50 research outputs found

    SOLID-SHELL FINITE ELEMENT MODELS FOR EXPLICIT SIMULATIONS OF CRACK PROPAGATION IN THIN STRUCTURES

    Get PDF
    Crack propagation in thin shell structures due to cutting is conveniently simulated using explicit finite element approaches, in view of the high nonlinearity of the problem. Solidshell elements are usually preferred for the discretization in the presence of complex material behavior and degradation phenomena such as delamination, since they allow for a correct representation of the thickness geometry. However, in solid-shell elements the small thickness leads to a very high maximum eigenfrequency, which imply very small stable time-steps. A new selective mass scaling technique is proposed to increase the time-step size without affecting accuracy. New ”directional” cohesive interface elements are used in conjunction with selective mass scaling to account for the interaction with a sharp blade in cutting processes of thin ductile shells

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018

    Get PDF
    This open access book features a selection of high-quality papers from the presentations at the International Conference on Spectral and High-Order Methods 2018, offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions

    Coarse-graining Kohn-Sham Density Functional Theory

    Get PDF
    We present a real-space formulation for coarse-graining Kohn-Sham Density Functional Theory that significantly speeds up the analysis of material defects without appreciable loss of accuracy. The approximation scheme consists of two steps. First, we develop a linear-scaling method that enables the direct evaluation of the electron density without the need to evaluate individual orbitals. We achieve this by performing Gauss quadrature over the spectrum of the linearized Hamiltonian operator appearing in each iteration of the self-consistent field method. Building on the linear-scaling method, we introduce a spatial approximation scheme resulting in a coarse-grained Density Functional Theory. The spatial approximation is adapted so as to furnish fine resolution where necessary and to coarsen elsewhere. This coarse-graining step enables the analysis of defects at a fraction of the original computational cost, without any significant loss of accuracy. Furthermore, we show that the coarse-grained solutions are convergent with respect to the spatial approximation. We illustrate the scope, versatility, efficiency and accuracy of the scheme by means of selected examples

    Solving forward and inverse Helmholtz equations via controllability methods

    Get PDF
    Waves are useful for probing an unknown medium by illuminating it with a source. To infer the characteristics of the medium from (boundary) measurements, for instance, one typically formulates inverse scattering problems in frequency domain as a PDE-constrained optimization problem. Finding the medium, where the simulated wave field matches the measured (real) wave field, the inverse problem requires the repeated solutions of forward (Helmholtz) problems. Typically, standard numerical methods, e.g. direct solvers or iterative methods, are used to solve the forward problem. However, large-scaled (or high-frequent) scattering problems are known being competitive in computation and storage for standard methods. Moreover, since the optimization problem is severely ill-posed and has a large number of local minima, the inverse problem requires additional regularization akin to minimizing the total variation. Finding a suitable regularization for the inverse problem is critical to tackle the ill-posedness and to reduce the computational cost and storage requirement. In my thesis, we first apply standard methods to forward problems. Then, we consider the controllability method (CM) for solving the forward problem: it instead reformulates the problem in the time domain and seeks the time-harmonic solution of the corresponding wave equation. By iteratively reducing the mismatch between the solution at initial time and after one period with the conjugate gradient (CG) method, the CMCG method greatly speeds up the convergence to the time-harmonic asymptotic limit. Moreover, each conjugate gradient iteration solely relies on standard numerical algorithms, which are inherently parallel and robust against higher frequencies. Based on the original CM, introduced in 1994 by Bristeau et al., for sound-soft scattering problems, we extend the CMCG method to general boundary-value problems governed by the Helmholtz equation. Numerical results not only show the usefulness, robustness, and efficiency of the CMCG method for solving the forward problem, but also demonstrate remarkably accurate solutions. Second, we formulate the PDE-constrained optimization problem governed by the inverse scattering problem to reconstruct the unknown medium. Instead of a grid-based discrete representation combined with standard Tikhonov-type regularization, the unknown medium is projected to a small finite-dimensional subspace, which is iteratively adapted using dynamic thresholding. The adaptive (spectral) space is governed by solving several Poisson-type eigenvalue problems. To tackle the ill-posedness that the Newton-type optimization method converges to a false local minimum, we combine the adaptive spectral inversion (ASI) method with the frequency stepping strategy. Numerical examples illustrate the usefulness of the ASI approach, which not only efficiently and remarkably reduces the dimension of the solution space, but also yields an accurate and robust method
    corecore