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Abstract

A number of new techniques and approaches for off-line handwritten character recognition

are presented which individually make significant advancements in the field.

First, an outline-based vectorization algorithm is described which gives improved accuracy
in producing vector representations of the pen strokes used to draw characters. Later, vec-
torization and other types of preprocessing are criticized and an approach to recognition is
suggested which avoids separate preprocessing stages by incorporating them into later
stages. Apart from the increased speed of this approach, it allows more effective alteration
of the character images since more is known about them at the later stages. It also allows the

possibility of alterations being corrected if they are initially detrimental to recognition.

A new feature measurement, the Radial Distance/Sector Area feature, is presented which is
highly robust, tolerant to noise, distortion and style variation, and gives high accuracy results
when used for training and testing in a statistical or neural classifier. A very powerful
Classifier is therefore obtained for recognizing correctly segmented characters. The segmen-
tation task is explored in a simple system of integrated over-segmentation, character
Classification and approximate dictionary checking. This can be extended to a full system

for handprinted word recognition.

In addition to the advancements made by these methods, a powerful new approach to
handwritten character recognition is proposed as a direction for future research. This propo-
sal combines the ideas and techniques developed in this thesis in a hierarchical network of
classifier modules to achieve context-sensitive, off-line recognition of handwritten text. A
new type of “intelligent” feedback is used to direct the search to contextually sensible
classifications. A powerful adaptive segmentation system is proposed which, when used as
the bottom layer in the hierarchical network, allows initially incorrect scgmentations to be

adjusted according to the hypotheses of the higher Ievel context modules.
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Chapter 1

Introduction

This thesis addresses the difficult problem of identifying handwritten characters using a
computer. The characters are presented to the computer in an electronic representation, pro-
duced by an optical scanning device. This representation encodes the shape of characters
with no information as to the letters or numerals they represent. The characters are scanned
from a pre-drawn image so no information about how they were drawn is available, only the

final shape. Identifying such images is called off-line recognition.

The field of off-line character recognition is a large one. It has a great number of applica-
tions and its commercial potential is considerable. However, marketable products have so
far been limited to machine-printed character recognizers. While optical character recogni-
tion (OCR) software for machine-printed characters is commonly found in offices today, sys-
tems for recognizing handprinted characters have not quite reached the levels of accuracy
required for practical use. Systems for recognizing handwritten characters are even less
accurate. The difficulty of the problem is due to the enormous style variability of handwrit-

ten characters.

Character styles vary in many ways: relative size, aspect ratio, sharpness of angles, slant,
slope, ornamentation, and the number, ordering, position, direction and thickness of strokes.
Factors causing these variations have been shown to include the writer’s age, health, handed-
ness, education, profession, nationality, and in specific cases the speed of writing, method of
presentation and motivation for writing. The writing implement used and quality of the

writing surface also causes style variation. (Kuklinski [Kuk84])

This thesis presents a range of work on various aspects of the off-line handwritten character
recognition problem. The main direction of the work is towards a novel approach for incor-
porating contextual sensibility throughout the recognition process. Attaining contextually

sensible recognition is the key to making off-line handwritten OCR accurate enough for



practical use.

Off-line character recognition has traditionally focused on the classification of isolated char-
acters, without considering the context in which those characters are found. Although it is
difficult to compare recognition results when different test data is used, the field appears to
have reached the stage where machine recognizers are very close to achieving the same level

of accuracy as humans on isolated handwritten characters.

Estimates for human error rates on handwritten characters without context range from 4% to
12%, and as high as 28% for cursive script [SSK77] [EUF90]. It is generally accepted that
human errors on the isolated character recognition task are mainly caused by ambiguous
characters. This ambiguity is caused either by corruption of the image by noise (e.g., dirt or
poor scanning) or poor drawing (e.g., bad ink flow or an uneven writing surface), or is natur-
ally present (e.g., a vertical line image might be a ‘1’ or an ‘l'). The human error therefore
closely approximates the degree of overlap of character class boundaries at the underlying
image level (rather than at the feature level) which puts a practical limit on isolated character

recognition for both humans and machines.

A machine recognizer is therefore limited to roughly the same level of accuracy as humans,
for recognition without context. Despite approaching that level of accuracy, noncontextual
machine recognition of handwritten and cursive characters is still not accurate enough for
practical use. While research continues to improve features and classifiers for isolated
recognition, the benefits of these improvements become smaller as accuracy gets closer to
the practical limit. If character recognition is to progress to useful levels of accuracy it is
essential that contextual information be included in the classification. This idea has been the

motivation for the research presented in this thesis.

Attempts have been made to incorporate contextual information into character recognition.
However, these attempts have mainly been rather limited, application specific, feedforward
correction processes for dictionary checking. No general system for contextual processing
has appeared. Chapter 8 of this thesis proposes a flexible, modular, hierarchical network of
classifiers for general contextual classification, using feedback as well as feedforward com-

munication to produce contextually sensible results.
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Although the proposed hierarchical system is intended to be general in nature, its develop-
ment requires testing on specific practical problems. The size of these problems and the
need for modifications and developments of existing methods for use in the contextual
hierarchy have limited the scope of this thesis to one specific task: character recognition.
Much of the work presented here is concerned with the development of character recognition
solutions which can be incorporated into the contextual hierarchy with a view to testing the
proposed system. At the same time, these solutions can be used outside of the hierarchical

system and represent significant developments in the field.

After reviewing the fields of character classification and contextual processing in chapter 6,
chapter 7 explores a method for contextual recognition of words based on classifications of
individual characters. To a large extent this method follows on from previous work on con-
textual word recognition, The aim of this was partly to develop a stand alone word recog-
nizer but mainly to test the possibility of integrating the contextual recognition with the prior
stages of segmentation and isolated character recognition. The method, as it stands, is not
robust enough for practical use but it demonstrates the potential of contextual information to

find the correct segmentation and produce correct classifications.

Work has also been carried out to improve the recognition of isolated characters. There are
two main approaches to the problem: structural and statistical (the neural approach can be
seen as a type of statistical approach) and improvements to both of these have been made.
Chapter 6 reviews the classification aspects of these approaches, while chapter 2 surveys the

earlier stages of processing the isolated characters.

The structural approach involves extracting shape primitives from images and basing
classification on the types of primitives and their relationships. The images are usually
thinned to a line or vector representation before extraction to simplify the process. The
weakness of this approach is that it relies heavily on accurate extraction of the primitives. It
is very prone to errors caused by nois¢ and distortion, and also by errors introduced in the
thinning process. Chapter 3 presents an improved vectorization algorithm for producing
accurate vector representations of character images. This method, developed from a popular
existing method, includes significant improvements to the vectorization of “junctions” (areas

where pen strokes overlap) and produces vectorizations which are much closer to whole
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strokes than those output by the previous algorithm.

The statistical approach to isolated character recognition is based on extracting vectors of
feature measurements from images. Classification is based on comparing these feature vec-
tors to statistical models of character classes. The main problem with existing feature
approaches is that they are not robust enough for practical use. A new feature is presented in
chapter 5 which is highly robust, tolerant to noise and distortion, and invariant to position
and size, and partially to rotation. The new feature gives high levels of accuracy and gen-
eralization on two of the most popular standard character databases. The accuracy and
robustness of this feature are essential for the isolated character recognition stage in the pro-

posed contextual hierarchy.

At the segmentation stage of character recognition, two methods are presented. One is a
simple algorithm intended only to test the integration of segmentation with contextual
classification in chapter 7. The other is a proposal for adaptive segmentation which forms
the bottom layer of the hierarchical system. Adaptive segmentation is a system where the
initial segmentation is modified during contextual processing to better fit the expected
classifications. This overcomes one of the main problems in character recognition — that
recognition is restricted by the accuracy of the initial division of the input data. It is sug-
gested that the new feature of chapter S, can be used in conjunction with an adaptive scg-

mentation system.

The earlier preprocessing stages of character recognition are evaluated in chapter 4 and it is
concluded that several of them can be detrimental to recognition and that others can be per-
formed more efficiently and effectively by incorporating them into later stages. The
methods and approaches in this thesis attempt to avoid separatc preprocessing stages wher-

ever possible.

Another aspect of the contextual hierarchy is a requirement for a reversal of the classification
process. Contextual corrections are to be verified by comparing inputs which represent the
output class with the actual inputs. This is done at each stage, allowing a novel feedback
mechanism to direct the search for the correct classification. This requirement is considered

for each stage of the recognition process and several methods presented here are designed to
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be capable of producing such representatives. The new features can produce representatives
of the original character shape; the classifier used in chapters S and 7 can produce represen-
tative feature vectors for each class and the word recognizer can produce representative char-

acters for the output word.

This thesis therefore presents an accurate vectorization algorithm, a powerful and robust
feature for isolated character recognition and a word recognition approach using multiple
segmentations which are all significant improvements on existing methods. In addition, it
proposes a powerful new approach for further research into off-line handwritten character
recognition and lays the groundwork for its future testing and development. It is hoped that
a full implementation of the contextual hicrarchical system, using the ideas and techniques
which have been developed here, will lead to a highly accurate recognition system which is
robust and powerful enough for practical application.



Chapter 2

Off-Line Character Recognition

2.1. Summary

This chapter reviews the research ficld of off-line character recognition. Section 2.2
describes the overall problem and the initial forms of the input data. Sections 2.3 to 2.5
review work on the typical early processing stages: preprocessing of the image representa-
tion to aid subsequent recognition, segmentation of text into isolated characters and extrac-
tion of features which exhibit the distinctive characteristics of character classes. Section 2.6
discusses character databases for recognition experiments. Conclusions on the current state
of this part of the research ficld are made in section 2.7. Section 2.8 describes the notation

and symbols used in this chapter,

A review of the actual recognition stage of off-line character recognition (classification and
contextual processing) is presented in chapter 6 as it seems a logical division and does not
concern the early chapters of this thesis. Note, however, that an ideal division, even within
the sections of this chapter, is impossible as the different stages of character recognition
often overlap, for example, normalization (which is usually considered to be a form of
preprocessing) is sometimes performed after feature extraction [DI.90a], and segmentation

can be integrated with recursive contextual processing [TA91].

2.2. Outline of the Problem

In off-line character recognition, an image is scanned and a digital representation of the
image is stored. An attempt is then made to identify the text in the representation, translat-

ing it into a machine-readable format, usually ASCII.

2.2.1. The Image

The image could be any document containing characters. Typical images are engineering
drawings, computer programs, accounts sheets, transaction statements, envelopes, forms,

cheques, mail, maps and airline tickets. The image is not necessarily a pure sample of
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writing or print. Many images used in real world applications will have additional lines,
e.g., boxes on a form, or noise and obscurations, e.g., dirt, smudged ink. Drawings, pictures
and diagrams may also be present in an image. It may not be readily determinable which
areas of the image are text, to be recognised, and which are not. Even if found, the text may

not always be in the desired orientation for recognition.

The need for correction of the orientation of the digital representation of a document can be
aided, reduced and in some cases eliminated before scanning by using special marks on
forms. This may be by including distinctive, easily identified ink markings on the form or
by physically marking the form, e.g., cutting off a corner. Physical marks may allow forms

to be correctly orientated mechanically for automated presentation to the scanning device.

The process of identifying where the writing lies within an image is called text segmenta-
tion. It is frequently the first step in character recognition applications. Many methods exist
for performing this segmentation, usually from a greyscale scan (see section 2.2.2.2), e.g.,
pixel classification (region growing and splitting) [PR78], brightness thresholding [WNR74]
[WR83] [HS88], edge detection [Dav75] [Per80] [TP86] [SBI1], relaxation [HZ83], texture
analysis [CP79] [WWC82] and connected-component analysis [FK88].

This thesis is not concerned with the task of text segmentation and for the most part does not
deal with orientation correction. For the problems on which this work concentrates, it will
be assumed that text segmentation has already been performed. In reality, the images used

in this research contain only text, and the correct orientation is already known.

2.2.2. The Digital Representation

The image is optically scanned and digitized into a numerical representation suitable for
input to a digital computer. The numerical representation describes the positional distribu-
tion of optical brightness measurements, quantized into a grid of square elcments, pixels
(also called image elements, picture elements or pels [GW77]). Square pixels are used
because rectangular ones complicate invariant feature extraction; rectangular pixel lengths of
part of a character will vary according to its orientation. The scan covers the whole docu-
ment by either moving a scan head over a stationary document or by moving the document

in front of the scan head using a rotating drum and stepped friction feed [PS80)].
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The optical brightness is a measurement of light refiected off the document. The most com-
mon types of scanning device measure this using either a Charged Coupled Device (CCD) or
a photomultiplier tube. The photomultiplier produces a digital output proportional to the
optical density of its input. The CCD produces a similar output in the form of a wave, with
voltage proportional to the illumination, which is then passed through an analogue-to-digital
converter. The photomultiplier is used in laser scanners; it records the brightness of a fine
laser beam reflected off the document. With CCD devices, the illuminated image is
presented to the CCD via a camera or a fibre optic pipe.

The exact format of the digital representation of the image depends on the software used

with the scanner. The following sections discuss commonly used formats.

2.2.2.1. Bi-Tonal Representations

A standard file format is the bitmap, where positions in the representation correspond to
positions in the image, and ‘0’s represent white pixels and ‘1’s represent black pixels. The
bitmap is therefore only capable of storing a bi-tonal (black and white) representation of the
image. Figures 2.1a and 2.1b illustrate a simple image and its corresponding bitmap

representation.

The bitmap is an elementary format in the field of character recognition. Though many dif-
ferent formats exist, they consist of the same basic information. Variations exist where the
pixel value is encoded in a whole byte as ASCII decimal (more easily read by humans),
rather than in a single bit (much more compact). Other formats vary in the compression
met