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1. Introduction 

Multi-label classification [1] is a generalization of multiclass classification, which is the single-
label problem in categorizing instances with only one or two classes. Multi-label problems exist in 
several domains, such as document classification [2], [3], text categorization [4], [5], social network 
[6], music emotions categorization [7], [8]. Previous research on multi-label text classification has 
involved traditional machine learning algorithms such as k-Nearest Neighbours [9], [10], Naive 
Bayes [11], [12], Support Vector Machine [13], [14], Logistic Regression [15]. In addition, compared 
to the traditional algorithm mentioned, it has certain limitations in terms of large-scale dataset 
training [17].  

Just like other traditional single-label classifications, multi-label classifications have limitations 
when data labels are small [18]. In this case, a large-scale dataset based on previous research is used 
[19] to overcome multi-label classification in news articles. While news articles consist of several 
long sentences and can change their meaning if there are missing sentences. Therefore, Recurrent 
Neural Network (RNN) was chosen to solve this problem, since the recurrent structure is very 
suitable for long variable text processing [20]. One of deep learning methods proposed in this study 
is RNN architecture by applying the Long Short-Term Memory (LSTM) which able to expands the 
memory [21]. However, during training, traditional RNN has gradient vanishing and exploding 
problem, which can be solved by LSTM [22]. LSTM has different processing with a common RNN 
model. Another difference is an additional signal given from a time-step to the next time-step, which 
called context or memory cell. 

AR TI C LE  I N F O  

 

AB ST R ACT   

 

 

Article history 

Received 

Revised  

Accepted 

 Multilabel text classification is a task of categorizing text into one or 
more categories. Like other machine learning, multilabel classification 
performance is limited when there is small labeled data and leads to the 
difficulty of capturing semantic relationships. In this case, it requires a 
multi-label text classification technique that can group four labels from 
news articles. Deep Learning is a proposed method for solving problems 
in multi-label text classification techniques. By comparing the seven 
proposed Long Short-Term Memory (LSTM) models with large-scale 
datasets by dividing 4 LSTM models with 1 layer, 2 layer and 3-layer 
LSTM and Bidirectional LSTM to show that LSTM can achieve good 
performance in multi-label text classification. The results show that the 
evaluation of the performance of the 2-layer LSTM model in the training 
process obtained an accuracy of 96 with the highest testing accuracy of 
all models at 94.3. The performance results for model 3 with 1-layer 
LSTM obtained the average value of precision, recall, and f1-score 
equal to the 94 training process accuracy. This states that model 3 with 
1-layer LSTM both training and testing process is better.  The 
comparison among seven proposed LSTM models shows that model 3 
with 1 layer LSTM is the best model.   
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A set of comparisons offered in this study has trained a deep learning model by adding seven 
LSTM variant models i.e 4 models with 1 layer LSTM, 2 layers and 3 layers LSTM, and Bidirectional 
LSTM (Bi-LSTM). 

2. Related Work 

a. Multilabel Classification 

In many applications, basically text classification is multi-label [23]. For instance, online news 
articles [24], web classification [25], and information retrieval [26]. In order to overcome multi-label 
classification problem, two methods are applied. First, Problem Transformation methods and second 
is Adapted Algorithms [27]. Several problem transformation methods can be roughly broken down 
into binary classification problem, multi-class classification problem, and ensemble methods. For 
adapted algorithms, some classification algorithms have been adapted to the multi-label task directly. 
Boosting, k-nearest neighbors, decision tree, neural networks are proposed in adapted algorithm 
methods. 

b. Deep Learning 

Deep learning is an efficient version of neural networks [48] that can perform unsupervised, 
supervised, and semi-supervised learning [49]. Deep learning has been extensively used for image 
processing, but many recent studies have applied deep learning in other domains such as text and 
data mining. The basic architecture in a neural network is a fully connected network of nonlinear 
processing nodes organized as layers. The first layer is the input layer, the final layer is the output 
layer, and all other layers are hidden. Deep learning methods have already used for text classification 
are convolutional neural network [35]-[36], autoencoder [16], deep belief network [11]. One of deep 
learning architecture used in this paper is the Recurrent Neural Network (RNN). RNNs connect the 
output of a layer back to its input. This architecture is particularly important for learning time-
dependent structures to include words or characters in text [50].  

3. Method 

a. Recurrent Neural Network 

RNN is a type of neural network with a memory status for processing sequence inputs. Traditional 
RNN has a problem called gradient vanishing and exploding during training [20]. Recurrent node 
activation consists of feedback for itself from one time-step to the next. RNN is included in the deep 
learning category because data is processed automatically and without defining features [28]. RNN 
can use the internal states (memory) to process the input sequence. This makes it applicable to tasks 
such as Natural Language Processing (NLP) [29], speech recognition [30], music synthesis [31], 
time-series financial data processing [32]. There are two implementations of RNN i.e 
Backpropagation Through Time (BPTT) algorithm for calculating gradients and Vanishing Gradients 
problems that have led to the development of LSTM and GRU, the two most popular and powerful 
models currently used in NLP. 

Basic equation of RNN, 

𝑠𝑡 = tanh(𝑈𝑥𝑡 +𝑊𝑠𝑡−1)      (1) 

�̂�𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉𝑠𝑡)       (2) 

Then define loss or error as cross entropy loss, 

𝐸𝑡(𝑦𝑡 , �̂�𝑡) = −𝑦𝑡𝑙𝑜𝑔�̂�𝑡  

 𝐸(𝑦, �̂�) = ∑ 𝐸𝑡(𝑦𝑡 , �̂�𝑡)𝑡  

 = −∑ 𝑦𝑡𝑙𝑜𝑔�̂�𝑡𝑡        (3) 

Add up the gradients at each time-step for one training example, 

  
𝜕𝐸

𝜕𝑊
= ∑

𝜕𝐸𝑡

𝜕𝑊𝑡        (4) 
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To calculate this gradient, chain-rule differentiation is used. That's the backpropagation algorithm 
when applied backwards starting from error. 

 
𝜕𝐸𝑡

𝜕𝑉
=

𝜕𝐸𝑡

𝜕�̂�𝑡

𝜕�̂�𝑡

𝜕𝑉
        

 =
𝜕𝐸𝑡

𝜕�̂�𝑡

𝜕�̂�𝑡

𝜕𝑧𝑡

𝜕𝑧𝑡

𝜕𝑉
        

  = (�̂�
𝑡
− 𝑦

𝑡
)  ∙  𝑠𝑡      (5) 

The calculated gradient, 

  
𝜕𝐸𝑡

𝜕𝑊
= ∑

𝜕𝐸𝑡

𝜕�̂�𝑡

𝜕�̂�𝑡

𝜕𝑠𝑡

𝜕𝑠𝑡

𝜕𝑠𝑘

𝜕𝑠𝑘

𝜕𝑊

𝑡
𝑘=0      (6) 

Note that  is the chain rule itself. Because it takes the derivative of a vector function, the result is 
a matrix, 

   
𝜕𝐸𝑡

𝜕𝑊
= ∑

𝜕𝐸𝑡

𝜕�̂�𝑡

𝜕�̂�𝑡

𝜕𝑠𝑡
(∏

𝜕𝑠𝑗

𝜕𝑠𝑗−1
)
𝜕𝑠𝑘

𝜕𝑊

𝑡
𝑗=𝑘+1

𝑡
𝑘=0      (7) 

 

b. Long Short-Term Memory 

Long short-term memory (LSTM) has recently become a popular tool among NLP researchers for 
their superior ability to model and learn from sequential data. These models have shown state-of-the-
art results on various public benchmarks ranging from the classification of sentences [33] and various 
tagging problems [34] for language modeling [35]-[36], and sequence-to-sequence predictions [37]. 
LSTM aims to solve the RNN problem called gradient vanishing and exploding. LSTM replaces 
hidden vectors from recurrent neural networks with memory blocks equipped with gates. This can 
maintain long-term memory in principle by practicing appropriate gating weights and has proven to 
be very useful in achieving state-of-the-art for various problems, including speech recognition [38]. 
LSTM was proposed by Hochreiter and Schmidhuber, 1997 to specifically address this problem of 
learning long-term dependency. LSTM stores separate memory cells in it which can update and 
display their contents only if necessary [39]. The LSTM gates mechanism implements three layers; 
(1) inputs gate, (2) forget gate, and (3) output gate [40]. 

Each LSTM unit, can be seen in Fig. 1 has a memory cell, and the states at time t is represented as 
ct. Reading and modifying are controlled by the sigmoid gate and affect the input gate it, forget gate 
ft and output gate ot. LSTM is calculated as follows: At the moment of the moment, the model receives 
input from two external sources (ht-1 and xt). The hidden states ht is calculated by the xt input vector 
the network received at time t and the previous hidden states ht-1. When calculating the hidden layer 
node states, input gate, output gate, forget gate and xt will simultaneously affect the state of the node. 

 

Fig. 1.  LSTM Architecture 

A step-by-step explanation of the LSTM cell and its gates is provided below: 

1) Input Gate: 

 𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)     (8) 
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�̌�𝑡 = tanh(𝑊𝐶 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶     (9) 

2) Forget Gate: 

 𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡 + 𝑏𝑓)     (10) 

3) Memory State: 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡      (11) 

4) Output Gate: 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)     (12) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡)      (13) 

c. Evaluation 

The multi-label evaluation steps of the confusion matrix in the following equations: 

𝐴𝑐𝑐 =
∑

𝑇𝑃𝑖+𝑇𝑁𝑖
𝑇𝑃𝑖+𝐹𝑁𝑖+𝑇𝑁𝑖+𝐹𝑃𝑖

𝑙
𝑖=1

𝑙
∗ 100%    (14) 

𝑃𝑟𝑒𝑠𝑖𝑠𝑖 =
∑ 𝑇𝑃𝑖
𝑙
𝑖=1

∑ (𝐹𝑃𝑖+𝑇𝑃𝑖)
𝑙
𝑖=1

∗ 100%    (15) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
∑ 𝑇𝑃𝑖
𝑙
𝑖=1

∑ (𝑇𝑃𝑖+𝐹𝑁𝑖)
𝑙
𝑖=1

∗ 100%     (16) 

 𝐹1𝑠𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑠𝑖𝑠𝑖∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑠𝑖𝑠𝑖+𝑅𝑒𝑐𝑎𝑙𝑙
     (17) 

 
where l indicates number of classes, i describes which class is selected. 

d. Optimization 

There are some types of optimizer for deep learning models such as SGD, Adam and RMSProp. 
This paper applied Adam and RMSProp for training the data. Adam Optimizer can control sparse 
gradient issues [41]. It is an expansion to stochastic gradient descent that has currently seen wider 
adoption for deep learning applications such as Natural Language Processing.  

 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡     (18) 

 𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 + 𝛽2)𝑔𝑡
2     (19) 

where m and v refer averages the first two moments of gradient, g indicates gradient on current 
mini-batch. RMSProp is able to adapt the learning rate for each of the parameters. It aims to divide 
the learning rate for weight by a running average of the magnitudes of recent gradients for that weight 
[42].  

  𝑣(𝑤, 𝑡) ≔ 𝛾𝑣(𝑤, 𝑡 − 1) + (1 − 𝛾)(∇𝑄𝑖(𝑤))
2   (20) 

Where γ is the forgetting factor. 

And the parameters are updates as, 

  𝑤 ∶= 𝑤 −
𝑛

√𝑣(𝑤,𝑡)
∇𝑄𝑖(𝑤)     (21) 
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4. Results and Discussion 

a. Dataset 

Previous research on Zhang 2015, Wang 2018 has shown work well with large-scale datasets [35], 
[43]. From eight large-scale datasets, the AGNEWS dataset was taken for training. AGNews is a 
classification of topics in four categories of Internet news articles consisting of titles and descriptions 
classified into four classes: World, Entertainment, Sports, and Business. The dataset is shown in Table 
1, with the following content specifications: 

Table 1. Dataset Specification 

Dataset Class Contains 

AGNews 4 496,835 

 

b. Research Framework 

Generally, the steps in the research methodology used to assist in compiling this research, require 
a clear framework for the stages. The research framework is used as in Fig. 2, which consists of a 
literature review, data preparation, pre-processing, classification process with LSTM, results analysis, 
and conclusions. The classification process with LSTM consists of 3 sub-processes, that is training, 
validation, and testing process. 

Preparing Data

Remove 

Punctuation
Tokenize

Pre-processing

Literature Review

LSTM Classification

- Training Process

- Validation Process

- Testing Process

Result Analysis

Conclusion

 

Fig. 2. Research Framework 

c. Training Process 

AGNews dataset is divided into 80% each for training and 20% for testing. The training dataset 
used is not used for LSTM testing, and vice versa. From 80% of the training data, 10% is used for the 
data validation process. The amount of each dataset is randomly split, with an automatic data split. 

d. Training Models 

Hyper-parameters used with Adam and RMSProp optimizers will be validated with a learning rate 
of 0.001, and dropout 0.5 is used to minimize errors. The output dimension is 256. The structure and 
hyper-parameters used in LSTM validation can be shown in Table 2. 

Table 2. Training Models 

  Optimizer Loss Function 
Activation Function 

Hidden Output 

Model 1 Adam 
Categorical Cross 

Entropy 
Relu Softmax 

Model 2 Adam 
Categorical Cross 

Entropy 
Tanh Softmax 

Model 3 RMSProp 
Categorical Cross 

Entropy 
Relu Softmax 

Model 4 RMSProp 
Categorical Cross 

Entropy 
Tanh Softmax 
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e. LSTM 1 Layer Model 

The classification model with LSTM architecture is used to correct the classification problems in 
the standard RNN by modeling the LSTM 1 layer. Hyper-parameters used in this study used four 
LSTM models with a general structure of the softmax activation function at the output, loss function 
used categorical cross-entropy. Model results 1, 2, 3, and 4 with 1 layer LSTM in the multi-label text 
classification process by using different hyper-parameters shown in Table 3. The confusion matrix for 
each model can be seen in Table 4. The Performance Evaluation Results of the Multi-label Text 
Classification in the testing process for each model can be seen in Table 5. 

Table 3. Performance Evaluation Results of Model LSTM 1 Layer in Training Process 

Evaluation 

Parameters 
Model 1 Model 2 Model 3 Model 4 

Accuracy 97.41 97.37 94.95 94.93 

  

Table 4. Confusion Matrix For Each Model with 1 Layer LSTM 

Model Confusion Matrix 

Model 1 

LSTM 

8676 120 151 109 

157 7793 703 202 

108 411 8367 99 

99 208 127 8670 

Model 2 

LSTM 

8523 163 138 94 

106 8189 474 176 

108 612 8270 91 

98 239 116 8603 

Model 3 

LSTM 

8708 73 113 66 

148 8153 521 165 

144 410 8425 81 

100 163 109 8621 

Model 4 

LSTM 

8624 122 150 76 

83 8241 448 131 

74 498 8476 67 

127 205 128 8550 

 

Table 5. Performance Evaluation Results of Model LSTM 1 Layer in Testing Process 

Model Class Precision Recall F1-score Data 

Model 1 

LSTM 

0 97 96 96 8935 

1 92 90 91 9061 

2 93 92 92 9029 

3 94 96 95 8975 

Avg 94 94 94 36000 

Model 2 

LSTM 

0 97 96 96 8970 

1 92 90 91 8970 

2 92 93 92 8982 

3 95 96 96 9078 

Avg 94 94 94 36000 

Model 3 

LSTM 

0 96 97 96 8900 

1 93 90 91 9105 

2 91 94 92 9043 

3 96 96 96 8943 

Avg 94 94 94 36000 
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Model 4 

LSTM 

0 97 96 96 8914 

1 93 88 91 8981 

2 90 94 92 9036 

3 95 96 96 9069 

Avg 94 94 94 36000 

 

Based on the results of the performance of the 4 models with 1 layer LSTM, model 3 and 4 have 
good results for the training and testing process by using the RMSProp optimizer thus the LSTM 
models 2 and 3 layers are trained with the same hyper-parameters as the relay in the hidden gate. 
RMSProp has shown excellent adaptation of learning rate in various applications. RMSProp can be 
seen as a generalization of Rprop and is able to work with mini-batches and only conflict with full-
batches [44].  

f. LSTM 2 Layers and 3 Layers (Stacked LSTM) Models 

In this model, using 2 layers and 3 layers LSTM on top of each other, makes the model able to 
study higher-level temporal representations. The first two LSTMs return the full output sequence, but 
the last only returns the last step in the output sequence, so the dimensions dropping temporarily. 

The results of the performance evaluation of the training process for models 2 layers and 3 layers 
LSTM are shown in Table 6, confusion matrix in Table 7 and the performance evaluation result of the 
testing process in Table 8. 

Table 6. Performance Evaluation Results For 2 Layer And 3 Layer LSTM in Training Process 

Evaluation 

Parameters 

2 Layer 

LSTM 

3 Layer 

LSTM 

Accuracy 96.28 95.68 

 

Table 7. Confusion Matrix For Each Label In 2 Layer Dan 3 Layer LSTM 

Model Confusion Matrix 

2 Layer 

LSTM 

8597 117 96 98 

121 8193 517 198 

106 403 8424 86 

74 145 92 8733 

3 Layer 

LSTM 

8713 109 101 149 

101 8127 554 217 

109 362 8347 124 

91 167 94 8635 

 

Table 8. Performance Evaluation Results For 2 Layer And 3 Layer LSTM in Testing Process 

Model Class Precision Recall 
F1-

score 
Data 

2 Layers 

LSTM 

0 97 97 97 8908 

1 92 91 92 9029 

2 92 93 93 9019 

3 96 97 96 9044 

Avg 94 94 94 36000 

3 Layers 

LSTM 

0 97 96 96 9072 

1 93 90 91 8999 

2 92 93 93 8942 

3 95 96 95 8987 

Avg 94 94 94 36000 
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Overall, the 2 layer and 3 layer LSTM are not much different from previous Four models of LSTM 
with 1 Layer based on the performance evaluation results of precision, recall and f1-score evaluations. 
In this case, the 2 layer LSTM model gets the highest accuracy for testing accuracy compared to a 
simple LSTM and four models of 1 layer LSTM, that is 94.3.  

g. Bidirectional LSTM (Bi-LSTM) Model 

XXBidirectional LSTM (Bi-LSTM) works by connecting two hidden layers from opposite 
directions to the same output. The output layer can obtain information from the previous conditions 
(backward) and afterward (forward) simultaneously. 

In this research, by trained Bi-LSTM 1 layer with the same hyper-parameters in model 2 and 3 
layer LSTM. Previously trained using the Adam optimizer, but the high overfitting of the validation 
loss reduced the value of accuracy in the testing process, so the retraining process was done using the 
RMSProp optimizer. The results of the performance evaluation of the Bi-LSTM 1 layer training 
process model are shown in Table 9 and the results of the evaluation of the LSTM 1 layer testing 
performance are shown in Table 10. 

Table 9. Performance Evaluation Results For Bi-LSTM in Training Process and Confusion Matrix 

for Each Class 

 

Evaluation 

Parameters 

Bidirectional LSTM 

(BiLSTM) 

Accuracy 95.88 

Confusion 

Matrix 

8745 110 68 64 

142 8174 421 182 

172 466 8362 108 

127 175 52 8632 

 

Table 10. Performance Evaluation Results For Bi-LSTM in Testing Process 

Class  Precision Recall 
F1-

score 
Data 

0 95 97 96 8987 

1 92 92 92 8919 

2 94 92 93 9108 

3 96 96 96 8986 

Avg 94 94 94 36000 

 

h. Comparison Results 

The performance evaluation result of RNN structure by applying the LSTM architecture in this 
study was compared with some previous studies for multi-label text classification. The results can be 
seen in the following Table 11.  

The initial purpose of this study was to determine the structure of LSTM as a classification of 
multi-label text in large-scale datasets. With seven models of LSTM that have been trained and tested 
above does not subtract the fact that the performance results in this initial stage have not been done 
much pre-processing before being classified by the LSTM. For example, external word embedding is 
used, the resulting feature representation is obtained from the input of words that often appear 100,000 
words with a sequence of words 130. In addition, the LSTM architecture used is still standard and 
simple. Even though it is not optimal for a simple LSTM network, the results of the performance 
evaluation in the training and testing process show good results. This can prove that LSTM is a pretty 
good method for classifying sequential texts. Table 11 shows a comparison of previous studies. 
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Table 11 shows comparison with a variety of methods, including (i) the bag-of-words in [36]; (ii) 
sophisticated deep CNN/RNN models: large/small word CNN, LSTM reported in [36] and deep CNN 
(29 layer) [45]; (iii) simple compositional methods: fast Text [46] and simple word embedding models 
(SWEM) [47]; (iv) the Label Embedding Attentive Model (LEAM) [42].  

Table 11. Comparison of Previous Research 

Model AGNews 

Bag-of-words (Zhang et al.,2015) 88.8 

Small word CNN (Zhang et al.,2015) 89.13 

Large word CNN (Zhang et al.,2015) 91.45 

LSTM (Zhang et al.,2015) 86.06 

Deep CNN (29 layer) (Conneau et al.,2017) 91.27 

SWEM (Shen et al.,2018) 92.24 

fastText (Joulin et al.,2016) 92.5 

LEAM (Wang et al., 2018) 92.45 

LEAM (linear) (Wang et al., 2018) 91.75 

Proposed Model* 93.9 

 

Fig. 3 shows also the comparison among training, validation, and testing accuracy for all proposed 
models and the comparison loss between training and testing can be seen in Fig. 4.  

 

Fig. 3.  Comparison Results of Training, Validation, and Testing Accuracy 

 

Fig. 4.  The Comparison Loss Between Training and Testing 
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5. Conclusion 

The classification of documents is a critical issue to deal with, given the increasing size of the 
scientific literature and other documents. When documents are arranged in a large-scale dataset, a 
multi-label approach is difficult to apply using traditional supervised learning methods. n this study 
comparing seven Long Short-Term Memory (LSTM) models using large-scale datasets. Based on 
experiments on several LSTM models show good performance results. Based on experiments on 
several LSTM models show good performance results. Performance evaluation results of the 2 layer 
LSTM model get the highest testing accuracy results from several models that have been done, is 94.3 
but the result of the training process accuracy is 96.28. For model performance results with good 
performance indicated by model 3 with 1 layer LSTM based on the training accuracy at 94 with the 
average value of precision, recall, and f1-score of 94 for each label. LSTM can also be implemented 
with a number of different large-scale datasets by tuning the models. 
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