45 research outputs found

    Passive and active components development for broadband applications

    Get PDF
    Recently, GaN HEMTs have been proven to have numerous physical properties, resulting in transistors with greatly increased power densities when compared to the other well-established FET technologies. This advancement spurred research and product development towards power-band applications that require both high power and high efficiency over the wide band. Even though the use of multiple narrow band PAs covering the whole band has invariably led to better performance in terms of efficiency and noise, there is an associated increase in cost and in the insertion loss of the switches used to toggle between the different operating bands. The goal, now, of the new technology is to replace the multiple narrow band PAs with one broadband PA that has a comparable efficiency performance. In our study here, we have investigated a variety of wide band power amplifiers, including class AB PAs and their implementation in distributed and feedback PAs.Additionally, our investigation has included switching-mode PAs as they are well-known for achieving a relatively high efficiency. Besides having a higher efficiency, they are also less susceptible to parameter variations and could impose a lower thermal stress on the transistors than the conventional-mode PAs. With GaN HEMTs, we have demonstrated: a higher than 37 dBm output power and a more than 30% drain efficiency over 0.02 to 3 GHz for the distributed power amplifier; a higher than 30 dBm output power with more than a 22% drain efficiency over 0.1 to 5 GHz for the feedback amplifier; and at least a 43 dBm output power with a higher than 63% drain efficiency over 0.05 to 0.55 GHz for the class D PA. In many communication applications, however, achieving both high efficiency and linearity in the PA design is required. Therefore, in our research, we have evaluated several linearization and efficiency enhancement techniques.We selected the LInear amplification with Nonlinear Components (LINC) approach. Highly efficient combiner and novel efficiency enhancement techniques like the power recycling combiner and adaptive bias LINC schemes have been successfully developed and verified to achieve a combined high efficiency with a relatively high linearity

    High Efficiency Microwave Amplifiers and SiC Varactors Optimized for Dynamic Load Modulation

    Get PDF
    The increasing use of mobile networks as the main source of internet connectivity is creating challenges in the infrastructure. Customer demand is a moving target and continuous hardware developments are necessary to supply higher data rates in an environmentally sustainable and cost effective way. This thesis reviews and advances the status of realizing wideband and high efficiency power amplifiers, which will facilitate improvements in network capacity and energy efficiency. Several demonstrator PAs are proposed, analyzed, designed, and characterized: First, resistive loading at higher harmonics in wideband power amplifier design suitable for envelope tracking (ET) is proposed. A 40 dBm decade bandwidth 0.4–4.1 GHz PA is designed, with 10–15 dB gain and 40–62% drain efficiency. Its versatility is demonstrated by digital pre-distortion (DPD) linearized measurements resulting in adjacent channel leakage ratios (ACLR) lower than −46 dBc for various downlink signals (WCDMA, LTE, WiMAX). Second, a theory for class-J microwave frequency dynamic load modulation (DLM) PAs is derived. This connects transistor technology and load network requirements to enable power-scalable and bandwidth conscious designs. A 38 dBm PA is designed at 2.08 GHz, maintaining efficiencies >45% over 8 dB of output power back-off (OPBO) dynamic range. From this pre-study a fully packaged 86-W peak power version at 2.14 GHz is designed. ACLR after DPD is −46 dBc at a drain efficiency of 34%. For DLM PAs there is a need for varactors with large effective tuning range and high breakdown voltage. For this purpose, SiC Schottky diode varactors are developed with an effective tuning range of 6:1 and supporting a 3:1 tuning ratio at 36 V of RF swing. Nonlinear characterization to enable Q-factor extraction in the presence of distortion is proposed and demonstrated by multi-harmonic active source- and load-pull, offering insights to tunable network design. Third, a method to evaluate and optimize dual-RF input PAs, while catering to higher harmonic conditions and transistor parasitics, is proposed. The method is validated by a PA design having a peak power of 44 +/- 0.9 dBm and 6 dB OPBO PAE exceeding 45% over a 1–3 GHz bandwidth. The results in this thesis contribute with a novel device and analysis of high efficiency and wideband PAs, aiding in the design of key components for future energy efficient and high capacity wireless systems

    Envelope Factorization with Partial Elimination and Recombination, EF-PER, a New Linear RF Architecture

    Get PDF
    In this paper, a new architecture for efficient linear radio frequency transmitters is proposed; it includes envelope-tracking (ET) and envelope-elimination-and-restoration (EER) architectures as special instances. The proposed technique is referred to as Envelope Factorization with Partial Elimination and Recombination (EF-PER). It relies on a decomposition of the RF signal before power amplification as a product of two signals, one of them being the envelope signal elevated to an exponent “α”. Compared to ET or EER architectures, the parameter “α” constitutes a new degree of freedom. This allows one to realize good tradeoffs between different performance criteria such as spectrum use, power efficiency, and transmitter linearity. An intuitive aggregate cost function is introduced to capture the desired tradeoff and turns out to be maximized in α=0.5. The full relevance of EF-PER is sustained both by analytical results and realistic simulations performed for OFDM signals. The EF-PER architecture (with α=0.5) has been simulated under Agilent-ADS with a non-linear transistor model from Avago (E-PHEMT) and compared with ET and EER

    Multi-Band Outphasing Power Amplifier Design for Mobile and Base Stations

    Get PDF
    New generations of wireless communication systems require linear efficient RF power amplifiers (PAs) for higher transmission data rates and longer battery life. On the contrary, conventional PAs are normally designed for peak efficiency under maximum output power (Pout). Thus, in power back-off, the overall efficiency degrades significantly and the average efficiency is much lower than the efficiency at maximum Pout. Chireix outphasing PA, also called LINC (Linear amplification using Non-linear Components), is one of the most promising techniques to improve the efficiency at power back-off. In this method, a variable envelope input signal is first decomposed into two constant-envelope phase-modulated signals and then amplified using two highly efficient non-linear PAs. The output signals are combined preferably in a loss-less power combiner to build the desired output signal. In this way, the PA exhibits high efficiency with good linearity. In this thesis, first we analyze a complex model of outphasing combiner considering its nonidealities such as reflection and loss in transmission lines (TL). Then we propose a compact model with analytical formula that is validated through several comparative tests using ADS and Spectre RF. Furthermore, we analyze the effect of reactive load in Chireix combiner with stubs (a parallel inductor and capacitor), while distinguishing between its capacitive and inductive parts. It is demonstrated that only the capacitive part of the reactive load degrades the performances. Based on this, a new architecture (Z LINC) is proposed where the power combiner is designed to provide a zero capacitive load to the PAs whatever the outphasing angle. The theory describing the operations of the system is developed and a 900 MHz classical LINC and Z-LINC PAs are designed and measured. In addition, a miniaturization technique is proposed which employs λ/8 or smaller TLs instead of conventional λ/4 TLs in outphasing power combiner. This technique is applied to implement a 900 MHz PA using LDMOS power transistors. Besides single-band PAs, dual-band PAs are more and more needed because of an increasing demand for wireless communication terminals to handle multi-band operation. In chapter 5, a new compact design approach for dual-band transmitters based on a reconfigurable outphasing combiner is proposed. The objective is to avoid the cumbersome implementations where several PAs and matching network are used in parallel. The technique is applied to design a dual band PA with a fully integrated power combiner in 90 nm CMOS technology. An inverter-based class D PA topology, particularly suitable for outphasing and multimode operations is presented. The TLs in the combiner, realized using a network of on-chip series inductors and parallel capacitors, are reconfigurable from λ/4 in 1800 MHz to λ/8 in 900 MHz. In order to maximize the efficiency, the on-chip inductors are implemented using high quality factor on chip slab inductors. The measured maximum Pout at 900/1800 MHz are 24.3 and 22.7 dBm with maximum efficiencies of 51% and 34% respectively

    Investigation of Time Domain Modulation and Switching-Mode Power Amplifiers Suitable for Digitally-Assisted Transmitters

    Get PDF
    Innovation in wireless communication has resulted in accelerating demand for smartphones using multiple communications protocols such as WiFi, Bluetooth and the many cellular standards deployed around the world. The variety of frequency, bandwidth and power requirements associated with each standard typically calls for the implementation of separate radio frequency (RF) front end hardware for each standard. This is a less-than-ideal solution in terms of cost and device area. Software-defined radio (SDR) promises to solve this problem by allowing the RF hardware to be digitally reconfigurable to adapt to any wireless standard. The application of machine learning and cognition algorithms to SDR will enable cognitive radios and cognitive wireless networks, which will be able to intelligently adapt to user needs and surrounding radio spectrum conditions. The challenge of fully reconfigurable transceivers is in implementing digitally-controlled RF circuits which have comparable performance to their fixed-frequency counterparts. Switching-mode power amplifiers (SMPA) are likely to be an important part of fully reconfigurable transmitters since their switching operation provides inherent compatibility with digital circuits, with the added benefit of very high efficiency. As a step to understanding the RF requirements of high efficiency and switching PAs, an inverse class F PA in push-pull configuration is implemented. This configuration is chosen for its similarity to the current mode class D (CMCD) topology. The fabricated PA achieves a peak drain efficiency of over 75% with 42.7 dBm (18.6 W) output power at 2.46 GHz. Since SMPAs cannot directly provide the linearity required by current and future wireless communications standards, amplitude information must be encoded into the RF signal in a different way. Given the superior time resolution of digital integrated circuit (IC) technology, a logical solution is to encode this information into the timing of the signal. The two most common techniques for doing so are pulse width modulation and delta-sigma modulation. However, the design of delta-sigma modulators requires simulation as part of the design process due to the lack of closed-form relationships between modulator parameters (such as resolution and oversampling) and performance figures (such as coding efficiency and signal quality). In particular, the coding efficiency is often ignored although it is an important part of ensuring transmitter efficiency with respect to the desired signal. A study of these relationships is carried out to observe the tradeoffs between them. It is found that increasing the speed or complexity of a DS modulated system does not necessarily translate to performance benefits as one might expect. These observations can have a strong impact on design choices at the system level

    LINC based amplifier architectures for power efficient wireless transmitters

    Get PDF
    Wireless communication trends Performance measuring of a communication system Power amplifiers and transmitters Power efficiency enhancement techniques Design and Optimization of LINC transmitter for OFDM applications LINC concept LINC signal decomposition LINC efficiency and combiner technologies Design optimization of LINC system Mismatch (imbalance) effects Advanced LINC transmitter architectures The 2X1 LINC transmitter system The 2X2 LINC transmitter system Mismatch effects

    Techniques for high-efficiency outphasing power amplifiers

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 171-177).A trade-off between linearity and efficiency exists in conventional power amplifiers (PAs). The outphase amplifying concept overcomes this trade-off by enabling the use of high efficiency, non-linear power amplifiers for linear amplification. However, the efficiency improvement is limited by the efficiency of the output power combiner. This thesis investigates techniques to overcome this efficiency limit while maintaining sufficient linearity. Two techniques are proposed. The first technique is called the outphasing energy recovery amplifier (OPERA), which recovers the normally wasted power back to the power supply and utilizes a resistance compression network for improved linearity. A 48-MHz, 20-W prototype OPERA system was built which demonstrates more than 2x higher efficiency than the standard outphasing system for a 16-QAM signal. The second technique to improve the efficiency of the outphasing system is asymmetric multilevel outphasing (AMO) modulation. In the AMO system, the amplitude for each of the two outphased PAs can switch independently among multiple discrete levels, significantly reducing the energy lost in the power combiner. Three different AMO prototypes were built, each of which demonstrate between 2x-3x efficiency improvement compared to the standard outphasing system. A 2.4-GHz, 500- mW prototype made in a 65-nm CMOS process achieves an average system efficiency of 28.7% for a 20-MHz 64-QAM signal. To the author's best knowledge, this is the highest reported efficiency for a CMOS PA in the 2-2.7 GHz range for signal bandwidths greater than 10 MHz.by Philip Andrew Godoy.Ph.D
    corecore