leads

us to formulate the objective Js in Equation (2.1) in which the first part ensures that

the matrix of property embeddings B can be mapped from data X using the model

W , while the second part ensures that the cosine similarities that existed between

different labels in the original label embeddings are preserved. We take the average

of the features for all instances that have the same label, therefore, we have one input

x for each label. We denote by S /U the set of seen/unseen labels and the subscript
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s/u refers to parameters corresponding to seen/unseen labels.

Js = α‖XW −Bs‖2 +(1−α)‖BsBT
s −LsLT

s ‖2 +λ‖W‖2 (2.1)

W,Bs = argmin
W,Bs

Js (2.2)

Here X ∈ R|S |×d is the input matrix, Bs ∈ R|S |×k1 is the new property embedding

matrix, Ls ∈R|S |×k2 is the label embedding matrix, W ∈Rd×k1 is a linear model, and

d,k1,k2 are the dimensions of the input, property embedding and label embedding

respectively. Please note that W is only used to learn Bs, once we obtain Bs we throw

away the learned W , and re-learn its neighbourhood sensitive version in the next

section. Please also note that the dimensions of property embeddings can be different

from label embeddings.

We model a slightly different objective to learn property embeddings for zero-

shot labels (i.e. Bu). The only piece of information we have about zero-shot labels

is their relative similarity with other labels in the original label embedding space.

This is because we do not observe these labels in the train set. Therefore, we need to

preserve the similarity between these zero-shot labels and the seen labels in the new

property embedding space, leading us to the objective:

Ju = ‖BsBT
u −LsLT

u ‖2 (2.3)

Bu = argmin
Bu

Ju (2.4)

Please note that Bs is fixed in this objective and we use the value obtained in Equation

2.2.

We optimize both objectives (Eq 2.2 and Eq 2.4) using gradient descent, but

we recognize that Eq 2.4 can also be solved in closed form. We also acknowledge

that there might be other methods that can be applied to solve these objectives

e.g. second-order methods, which might differ from gradient descent in terms of

time-space performance, but that should not affect the quality of the final results.
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2.2.2 Neighborhood Sensitive Mapping

In this section, we propose an objective for nearest neighbor classification that takes

into account the neighbourhood of the label while mapping input into the property

embedding space. Our aim is to learn labels that are in crowded (i.e. have a lot of

labels nearer to them in the property embedding space) neighbourhood with more

precision at the expense of labels that are in sparse neighbourhood. This is because

a label in crowded neighbourhood is more likely to be misclassified by a nearest

neighbour classifier, as compared to a label in a sparse neighbourhood, therefore,

we refer to the approach as Neighborhood Sensitive Mapping. To achieve this, we

formulate the objective as:

W = argmax
W

∑
(x,q̂)∈D

(
∑

q̃∈(S
⋃

U )−q̂
log
(

σ

(
x W

(
bq̂−bq̃

)T
)))

−λ‖W‖2 (2.5)

Here x∈R1×d is the input, q̂ is the true label, S is the set of seen labels, U is the set

of unseen labels, bq ∈ R1×k1 is the property embedding of label q, σ is the sigmoid

function and W ∈Rd×k1 is a linear mapping from input to property embedding space.

The first part of the above objective ensures that the dot product of the prediction

vector (xW ) with the property embedding of the true label (bq̂) is larger in comparison

to the other labels. While the second part is the standard l2 regularization over the

learned parameter W .

2.3 Experimentation

In this section, we first describe the fMRI dataset that was used for experimentation.

After that, we pose three different research questions and analyze the results in

light of these questions over the fMRI dataset, exactly as in the original zero-shot

paper by Palatucci et al. [6], which also analyzed these three questions over fMRI

dataset, and also draw comparisons with competitive baselines. After the analysis

over these research questions, we describe two additional text classification datasets.

We perform final experiments on these two text tagging datasets and discuss the

obtained results.
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2.3.1 fMRI Data

We used the fMRI dataset for experimental analysis over three research questions,

exactly as in the original paper on zero-shot [6]. The fMRI dataset is composed of the

neural activity observed from nine human participants while looking at 60 different

concrete words. These 60 words are divided into 12 categories, like animals: bear,

dog, cat, cow, horse and vehicles: truck, car, train, airplane, bicycle. Each participant

was shown a word and a small line drawing of the concrete object the word represents.

The participants were asked to think about the properties of these objects for several

seconds while scans of their brain activity were recorded. Each sample measures

the neural activity at roughly 20,000 locations in the brain. Six fMRI scans were

taken for each word. We also used the same time-averaging described in Mitchell et

al. [57, 6] to create a single average brain activity pattern for each of the 60 words,

for each participant. The semantic embeddings used in the experiments were 300

dimensional vectors trained on Google news using word2vec [40], and are freely

available online.

2.3.2 Research Questions

In this section we perform experimental analysis in the light of three different

research questions that were posed in the original zero-shot paper [6], and compared

our results to LM [6] and ConSE [51]. For this analysis, we use fMRI dataset as

used by Palatucci et al. [6].

We refer to our proposed method as NSM i.e. Neighborhood Sensitive Mapping,

Palatucci et al. [6] is referred to as LM and Norouzi et al. [51] is referred to as

ConSE. In order to get insights into the effect of our novel property embeddings, we

also test both NSM and LM with property embeddings. Therefore, NSM-PB and

LM-PB refer to NSM using property embeddings and LM using property embeddings

respectively, on the other hand, NSM and LM use the label embeddings.

1. How well can the model differentiate between two novel classes, where

neither class appears in the train dataset?

We randomly draw a set of 1000 pairs of classes. We select one pair at a time

and remove both of the classes in the pair from the training set, and then evaluate the
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accuracy of binary classification between these two removed classes on the test set.

We then report the average binary classification accuracy over these pairs.
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Figure 2.1: Binary classification accuracy for different participants in fMRI dataset using
our proposed approach (referred to as NSM-PB) versus LM-PB, LM, NSM and
ConSE. The results are averaged over 1000 different pairs of binary classes
and the results are statistically significant at p-value = 0.0016 using a two
sided t-test. The average results for NSM-PB, LM-PB, ConSE, LM and NSM:
0.7049, 0.6633, 0.5454, 0.6420 and 0.6495 respectively. Please note that the
classification accuracy of a random classifier would be 0.5.

We can see that NSM-PB outperforms LM-PB, LM (Figure 2.1) and ConSE.

The difference between NSM-PB and others is statistically significant using a t-test at

p-value < 0.001. It can be seen that relearning of semantic embedding using the data,

as well as modified neighborhood sensitive approach manages to better differentiate

between novel classes. In fact, during our experimentation we observed that it works

particularly well in case of classes that are very close in original semantic space, e.g.

hammer and chisel. In those cases the use of a LM leads to results that are no better

than random. We obtained an accuracy of 50% for hammer and chisel using LM,

whereas 67% accuracy using NSM-PB.

2. How well can the model classify accurately in a multi-class classification

setting, where all the test classes are absent in the train dataset?

We randomly select a set of 1000 groups such that each group consists of five

different classes. We compute the average of the results of multi-class classification

accuracy on all these groups. We restrict the predicted class to the classes in the group,

i.e. we try to predict the correct class from among the five classes in each group.
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Figure 2.2: The figure plots multi-class classification accuracy for different participants
in fMRI dataset. The figure compares our proposed approach (referred to as
NSM-PB) against LM-PB, LM, NSM and ConSE. The results are averaged over
1000 different set of five classes and the results are statistically significant at
p-value = 0.0015 using a two sided t-test. In this experiment, we test the ability
of NSM-PB to distinguish between five novel classes that have not been seen in
the train set. The average results for NSM-PB, LM-PB, ConSE, LM and NSM
are: 0.2671, 0.2356, 0.2281, 0.22393 and 0.2349 respectively.

The results are presented in Figure 2.2 and are statistically significant using a two

sided t-test at p-value = 0.0015. Even in a multi-class setting, property embedding

based models outperform the semantic embedding based models. Also, NSM-PB

outperforms ConSE, even though ConSE is competitive.

We can see in Figure 2.2 that NSM-PB performs better than both LM and

ConSE. It shows that the proposed model is better at discriminating between multiple

zero-shot classes in a multi-class classification setting. We can see in Figure 2.3

that the mean rank of the correct label in the prediction list is much lower in case of

NSM-PB as compared to both LM-PB, LM and ConSE. It shows the effectiveness of

NSM-PB in predicting correct labels higher in the prediction list.

3. How well can the model predict accurately in a multi-class classification

setting, where the classifier has to choose from all possible classes?

For this task, we select a random class and remove it from the train dataset.

Thereafter, we try to predict that class during testing from the set of all classes,

including both novel and seen classes. It means that the classifier has to choose a

class from among the 60 different classes present in the dataset. This is the hardest
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Figure 2.3: The figure plots mean rank for a true novel class (not seen in the train set) in
the ordered prediction list of classes for different participants. In the figure
our proposed approach (referred to as NSM-PB) is compared against LM-PB,
LM, NSM and ConSE. The difference of NSM-PB against LM and ConSE is
statistically significant at p-value < 0.001 using a two sided t-test. The average
results for NSM-PB, LM-PB, ConSE, LM and NSM are: 18.58, 21.47, 24.36,
23.137 and 20.25 respectively.

task and also closely resembles the real world situation where we do not know in

advance whether the instance belongs to a seen or unseen class. The results are

presented in Figure 2.4 and are statistically significant using a t-test at p-value <

0.001. NSM-PB outperforms the baselines in this task as well (see Figure 2.4). We

make the classifier choose from the complete set of 60 classes instead of restricting

the possible set of classes. Note that we outperform LM-PB, LM, NSM and ConSE

by a significant margin in terms of classification accuracy (See Figure 2.4). These

results are as expected given that we minimize generalization error for nearest

neighbor classifier. This also clearly shows in the results as both LM and ConSE fall

short in comparison to NSM for classification accuracy. These results clearly give

us an insight regarding the usefulness of property embeddings, as LM-PB performs

much better than LM and NSM-PB performs much better than NSM. In addition

to property embeddings, the neighborhood sensitive mapping further improves the

accuracy of classification.
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Figure 2.4: The figure plots mean accuracy for a true novel class (not seen in the train set)
for different participants in fMRI dataset. In the figure our proposed approach
(referred to as NSM-PB) is compared against LM-PB, LM, NSM and ConSE.
The difference of NSM-PB against LM and ConSE is statistically significant
at p-value < 0.001 using a two sided t-test. The average results for NSM-PB,
LM-PB, ConSE, LM and NSM are: 0.2389, 0.2000, 0.0533, 0.0522 and 0.0661
respectively.

2.3.3 Text Classification Datasets

After the initial experiments on fMRI dataset, we tested the best performing NSM-PB

against LM and ConSE on two larger text classification datasets. First, wiki10+

dataset [58] contains text of wikipedia articles and the tags assigned by users on

delicious.com for url of those articles. We used the most popular tag for an article as

the label of that article. There were 20762 instances in the dataset with 5303 distinct

labels. We cleaned the data of all html tags and computed tf-idf representations of

the data. Afterwards, we used truncated-SVD to reduce noise in the data. Second,

delicious dataset [59] contains features of web pages from all over the internet with

tags generated by users on those web pages as the labels. The dataset contains 500

features for each instance and 983 unique labels. It has more than 16000 instances

and the features are binary, with 1 indicating the presence of the feature and 0

indicating the absence of the feature.

2.3.4 Experiments

In this section we compare our approach against an additional baseline called SSE

[5], which was a more recent method for zero-shot classification.
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K NSM-PB LM ConSE SSE
5 0.0685 0.0261 0.0283 0.0269

10 0.1344 0.0392 0.0472 0.0481
50 0.3590 0.0521 0.0825 0.1541

Table 2.1: The value of accuracy for different methods on wiki10+ dataset. A given predic-
tion is considered accurate if top-K labels in the prediction list contain the correct
label. Results are statistically significant using t-test at p-value < 0.001.

K NSM-PB LM ConSE SSE
5 0.0509 0.0320 0.0433 0.0274

10 0.0924 0.0492 0.0822 0.0430
20 0.1486 0.0721 0.1350 0.0597

Table 2.2: The value of accuracy for different methods on delicious dataset. A given predic-
tion is considered accurate if top-K labels in the prediction list contain the correct
label. Results are statistically significant using t-test at p-value < 0.001.

We decided to test the accuracy of the methods using the top-K predicted labels,

which means that the prediction was considered accurate if the top-K predicted labels

contained the correct label. We can see in Table 2.1 that NSM-PB outperforms the

other approaches by a considerable margin for varying levels of K. We can see that

NSM-PB performed well even for K = 5, which is a very small value considering

that the classifier has more than 5000 labels to choose from. We can see very similar

results in Table 2.2 that NSM-PB again outperforms all other approaches for varying

values of K.

2.3.5 Runtime

We observed that the running time for LM, ConSE and NSM were comparable, but

the running time for SSE was much larger. The larger running time in the case of

SSE can be attributed to sequentially learning label embeddings for all the labels in

terms of proportions of seen labels. Therefore, SSE can take significant execution

time when the seen label set contains a large number of labels.

2.3.6 Reproducibility

We share the codes used for the given experiments at http://bit.ly/1RCNlwR.

The values of α and λ (Equation 2.1) were tuned over a validation set, and were

http://bit.ly/1RCNlwR
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found to be 0.1 and 0.5 respectively. In case of ConSE, we use a multi-class logistic

regression classifier for predicting class probabilities. The values of parameter T

(i.e. number of top-T nearest embeddings for a given instance) in ConSE that gave

best result was 5. The dimensionality of the learned property embeddings in the

experiments was 10. The code for SSE was obtained from the matlab demo shared

by the authors on their web-page.

2.4 Conclusions
We proposed a model that uses independently learned semantic embeddings to

improve a zero-shot text classifier in a multi-class classification setting. We first

describe the issues associated with zero-shot classification systems that use semantic

embeddings. Then we highlight the shortcomings of classifiers that are not sensitive

to the neighborhood of a label in the semantic space. After that we show that

our proposed data-dependent property embeddings combined with neighbourhood

sensitive mapping leads to improved results for zero-shot classification in text. These

novel embeddings reduce noise in the pre-trained semantic embeddings, the proposed

classification model then uses these newly learned embeddings for neighborhood-

aware nearest neighbour classification.



Chapter 3

Improved Active Learning in

Systematic Reviews

Systematic reviews are essential in various domains to summarize evidence from

multiple sources. They are used in the formulation of public policies and also

contribute in medicine in the development of clinical guidance [60, 61]. They

involve searching, screening and synthesis of research evidence from multiple sources

available in the form of published documents. It is critical in systematic reviews

to identify all studies relevant to the review in order to minimise bias. It is easy to

see that such a process can be extremely time-consuming and demand significant

human resources [62]. Therefore, researchers have exploited active learning text

classification to make the process of systematic review more efficient, which is an

iterative process that starts from a small set of labelled studies and gradually learns

to differentiate between relevant and irrelevant studies [16, 14, 63].

An essential component to the success of supervised learning is feature ex-

traction. More recently, Hashimoto et al. [9] presented a topic detection model to

improve the performance of the active learning classifier. Their method is based

on a neural model - referred to as paragraph vectors [64] - to extract fixed length

feature representations for the documents. To ascertain whether the proposed feature

extraction model indeed works well, we experimented on a comprehensive dataset

of reviews derived from diverse domains, and compared different feature extraction

techniques with Hashimoto et al. [9]. Contrary to the published findings, we ob-
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served that different feature extraction methods work well for different domains but

none of them works well for all reviews.

After feature extraction, the other major component for systematic review

classification is the active learning algorithm. Previously, naive active learning

algorithms were used for this task with some success [14, 9], but a naive algorithm

suffers from the problem of extracting studies that are similar to the previously

retrieved studies. This is because the active learning classifier may not receive

enough diverse samples initially, and then continues retrieving studies similar to the

ones that have already been retrieved.

To address this, we propose a novel active learning algorithm for clinical text

classification that reduces bias (i.e. ‘bias’ towards selecting studies similar to the

ones chosen in the beginning) by including novelty as a criteria in addition to

relevance. We should mention that diversity based active learning techniques have

been proposed earlier [65, 66, 67], but to the best of our knowledge, they have not

been applied for the task of citation screening.

At the end, we derive meaningful insights from our experiments and describe

a process for choosing the best feature extraction model for any given review. Our

contributions can be summarized as follows:

• We perform experiments on the use of different feature extraction models

over a comprehensive set of reviews, and contrary to the published results in

Hashimoto et al. [9], observe on a larger dataset that paragraph vector based

topic modelling does not work better compared to bag-of-words and/or simple

paragraph vectors based approach for active learning in systematic reviews.

• We propose a simple active learning algorithm that removes the inevitable bias

in naive algorithms [13, 9] based solely on relevance, and instead uses both

novelty and relevance during the initial phase.

• We derive insights from our experiments on the performance of different

feature extraction models for different domains, and propose an effective way

to choose the best feature extraction model that requires no prior knowledge
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about the review.

3.1 Related Works
An interesting work [62] conducted a comprehensive survey of different machine

learning methods used for advancing automation in systematic reviews. One more

such work [68], described the applications of various text mining technologies

for citation screening, these were namely, automatic term recognition, document

clustering, classification and summarization; these techniques have been used in

a number of previous works for the identification of relevant studies in systematic

reviews. There are two major components of a citation screening system: 1) feature

extraction model; and 2) active learning strategies. We will discuss related works on

both of these aspects.

Wallace et al. [14] proposed a multi-view approach that encodes documents

in terms of different feature vectors, such as, words that appear in the title and

abstract, keywords and MeSH terms. Afterwards, each feature space is used to train

a separate classifier, and an ensemble of those based on majority voting predicts the

final outcome. Although, such previous feature extraction methods worked well for

studies in the clinical domain, but it was noticed in Miwa et al. [16] that the task of

identifying relevant studies in public health domain had poor performance. They

argued that the task of identifying relevant studies is more challenging in this domain

due to the presence of documents from wide ranging disciplines (e.g. social science,

occupational health, education etc.) compared to more specific studies included in

clinical systematic reviews [69]. To address this, the authors proposed using topic

modelling to extract topic based features using Latent Dirichlet Allocation (LDA)

[70], though, other topic models available in machine learning can be used just as

well e.g. probabilistic latent semantic indexing.

Other works have focused on improving the process of active learning. Settles

et al. [71] presented a comprehensive survey on these methods. A more recent

work [72] proposed an active learning algorithm based using group of words that

describes a label, known as rationals. These rationals were generated by a human
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annotator and led to an extra manual effort. Unfortunately, it is often difficult

to obtain additional annotations for the labels due to the expensive manual effort

involved. A different work [14] proposed a semi-automated screening of biomedical

citations for systematic reviews. They propose a novel online learning strategy that

uses an ensemble of SVMs trained on different feature-spaces (e.g. title or abstract)

to mark citations as “relevant” or “irrelevant”. The studies that the classifier was

least confident about were then sent to human experts for manual annotation. A

number of works [65, 66, 67] have also attempted to add diversity in active learning

process, but to the best of our knowledge, they have not been applied for the task of

citation screening.

3.2 Methods
In this section, we briefly describe different feature extraction methods that have

been used in previous works. We then describe the motivation and details of our

proposed active learning algorithm.

3.2.1 Feature Extraction

• Bag-of-words: The most basic feature extraction models from text documents

is called bag-of-words. In this model each of the possible terms in the entire

corpus of documents is used to construct a vocabulary. At times the terms are

weighted by tf-idf that increase (decreases) the relative weighing of unique

(common) words in the document.

• Latent Dirichlet Allocation: Topic modelling techniques e.g. LDA [70],

have been used in the area of systematic reviews to extract topical features

from studies [73]. Such topical representations extracted from the documents

are then used as features for training the active learning classifier.

• Paragraph Vectors: Recently, a neural network model has been proposed that

learns word vectors and paragraph vectors (PV) in a joint manner [64], which

is in contrast to the approach of learning them separately. Originally, word

vectors represented only the words, but paragraph vectors are able to represent
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a sequence of words in the form of phrases, sentences or paragraphs. Paragraph

vectors have been reported to work with success in some previous works [9],

and are expected to encode natural language better than other topic models.

They have been used to measure similarities between Wikipedia articles and

research papers [74]. They have also been used to extract topics from studies

used in systematic reviews [9].

• Topic Modelling using Paragraph Vectors: Hashimoto et al. [9] proposed

a technique for topic modelling using paragraph vectors. They argued that

paragraph vectors lead to better feature extraction by jointly learning the vector

representation of words and documents. Hence, clustering such paragraph

vectors can lead to better topic assignments, in comparison to models based

on bag-of-words representation e.g. LDA [70].

• Clustering bag-of-words: We can cluster the tf-idf based bag-of-words rep-

resentation of documents to obtain topics. The documents can then be rep-

resented in terms of the cluster-distance matrix. It is the most basic of the

different topic extraction models that was previously used as a baseline [9].

3.2.2 Active Learning

3.2.2.1 Background

The active learning process begins with a small number of manually labelled doc-

uments. These documents are then used to train a classifier that can be used to

differentiate relevant and irrelevant studies among the rest of the studies. These

studies are ordered in decreasing probability of relevance and the top-k studies are

manually reviewed by an expert reviewer. These manually reviewed k studies are

then used to retrain the active learning classifier along with the previously labelled

studies.

There is an obvious problem with such a naive active learning algorithm. The

classifier can easily get biased towards studies that are chosen in the beginning

of the process. Such a classifier would continue to look for similar studies based

on its current knowledge. In contrast, we hypothesized that including novelty in
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addition to relevance while choosing documents for active learning can lead to

an overall improvement in performance. Some other approaches like [72] require

additional information about the labels, and can only work well with bag-of-words

representation of documents. In comparison, our method can work well with both

bag-of-words and distributed representations (e.g. paragraph vectors). To the best

of our knowledge, naive active learning is the only algorithm used with success in

systematic reviews [9, 62].

3.2.2.2 Proposed Algorithm

To solve the above mentioned problems, we extract topics from documents using

LDA. It gives us output topic vectors for each document in the corpus v(d) ∈ Rk×1.

These topic vectors from different documents form a matrix V ∈ Rn×k, where n

is the number of studies in the corpus and k is the number of topics. We create a

separate matrix of topic vectors for documents d that have already been manually

labelled. We refer to the set of already labelled documents as H , and the matrix

of topic vectors for documents d ∈H is denoted as S ∈ R|H |×k. We denote the

set of currently unlabelled documents as G , and set of all documents as D . We use

principal component analysis to compute the top-t principal eigenvectors of ST S. We

arbitrarily define the probability of a document being novel as:

p(n|d) = 1− ‖UUT v(d)‖2

‖v(d)‖2
(3.1)

where U ∈ Rk×t contains t principal eigenvectors, and UUT ∈ Rk×k is the subspace

formed by top-t principal eigenvectors of ST S. It basically measures the novelty

of a document by projecting its topic vector on the principal subspace formed by

topic vectors of documents in the training set. The projection should be small for a

document to be considered novel and vice versa. We should mention that we chose

this way of computing novelty because of its simplicity and reduction of noise as we

only consider top-t eigenvectors, but we recognise that there can be other ways of

computing novelty as well e.g. distance from mean of the topic vectors. Additionally,

we obtain the probability of a given document d being relevant p(r|d) from the
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classifier. We compute the probability of document being both relevant and novel as:

p(r,n|d) = p(r|d)∗ p(n|d) (3.2)

which is under the assumption that novelty and relevance are independent given

the document. We order the documents by the above mentioned p(r,n|d), and then

select the top-k documents in each iterative step of the active learning algorithm for

review by an expert reviewer. We continue using novelty of a document in the active

learning process till we have discovered a certain fixed number of topics. We assign

a document d to topic i if

i = argmax
k

vk(d)

where vk(d) is the value in kth index of topic vector v(d). Afterwards, we stop

incorporating the novelty in the active learning process and continue solely based on

relevance. We assume that a given topic has been discovered if any document in the

labelled set H is assigned to that topic. We provide a more formal description of

the above mentioned process in Algorithm 1.

3.2.3 Evaluation

3.2.3.1 Evaluation Method

First, we evaluate the performance of different feature extraction methods. For this,

we use a logistic regression based linear classifier during active learning. Prior

to choosing logistic regression, we tried linear-SVM [9, 16], but observed that

performance was very similar, therefore, we decided to use logistic regression

classifier as it models the posterior probability of a study being relevant p(y|d).

Second, we compare our proposed active learning algorithm against a naive

active learning approach, and another competitive baseline. The active learning

process starts with a small set of manually labelled studies. Features are extracted

from this labelled set using different feature extraction models mentioned above. At

each step of the iterative process a fixed set of studies are reviewed manually by

an expert reviewer. We extract a sample of top-k studies at each iterative step for

manual labelling from the ordered list of candidate studies [63, 62].
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Algorithm 1 Systematic Reviews Learning
1: procedure ACTIVE LEARNING

2: # Get initial manually labelled set
3: H = GETINITIALLABELLEDSET

4: G = D−H
5: t = 3
6: max topics = 150
7: s = 25
8: n = 0
9: # Get topical representation of docs using LDA

10: V = LDA(D, n topic=300)
11: while n <max topics do
12: clf = Classifier()
13: clf = TRAINCLASSIFIER(clf, H )
14: R = GETRELEVANCESCORES(clf, G )
15: N = GETNOVELTYSCORES(V , H , G , t)
16: for ∀d ∈ G do
17: scores(d) = R(d)∗N(d)
18: end for
19: # Get top s documents as per scores
20: G ′ = GETTOPKDOCUMENTS(scores, s)
21: H = H ∪G ′

22: G = G −G ′

23: # Topics discovered in labelled set
24: n = GETNUMBEROFTOPICSDISCOVERED(V, H )
25: end while
26: while |G |> 0 do
27: clf = Classifier()
28: clf = TRAINCLASSIFIER(clf, H )
29: R = GETRELEVANCESCORES(clf, G )
30: for ∀d ∈ G do
31: scores(d) = R(d)
32: end for
33: # Get top s documents as per scores
34: G ′ = GETTOPKDOCUMENTS(scores, s)
35: H = H ∪G ′

36: G = G −G ′

37: end while
38: end procedure

Third, we derive insights from our experiments that would help us choose the

correct feature extraction model without prior knowledge of the reviews.

All our datasets are already labelled by expert reviewers. During training

we simulated a human feedback active learning strategy similar to the previously

published works [9, 16, 14].
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3.2.3.2 Parameter Tuning

We tune the different parameters of paragraph vectors (PV) using cross validation.

We keep the number of topics in LDA at 300, as in [9]. We experimented with

dimensionality of paragraph vectors and found that using 300 dimensional document

vectors performed better in general across different reviews. We also experimented

with higher values of the dimension such as 1000 (as in [9]) but the results were

did not improve. We tuned the regularization parameter for the linear classifier,

but observed that the results are extremely stable across different values of the

regularization parameter and used the value that gave the best results. The number

of principal eigenvectors that we use to compute p(n|d) are 3, i.e. t = 3 (line 42

in Algorithm 1). The value of parameter max topics was set to 150 in line 6 of

Algorithm 1. It denotes the number of topics to be explored before we stop using

novelty as a criteria in our active learning algorithm. We used the value of s = 25

in the algorithm. A small value for s implies that the classifier would have to

be re-learned too often, and larger value would lead to selecting too few relevant

documents in the beginning, and as a result a decrease in the overall performance.

3.2.3.3 Evaluation Metric

We evaluate the performance of our active learning process using a metric called

WSS@95, which stands for Work Saved over Sampling at 95% yield. It can be

expressed as:

WSS@95 = (1−burden) | yield ≥ 95% (3.3)

yield =
T PM +T PA

T PM +T PA +FNA (3.4)

burden =
T PM +T NM +T PA +FPA

N
(3.5)

where N are the # of studies and superscript M and A denote manual and automatic

screening decisions. TP, FP, TN and FN stand for # of true positives, false positives,

true negatives and false negatives respectively. These notations are the same as those

mentioned in Hashimoto et al. [9]. We decided to use the WSS metric as it has been

used in previously published works [9] on citation screening in systematic reviews.
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Dataset Domain Num. of
citations

Fraction of
relevant studies

LHVS Clinical 1430 0.018
ASCD Clinical 6381 0.010
FABC Clinical 24469 0.005

DPCAD Clinical 3087 0.019
STCS Clinical 4415 0.026
FVC Clinical 2157 0.050

SPCHD Clinical 14841 0.006
NPA Animal Studies 29659 0.168

CAFO Animal Studies 3434 0.023
Cooking Skills Public Health 10957 0.017

Youth Development Public Health 14834 0.091
Tobacco Packaging Public Health 2792 0.034

Table 3.1: Statistics of the systematic review datasets used in the experiment.

3.2.4 Datasets

We used a number of public health, animal study and clinical review datasets from

completed systematic reviews. Some of these datasets have been previously used

in Miwa et al. [16] and Hashimoto et al. [9]. We summarize the characteristics of

different datasets used in our experiments in Table 3.1.

Brief Dataset Description. LHVS: Leukodepletion for patients undergoing heart

valve surgery; ASCD: Amiodarone versus other pharmacological interventions for

prevention of sudden cardiac death; FABC: Altering availability and proximity of

products for changing selection and consumption of food, alcohol and tobacco; NPA:

Animal studies on neuropathic pain; CAFO: Concentrated animal feeding opera-

tions; DPCAD: Psychological and pharmacological interventions for depression in

patients with coronary artery disease; STCS: Preoperative statin therapy for patients

undergoing cardiac surgery; FVC: Interventions for increasing fruit and vegetable

consumption in children aged 5 years and under; SPCHD: Internet-based interven-

tions for the secondary prevention of coronary heart disease; Youth Development,

Cooking Skills and Plain Tobacco Packaging as described in [9, 16]



3.2. Methods 52

(a) Cooking Skills (b) Youth Development (c) Tobacco Packaging

(d) FABC (e) CAFO (f) NPA

(g) ASCD (h) DPCAD (i) STCS

(j) FVC (k) SPCHD (l) LHVS

Figure 3.1: X-axis represents the number of documents that have been manually annotated
and Y-axis represents the number of relevant documents that have been dis-
covered. We can observe that different feature extraction methods work better
for different reviews. BoW works better for public health documents and PV
performs better on clinical studies. We can clearly infer that no feature extraction
method is obviously superior to others over all documents.
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3.3 Results

We investigate the performance of different feature extraction techniques in terms

of relevant studies discovered and amount of manual annotations required. We plot

the number of relevant studies identified for a given amount of manual annotation

for different reviews that range from public health to clinical science. Both these

quantities converge to their maximum value during the last iteration of the active

learning process. We plot the performance for different feature extraction models

in Figure 3.1. We denote topic modelling based on paragraph vectors with PV-TM,

BoW stands for bag-of-words, BoW-TM denotes topic modelling based on BoW

model and LDA refers to Latent Dirichlet Allocation. We can see in Figure 3.1 that

different feature extraction methods work well for different studies. We observe that

in majority of the cases, paragraph vectors and BoW models perform better than

the rest. In documents pertaining to public health, BoW performs well, whereas for

clinical reviews PV performs well. These results are contrary to previous results in

[9], where the topic modelling based on PVs seemed to outperform other models

across all disciplines. We observe that BoW and PV perform better than topic

modelling based on paragraph vectors on most datasets. We show that it is not

possible to find a single feature extraction method that performs superior to others

across all domains, but we need to identify one per each review.

When we use our active learning algorithm with BoW model, then we refer

to it as IG-BOW (Information Gain-BOW), whereas when we use the paragraph

vector model, we refer to it as IG-PV (Information Gain-PV). We can observe the

performance of proposed active learning algorithm compared to the naive active

learning algorithm as the screening progresses in Figure 3.2. We can notice that our

proposed algorithm explores in the initial phases of the screening process, but as the

process continues the performance improves. It outperforms naive active learning

algorithm by the end of the screening process. We plot the WSS@95 (i.e. WSS at

95% yield) in Figure 3.3 for our proposed active learning algorithm. In addition

to the naive active learning algorithm, we compare our method with an additional

uncertainty-based sampling algorithm that selects the samples about which the
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(a) Cooking Skills (b) Youth Development (c) Tobacco Packaging

(d) FABC (e) CAFO (f) NPA

(g) ASCD (h) DPCAD (i) STCS

(j) FVC (k) SPCHD (l) LHVS

Figure 3.2: X-axis represents the number of documents that have been manually annotated
and Y-axis represents the number of relevant documents that have been dis-
covered. We can observe that our proposed active learning algorithm, that is
IG-PV and IG-BOW explore during the initial phases of screening and then their
performance improves as the process continues. We show the results of proposed
active learning algorithm compared to the naive active learning algorithm in
terms of WSS@95 in Figure 3.3.
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Figure 3.3: The figure plots the performance of proposed active learning algorithm and
the naive active learning algorithm in terms of WSS@95. We use the two
best performing feature extraction models (i.e. BoW and PV) for comparing
the proposed active learning algorithm with the naive algorithm and baseline
algorithm (LC-Bow/LC-PV). We can observe that in 9 out of the 12 datasets
the proposed approach (IG-PV or IG-BoW) is the best performing in terms of
WSS@95. The winners have a statistically significant lead over all the losers
using a t-test at p < 0.05.

classifier is least confident during the initial 10% (set using cross validation on an

independent validation set) screening i.e. it randomly selects k studies that have

0.4≤ p(y = 1|d)≤ 0.6. We refer to this baseline as LC, and consequently, LC-BoW

uses bag-of-words as features and LC-PV uses paragraph vectors as features. We

can observe that one of the two, i.e. IG-BoW or IG-PV, performs better compared to

naive active learning algorithm using just BoW or PV. It validates our hypothesis

that using novelty to explore during the initial phases of active learning can lead to

better results overall, especially in terms of WSS@95. We only present BoW and

PV because (as we mentioned in the previous paragraph) we observed that these two

feature extraction methods perform well across most studies. We should mention at

this point that we also used our active learning algorithm with the feature extraction

model presented in [9], but it did not perform comparably to either PV or BoW.

Therefore, we did not present the results with PV-TM to keep the analysis simple

and sequential.

It has been shown in our results that both PV and BoW work well for specific
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systematic reviews. It is not feasible to estimate with certainty in advance which of

the two would work better for a review. Meanwhile, we obtained the recall for both

feature extraction methods after screening through initial 10% of the data. We can

see that comparison in Table 3.2. We report the recall for the initial 10% of the data

and denote in bold the approach that scores higher in terms of WSS@95 by the end

of the process. We observe that the approach that has higher recall on the initial 10%

of the data works well in terms of WSS@95 by the end of the screening process. As

a result, we infer that both approaches - IG-BOW or IG-PV - should be used in the

beginning and then the one that performs better should be continued.

We should mention that we experimented with different ensembles of feature ex-

traction models, but since the results were not impressive compared to the individual

models, we omit the results.

Dataset IG-BOW IG-PV
LHVS 0.896 0.275
ASCD 0.537 0.671
FABC 0.957 0.899
NPA 0.458 0.471

CAFO 0.345 0.821
DPCAD 0.403 0.634
STCS 0.322 0.613
FVC 0.275 0.345

SPCHD 0.693 0.950
Cooking Skills 0.497 0.738

Youth Development 0.435 0.426
Tobacco Packaging 0.757 0.686

Table 3.2: Recall upon screening through 10% of the studies in the review. We use the
bold notation to mark the overall winner in terms of WSS@95 at the end of the
screening process.

3.4 Discussion
We should mention at this point that we also experimented with learning paragraph

vectors using additional external data in the case of public health and animal studies.

We expected that additional documents might lead to improved paragraph vectors.

These external data consisted of studies related to the review in question, but most
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of these were not directly relevant to the review. To our surprise, we did not see

any improvement in the results upon using such external data for learning paragraph

vectors. On the contrary, the performance decreased as we used more external data

during the learning of paragraph vectors. We should also mention that we conducted

our experiments on more than 30 reviews, and obtained results similar to those

presented here.

We observed that active learning can be an effective strategy to semi-automate

manual annotations and reduce the workload. Sadly, current active learning ap-

proaches do not accurately estimate the proportion of relevant studies that have been

annotated. In many cases, it is necessary to extract 95% or more relevant studies

in order to avoid bias in the systematic review. If there was an effective way to

estimate the recall of the active learner precisely then the screening process could

move towards complete automation. In the future, we will work towards an accurate

recall estimation while using an efficient active learning strategy.

3.5 Conclusion

We evaluated different feature extraction models over a comprehensive dataset of

reviews from varied domains. We observed that both BoW and PV can outperform

other approaches over most reviews/domains. This led to the decision by Institute of

Education at University College London to avoid overhauling their feature extraction

system in favour of a newly published but unimpressive feature extraction model.

We recognized that a naive active learning algorithm suffers from bias. It tries

to select documents that are similar to the documents in the initial training data. A

small initial training set could then lead to reduced performance. To address this

issue, we propose a novelty based active learning algorithm that works on exploring

different topics during the initial phases and then proceeds based on relevance in

the later phases. It leads to more exploration of different topics in the beginning

and better performance in terms of WSS@95 by the end. We evaluate our approach

against naive active learning algorithm, and observe that the proposed algorithm

works as well as, or better than, the naive algorithm.



3.5. Conclusion 58

We also developed insights regarding the choice of feature extraction methods

for different reviews. We observed BoW and PV to be the best feature extraction

models over a large number of reviews, and inferred that both the feature extraction

methods should be used during the screening of initial 10% studies. Afterwards,

the better performing approach should be continued, which does lead to some extra

manual annotations in the beginning, but the overall gain in terms of WSS@95

compensates for that.



Chapter 4

Automatic Structured Clinical Text

Annotation

There has been rapid growth in the volume and diversity of available healthcare

data, ranging from electronic health records (EHRs) to biomedical literature. This

proliferation of data provides unprecedented opportunity to improve patient care

[75, 76, 77, 78], but simultaneously the volume of published information makes

it difficult to efficiently retrieve and compile relevant evidence. In this work we

focus on biomedical literature, and in particular on texts that describe the conduct

and results of randomized controlled trials (RCTs), which are considered the gold

standard in evidence for particular interventions.

In general, the clinically salient aspects of an RCT include: (1) the Population(s)

enrolled; (2) the Intervention and Comparator treatments administered (the distinc-

tion between these is arbitrary, and so these may be grouped); (3) the Outcomes

measured. Collectively these are referred to as PICO elements. Clinical questions

… elderly diabetic 
patients were 
randomized to receive 
insulin or placebo … 

… We measured blood 
sugar …

{ C0011847:Diabetes, 
  C1999167:Old age }

{ C0021641:Insulin, 
C1706408:Placebo Control }

{ C0005802:Blood Glucose }

Output structured medical 
(UMLS) concepts

Input unstructured text/snippet

P

I/C

O

…

Model

Figure 4.1: Illustration of the annotation task. The output comprises concepts drawn from
the UMLS controlled medical vocabularly, grouped into terms that describe the
study Population, Interventions/Comparators and Outcomes.
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are widely considered answerable only when mapped onto a PICO frame. However,

retrieving all articles that describe trials relevant to a given PICO frame (and hence

question) is non-trivial, in part because reports of RCTs are communicated in un-

structured (free-text) articles. Structured representations of articles that explicitly

assign ontological terms to distinct PICO elements would support automated retrieval

and question-answering systems [79]. We therefore aim to develop an automated ap-

proach to mapping from free-texts to distinct sets of terms from the Unified Medical

Language System (UMLS) corresponding to each PICO element. This is depicted

schematically in Figure 4.1.

This multilabel and multitask setting presents formidable challenges from a

machine learning perspective. In particular, the output space is vast: there are more

than 300K terms in the controlled medical vocabulary we are targeting (UMLS).

Second, as is the case in many biomedical tasks, we have a relative dearth of available

training data with which to estimate model parameters. Third, outputs (i.e., sets of

UMLS terms corresponding to the respective PICO elements) are correlated: a given

study population constrains the space of plausible interventions and outcomes. For

example, if the population comprises adult males, it is unlikely that the outcome

will be time to labor induction. These correlations between label outputs should be

exploited. We address these problems in this chapter by introducing a novel neural

approach involving two parts: candidate term generation and selection/classification.

The specific contribution of this work is a novel method for multilabel clas-

sification into multiple distinct, but correlated label sets using a neural model that

considers ‘candidate’ label tuples, conditioned on the text being annotated. Our

approach addresses training data sparsity by re-framing the annotation task as a two

step process in which we first generate a set of candidate annotations relevant to the

input text, and then we select and group these. In our case, we generate candidates

using both (a) a multitask model directly trained to generate candidate concepts,

and, (b) the MetaMap tool1 [80]. We then use a neural discriminative model to infer

plausible triplets of concepts from the unstructured candidate set, conditioned on the

1https://metamap.nlm.nih.gov/

https://metamap.nlm.nih.gov/
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free-text being annotated. We demonstrate that this model improves performance

(compared to relevant baselines) on the important task of automatically annotating

biomedical literature with structured UMLS concepts. As far as we aware, this is the

first work to tackle this challenging problem.

While our motivating application concerns biomedical literature process-

ing, we emphasize that the problem we consider is general, and the candidate-

generator/discriminator approach we propose may have broad application for simi-

larly structured tasks.

4.1 Related Work
We briefly review two threads of work related to our present effort: research on auto-

mated biomedical text annotation (Section 4.1.1) and then approaches to structured

and multilabel classification. (Section 4.1.2).

4.1.1 Biomedical Text Annotation

Biomedical natural language processing is a broad, active field [81, 82]. Here we

briefly review work relevant to our specific task of annotating text with structured

PICO element concepts. One early system developed to extract clinical trial char-

acteristics from free-texts is ExaCT [83], which aimed to identify and extract data

elements from free texts describing clinical trials necessary for evidence synthesis.

ExaCT used a hybrid of statistical and rule-based approaches. A similar system was

developed by Summerscales [84]. Their system attempted to automatically calculate

summary statistics reported in an abstract by first identifying treatment group and

outcome mentions and then processing numerical quantities in the text with reference

to these.

Related work has attempted to identify spans or sentences of texts describing

trials that correspond to the PICO elements. For example, Boudin et al. [79]

described ensemble methods for identifying sentences in abstracts corresponding

to each PICO element [85]; they demonstrated that automatic PICO tagging can

improve clinical IR. More recently, Wallace and colleagues developed a model of

extracting PICO sentences from full-texts, by exploiting a novel form of distant
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supervision [86].

Work has also been done on automatically assessing the ‘risks of bias’ in

clinical trials, e.g., due to improper randomization, based on the text in the articles

describing them. This work has entailed jointly extracting the sentences supporting

these assessments [87, 88, 89, 90].

There is an annual BioASQ2 challenge that involves applying MeSH terms to

biomedical abstracts - discussed in the next chapter - but it differs from PICO tagging

as it does not require applying labels corresponding to PICO aspects. As far as we

are aware, the present work is the first to consider the task of mapping from free-texts

to structured concepts explicitly corresponding to the respective PICO elements.

4.1.2 Structured Multilabel Classification

The task we have considered may be viewed as an instance of structured multilabel

classification. There is of course a rich body of work on general multilabel classifica-

tion (e.g., [91, 92, 93]). It is challenging to learn an accurate and effective multilabel

classifier in domains with many labels [59, 94]. Label space reduction methods

provide one means of mitigating the problem of large label spaces [95, 96, 97].

More specific to the current application, multilabel classification for text has

also received a fair amount of attention [36, 98]. A classic approach for multilabel

text classification is to posit a generative mixture model wherein documents are

associated with a set of labels that are in turn ascribed partial responsibility for

generating the words comprising a given document [98]. It is not clear how to

generalize this approach to our setting, however, because: (1) Labels are grouped as

PICO elements which implies a correlation between these label sets, i.e., documents

are not associated with unstructured bags of labels; (2) Our output space (defined by

a medical ontology) is vast, and thus a mixture model would require an unwieldy

number of latent components.

Another sub-area of machine learning research relevant to our setting is multi-

task learning [99]. In particular, the PICO elements (and associated multilabel sets)

may be viewed as distinctive ‘tasks’; thus we find ourselves in effectively a multitask

2http://bioasq.org/

http://bioasq.org/
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Figure 4.2: A schematic of our selector network variant CS-joint. This accepts as input the
text snippets describing a study and a triplet of candidate concepts (cP,cI/C,cO),
thus associating each candidate concept in the tuple with a particular PICO
element. This induces a joint model that considers the likelihood of these three
candidate concepts mapping to particular PICO concepts, given the input text.
The output is a binary decision regarding the applicability of a candidate triplet.

multilabel setting. Standard multitask learning has been studied at length in general,

and in the context of natural language processing in particular [100, 101]. Indeed,

we build upon the basic neural multitask architecture in [100] as a component in our

approach.

To the best of our knowledge, this is the first work to explicitly consider the

problem of jointly annotating texts with ontological labels for multiple, correlated

aspects.

4.2 Methods
Our proposed approach comprises two components. The first is a candidate gener-

ator, responsible for inducing an unstructured set of ‘candidate’ UMLS concepts

deemed likely to apply to a given input text. Ideally this would be a high-recall (but

possibly low-precision) set of terms. The second component is a selector, which

accepts the candidate concepts as input, along with the text to be annotated, and con-

ditioned on these selects and outputs likely structured sets of concepts, i.e., concepts

pertaining to the aforementioned PICO elements.
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Formally, denote an input text by x. Then we run this through our candidate

generator, g:

C = g(x) (4.1)

and the outputs are consumed by the selector s:

Y = s(C ,x) = s(g(x)). (4.2)

Here Y is assumed to be structured, i.e., include particular concepts corresponding

to the PICO elements. Thus Y = {YP,YI/C,YO}.

This component approach affords the important advantage of allowing g to

effectively map from the vast universe of possible structured terms (here, UMLS

terms) to a relatively small set of those deemed reasonably likely for the text at hand.

The selector model s can then perform more in-depth processing of candidates to

infer likely configurations of candidate terms across the {P, I/C, O} elements, taking

into consideration correlations between these subsets. In our case, this architecture

was motivated in part by the existence of MetaMap [10], a tool that uses rules and

heuristics to map from free text snippets to possible terms. This forms one part of

our generator model, complementing a purely data-driven approach.

4.2.1 Selector Model

We begin by describing the selector model, s, which assigns a subset of the concepts

contained in an unstructured candidate set C to the respective PICO elements, condi-

tioned on the input text. An instance of this model (described in greater detail below)

is depicted in Figure 4.2. Following [32, 102], we adopt a convolutional neural

network (CNN) to encode texts. Concretely, we accept input texts to be annotated

as sequences of words that are passed to an embedding layer that associates vectors

(distributed representations) with words, thus forming an input matrix. We initialize

word embeddings to pre-trained vectors induced over the entire set of abstracts

indexed on MEDLINE, a repository of biomedical literature; we update these rep-

resentations during model training via back-propagation. We apply independent

convolutional filters of varying length over this matrix. That is, these filters consume
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one or more consecutive word embedding inputs at a time. Outputs from each filter

are passed through a max-pooling operation to extract one scalar per filter (note that

we use multiple filters of each filter size). These scalars are concatenated to form a

final vector representation of the input text with a number of dimensions equal to the

total number of convolutional filters. We will denote this induced representation of

input i by xi.

The input text encoding approach just described is the same across the different

Candidate-Selector (CS) model variants we discuss. What differs between them is

the handling of the candidate concept(s) under consideration. For all variants we

use embedded representations of controlled (UMLS) terms. We initialize these to

pre-trained embeddings induced via DeepWalk [2], an approach to unsupervised

distributed representation learning for graph-structured entities. During candidate

classification, embedded representations of one or more candidate concepts are con-

sidered and the task is to decide whether these apply to the text under consideration,

and if so, which PICO element they describe. We next describe three variants of our

candidate-selector architecture, in ascending order of complexity.

CS-ind. The simplest variant of our model treats predictions regarding the

designation of individual terms to respective PICO elements as independent, given

the text. This model variant thus comprises three independent instances of the

same model (i.e., with separate sets of parameters), one per PICO element. We

concatenate the induced vector representations of the input text i and the (single)

candidate concept under consideration (indexed by j) and estimate the probability of

it being applicable to a given PICO element by running it through a logistic function

σ :

Pe(concept j|x(e)i ,w(e)
o ,C(e),W(e)

h ) = σ(w(e)
o ·vh)

vh = λ (W(e)
h [x(e)i ⊕C(e)

j ])
(4.3)

Where e indexes PICO elements and hence models, making explicit the fact that

the respective PICO model parameter sets are independent; x(e)i denotes a vector

representation of input text i (induced via a CNN); w(e)
o a weight vector parame-
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terizing the output probability model; C(e) the concept embeddings matrix; W(e)
h a

weight matrix for a hidden dense layer; and ⊕ denotes vector concatenation. Here

λ (·) denotes an element-wise activation function (in our case, identity) and dropout

regularization [103]. We reiterate that these predictions are made separately for each

PICO element.

CS-cond. The patient population enrolled in a trial is not independent of the

interventions and outcomes considered, as the former will clearly influence the latter.

A first attempt to exploit such correlations is our CS-cond model, which starts by

predicting which candidate terms describe the population, and then conditions the

subsequent selection of terms corresponding to interventions on these. Finally, the

selection of outcomes terms is explicitly conditioned on the preceding two sets of

terms (i.e., the terms designated as describing the study population and interventions).

More formally, we use CS-ind to select terms ŶP ⊆ C . We then use a modified

architecture for the models that select intervention and outcomes terms. In particular,

the model for predicting interventions accepts a third input matrix comprising the

stacked embeddings corresponding to the terms in ŶP.3 Because the order of these

terms is arbitrary, we pass only length 1 convolutional filters over this matrix (such

filters consider a single concept at a time). We again apply max-pooling over these

to induce a vector representations of the population concepts selected by the model

in the preceding step, which we designate by z(P)i .

PI/C(concept j|x(I/C)i ,w(I/C)
o ,C(I/C),W(I/C)

h ,z(P)i ) = σ(w(I/C)
o ·vh)

vh = λ (W(I/C)
h [x(I/C)i ⊕ z(P)i ⊕C(I/C)

j ])
(4.4)

The model for outcomes is analogous, except that it takes as an additional input

a matrix comprising the embeddings for the terms selected both for populations

and interventions/comparators, i.e., in addition to merging z(P)i to the model input

we concatenate z(I/C)
i before passing through the network. Thus the selection of

outcomes terms is conditioned jointly on the inferred population and intervention

descriptors.

3Operationally, we impose an upper-bound k on the number of terms that can be selected for a
given element; thus the input matrix here is k×d, where d is the embedding dimension.
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CS-joint. Our final variant is a fully joint approach to selecting P, I/C and O

candidate terms. This model consumes structured triplets as input (i.e., one candidate

concept per PICO element) and estimates the conditional probability that these

jointly apply to the text under consideration. The model is depicted schematically

in Figure 4.2. In brief, we create an input matrix comprising the embeddings of the

candidates in a given triplet, and run convolutional filters of lengths ranging from 1

to 3 over this input; this induces a vector representation of the triplet of candidate

concepts which is then concatenated with the inferred representation of the input text

to form a penultimate representation used to make a joint prediction concerning the

applicability of the structured triplet of terms.

This model is attractive in that it affords a truly joint estimate regarding assign-

ment of terms to PICO elements. However, it does mean that at test time we have

to generate all combinations of candidate concepts to make predictions for possible

triplets in turn.

4.2.2 Candidate Generation

Having presented our approaches for candidate selection s, we now turn our attention

to generating candidates provided an input text, i.e., specification of g. Broadly,

we consider two approaches here, the outputs of which we compose: in the first

we use a separate, pre-existing system called MetaMap to generate an unstructured

set of candidate terms. We also adopt a data-driven learned approach to candidate

generation. We describe these in turn below.

4.2.2.1 MetaMap

MetaMap [80] is a tool developed by the National Library of Medicine (NLM) that

assigns concepts from Unified Medical Language System (UMLS) vocabularies

to free-texts. Note, however, that it does not attempt to categorize these assigned

concepts into PICO elements. The UMLS is a meta-ontology, incorporating ∼200

standardised medical vocabularies. Synonymous terms are linked across vocabularies

by unique semantic identifiers. MetaMap provides rich semantic information for

biomedical informatics, but for our purposes it suffices to know that it implements

a service which provides UMLS terms that match a given input text. We thus use
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Sub-counties were randomized to a 
control arm, with advertisement of 
antenatal care, or an intervention arm, 
with advertisement of portable 
obstetric ultrasound.

SOURCE TEXT

MetaMap

CANDIDATE CONCEPTS

ARM (AKR1A1 wt 
Allele) [Gene or 
Genome]

Sub- (Inferior) [Spatial 
Concept]

Randomized 
(Randomization) 
[Research Activity]

With (In addition to) 
[Qualitative Concept]

County (county) 
[Geographic Area]

Control (Control 
function) [Functional 
Concept]

SUB (Substance 
amount) [Quantitative 
Concept]

Advertisement 
(Advertisements) 
[Intellectual Product]

Antenatal care 
(Prenatal care) [Health 
Care Activity]

Obstetric ultrasound 
(Ultrasound scan - 
obstetric) [Diagnostic 
Procedure]

Figure 4.3: Schematic illustration of the use of MetaMap to generate a high recall set of
candidate concepts. The target subset of concepts (here being those describing
the interventions studied) are highlighted. Note that MetaMap output includes
two types of noise: 1) An ambiguous string being assigned to the incorrect
concept (e.g. ‘Sub’ being mapped to ‘substance amount’) and 2) the concept
being correctly mapped from text but not describing our aspect of interest.

MetaMap to generate an initial list of unstructured candidate concepts. A schematic

of this process is shown in Figure 4.3. In general, under the settings used here, we

found the candidate set generated by MetaMap to be high recall but relatively low

precision.

4.2.2.2 Learning to Generate Candidates

In addition to MetaMap, we consider the approach of directly predicting UMLS

concepts corresponding to the respective PICO elements from free-text. This model

is one of the baseline approaches to which we compare our proposed Candidate-

Selector models. Learning to map directly from free-text to structured UMLS terms

has the advantage of allowing recognition of concepts not identified by MetaMap

(the recall of the generated candidate set is an upper bound on the recall the selector

model will be able to achieve). However, the disadvantage of this approach is that the

output space is vast: there are hundreds of thousands of concepts; learning to predict

directly into this space is thus challenging, especially given our limited training data.

Additionally, as we discuss further below, this approach precludes the possibility of

identifying concepts that were not encountered during model training.

To directly predict candidate terms for input texts we adopt a convolutional
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Figure 4.4: The multitask neural architecture we use to directly predict structured vocabulary
terms from free texts.

neural multitask [99] architecture, depicted in Figure 4.4.4 In brief, we run input

text through a CNN to induce a vector representation, as described in the preced-

ing section. This learned representation is shared across the classification tasks

corresponding to the respective PICO elements, thus affording transfer learning

across tasks, insofar as the model learns parameters that induce a representation

useful for recognizing terms descriptive of the respective PICO elements. Output

layers, however, are treated as conditionally independent, given the shared input

representation. Thus, e.g., the output layer corresponding to population comprises

|V | binary output nodes (with associated weight vectors) corresponding to concepts

in the vocabulary V . Here, |V | = 366,772. This was prohibitively large, and so as a

practical matter we restricted the output size to 150,000 terms (the same 150,000 for

each PICO element). These terms include (1) all that appear in the available training

sample for any given run, augmented with, (2) terms randomly (IID) sampled from

the vocabulary.

4.2.3 Candidate set sampling details

We use the above two methods to generate candidates at test time. Here we describe

the training and testing processes related to candidate sampling in greater detail.

During training, we draw positive triplets using the ground truth annotations.

For example, if we have a set of ground truth annotations CP, CI/C and CO for

an instance x then we construct positive triplets (cP,cI/C,cO) by randomly and

independently sampling one concept each from CP, CI/C and CO.

We also need to construct negative examples to be fed to the model during

4This is similar to the multitask model used in [100].
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training. For this we use a ‘negative sampling’ approach in which we draw one or

two concepts from the ground truth set, and the remaining concept(s) from the set

of all concepts V . We draw five negative triplets for every positive triplet, and pass

these as input to the model in Figure 4.2. In addition to constructing triplets using

concepts from the standard vocabulary, we assume the presence of a universal concept

” ” in all annotations. This induces triplets of the form of {(cP, , ), (cP,cI/C, )},

in addition to fully specified triplets (cP,cI/C,cO). Our CS-Joint model is defined

directly over triplets in order to learn the joint distribution of concepts contained in

different distinct sets. The introduction of underspecified triplets such as (cP, , )

effectively allows the model to also learn marginal probabilities of concepts for a

particular element, given an input text. We later empirically show the benefit of this

approach.

During testing, we use the models described in the preceding subsections to

generate candidate sets. Specifically, for a given input text, we use MetaMap [10] to

generate an unstructured list of candidate terms. We should mention that MetaMap

is not trained but comes with pre-fed rules for concept extraction. We also use the

multitask model described above (trained on the available training data) to make

predictions based on the text, thereby inducing a supplementary, structured candidate

set of terms, i.e., these are explicitly associated with individual PICO elements.

We then exhaustively construct input candidate tuples by placing the MetaMap

candidates into arbitrary slots, combining these with candidates assigned to specific

PICO elements by the MT model. In this way, we construct every possible triplet

(cP,cI/C,cO) that can be derived from the candidate sets; this includes all possible

incomplete specifications of the form ( ,cI/C, ).

4.3 Experimental Setup

We begin this section by providing details regarding the dataset used for experiments.

We then describe the baseline models to which we compare our proposed approaches.

Finally, we outline the evaluation setup we adopt and the metrics we use to assess

performance.
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samples (clinical trials) 4306
distinct population concepts 875
distinct intervention concepts 1115
distinct outcome concepts 1731
population concepts 9387
intervention concepts 5458
outcome concepts 13800

Table 4.1: Dataset statistics.

4.3.1 Dataset

We use a real-world dataset provided by the Cochrane Collaboration5, which com-

prises manual annotations applied to biomedical publications. Specifically, aligning

with the task we have outlined throughout this chapter, trained annotators have

applied tags from a subset of the Unified Medical Language System (UMLS) to

free text summaries of biomedical articles, corresponding to the PICO elements.

Recall that PICO stands for Population, Intervention/Comparator and Outcomes.

These are defined briefly as follows. Population concerns the characteristics of or

clinical problem shared by trial participants (e.g., diabetic males). Interventions

are the active treatments being studied (e.g., aspirin); Comparators are baseline or

alternative treatments to which these are compared (e.g., placebo) – the distinction is

arbitrary, and hence we collapse I and C. The outcomes are the variables measured

to assess the efficacy of different treatments (e.g., headache severity).

Trained annotators from Cochrane attach concept (UMLS) terms for each PICO

element to individual free-text summaries of articles. These summaries comprise

fields pertaining to each PICO element for every study. For this work, we merge

them into single texts that span all PICO elements; this represents a more typical

setup. All collected annotations undergo a rigorous quality assurance process; every

annotation is subsequently checked by a domain expert.

4.3.2 Baselines

Two straightforward ways of performing the task under consideration are: (1) simply

use MetaMap output, and, (2) train a model that learns to predict UMLS terms for

5Cochrane is an international organization that focusses on improving healthcare decisions through
evidence: http://www.cochrane.org/.

http://www.cochrane.org/
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each PICO element directly from the input text.

MetaMap. In the case of using MetaMap, it is not clear how best to assign the

unstructured list of terms it provides for a piece of text to the respective PICO

elements. Therefore, to make this baseline as competitive as possible, we ‘cheat’

in its favor by using text explicitly corresponding to different PICO elements. In

particular, recall from above that in addition to attaching terms to abstracts, annotators

also highlight the text corresponding to each PICO element. Therefore, we know

which subspans correspond, e.g., to the population description in a given text. To

induce P terms using MetaMap, we then pass only this population-specific text to

MetaMap and retrieve the corresponding terms that it provides. We emphasize that

only this baseline model has access to the span-level annotations at test time, which

would not generally be available. Therefore, this represents an upper-bound on the

performance we can expect to realize using MetaMap alone.

Multitask neural model. As a second baseline, we use the output candidate genera-

tion model introduced in Section 4.2.2.2 (and depicted in Figure 4.4). Recall that

this is a multitask CNN that directly predicts terms for each PICO element, given the

input text.

4.3.3 Evaluation Details

We divided the data into 60/40 for train/test split. We had ground truth annotations

for all instances and for all three PICO elements, i.e., all texts have been annotated

by domain experts with structured UMLS terms. The texts here are themselves

summaries of each element written for previous reviews; we therefore concatenated

these together, forming contiguous texts for each instance comprising spans relevant

to the respective elements. We used only the ‘Cochrane subset’ of the UMLS. This is

because the annotations we have (performed by Cochrane) contain only terms from

this set. The Cochrane vocabulary comprises 366,772 concepts.

All hyper-parameter tuning was performed via nested validation (i.e., within

train set). In particular, we used 30% of the training data for hyperparameter tuning.

This included iteratively experimenting with and improving the structure of the

network. The dropout rate [103] was tuned over a range of 10 equidistant values
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Figure 4.5: We consider two nodes at a distance of less than r hops as an ‘r-hop match’;
with this we compute the precision@r-hops and recall@r-hops metrics.

in the interval [0,1]. The threshold for binary classification for each term (i.e., the

threshold above which a term will be assigned) was tuned over the same range

and interval. During hyperparameter search we optimized for average F1-score

outputs. We trained for 100 epochs, caching and ultimately using the parameters that

performed best on a nested validation set.

As mentioned previously, word embeddings were initialized to pre-trained

vectors fit by running word2vec over all biomedical abstracts indexed on MEDLINE.

4.3.4 Metrics

We evaluated the performance of our approach using three standard metrics: preci-

sion, recall, and their harmonic mean (i.e., F1 score). We calculated these metrics for

each instance and category (i.e., for each PICO element) separately, and aggregated

over all instances for the respective categories to obtain MicroPrecision, MicroRecall

and MicroF1 scores.

These metrics are strict because they require exact matches between predicted

and true concepts. Results will thus be pessimistic in the sense that the model will be

heavily penalized for predicting a concept that is semantically similar to (i.e., nearby

in the ontology) — but not an exact match to — a target concept. As a simple means

of relaxing match criteria, we therefore additionally report precision and recall at

‘2-hops’ distance between annotations. Briefly, this counts a predicted term as a

match to a target term if the former can reach the latter by taking two hops or fewer.

More generally, we also report precision and recall at k hops for varying values of k

in Figure 4.6.
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Category Model Precision Recall F1-score Pr-2hops Re-2hops F1-2hops

Population

MetaMap 0.134 0.280 0.181 0.262 0.489 0.341
Multitask 0.358 0.383 0.370 0.501 0.502 0.501
CS-Ind 0.385 0.529 0.446 0.557 0.636 0.594
CS-Cond 0.384 0.535 0.447 0.553 0.640 0.593
CS-Joint 0.318 0.594 0.415 0.485 0.709 0.576

Interventions/Comparator

MetaMap 0.108 0.288 0.157 0.163 0.387 0.230
Multitask 0.248 0.245 0.246 0.264 0.262 0.263
CS-Ind 0.226 0.272 0.247 0.274 0.322 0.296
CS-Cond 0.225 0.282 0.250 0.275 0.331 0.300
CS-Joint 0.265 0.421 0.326 0.314 0.473 0.378

Outcomes

MetaMap 0.209 0.391 0.273 0.314 0.518 0.391
Multitask 0.198 0.211 0.204 0.283 0.290 0.286
CS-Ind 0.272 0.497 0.352 0.380 0.593 0.464
CS-Cond 0.268 0.497 0.348 0.378 0.591 0.461
CS-Joint 0.279 0.503 0.359 0.38 0.595 0.468

Table 4.2: Precisions, recalls and f1 measures realized by different models on the respective
PICO elements. Best result for each element and metric are bolded. Models
with prefix ‘CS’ (below the dotted lines) are variants of the Candidate-Selector
approach we have proposed in this work. We should mention that r-hop refers to
the case when we consider a match between two concepts that are at a distance
of ≤ r hops.

Category Model Precision Recall F1-score

Population

MetaMap 0.190 0.274 0.224
Multitask 0.355 0.562 0.435
CS-Ind 0.413 0.758 0.534
CS-Cond 0.490 0.731 0.587
CS-Joint 0.413 0.772 0.539

Interventions

MetaMap 0.119 0.296 0.170
Multitask 0.298 0.371 0.331
CS-Ind 0.162 0.230 0.191
CS-Cond 0.196 0.250 0.219
CS-Joint 0.234 0.420 0.300

Outcomes

MetaMap 0.270 0.397 0.321
Multitask 0.339 0.319 0.328
CS-Ind 0.352 0.560 0.432
CS-Cond 0.356 0.601 0.447
CS-Joint 0.355 0.633 0.455

Table 4.3: Results on completely held out data (reference annotations were collected during
model development).
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Category Model Precision Recall F1-score Pr-2hops Re-2hops F1-2hops

Population
CS-Joint random 0.268 0.251 0.259 0.386 0.382 0.384
CS-Joint pre-trained 0.264 0.250 0.257 0.392 0.392 0.392

Interventions/Comparator
CS-Joint random 0.219 0.248 0.233 0.272 0.294 0.283
CS-Joint pre-trained 0.233 0.257 0.244 0.273 0.293 0.282

Outcomes
CS-Joint random 0.315 0.302 0.308 0.412 0.404 0.408
CS-Joint pre-trained 0.341 0.356 0.348 0.440 0.449 0.445

Table 4.4: The performance of the CS-Joint model when using randomly initialized versus
pre-trained embeddings. Recall from above that the pre-trained embeddings
for words were learned using word2vec [1] on MEDLINE abstracts, while the
concept embeddings were learned using DeepWalk [2] over the medical concept
vocabulary graph.

Category Model Precision Recall F1-score Pr-2hops Re-2hops F1-2hops

Population
CS-Joint Complete 0.197 0.145 0.167 0.267 0.216 0.239
CS-Joint +Marginals 0.264 0.250 0.257 0.392 0.392 0.392

Interventions/Comparator
CS-Joint Complete 0.156 0.149 0.153 0.180 0.168 0.174
CS-Joint +Marginals 0.233 0.257 0.244 0.273 0.293 0.282

Outcomes
CS-Joint Complete 0.182 0.138 0.157 0.224 0.182 0.201
CS-Joint +Marginals 0.341 0.356 0.348 0.440 0.449 0.445

Table 4.5: The performance of the CS-Joint model trained using only completely specified
candidate triplets of the form (cP,cI/C,cO) (referred to as CS-Joint Complete)
versus a variant that accepts partially specified frames like ( , ,cO) or (cP, ,cO)
and marginalizes over missing elements; we refer to the latter approach as CS-
Joint +Marginals. As can be seen, the marginals approach yields consistently
better predictive results, which is intuitive because it is less restricted, but still
exploits correlations. This is the CS-Joint variant that we use.

4.4 Results

4.4.1 Quantitative Results

We report results for all models in Table 4.2. When reading the results here, which

are low in absolute terms, it is important to keep in mind two key points. First, the

output space is vast, which makes the task inherently quite difficult. And second,

as mentioned above, the metrics are pessimistic here because they are very strict in

requiring exact (or near-exact, in the case of the 2-hop metrics) matches.

The methods prefixed with ‘CS-’ (below the dotted lines) are the three instan-

tiations of the Candidate-Selector framework we introduced in Section 4.2; these

are compared to the two baselines described in Section 4.3.2. A few observations:

CS-approaches uniformly beat baseline strategies, and the gains are considerable:

we realize a 7-15 point absolute boost in F1-score, compared to the multitask neural
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(a) Precision (b) Recall

Figure 4.6: Average (over PICO elements) r-precisions (a) and recalls (b) for each method
as a function of r (i.e., using increasingly relaxed metrics; r-precision) counts a
predicted concept as matching the truth concept when it is ≤ r hops away.

model baseline. We also observe that the CS-Joint approach (Figure 4.2) yields the

best performance for both precision and recall (and so also F1) for interventions and

outcomes categories, and remains competitive with respect to population predictions

(achieving the best recall at a modest cost in precision). This demonstrates the

advantage of exploiting correlations between the PICO elements.

Figure 4.6 shows mean r-precisions and r-recalls (mean taken over the three

PICO elements) achieved, as a function of r. Thus these plots show the results

achieved under increasingly relaxed definitions of concept matches. Note that we

omit the MetaMap baseline from these plots because it performed very poorly, to the

extent that it rendered the plots difficult to read. The salient observation here is that

the CS- models dominate the multitask CNN baseline, and the CS-joint model is

consistently the best performing. In other words, the results just reported are robust

to more relaxed definitions of concept matches.

4.4.1.1 Unseen Concepts

As mentioned at the outset of this thesis, a challenge in healthcare applications

of machine learning is limited training data. In our case, this is compounded by

the very large output (label) space. As a consequence, the test data often contains

concepts (i.e., labels) that were never seen in the training data. Approaches that learn

to directly map from texts to predicted concepts would be generally incapable of
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Category Unseen concepts Correctly classified
Population 193 24
Intervention 326 54
Outcome 423 77

Table 4.6: The number of unseen concepts identified correctly by the proposed CS-Joint
model. The proposed model can identify such unseen concepts due to the use
of MetaMap to generate candidate concepts, which may be novel from the
perspective of the model. However, our use of pre-trained concept embeddings
means that even when previously unseen, the model is sometimes able to correctly
select such concepts. Models that explicitly learn to map input texts to concepts
will in general be incapable of recognizing concepts not present in the training
data. We should mention that the unseen concepts identified by the multi-task
classifier (i.e. without MetaMap) were ≈ 0.

predicting unseen concepts, by construction. Thus, e.g., our multitask CNN cannot

predict a concept it has never seen in the training data, as there is no means of

training the weights parameterizing the node corresponding to the unseen concept.

However, because our Candidate-Selector architecture takes as inputs (embeddings

of) candidate concepts, these can indeed be completely novel from the models

perspective. Our use of MetaMap – and external candidate generator, effectively –

means that it is entirely possible to select previously unseen terms. We show this in

Table 4.6.

4.4.1.2 Pre-trained vs. Randomly Initialized Concept Embeddings

Recall that we use pre-trained distributed representations of medical concepts, in-

duced via DeepWalk [2] performed over the UMLS graph. Here we explore the

benefit (if any) of initializing embeddings to pre-trained vectors, as compared to

randomly initializing them. In Table 4.4 we report results using these two initializa-

tion strategies. In general, using pretrained embeddings for initialization perhaps

provides a slight edge, but the differences are not consistent.

4.4.1.3 Marginal vs. ‘Complete’ CS-Joint variant

Recall (Section 4.2) that the proposed CS-Joint model accepts as input triplets

of candidate concepts, each assigned to a particular PICO element. This allows

the model to exploit correlations between, e.g., populations and corresponding
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interventions. However, we would like to also enable the model to consider marginal

probabilities of individual terms, conditioned on the input text). The model should be

able to select these when appropriate, regardless of the other PICO term designations.

To this end, in Section 4.2.3 we introduced the trick of including partially specified

triplets, e.g., (cP,cI/C, )}. Such partially specified triplets are also considered at test

time during our exhaustive consideration of candidate triplets. The alternative would

be to use only fully specified PICO triplets. To validate the ‘marginals’ approach

adopted, we therefore compared these two strategies. We report results in Table

4.5. Using the partially specified (marginal) triplets clearly and uniformly improves

model performance.

4.4.1.4 Results on final heldout data

Finally, we report results achieved by the final models (trained on the entire dataset

explored thus far) on a completely new/heldout set of data, collected while we

developed the model. This dataset comprises 88 instances, annotated in total with 76,

87, and 139 unique concepts corresponding to population, intervention/comparator

and outcomes, respectively.

Results on this dataset are reported in Table 4.3. Here we report only zero-hop

measures for brevity, although results with respect to two-hop metrics are comparable.

We can see that the proposed CS- models again generally best baselines, and that

on average CS-Joint model performs the best of these, achieving a mean F1 across

elements of 0.43, versus 0.42 for CS-Cond and 0.37 for the multitask model.

4.4.2 Qualitative Analysis

In addition to the quantitative results reported above, we performed a modest qual-

itative analysis. In particular, a selection of the model output on the test set was

assessed qualitatively by an author who is clinically trained, and by an external

annotation quality expert. We provide an illustrative example of model output in

Figure 4.7. Qualitatively, the output was deemed usable for information retrieval

purposes, and the majority of fields examined were populated with correct concepts.

Missing concepts appeared to be the most common error type (e.g. ’Third Trimester
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Figure 4.7: Illustrative example of model output.

Pregnancy’ was correctly detected in Figure 4.7, but ’Second Trimester Pregnancy’

was not); these typically appeared to be caused by a concept not being present in the

candidate set generated via MetaMap. Some source texts were short and lacking in

detail (particularly those describing outcomes), resulting in missed annotations.

Perhaps unsurprisingly, longer and more descriptive source texts appeared to

result in better quality output from MetaMap. Our system currently does not make

use of negation information; so, e.g., characteristics of excluded populations would

be assigned a positive concept. Overall, the annotations appeared more useful

qualitatively than the quantitative results might suggest (given the low absolute

values, which we discussed in brief above). We acknowledge that the opinions are

subjective to the experts, but the complementary quantitative results are provided in

the previous sections.

4.5 Conclusions
We developed a new model for structured clinical text annotation that can work

effectively with limited training data. In particular, our model learns to infer terms

from the UMLS metathesaurus that describe the individual PICO elements relevant

to a given study, as described in an input free-text. This is an important practical task

for biomedical natural language processing. Our model defines a novel Candidate-

Selector architecture composed of two parts: candidate generation and then (possibly

joint) selection and assignment of these candidates to constituent PICO elements. In
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our CS-Joint model the selection model is a Convolutional Neural Network jointly

conditioned on a triplet of structured PICO UMLS terms and the free-text to be

annotated, thus realizing a fully joint approach. This model achieved consistently

strong empirical results, beating alternative approaches.

Moving forward, we believe we can further improve upon this model within the

same framework, by better exploiting the ontological structure underlying UMLS.

We also hope to focus efforts on improving the recognition of novel (unseen) terms,

as this is important for the present task.



Chapter 5

Structured Text Tagging via

Attentive Neural Tree Decoder

We consider the task of multilabel text annotation, where labels are drawn from an

ontology. We should mention that the previous chapter also focused on multilabel

annotation but differently in this chapter: 1) we do not apply PICO aspect based

tags and 2) the labels are drawn from a strictly tree-structured ontology. As in the

previous chapter, we are again motivated by problems in biomedical NLP [82, 81].

Specifically, scientific abstracts in this domain are typically associated with multiple

Medical Subject Heading (MeSH) terms. MeSH is a controlled, hierarchically

structured vocabulary that facilitates semantic labeling of texts at varying levels of

granularity. This in turn supports semantic indexing of biomedical literature, thus

facilitating improved search and retrieval.1.

At present, MeSH annotation is largely performed manually by highly skilled

annotators employed by the National Library of Medicine (NLM). Automating this

annotation task is thus highly desirable, and there have been considerable efforts

to do so. The BIOASQ2 challenge, in particular, concerns MeSH annotation, and

competitive systems have emerged from this in past years [105, 106]; these constitute

baseline approaches in the present work.

More generally, MeSH annotation is a specific instance of multi-label clas-

sification, which has received substantial attention in general [107, 92, 108, 109,
1This problem also resembles tagging clinical notes with ICD codes [104].
2http://bioasq.org/

http://bioasq.org/
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Figure 5.1: Illustration of the proposed Neural Tree Decoding (NTD) model. Input text is
encoded, and a decoder then conditionally traverses the label tree to select all
relevant nodes to apply, with node-wise attention induced over the input text.

110, 111, 112]. Our work differs from these prior efforts in that MeSH tagging

involves structured multi-label classification: the label space is a tree3 in which

nodes represent nested semantic concepts, and the specificity of these increases with

depth.

Past efforts in multi-label classification have considered hierarchical and tree-

based approaches for tagging [112, 113, 110], but these have not assumed a given

structured label space; instead, these efforts have attempted to induce trees to improve

inference efficiency. By contrast, we propose to explicitly capitalize on a known

output structure codified here by the target ontology from which tags are drawn.

We realize this by recursively traversing the tree to make (conditional) binary tag

application predictions.

The contribution of this work is a neural sequence-to-sequence (seq2seq) model

[114] for structured multi-label classification. Our approach entails encoding the

input text to be tagged using an RNN, and then decoding into the ontological output

space. This involves a tree traversal beginning at the root of the tree. At each step,

3Technically, MeSH comprises multiple trees, but we join these by insertion of an overarching
root node.
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the decoder decides whether to ‘expand’ children as a function of a hidden state

vector, node embeddings, and induced attention weights over the input text. This

approach is depicted in Figure 5.1. Expanded nodes are added to the predicted tag set.

This process is repeated recursively until either leaf nodes are reached or no children

are selected for expansion. This neural tree decoding (NTD) model outperforms

state-of-the-art models for MeSH tagging.

5.1 Related Works
We are focusing on the problem of multi-label text classification, specifically, when

the labels are organized in a tree structured ontology. Consequently, we ought to

review two separate threads of relevant previous works: multi-label classification

and hierarchical tagging.

5.1.1 Multi-label Classification

We have already provided a literature review of multilabel classification models in

the previous chapter, therefore, we are omitting it in this chapter.

5.1.2 Hierarchical Classification

Often times in biomedical domain the label space is structured as hierarchy, for

instance, when the labels are drawn from a tree structured vocabulary i.e. an Ontology.

In order to leverage the hierarchical structure of labels, there have been attempts

at hierarchical classification models [112, 113, 110]. In [112], they propose jointly

learning the hierarchical label structure and input representations, as opposed to

previous works that learned them in sequence. Similarly, in [113] the authors propose

learning a logarithmic depth tree, one that can estimate the conditional probability

for a label in O(logn) time. This reduces a multi-label classification problem into

many binary classification problems.

A lot of these methods were focused on learning a tree structure, as opposed to

using the one provided beforehand e.g. Ontology. There have been works that diffuse

the hierarchical information into the model using label embeddings pre-trained on

the provided graph structure. Our work in the previous chapter [115] used label

embeddings learned using deepwalk over the ontology graph as inputs to a CNN
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based classification network. Another work [51] uses the word-embeddings of labels

learned over Wikipedia but for multi-class classification. In [116], they focus on the

problem of ICD code assignments to biomedical text e.g. Doctor’s notes. These ICD

codes encode the revelations in the diagnosis of the patient. These codes are very

similar in nature to the MeSH terms. While MeSH terms encode varied biomedical

concepts, ICD codes are focused on the diagnostic information e.g. diseases. They

propose using a hierarchical bidirectional gated recurrent neural network for tagging

discharge summaries of patients with ICD codes. One more work [117] developed

a Bayesian framework for combining multiple classifiers based on the functional

taxonomy constraints. They used a hierarchy of SVM classifiers trained on multiple

data types, they then combined predictions using a Bayesian framework to obtain

the most probable set of predictions. We should mention that recursive-tree neural

networks [118, 119] have been proposed earlier, but they often focus on recursive

structure in the input, as opposed to the output.

5.2 Model

Overview. Our model is an instance of an encoder-decoder architecture. For the

encoder, we adopt a standard Gated Recurrent Unit (GRU) network [120], which

yields hidden states for the tokens comprising an input document. The decoder

network consumes these outputs and begins at the root of the ontological tree. It

induces an attention distribution over encoder states, which is used together with the

current decoder state vector to inform which (if any) of its immediate children are

applicable to the input text (Figure 5.1). This decoding process proceeds recursively

for all children deemed relevant. Below we provide more in-depth technical detail

regarding the constituent modules.

The encoder (ENC) consumes as input a raw sequence of words, here composing

an abstract. These are passed through an embedding layer, producing a sequence

of word embeddings x (for clarity we omit a document index here), which are then

passed through a GRU [121] to obtain a sequence of hidden vectors h = {h0, · · · ,hT},

where ht = GRU(xt ,ht−1).
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These are then passed to our neural tree decoder, which is responsible for

tagging the encoded text with an arbitrary number of terms from the label tree, i.e.,

sequences in the structured output space. This module traverses the label space

top-down, beginning at the root, thus exploiting the concept hierarchy codified by

the tree structure.

At each step in the decoding process, the decoder will be positioned at a

particular node in the tree n. Children — immediate descendents — of this node are

then considered for expansion in turn, based on a hidden state vector sn, and a context

vector cn. Both of these are initialized to zero vectors and recursively updated during

traversal, i.e., as nodes are selected for expansion (and hence added to the predicted

tag set). More specifically, the context vector that informs the decision to expand

node v in the label hierarchy from its parent node n is a weighted sum of the encoder

hidden states h, where weights reflect induced attention over inputs, conditioned on

n. That is:

cn = ∑
j

αn jh j (5.1)

where

αn j =
exp{a(sn,h j)|θn}

∑l exp{a(sn,hl)|θn}
(5.2)

and a is a simple multi-layer perceptron (MLP), with node-specific parameters θn.

Here both sums range over the length of the input text.

Given cn, we then estimate the probability that child label v is applicable

to the current input text as a function of the decoder state vector (sn), where

sn = GRU(sn−1,yn), the current context vector (cn) and the decoder parameters.

In particular, this is realized via a standard linear layer with sigmoid activations,

parameterized by a weight matrix W comprising independent weight vectors for each

output node v. Thus the score for a particular output node v is σ(Wv · [[[sn,cn]]]), where

Wv denotes the weight vector for output node v.

Pseudocode for the training and decoding procedures are presented in Algorithm
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Algorithm 2 RECURSIVETREEDECODING

1: function NODELOSS(n, h, s, y)
2: ln← 0
3: cn, sn← DEC(h, n, s)
4: for each child v ∈ children(n) do
5: ŷv ← σ(Wv · [[[sn,cn]]])
6: pv← ∝ depth in tree
7: Bv ∼ Ber(pv)
8: if Bv then
9: ln ← ln +L (ŷv,y)

10: end if
11: if ŷv > τ then
12: ln ← ln + NODELOSS(v, h, sn, y)
13: end if
14: end forreturn ln
15: end function

16: function TRAIN(x, y, α , epochs)
17: θ ← INIT(θ)
18: e← 0
19: while e < epochs do
20: for each instance xi ∈ x do
21: hi← ENC(xi)
22: s0← 0
23: li← NODELOSS(ROOT, hi, s0, yi)
24: ∆θ ← BACKPROP(li)
25: θ ← θ +α∆θ

26: end for
27: e← e+1
28: end whilereturn θ

29: end function

2. In the NODELOSS function, n denotes a particular node. The set of hidden vectors

induced by the encoder (corresponding to the inputs) are denoted by h, s is the

hidden state of the decoder, and y is the reference label (this encodes a path in the

output tree). We assume the decoder, DEC, consumes input representations, a node

index and a hidden state and yields a context vector for n, cn and an updated state

vector sn; in our case the latter is implemented via a GRU. The advantage of using

an RNN during decoding is that this allows the exploitation of learned, distributed

hidden representations of partial tree paths, which inform node-wise attention and

subsequent predictions.

Incurring loss for all nodes along the path specified by y would place a dis-
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proportionate amount of emphasis on correctly applying terms that are ‘higher’ in

the ontology, as loss will be propagated for the initial predictions concerning the

application of these and then also, due to recursive application, for all of their chil-

dren (and so on). Thus we only incur (and hence backpropagate) loss for a node

v stochastically, according to a Bernoulli distribution B with parameter pv. We set

pv to be proportional to the depth of node v in the tree such that we are likely to

incur larger loss for deeper (rarely occurring) nodes. We operationalize this as:

pv = min(1,0.5+ m
fv
), where m is the count corresponding to the least frequently

observed node in the training corpus and fv is the count for node v. In Section 5.4

we demonstrate the benefit of this approach.

At train time we use teacher forcing [122] during decoding. That is, we revert

the model back to the correct (training) tree subsequence when it goes off-course,

and continue decoding from there. We have elided this detail from the pseudocode

for clarity.

5.3 Experimental setup
Below we describe experimental details concerning our implementation, datasets

and baselines. Code and data to reproduce our results is available at https:

//github.com/gauravsc/NTD.

5.3.1 Implementation Details

We limited the vocabulary to the 50,000 most frequent words. Word embeddings

were initialized to pre-trained vectors induced via word2vec, trained over a large

set of abstracts indexed on PubMed4. Ontology node embeddings were pre-trained

using DeepWalk [2], fit over PubMed.

5.3.2 Dataset

Our dataset comprises abstracts of articles describing randomized controlled trials

(RCTs) from PubMed along with their MeSH terms. The MeSH annotations were

manually applied by professionals at the National Library of Medicine (NLM). The

4A repository of biomedical literature.

https://github.com/gauravsc/NTD
https://github.com/gauravsc/NTD
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label space underlying MeSH terms is codified by a publicly available ontology.5

We split this dataset into disjoint sets for training/development and final evalua-

tion (Table 5.1). We further separated the former into train, validation and develop-

ment test subsets, to refine our approach. For our final evaluation we used a heldout

set of 10,000 abstracts that were not seen in any way during model development

and/or hyperparameter tuning. We performed extensive hyperparameter tuning for

the baseline models to ensure fair comparison; details regarding this tuning are

provided in the Appendix.

5.3.3 Baselines

We compare our proposed approach to three baselines, including two prior winners

of the annual BioASQ challenge, which includes an automated MeSH annotation

task. However, it is important to note that we used a different (and considerably

smaller) dataset in the current work, as compared to the corpus used in the BioASQ

challenge. Please also note that all the baselines were trained on the same set of data.

LSSI [106] use an approach that involves predicting both the number of terms and

which to apply to a given abstract. They use linear models for both tasks, which

operate over TF-IDF representations of abstracts. Specifically, they train a regressor

to predict k, the number of MeSH terms to be applied to an abstract. Simultaneously,

a binary linear SVM is trained independently for each MeSH term appearing in the

train set. At test time, these SVMs provide scores for each term and the top k̂ terms

are applied, where k̂ is the estimate from the aforementioned regressor.

UIUC [105] uses a learning-to-rank model to identify the top MeSH terms for an

abstract from a candidate set of terms, which is obtained from the nearest neighbours

of the abstract. Additionally, one SVM classifier is trained for each of the MeSH

terms (similar to the above approach), and scores for each are used to obtain addi-

tional terms to be added to the candidate set. In the end, a threshold (tuned on the

validation set) is used to select the final set of terms to be assigned.

Finally, we consider a deep multilabel classification model DML [123] that takes

5https://meshb-prev.nlm.nih.gov/treeView

https://meshb-prev.nlm.nih.gov/treeView
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Train 20000
Validation 4000
Dev test 18884
Test (held-out) 10000
Mean MeSH terms per article 15.33
Total unique MeSH terms 27892
Unique MeSH terms in dataset 3781

Table 5.1: Dataset statistics.

as input unstructured abstracts and activates the output nodes corresponding to the

relevant MeSH terms. In brief, embedded tokens are fed through a CNN to induce a

vector representation, which is then passed on to the dense output layer. Finally, this

is passed through a sigmoid activation function. Note that this model exploits the

same pre-trained word embeddings as our model does.

5.3.4 Evaluation metrics

We first evaluate model performance via output node-wise precision, recall and F1

measure. However, these metrics are overly strict in the sense that a model will

be penalized equally for all mistakes, regardless of whether they are nearby or far

from the target in the label tree. This is problematic because whether to apply a

specific MeSH term or its immediate parent may be somewhat subjective in practice

[124, 125]. To quantify this, and to explore the extent to which explicitly decoding

into the target label space yields improved predictions, we also consider a measure

that we refer to as semantic distance (SD):

SD =
1
|Y | ∑

u∈Y
min
v∈Ŷ

dist(u,v) (5.3)

where Y and Ŷ are the sets of target and predicted terms respectively, and dist is a

function that returns the shortest distance between two nodes in the label ontology

tree. The idea is that this penalizes less for ‘near misses’. Thus if a model fails

to apply a particular tag t, but does apply one near to t in the label tree, then it is

penalized less.6 We hypothesize that our model will improve results markedly with

6This metric is equivalent to the sum of two metrics (”divergent path to gold standard” and
”divergent path to prediction”) defined in [126].
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Method Precision Recall F1 SD
LSSI 0.326 0.293 0.309 1.518
UIUC 0.236 0.388 0.291 1.433
DML 0.378 0.223 0.275 1.516

NTD-d 0.434 0.235 0.299 1.209
NTD-s 0.425 0.265 0.327 1.130

Table 5.2: Results on the held-out test dataset. SD refers to semantic distance, defined in Eq.
5.3.

respect to this metric, given our exploitation of the tree structure.

As in the case of recall, SD can be ‘gamed’: one can achieve a perfect score

by predicting that all nodes apply to a given abstract. Thus this is only meaningful

alongside complementary metrics like F1.

5.4 Results

Results on the test set (which was completely held out during development) are

reported in Table 5.2. Please note that all the baselines were also trained on the same

dataset as our approach. The proposed Neural Tree Decoding model with stochastic

backpropagation (NTD-s) beats the most competitive baseline (LSSI) in F1 score by

over 2 points.

To explore the effect of backpropagating loss from nodes in proportion to their

depth in the ontology, we also include results for a deterministic variant that does

not do this, NTD-d. This version does not perform as well, demonstrating the utility

of the proposed training approach.

The metrics reported thus far do not account for the structure in the output

space. We thus additionally report results with respect to the the semantic distance

(SD) metric (Eq. 5.3). We observe a marked performance increase of ∼21% over

the best performing baseline. This is intuitive given that we are explicitly decoding

into the label tree structure, and demonstrates the ability of our model to learn the

ontological structure, thereby predicting semantically appropriate terms.
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5.5 Conclusions, Discussion & Limitations
We developed a neural attentive sequence tree decoding model for structured multi-

label classification where labels are drawn from a known ontology. The proposed

method can decode an input text into a tree of labels, effectively using the structure in

the output space. We demonstrated that this model outperformed SOTA approaches

for the important task of tagging biomedical abstracts with Medical Subject Heading

(MeSH) terms on a modestly sized training corpus. Code and data to reproduce these

results are available at https://github.com/gauravsc/NTD.

One limitation of our model is that it is comparatively slow, due to having to

traverse the tree structure during decoding. Prediction speed may not be a major

issue in practice, as articles on PubMed could be batch tagged nightly as they arrive.

However, slow decoding also means lengthy training (see Appendix, section A.2 for

details). For this reason we have here used a modest training set of ∼20k abstracts,

which is smaller than corpora used in prior work on this task. Given the relative

expressiveness of our model, we expect it to benefit substantially from additional

training data, moreso than the simpler baseline architectures. But at present this is

only a conjecture.

In future work we thus hope to apply this model to larger datasets, and to address

the efficiency issue. Concerning the latter, sibling subtrees may be traversed in

parallel, conditioned on the hidden state of their parent. Another promising direction

would be to move to convolutional encoder and decoder architectures, designing the

latter in a way that similarly capitalizes on the label space tree structure.

https://github.com/gauravsc/NTD


Chapter 6

Relation Extraction using Explicit

Context Conditioning

There are wide applications for Information Extraction in general and Relation

Extraction (RE) in particular, which is one reason why relation extraction continues

to be an active area of research. Traditionally, a standard RE model would start with

entity recognition and then pass the extracted entities as inputs to a separate relation

extraction model, which meant that the errors in entity recognition were propagated

to RE. This problem was addressed by end-to-end models [127, 128, 129] that jointly

learn both Named Entity Recognition (NER) and Relation Extraction (RE).

Generally, these models consist of an encoder followed by a relationship clas-

sification (RC) unit [3, 130, 131]. The encoder provides context-aware vector

representations for both target entities, which are then merged or concatenated before

being passed to the relation classification unit, where a two layered neural network

or multi-layered perceptron classifies the pair into different relation types.

Such RE models rely on the encoder to learn ‘perfect’ context-aware entity

representations that can capture complex dependencies in the text. This works well

for intra-sentence relation extraction i.e. the task of extracting relation from entities

contained in a sentence. As these entities are closer together, the encoder can more

easily establish connection based on the language used in the sentence [130, 131].

Additionally, these intra-sentence RE models can use linguistic/syntactical features

for an improved performance e.g. shortest dependency path.
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College FranceBill ...........

located_in located_in

located_in

Figure 6.1: Pictorial representation of a second-order relation between two entities (Bill &
France) connected by a context token (College).

Unfortunately, success in intra-sentence RE has not been replicated for cross-

sentence RE. As an example, a recent RE method called BRAN [3] proposed to

use encoder of Transformer for obtaining token representations and then used these

representations for RE. However, our analysis (briefly discussed in Section 6.4.4)

revealed that it wrongly marks many cross-sentence relations as negative, especially

when the two target entities were connected by a string of logic spanning over

multiple sentences. This showed that reliance on the encoder alone to learn these

complex dependencies does not work well.

In this work we address this issue of directly using representation generated by

the encoder. We propose a model based on the hypothesis that two target entities,

whether intra-sentence or cross-sentence, could also be explicitly connected via a

third context token (Figure 6.1). More specifically, we find a token in the text that

is most related to both target entities, and compute the score for relation between

the two target entities as the summation of their relation scores with this token. We

refer to these relations as second-order relations. At the end, we combine these

second-order scores with first-order scores derived from a traditional RE model, and

achieve state-of-the-art performance over two biomedical datasets. To summarize

the contribution of this work:

1. We propose using second-order relation scores for improved relation extrac-

tion.

2. We describe an efficient algorithm to obtain second-order relation scores.



6.1. Related Works 94

6.1 Related Works
Relation extraction (RE) has been an active area of research for a long time [132, 133,

134]. and has a rich history of literature. RE models can be broadly classified in two

categories based on whether they focus on intra-sentence relations or cross-sentence

relations. We will begin with a brief review of past works in relation extraction,

going from models that had separate entity recognition to those that jointly extract

entities and relations. Afterwards, we will describe in detail two threads of works

focused on intra-sentence and cross-sentence RE.

6.1.1 History of Relation Extraction

Prior to end-to-end RE, one would extract the relevant entities, these extracted entities

were then given as input to the relation extraction model. The relation extraction

algorithm often relied on the information contained in the syntactical structure of

sentences. As these grammars are hierarchical, these methods began by constructing

dependency parse trees for the sentences from which relations were to be extracted

[135, 130, 131, 136]. These trees were then used as inputs for various algorithms. In

Zelenko et al. [137] authors proposed a kernel based method for extracting relations.

It defines a kernel over shallow parse tree representations of unstructured sentences

that can compute similarities between two such trees. Another such work [136]

used shortest dependency path (SDP) between two words in the dependency tree to

establish relations between them. There were many subsequent works that relied on

shortest dependency path to extract relations between two words [135, 130, 131].

More recent RE models are based on jointly extracting both entities and relations

between those entities i.e. End-to-end RE [127, 128, 129, 138]. These models consist

of an encoder followed by a relationship classification (RC) unit [3, 130, 131]. The

encoder provides context-aware vector representations for both target entities, which

are then merged or concatenated before being passed to the relation classification

unit, where a two layered neural network or multi-layered perceptron classifies the

pair into different relation types. At the same time the token representations are

passed to a separate entity recognition unit.

Another major bottleneck in RE has been the lack of labelled data. To address
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this issue there have been attempts at constructing labelled datasets using automated

heuristics [139]. The task of learning models using these noisy machine generated

datasets is referred to as ‘distant supervision’. There have been some more RE

models relying on distant supervision that have achieved some degree of success

[140, 141].

6.1.2 Intra-Sentence RE

Intra-sentence RE refers to the task of extracting relations between entities are

contained within a sentence. There have been a lot of works focused on this problem

[130, 131, 142]. Since the entities are contained within a sentence, these intra-

sentence RE models can use syntactic or linguistic features for improved RE. An

old work in relation extraction [135] proposed a relation extraction model based

on using shortest dependency path between target entities in the parse tree. In a

recent work [130], the authors propose a random walk based model that learns

relation embedding between target entities using an intra-sentence entity graph.

Another recent work by Miwa et al. [127] proposed an end-to-end RE model that

stacks a tree-structured dependency layer on top of a RNN. The dependency layer

consists of a tree-LSTM that takes the parse tree as an input. The combination

of sequence layer and dependency layer computes dependency-aware and context-

aware representations for entities that can then be used for RE. Another work [142]

proposed using global co-occurrence statistics of entities for improved RE. These

global statistics are (loosely) based on counting the number of times two entities

appear in each others’ contexts.

6.1.3 Cross-Sentence RE

Cross-sentence RE refers to the task of extracting relations between entities that

are not necessarily contained within the same sentence. This is a harder problem in

comparison to intra-sentence RE, and therefore has not achieved as much success. A

recent cross-sentence RE model [3] proposed to use encoder of Transformer [35] for

getting context-aware representations for all the tokens. These representations were

then passed to a bilinear relation classification unit. Another work [143] proposed
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constructing a document graph that was then passed as an input to a graph-LSTM.

This graph-LSTM generated representations for tokens that were then passed to a

2-layered neural network for relation classification. A recent work on cross-sentence

relation extraction [144] proposed using distant supervision for RE in cross-sentence

scenarios.

6.2 Background
In this section we describe the encoder and relation classification unit of a SOTA RE

model called BRAN [3]. This model computes relation scores between two entities

directly from their representations, therefore we refer to these as first-order relation

scores.

6.2.1 Transformer Encoder

BRAN uses a variant of Transformer [35] encoder to generate token representations.

The encoder contains repeating blocks and each such block consists of two

sublayers: multi-head self-attention layer followed by position-wise convolutional

feedforward layer. There are residual connections and layer normalization [145]

after each sublayer. The only difference from a standard transformer-encoder is

the presence of a convolution layer of kernel width 5 between two consecutive

convolution layers of kernels width 1 in the feedforward sublayer. It takes as input

word embeddings that are added with positional embeddings [146].

6.2.2 First-Order Relations

The relation classification unit takes as input token representations from the de-

scribed encoder. These are then passed through two MLPs to generate head/tail

representation ehead
i /etail

i for each token corresponding to whether it serves the first

(head) or second (tail) position in the relation.

ehead
i =Whead2(ReLU(Whead1bi)) (6.1)

etail
i =Wtail2(ReLU(Wtail1bi)) (6.2)
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where bi is the representation of the ith token generated by the encoder.

These are then combined with a bi-affine transformation operator to compute a

N×R×N tensor A of pairwise affinity scores for every token pair and all relation

types, scoring all triplets of the form (head,relation, tail):

Air j = (ehead
i L)etail

j , (6.3)

where L is a learned tensor of dimension d×R×d to map pairs of tokens to scores

over each of the R relation types and d is the dimension of head/tail representations.

Going forward we will drop the subscript r for clarity.

The contributions from different mention pairs are then aggregated to give us

first-order relation scores. This aggregation is done using LogSumExp, which is a

smooth approximation of max that prevents sparse gradients:

scores(1)(phead, ptail) = log∑
i∈Phead

j∈Ptail

exp(Ai j), (6.4)

where Phead(Ptail) contains mention indices for head (tail) entity.

6.3 Proposed Second-Order Relations
In this section we describe in detail our proposed method to obtain second-order

relation scores.

We use the encoder described in Sec 6.2.1 for getting token representations.

These token representations are then passed through two MLPs (as in previous

section), which generate head/tail representations for each token corresponding to

whether it serves the first or the second position in the relation. We used a separate

set of these head/tail MLPs for second-order scores than the ones used for getting

first-order scores. This was motivated by the need for representations focused

on establishing relations with context tokens, as opposed to first-order relations

(described in previous section) that attempt to directly connect two target entities.

The head and tail representations are then combined with a d×R×d bilinear
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Figure 6.2: Schematic of the model architecture.

transformation tensor M to get a N×R×N tensor B of intermediate pairwise scores.

Bi j = (ehead
i M)etail

j (6.5)

After that we arbitrarily define the scores between tokens i and j when condi-

tioned on a context token k as the sum of the scores of relations (i,k) and (k, j).

C(i, j|k) = Bik +Bk j (6.6)

These context-conditioned scores are computed for every triplet of the form (i, j,k).

Second-order relation scores are then derived by aggregating over all context

tokens and mention pairs using LogSumExp.

scores(2)(phead, ptail) = log∑
k

i∈Phead

j∈Ptail

exp(C(i, j|k)) (6.7)

Here LogSumExp ensures that one specific mention pair connected via one or few

specific context token(s) is responsible for the relation. This is used to aggregate
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weak signals from different context tokens that could potentially connect the two

target entities, which reduces over-fitting by reducing contributions from noisy

associations of the target entities with random tokens e.g. stopwords.

It is important to mention that a naive implementation of this would require

O(N3) space to store context-conditioned scores between all pairs of token i.e.

C(i, j|k). To address this, we describe an efficient method in Section 6.3.1 that avoids

explicitly storing these.

At the end, the final score for relation between two entities is given as a weighted

sum of first (eq. 6.4) and second (eq. 6.7) order scores.

scores(phead, ptail) = scores(1)(phead, ptail)+α ∗ scores(2)(phead, ptail) (6.8)

where α is a hyper-parameter denoting the weight of second-order relation scores.

Entity Recognition. We do entity recognition alongside relation extraction, as the

transfer of knowledge between the two tasks has been shown to improve relation

extraction performance [3, 127]. For this we feed encoder output bi to a linear

classifier Wer that predicts scores for each entity type.

di =Wer(bi) (6.9)

6.3.1 Efficient Implementation

The problem lies in storing score for every intermediate relation of the form C(i, j|k),

as that would require space of the order O(N3). Here we describe a space-time

efficient method to compute final second-order relation scores.

The intermediate scores (eq. 6.5) are a tensor of dimension b×N×R×N

comprising of pairwise scores for b batches. We create two tensors out of these

intermediate scores, namely T1 and T2. T1 computes the exponential of indices

({b, i ∈ Phead, j ∈ C ,R}) corresponding to pairwise scores between head entity and

all the context tokens (C i.e., all the tokens except the two target entities), and sets

other indices to 0. Similarly, T2 computes exponential of indices ({b, i ∈ Ptail, j ∈
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Data Model Pr Re F1

DCN
BRAN 0.614 0.850 0.712
+ SOR 0.643 0.879 0.734

i2b2
HDLA 0.378 0.422 0.388
BRAN 0.396 0.403 0.395
+ SOR 0.424 0.419 0.407

CDR
BRAN 0.552 0.701 0.618
+ SOR 0.552 0.701 0.618

Table 6.1: The performance of proposed model using second-order relations. BRAN is the
model used in [3] and +SOR is our proposed model with second-order relations.
Results for HDLA are quoted from [4]. Results on CDR are identical for both
BRAN and our proposed model as α was set to 0 after tuning over the dev set at
which point our model is the same as BRAN. All the metrics are macro in nature.

C ,R}) corresponding to pairwise scores between tail entity and context tokens,

setting all other indices to 0. To get the context conditioned scores one needs to

compute the batch product of R two dimensional slices of size N×N from T1 and

T2 along the dimension of context, but this would be sequential in R. Instead we

can permute T1 and T2 to b×R×N×N followed by reshaping to bR×N×N and

perform a batch matrix multiplication along the context dimension to get bR×N×N.

Afterwards, we can sum along the last two dimensions to get a tensor of size bR.

Finally, we can take the log succeeded by reshaping to b×R to obtain second-order

scores.

6.4 Experimentation

6.4.1 Datasets

We have used three datasets in this work, i2b2 2010 challenge [147] dataset, a de-

identified clinical notes dataset and a chemical-disease relations dataset known as

BioCreative V (CDR) [148, 149].

First is a publicly available subset of the dataset used for the i2b2 2010 chal-

lenge. It consists of documents describing relations between different diseases and

treatments. Out of the 426 documents available publicly, 10% are used each for both

dev and test and the rest for training. There are 3244/409 relations in train/test set and

6 pre-defined relations types including one negative relation e.g. TrCP (Treatment
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Causes Problem), TrIP (Tr Improves Pr), TrWP (Tr Worsens Pr). We have used the

exact same dataset as Chikka et al. [4].

Second is a Amazon-owned dataset of 4200 de-identified clinical notes (DCN),

with vocabulary size of 50K. It contains approximately 170K relations in the train

set and 50K each in dev/test set. There are 7 pre-defined relation types including

one negative relation type. These are mostly between medication name and other

entities e.g. “paracetamol every day”,“aspirin with dosage 100mg”. The frequency

of different relations in this dataset is fairly balanced.

Third is a widely used and publicly available dataset called CDR [148, 149].

It was derived from Comparative Toxicogenomics Database (CTD) and contains

documents describing the effect of chemicals (drugs) on diseases. There are only

two relation types between any two target entities i.e. positive/negative and these

relations are annotated at the document level. It consists of 1500 documents that are

divided equally between train/dev/test sets. There are 1038/1012/1066 positive and

4280/4136/4270 negative relations in train/dev/test sets respectively. We performed

the same preprocessing as done in BRAN [3].

6.4.2 Experimental Settings

We jointly solve for NER and RE tasks using cross-entropy loss. During training

we alternate between mini-batches derived from each task. We fix the learn rate to

0.0005 and clip gradient for both tasks at 5.0. For training, we used adams optimizer

with β = (β1,β2) = (0.1,0.9). We tune over the weight of second-order relations

denoted by α to get α = 0.2 for DCN/i2b2 and α = 0.0 for CDR dataset.

Our final network had two encoder layers, with 8 attention heads in each

multi-head attention sublayer and 256 filters for convolution layers in position-wise

feedforward sublayer. We used dropout with probability 0.3 after: embedding layer,

head/tail MLPs, output of each encoder sublayer. We also used a word dropout with

probability 0.15 before the embedding layer.

6.4.3 Results

To show the benefits of using second-order relations we compared our model’s

performance to BRAN. The two models are different in the weighted addition of
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second-order relation scores. We tune over this weight parameter on the dev set and

observed an improvement in MacroF1 score from 0.712 to 0.734 over DCN data

and from 0.395 to 0.407 over i2b2 data. For further comparison a recently published

model called HDLA [4] reported a macro-F1 score of 0.388 on the same i2b2 dataset.

It should be mentioned that HDLA used syntactic parsers for feature extraction but

we do not use any such external tools.

In the case of CDR dataset we obtained α = 0 after tuning, which means that

the proposed model converged to BRAN and the results were identical for the two

models. These results are summarized in Table 6.1.

Also, we observe that the efficient implementation that we described in Section

6.3.1 reduces the run-time by approximately 3-times when compared to the naive

implementation.

6.4.4 Ablation Study

We experimented with different ablations of BRAN and noticed an improvement

in results for DCN dataset upon removing multi-head self-attention layer. Also,

our (manual) qualitative analysis of 20 documents showed that relations between

distant entities were often (i.e. in more than 18 documents) wrongly marked negative.

We attribute these errors to the token representations generated by the encoder.

To this effect, our experiments showed that incorporating relative position [150]

information in the encoder to improve token representations does not lead to superior

RE. Separately, we observed that the proposed method improved results when using

a standard CNN encoder as well.

6.5 Conclusions and Future Work
We proposed a method that uses second-order relation scores to capture long depen-

dencies for improved RE. These relations are derived by explicitly connecting two

target entities via a context token. These second-order relations (SORs) are then

combined with traditional relation extraction models, leading to state-of-the-art per-

formance over two biomedical datasets. We also describe an efficient implementation

for obtaining these SORs.
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Despite restricting ourselves to SORs, it should be noted that the proposed

method can be generalized to third and fourth order relations. We conjecture that

these may serve well for cross-sentence relation extraction in long pieces of texts.

Also, we only considered one relation type between each entity and bridge token

but it is possible, and very likely that two different relation types may lead to a third

relation type. We will explore both these aspects in future work.



Chapter 7

Conclusions, Future Works &

Discussion

7.1 Conclusions

There is a lot of raw text available in the world today. This text is generated everyday

in the form of blogs, articles, published papers, social media posts, websites and

from millions of other sources. There is a lot of information contained in this data

that could potentially be used across various domains with wide applications. The

problem is that most of this data is generated by humans, and does not contain any

structure i.e. it is raw unstructured text. This raw text can not be used in its current

form for most tasks. The challenge is to be able to extract structured information from

this raw text. This information extraction task can be performed by human beings

but they are expensive. We need to be able to extract this information automatically.

This motivates the task of automatic information extraction from text. One way to

extract information from text is through Text Classification.

In this thesis, we work towards solving various challenges faced during au-

tomatic text classification. One such challenge is the problem of zero-shot labels

in the text, these are labels that are absent in the training set but can appear in the

test set. This happens when the training data is small and the output label space

is large, which inevitably leads to many of the labels being missing in the training

set. These zero-shot labels are especially an issue during the initial phases of online
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web applications when the training data is scarce, or in biomedical domain where

obtaining labelled training data is expensive. We deal with this issue of zero-shot

labels by proposing a neighbourhood sensitive classification model that relies on

fine-tuned semantic label embeddings. These embeddings are fine-tuned on the task

specific data, and lead to superior performance. The neighbourhood sensitive model

learns to map input text into these fine-tuned embeddings, while taking into account

the neighbourhood of the label to reduce probability of misclassification.

Afterwards, we work towards improving active learning for the task of ‘citation

screening’. There needs to be a survey of relevant literature before formulating

policies/guidelines on medical or public-health issues. For this, one needs to identify

relevant studies before summarizing their contents. This task of identifying relevant

studies for a systematic review is called citation screening. There have been attempts

to semi-automate this task using an active learning algorithm. We propose a novel

algorithm that explores the topic space during initial phases to be able to exploit

the knowledge gained during the final phase of the algorithm. We also perform

experiments for choosing the best feature extraction model for active learning in

systematic reviews, and describe an effective way to choose the most appropriate

feature extraction model for any given review.

After this, we present our work on automatic structured text annotation. Here,

we focus on the task of PICO annotations for biomedical paper abstracts. This

task poses two unique challenges, one is small training data, and the other is a

vast and structured label space. We solve these issues using a neural candidate-

selector architecture with help from a biomedical software called ‘Metamap’ for

generating high-recall candidate PICO concepts, which are then filtered, while using

correlations among different aspects, to obtain final predictions. In the following

work we propose a neural tree decoder for biomedical text tagging, but this time the

labels are assumed to be drawn from an Ontology. This model performs better than

state-of-the-art approaches for biomedical text tagging by predicting ontologically

coherent labels.

At the end, we propose a novel state-of-the-art model for the task of classifying
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pairs of words based on the relation between them i.e. Relation Extraction. For this,

we propose using second-order relations that are derived by explicitly connecting

words via intermediate context tokens, as opposed to only relying on the encoder

representations. We also provide an efficient implementation for extracting these

indirect relations from the text. This method can also be generalized to extract 3rd

and 4th-order relations between entities.

7.2 Future Works
There are still many gaps left in the state-of-the-art that we would focus on in the

future. Our neural tree decoder model beats baselines for the task of biomedical text

tagging but is comparatively slower. Due to this we were not able to train the model

over the entire labeled set of over 10+ million biomedical abstracts that are freely

available on Pubmed 1. We conjectured in our paper that given the complexity of our

model we are going to benefit from the larger labeled dataset. We will work towards

fixing this major flaw in the future. For this we could parallelize decoding sibling

trees to leverage multiple GPUs for speeding up decoding. The other promising

direction would be to move towards a non-recursive convolutional encoder-decoder

architecture. We believe that using a variant of Transformer networks for seq-to-tree

modelling might lead to significant speed up while still leveraging the Ontology.

Also, we restricted ourselves to second-order relations when extracting relations

from unstructured text, but our proposed method can be generalized to third and

fourth-order relations. We conjecture that these may serve well for cross-sentence

RE in long pieces of texts. Also, we only considered one relation type between each

entity and bridge token but it is possible, and very likely that two different relation

types may lead to a third relation type. We will explore both these aspects in the

future.

7.3 Discussion
A lot of big strides have been made in Natural Language Processing (NLP) in the

recent past. Few of the notables ones have been the use of bi-directional feedforward
1A repository of biomedical literature
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encoders (i.e. Transformer) that are computationally efficient and state-of-the-art

in performance. These encoders are orders of magnitude faster than RNNs. Conse-

quently, they have also made it possible to train these networks on larger datasets,

which in turn has led to good performance on some benchmark tasks.

However, one major issue with most NLP tasks has been the lack of labelled data

required by sophisticated deep models. To address this issue, there have been recent

attempts at using transfer learning. The above mentioned bi-directional encoders

are pre-trained on extremely large unlabelled datasets e.g. Wikipedia, on subset

of language modelling tasks. These pre-trained encoders are appended with task

specific layers and the entire network is then fine-tuned on the target task. These

fine-tuned networks have achieved remarkable performance over many benchmark

task, even surpassing human performance on some of them. Separately, there have

also been attempts for automated generation of labelled datasets using heuristic

techniques referred to as ‘distant supervision’.

Going forward, we think that manually constructing task-specific labelled

datasets might become less popular. We can not keep constructing expensive la-

belled datasets for every task that needs automating. We think the future of text

classification, and more generally of NLP, lies with more effective transfer learning.

For instance, there exist labelled biomedical datasets e.g. MeSH tagged Pubmed ab-

stracts, that can be used for pre-training deep neural networks followed by fine-tuning

on the target tagging tasks e.g. PICO annotation.

Unfortunately, one issue with these pre-trained models is that they require a

significant amount of time for fine-tuning. It is because the entire network needs to be

fine-tuned on the target task. On the other hand, simply fine-tuning the task specific

layers leads to reduced performance. We believe this is because the representations

learned by the network are still not general enough owing to the task specific attention

network. The self-attention component in these networks is pre-trained on a specific

set of tasks and pays attention to those areas of input that correspond to those task(s).

We think the network could perhaps be trained with multiple separate attention

modules, each corresponding to a different task. At test time, we could choose one
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of those attention modules depending on the target task.

A lot of important tasks discussed in this thesis that require automation can

benefit from the above mentioned directions of research. By automating these tasks

we can save a lot of money for various public institutions that require extracting this

information e.g. Governments or Policy makers, which can be of huge benefit to

society.
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[47] Felix X Yu, Liangliang Cao, Rogério Schmidt Feris, John R Smith, and

Shih-Fu Chang. Designing category-level attributes for discriminative visual

recognition. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 771–778, 2013.

[48] Marcus Rohrbach, Michael Stark, and Bernt Schiele. Evaluating knowledge

transfer and zero-shot learning in a large-scale setting. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pages

1641–1648, 2011.



Bibliography 115

[49] Naman Turakhia and Devi Parikh. Attribute dominance: What pops out? In

Proceedings of the IEEE International Conference on Computer Vision, pages

1225–1232, 2013.

[50] Devi Parikh and Kristen Grauman. Relative attributes. In Proceedings of the

IEEE International Conference on Computer Vision, pages 503–510, 2011.

[51] Mohammad Norouzi, Tomas Mikolov, Samy Bengio, Yoram Singer, Jonathon

Shlens, Andrea Frome, Greg S Corrado, and Jeffrey Dean. Zero-shot learning

by convex combination of semantic embeddings. International Conference

on Learning Representations, 2014.

[52] Bernardino Romera-Paredes and PHS Torr. An embarrassingly simple ap-

proach to zero-shot learning. In Proceedings of the International Conference

on Machine Learning, pages 2152–2161, 2015.

[53] Xin Li, Yuhong Guo, and Dale Schuurmans. Semi-supervised zero-shot

classification with label representation learning. In Proceedings of the IEEE

International Conference on Computer Vision, pages 4211–4219, 2015.

[54] Xin Li and Yuhong Guo. Max-margin zero-shot learning for multi-class

classification. In Proceedings of the International Conference on Artificial

Intelligence and Statistics, pages 626–634, 2015.

[55] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global

vectors for word representation. In Proceedings of the Conference on Empiri-

cal Methods in Natural Language Processing, pages 1532–1543, 2014.

[56] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. En-

riching word vectors with subword information. Transactions of the Associa-

tion for Computational Linguistics, 5:135–146, 2017.

[57] Tom M Mitchell, Svetlana V Shinkareva, Andrew Carlson, Kai-Min Chang,

Vicente L Malave, Robert A Mason, and Marcel Adam Just. Predicting



Bibliography 116

human brain activity associated with the meanings of nouns. Science,

320(5880):1191–1195, 2008.

[58] Arkaitz Zubiaga. Enhancing navigation on wikipedia with social tags. arXiv

preprint arXiv:1202.5469, 2012.

[59] Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. Effective and

efficient multilabel classification in domains with large number of labels. In

Proceedings of ECML/PKDD 2008 Workshop on Mining Multidimensional

Data, pages 30–44, 2008.

[60] David Gough, Sandy Oliver, and James Thomas. An introduction to systematic

reviews. Sage, 2012.

[61] Iain Chalmers, Larry V Hedges, and Harris Cooper. A brief history of research

synthesis. Evaluation & the Health Professions, 25(1):12–37, 2002.

[62] Alison O’Mara-Eves, James Thomas, John McNaught, Makoto Miwa, and

Sophia Ananiadou. Using text mining for study identification in systematic

reviews: a systematic review of current approaches. Systematic Reviews,

4(1):1, 2015.

[63] Aaron M Cohen, William R Hersh, K Peterson, and Po-Yin Yen. Reducing

workload in systematic review preparation using automated citation classifica-

tion. Journal of the American Medical Informatics Association, 13(2):206–

219, 2006.

[64] Quoc Le and Tomas Mikolov. Distributed representations of sentences and

documents. In Proceedings of the International Conference on Machine

Learning, pages 1188–1196, 2014.

[65] Yong Cheng Wu. Active learning based on diversity maximization. In

Proceedings of Applied Mechanics and Materials, pages 2548–2552, 2013.



Bibliography 117

[66] Klaus Brinker. Incorporating diversity in active learning with support vec-

tor machines. In Proceedings of the International Conference on Machine

Learning, pages 59–66, 2003.

[67] Zuobing Xu, Ram Akella, and Yi Zhang. Incorporating diversity and density

in active learning for relevance feedback. In Proceedings of the European

Conference on Information Retrieval, pages 246–257, 2007.

[68] James Thomas, John McNaught, and Sophia Ananiadou. Applications of text

mining within systematic reviews. Research Synthesis Methods, 2(1):1–14,

2011.

[69] Chris C Beahler, Jennifer J Sundheim, and Naomi I Trapp. Information

retrieval in systematic reviews: challenges in the public health arena. American

Journal of Preventive Medicine, 18(4):6–10, 2000.

[70] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.

Journal of Machine Learning Research, 3(Jan):993–1022, 2003.

[71] Burr Settles. Active learning literature survey. Science, 10(3):237–304, 1995.

[72] Manali Sharma, Di Zhuang, and Mustafa Bilgic. Active learning with ratio-

nales for text classification. In Proceedings of the Conference of the North

American Chapter of the Association for Computational Linguistics: Human

Language Technologies, pages 441–451, 2015.

[73] Yuanhan Mo, Georgios Kontonatsios, and Sophia Ananiadou. Supporting

systematic reviews using lda-based document representations. Systematic

Reviews, 4(1):1, 2015.

[74] Andrew M Dai, Christopher Olah, and Quoc V Le. Document embedding

with paragraph vectors. arXiv preprint arXiv:1507.07998, 2015.

[75] Zhengping Che, David Kale, Wenzhe Li, Mohammad Taha Bahadori, and Yan

Liu. Deep computational phenotyping. In Proceedings of the ACM SIGKDD



Bibliography 118

International Conference on Knowledge Discovery and Data Mining, pages

507–516, 2015.

[76] Edward Choi, Mohammad Taha Bahadori, Andy Schuetz, Walter F Stewart,

and Jimeng Sun. Doctor ai: Predicting clinical events via recurrent neural

networks. In Proceedings of Conference on Machine Learning for Healthcare,

pages 301–318, 2016.

[77] Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua Kulas, Andy

Schuetz, and Walter Stewart. Retain: An interpretable predictive model for

healthcare using reverse time attention mechanism. In Proceedings of the

Conference on Neural Information Processing Systems, pages 3504–3512,

2016.

[78] Zachary C Lipton, David C Kale, Charles Elkan, and Randall Wetzell.

Learning to diagnose with lstm recurrent neural networks. arXiv preprint

arXiv:1511.03677, 2015.

[79] Florian Boudin, Lixin Shi, and Jian-Yun Nie. Improving medical informa-

tion retrieval with pico element detection. In Proceedings of the European

Conference on Information Retrieval, pages 50–61, 2010.

[80] Alan R Aronson and François-Michel Lang. An overview of metamap: his-

torical perspective and recent advances. Journal of the American Medical

Informatics Association, 17(3):229–236, 2010.

[81] D Demner-Fushman, N Elhadad, et al. Aspiring to unintended consequences

of natural language processing: A review of recent developments in clinical

and consumer-generated text processing. Yearbook of Medical Informatics,

pages 224–233, 2016.

[82] Pierre Zweigenbaum, Dina Demner-Fushman, Hong Yu, and Kevin B Co-

hen. Frontiers of biomedical text mining: current progress. Briefings in

Bioinformatics, 8(5):358–375, 2007.



Bibliography 119

[83] Svetlana Kiritchenko, Berry de Bruijn, Simona Carini, Joel Martin, and Ida

Sim. Exact: automatic extraction of clinical trial characteristics from journal

publications. BMC Medical Informatics and Decision Making, 10(1):56,

2010.

[84] Rodney L Summerscales, Shlomo Argamon, Shangda Bai, Jordan Hupert,

and Alan Schwartz. Automatic summarization of results from clinical trials.

In Proceedings of the IEEE International Conference on Bioinformatics and

Biomedicine, pages 372–377, 2011.

[85] Florian Boudin, Jian-Yun Nie, Joan C Bartlett, Roland Grad, Pierre Pluye,

and Martin Dawes. Combining classifiers for robust pico element detection.

BMC medical Informatics and Decision Making, 10(1):29, 2010.
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