113 research outputs found

    Neural information extraction from natural language text

    Get PDF
    Natural language processing (NLP) deals with building computational techniques that allow computers to automatically analyze and meaningfully represent human language. With an exponential growth of data in this digital era, the advent of NLP-based systems has enabled us to easily access relevant information via a wide range of applications, such as web search engines, voice assistants, etc. To achieve it, a long-standing research for decades has been focusing on techniques at the intersection of NLP and machine learning. In recent years, deep learning techniques have exploited the expressive power of Artificial Neural Networks (ANNs) and achieved state-of-the-art performance in a wide range of NLP tasks. Being one of the vital properties, Deep Neural Networks (DNNs) can automatically extract complex features from the input data and thus, provide an alternative to the manual process of handcrafted feature engineering. Besides ANNs, Probabilistic Graphical Models (PGMs), a coupling of graph theory and probabilistic methods have the ability to describe causal structure between random variables of the system and capture a principled notion of uncertainty. Given the characteristics of DNNs and PGMs, they are advantageously combined to build powerful neural models in order to understand the underlying complexity of data. Traditional machine learning based NLP systems employed shallow computational methods (e.g., SVM or logistic regression) and relied on handcrafting features which is time-consuming, complex and often incomplete. However, deep learning and neural network based methods have recently shown superior results on various NLP tasks, such as machine translation, text classification, namedentity recognition, relation extraction, textual similarity, etc. These neural models can automatically extract an effective feature representation from training data. This dissertation focuses on two NLP tasks: relation extraction and topic modeling. The former aims at identifying semantic relationships between entities or nominals within a sentence or document. Successfully extracting the semantic relationships greatly contributes in building structured knowledge bases, useful in downstream NLP application areas of web search, question-answering, recommendation engines, etc. On other hand, the task of topic modeling aims at understanding the thematic structures underlying in a collection of documents. Topic modeling is a popular text-mining tool to automatically analyze a large collection of documents and understand topical semantics without actually reading them. In doing so, it generates word clusters (i.e., topics) and document representations useful in document understanding and information retrieval, respectively. Essentially, the tasks of relation extraction and topic modeling are built upon the quality of representations learned from text. In this dissertation, we have developed task-specific neural models for learning representations, coupled with relation extraction and topic modeling tasks in the realms of supervised and unsupervised machine learning paradigms, respectively. More specifically, we make the following contributions in developing neural models for NLP tasks: 1. Neural Relation Extraction: Firstly, we have proposed a novel recurrent neural network based architecture for table-filling in order to jointly perform entity and relation extraction within sentences. Then, we have further extended our scope of extracting relationships between entities across sentence boundaries, and presented a novel dependency-based neural network architecture. The two contributions lie in the supervised paradigm of machine learning. Moreover, we have contributed in building a robust relation extractor constrained by the lack of labeled data, where we have proposed a novel weakly-supervised bootstrapping technique. Given the contributions, we have further explored interpretability of the recurrent neural networks to explain their predictions for the relation extraction task. 2. Neural Topic Modeling: Besides the supervised neural architectures, we have also developed unsupervised neural models to learn meaningful document representations within topic modeling frameworks. Firstly, we have proposed a novel dynamic topic model that captures topics over time. Next, we have contributed in building static topic models without considering temporal dependencies, where we have presented neural topic modeling architectures that also exploit external knowledge, i.e., word embeddings to address data sparsity. Moreover, we have developed neural topic models that incorporate knowledge transfers using both the word embeddings and latent topics from many sources. Finally, we have shown improving neural topic modeling by introducing language structures (e.g., word ordering, local syntactic and semantic information, etc.) that deals with bag-of-words issues in traditional topic models. The class of proposed neural NLP models in this section are based on techniques at the intersection of PGMs, deep learning and ANNs. Here, the task of neural relation extraction employs neural networks to learn representations typically at the sentence level, without access to the broader document context. However, topic models have access to statistical information across documents. Therefore, we advantageously combine the two complementary learning paradigms in a neural composite model, consisting of a neural topic and a neural language model that enables us to jointly learn thematic structures in a document collection via the topic model, and word relations within a sentence via the language model. Overall, our research contributions in this dissertation extend NLP-based systems for relation extraction and topic modeling tasks with state-of-the-art performances

    Neural information extraction from natural language text

    Get PDF
    Natural language processing (NLP) deals with building computational techniques that allow computers to automatically analyze and meaningfully represent human language. With an exponential growth of data in this digital era, the advent of NLP-based systems has enabled us to easily access relevant information via a wide range of applications, such as web search engines, voice assistants, etc. To achieve it, a long-standing research for decades has been focusing on techniques at the intersection of NLP and machine learning. In recent years, deep learning techniques have exploited the expressive power of Artificial Neural Networks (ANNs) and achieved state-of-the-art performance in a wide range of NLP tasks. Being one of the vital properties, Deep Neural Networks (DNNs) can automatically extract complex features from the input data and thus, provide an alternative to the manual process of handcrafted feature engineering. Besides ANNs, Probabilistic Graphical Models (PGMs), a coupling of graph theory and probabilistic methods have the ability to describe causal structure between random variables of the system and capture a principled notion of uncertainty. Given the characteristics of DNNs and PGMs, they are advantageously combined to build powerful neural models in order to understand the underlying complexity of data. Traditional machine learning based NLP systems employed shallow computational methods (e.g., SVM or logistic regression) and relied on handcrafting features which is time-consuming, complex and often incomplete. However, deep learning and neural network based methods have recently shown superior results on various NLP tasks, such as machine translation, text classification, namedentity recognition, relation extraction, textual similarity, etc. These neural models can automatically extract an effective feature representation from training data. This dissertation focuses on two NLP tasks: relation extraction and topic modeling. The former aims at identifying semantic relationships between entities or nominals within a sentence or document. Successfully extracting the semantic relationships greatly contributes in building structured knowledge bases, useful in downstream NLP application areas of web search, question-answering, recommendation engines, etc. On other hand, the task of topic modeling aims at understanding the thematic structures underlying in a collection of documents. Topic modeling is a popular text-mining tool to automatically analyze a large collection of documents and understand topical semantics without actually reading them. In doing so, it generates word clusters (i.e., topics) and document representations useful in document understanding and information retrieval, respectively. Essentially, the tasks of relation extraction and topic modeling are built upon the quality of representations learned from text. In this dissertation, we have developed task-specific neural models for learning representations, coupled with relation extraction and topic modeling tasks in the realms of supervised and unsupervised machine learning paradigms, respectively. More specifically, we make the following contributions in developing neural models for NLP tasks: 1. Neural Relation Extraction: Firstly, we have proposed a novel recurrent neural network based architecture for table-filling in order to jointly perform entity and relation extraction within sentences. Then, we have further extended our scope of extracting relationships between entities across sentence boundaries, and presented a novel dependency-based neural network architecture. The two contributions lie in the supervised paradigm of machine learning. Moreover, we have contributed in building a robust relation extractor constrained by the lack of labeled data, where we have proposed a novel weakly-supervised bootstrapping technique. Given the contributions, we have further explored interpretability of the recurrent neural networks to explain their predictions for the relation extraction task. 2. Neural Topic Modeling: Besides the supervised neural architectures, we have also developed unsupervised neural models to learn meaningful document representations within topic modeling frameworks. Firstly, we have proposed a novel dynamic topic model that captures topics over time. Next, we have contributed in building static topic models without considering temporal dependencies, where we have presented neural topic modeling architectures that also exploit external knowledge, i.e., word embeddings to address data sparsity. Moreover, we have developed neural topic models that incorporate knowledge transfers using both the word embeddings and latent topics from many sources. Finally, we have shown improving neural topic modeling by introducing language structures (e.g., word ordering, local syntactic and semantic information, etc.) that deals with bag-of-words issues in traditional topic models. The class of proposed neural NLP models in this section are based on techniques at the intersection of PGMs, deep learning and ANNs. Here, the task of neural relation extraction employs neural networks to learn representations typically at the sentence level, without access to the broader document context. However, topic models have access to statistical information across documents. Therefore, we advantageously combine the two complementary learning paradigms in a neural composite model, consisting of a neural topic and a neural language model that enables us to jointly learn thematic structures in a document collection via the topic model, and word relations within a sentence via the language model. Overall, our research contributions in this dissertation extend NLP-based systems for relation extraction and topic modeling tasks with state-of-the-art performances

    A novel approach to handwritten character recognition

    Get PDF
    A number of new techniques and approaches for off-line handwritten character recognition are presented which individually make significant advancements in the field. First. an outline-based vectorization algorithm is described which gives improved accuracy in producing vector representations of the pen strokes used to draw characters. Later. Vectorization and other types of preprocessing are criticized and an approach to recognition is suggested which avoids separate preprocessing stages by incorporating them into later stages. Apart from the increased speed of this approach. it allows more effective alteration of the character images since more is known about them at the later stages. It also allows the possibility of alterations being corrected if they are initially detrimental to recognition. A new feature measurement. the Radial Distance/Sector Area feature. is presented which is highly robust. tolerant to noise. distortion and style variation. and gives high accuracy results when used for training and testing in a statistical or neural classifier. A very powerful classifier is therefore obtained for recognizing correctly segmented characters. The segmentation task is explored in a simple system of integrated over-segmentation. Character classification and approximate dictionary checking. This can be extended to a full system for handprinted word recognition. In addition to the advancements made by these methods. a powerful new approach to handwritten character recognition is proposed as a direction for future research. This proposal combines the ideas and techniques developed in this thesis in a hierarchical network of classifier modules to achieve context-sensitive. off-line recognition of handwritten text. A new type of "intelligent" feedback is used to direct the search to contextually sensible classifications. A powerful adaptive segmentation system is proposed which. when used as the bottom layer in the hierarchical network. allows initially incorrect segmentations to be adjusted according to the hypotheses of the higher level context modules

    A novel approach to handwritten character recognition

    Get PDF
    A number of new techniques and approaches for off-line handwritten character recognition are presented which individually make significant advancements in the field. First. an outline-based vectorization algorithm is described which gives improved accuracy in producing vector representations of the pen strokes used to draw characters. Later. Vectorization and other types of preprocessing are criticized and an approach to recognition is suggested which avoids separate preprocessing stages by incorporating them into later stages. Apart from the increased speed of this approach. it allows more effective alteration of the character images since more is known about them at the later stages. It also allows the possibility of alterations being corrected if they are initially detrimental to recognition. A new feature measurement. the Radial Distance/Sector Area feature. is presented which is highly robust. tolerant to noise. distortion and style variation. and gives high accuracy results when used for training and testing in a statistical or neural classifier. A very powerful classifier is therefore obtained for recognizing correctly segmented characters. The segmentation task is explored in a simple system of integrated over-segmentation. Character classification and approximate dictionary checking. This can be extended to a full system for handprinted word recognition. In addition to the advancements made by these methods. a powerful new approach to handwritten character recognition is proposed as a direction for future research. This proposal combines the ideas and techniques developed in this thesis in a hierarchical network of classifier modules to achieve context-sensitive. off-line recognition of handwritten text. A new type of "intelligent" feedback is used to direct the search to contextually sensible classifications. A powerful adaptive segmentation system is proposed which. when used as the bottom layer in the hierarchical network. allows initially incorrect segmentations to be adjusted according to the hypotheses of the higher level context modules

    Proceedings of the Fifth Italian Conference on Computational Linguistics CLiC-it 2018 : 10-12 December 2018, Torino

    Get PDF
    On behalf of the Program Committee, a very warm welcome to the Fifth Italian Conference on Computational Linguistics (CLiC-­‐it 2018). This edition of the conference is held in Torino. The conference is locally organised by the University of Torino and hosted into its prestigious main lecture hall “Cavallerizza Reale”. The CLiC-­‐it conference series is an initiative of the Italian Association for Computational Linguistics (AILC) which, after five years of activity, has clearly established itself as the premier national forum for research and development in the fields of Computational Linguistics and Natural Language Processing, where leading researchers and practitioners from academia and industry meet to share their research results, experiences, and challenges

    Representation Learning for Natural Language Processing

    Get PDF
    This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing

    Automated energy compliance checking in construction

    Get PDF
    Automated energy compliance checking aims to automatically check the compliance of a building design – in a building information model (BIM) – with applicable energy requirements. A significant number of efforts in both industry and academia have been undertaken to automate the compliance checking process. Such efforts have achieved various levels of automation, expressivity, representativeness, accuracy, and efficiency. Despite the contributions of these efforts, there are two main gaps in existing automated compliance checking (ACC) efforts. First, existing methods are not fully-automated and/or not generalizable across different types of documents. They require different degrees of manual efforts to extract requirements from text into computer-processable representations, and matching the concept representations of the extracted requirements to those of the BIM. Second, existing methods only focused on code checking. There is still a lack of efforts that address contract specification checking. To address these gaps, this thesis aims to develop a fully-automated ACC method for checking BIM-represented building designs for compliance with energy codes and contract specifications. The research included six primary research tasks: (1) conducting a comprehensive literature review; (2) developing a semantic, domain-specific, machine learning-based text classification method and algorithm for classifying energy regulatory documents (including energy codes) and contract specifications for supporting energy ACC in construction; (3) developing a semantic, natural language processing (NLP)-enabled, rule-based information extraction method and algorithm for automated extraction of energy requirements from energy codes; (4) adapting the information extraction method and algorithm for automated extraction of energy requirements from contract specifications; (5) developing a fully-automated, semantic information alignment method and algorithm for aligning the representations used in the BIMs to the representations used in the energy codes and contract specifications; and (6) implementing the aforementioned methods and algorithms in a fully-automated energy compliance checking prototype, called EnergyACC, and using it in conducting a case study to identify the feasibility and challenges for developing an ACC method that is fully-automated and generalized across different types of regulatory documents. Promising noncompliance detection performance was achieved for both energy code checking (95.7% recall and 85.9% precision) and contract specification checking (100% recall and 86.5% precision)
    corecore