5,612 research outputs found

    Intelligent systems for efficiency and security

    Get PDF
    As computing becomes ubiquitous and personalized, resources like energy, storage and time are becoming increasingly scarce and, at the same time, computing systems must deliver in multiple dimensions, such as high performance, quality of service, reliability, security and low power. Building such computers is hard, particularly when the operating environment is becoming more dynamic, and systems are becoming heterogeneous and distributed. Unfortunately, computers today manage resources with many ad hoc heuristics that are suboptimal, unsafe, and cannot be composed across the computer’s subsystems. Continuing this approach has severe consequences: underperforming systems, resource waste, information loss, and even life endangerment. This dissertation research develops computing systems which, through intelligent adaptation, deliver efficiency along multiple dimensions. The key idea is to manage computers with principled methods from formal control. It is with these methods that the multiple subsystems of a computer sense their environment and configure themselves to meet system-wide goals. To achieve the goal of intelligent systems, this dissertation makes a series of contributions, each building on the previous. First, it introduces the use of formal MIMO (Multiple Input Multiple Output) control for processors, to simultaneously optimize many goals like performance, power, and temperature. Second, it develops the Yukta control system, which uses coordinated formal controllers in different layers of the stack (hardware and operating system). Third, it uses robust control to develop a fast, globally coordinated and decentralized control framework called Tangram, for heterogeneous computers. Finally, it presents Maya, a defense against power side-channel attacks that uses formal control to reshape the power dissipated by a computer, confusing the attacker. The ideas in the dissertation have been demonstrated successfully with several prototypes, including one built along with AMD (Advanced Micro Devices, Inc.) engineers. These designs significantly outperformed the state of the art. The research in this dissertation brought formal control closer to computer architecture and has been well-received in both domains. It has the first application of full-fledged MIMO control for processors, the first use of robust control in computer systems, and the first application of formal control for side-channel defense. It makes a significant stride towards intelligent systems that are efficient, secure and reliable

    Spare capacity modelling and its applications in survivable iP-over-optical networks

    Get PDF
    As the interest in IP-over-optical networks are becoming the preferred core network architecture, survivability has emerged as a major concern for network service providers; a result of the potentially huge traffic volumes that will be supported by optical infrastructure. Therefore, implementing recovery strategies is critical. In addition to the traditional recovery schemes based around protection and restoration mechanisms, pre-allocated restoration represents a potential candidate to effect and maintain network resilience under failure conditions. Preallocated restoration technique is particularly interesting because it provides a trade-off in terms of recovery performance and resources between protection and restoration schemes. In this paper, the pre-allocated restoration performance is investigated under single and dual-link failures considering a distributed GMPLSbased IP/WDM mesh network. Two load-based spare capacity optimisation methods are proposed in this paper; Local Spare Capacity Optimisation (LSCO) and Global Spare Capacity Optimisation (GSCO)

    Automatic Intent-Based Secure Service Creation Through a Multilayer SDN Network Orchestration

    Full text link
    Growing traffic demands and increasing security awareness are driving the need for secure services. Current solutions require manual configuration and deployment based on the customer's requirements. In this work, we present an architecture for an automatic intent-based provisioning of a secure service in a multilayer - IP, Ethernet, and optical - network while choosing the appropriate encryption layer using an open-source software-defined networking (SDN) orchestrator. The approach is experimentally evaluated in a testbed with commercial equipment. Results indicate that the processing impact of secure channel creation on a controller is negligible. As the time for setting up services over WDM varies between technologies, it needs to be taken into account in the decision-making process.Comment: Parts of the presented work has received funding from the European Commission within the H2020 Research and Innovation Programme, under grant agreeement n.645127, project ACIN

    Spreading processes in Multilayer Networks

    Get PDF
    Several systems can be modeled as sets of interconnected networks or networks with multiple types of connections, here generally called multilayer networks. Spreading processes such as information propagation among users of an online social networks, or the diffusion of pathogens among individuals through their contact network, are fundamental phenomena occurring in these networks. However, while information diffusion in single networks has received considerable attention from various disciplines for over a decade, spreading processes in multilayer networks is still a young research area presenting many challenging research issues. In this paper we review the main models, results and applications of multilayer spreading processes and discuss some promising research directions.Comment: 21 pages, 3 figures, 4 table

    Probabilistic Inference from Arbitrary Uncertainty using Mixtures of Factorized Generalized Gaussians

    Full text link
    This paper presents a general and efficient framework for probabilistic inference and learning from arbitrary uncertain information. It exploits the calculation properties of finite mixture models, conjugate families and factorization. Both the joint probability density of the variables and the likelihood function of the (objective or subjective) observation are approximated by a special mixture model, in such a way that any desired conditional distribution can be directly obtained without numerical integration. We have developed an extended version of the expectation maximization (EM) algorithm to estimate the parameters of mixture models from uncertain training examples (indirect observations). As a consequence, any piece of exact or uncertain information about both input and output values is consistently handled in the inference and learning stages. This ability, extremely useful in certain situations, is not found in most alternative methods. The proposed framework is formally justified from standard probabilistic principles and illustrative examples are provided in the fields of nonparametric pattern classification, nonlinear regression and pattern completion. Finally, experiments on a real application and comparative results over standard databases provide empirical evidence of the utility of the method in a wide range of applications
    • …
    corecore