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ABSTRACT

As computing becomes ubiquitous and personalized, resources like energy, storage and

time are becoming increasingly scarce and, at the same time, computing systems must deliver

in multiple dimensions, such as high performance, quality of service, reliability, security and

low power. Building such computers is hard, particularly when the operating environment is

becoming more dynamic, and systems are becoming heterogeneous and distributed.

Unfortunately, computers today manage resources with many ad hoc heuristics that are

suboptimal, unsafe, and cannot be composed across the computer’s subsystems. Continuing

this approach has severe consequences: underperforming systems, resource waste, information

loss, and even life endangerment.

This dissertation research develops computing systems which, through intelligent adapta-

tion, deliver efficiency along multiple dimensions. The key idea is to manage computers with

principled methods from formal control. It is with these methods that the multiple subsystems

of a computer sense their environment and configure themselves to meet system-wide goals.

To achieve the goal of intelligent systems, this dissertation makes a series of contributions,

each building on the previous. First, it introduces the use of formal MIMO (Multiple

Input Multiple Output) control for processors, to simultaneously optimize many goals like

performance, power, and temperature. Second, it develops the Yukta control system, which

uses coordinated formal controllers in different layers of the stack (hardware and operating

system). Third, it uses robust control to develop a fast, globally coordinated and decentralized

control framework called Tangram, for heterogeneous computers. Finally, it presents Maya, a

defense against power side-channel attacks that uses formal control to reshape the power

dissipated by a computer, confusing the attacker. The ideas in the dissertation have been

demonstrated successfully with several prototypes, including one built along with AMD

(Advanced Micro Devices, Inc.) engineers. These designs significantly outperformed the state

of the art.

The research in this dissertation brought formal control closer to computer architecture

and has been well-received in both domains. It has the first application of full-fledged MIMO

control for processors, the first use of robust control in computer systems, and the first

application of formal control for side-channel defense. It makes a significant stride towards

intelligent systems that are efficient, secure and reliable.
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CHAPTER 1: INTRODUCTION

As computing becomes ubiquitous and personalized, resources like energy, storage and

time become increasingly scarce and, at the same time, computing systems must deliver in

multiple dimensions, such as high performance, quality of service, reliability, security and low

power. This has prompted computers to include controllers that manage multiple resources

during execution [1, 2, 3, 4, 5, 6]. Processors too, are being built to be more adaptive, with

extensive performance, power and thermal management [3, 4, 7, 8, 9], and there is a myriad

of reconfiguration capabilities under research (e.g., [10, 11,12,13,14]). In this environment,

intelligent resource control is of paramount importance for computers to be efficient and

secure—and the design of such intelligent systems is the focus of this dissertation.

1.1 CHALLENGES IN BUILDING RESOURCE EFFICIENT COMPUTERS

Building resource efficient computers that deliver many goals is hard because of several

reasons. First, as a program runs, we increasingly want to enforce multiple requirements at

the same time — e.g., that the power be no higher than a target limit, the frame rate of the

application be no lower than a target rate, and the average busy core utilization be no lower

than a target value. It is difficult to quickly identify the best configuration from the many

choices that achieves all these goals.

Second, modern computing systems are organized in multiple layers, each with its own

resources and with partial information about the current execution such as the hardware, OS

(Operating System), and networking layers. To meet the multiple resource constraints in an

execution, each layer must use only the information available to it to manage its layer, and

communicate with other layers for overall efficiency. Designing controllers in this environment

is challenging because each layer’s controller is modularly designed, despite which, it should

coordinate with other unknown controllers for overall efficiency.

Third, the emerging trend in today’s computing systems is to integrate subsystems built by

different vendors into heterogeneous computers [15,16,17,18,19,20,21]. Such subsystems can

be CPUs, GPUs, or various accelerators. This approach is attractive because the individual

components are often easier and cheaper to develop separately, and they can be reused across

multiple products. For example, the same GPU design is used in AMD’s Ryzen mobile

processors [22] and in Intel’s multi-chip Core i7-8809G [23]. Building resource controllers

in computers with multiple subsystems is challenging. There is a tension between the need

to generate local decisions in each subsystem quickly for timely response and the desire to
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coordinate the different subsystems for global optimization. Global coordination is especially

challenging in heterogeneous computers with multi-vendor subsystems, as one needs to

compose logic from different vendors that was designed without knowing the full system

configuration.

Finally, resource control must also consider security. The more efficient a computer

becomes, the easier it is for attackers to capture information through physical side channels

like the computer’s power consumption, temperature, and electromagnetic (EM) signals.

Conventionally, efficiency has been the primary goal of resource control and there is not much

exploration into utilizing resource control for security.

Unfortunately, physical signals have been increasingly exploited as side and covert channels.

Through these physical channels, attackers have been able to exfiltrate a variety of information

about the applications running, including keystrokes and passwords [24], location, browser

and camera activity [25, 26, 27], and encryption keys [28]. Many types of platforms have

been successfully attacked using these physical channels, including smartphones, personal

computers, cloud servers, multi-tenant datacenters, and home appliances [24, 25, 26, 27, 29, 30,

31,32,33]. The methods through which physical signals can be acquired have significantly

grown in number and stealth [34,35,36,37,38,39,40,41,42,43,44,45]. Since most of these

techniques simply collect measurements, they cause little interference to the target computer

and are hard to detect.

1.2 LIMITATIONS OF THE STATE OF THE ART

Unfortunately, computers today have not fully addressed the challenges described ear-

lier. Resource control is suboptimally organized across the system layers and the various

heterogeneous subsystems, and is primarily run using ad hoc heuristics.

For heterogeneous hardware, the current approach chosen by industry is to use centralized

decision-making [9, 46, 47, 48, 49, 50, 51], despite the availability of per-subsystem sensors and

actuators. The reason is the difficulty of composing independently designed controllers for

system-wide efficiency [51, 52, 53]. There are many heuristic policies that are difficult for

designers to develop even within a single subsystem like a CPU; it is even harder to redesign

such fragile logic to make it work across subsystems [51].

Researchers too have examined the joint optimization of multiple hardware subsystems.

For example, they have optimized the combination of CPU and GPU [52, 53], GPU and

memory [54], CPU and memory [55], multiple cores in a multicore [56, 57, 58, 59, 60], and

servers in a datacenter [61]. In many of these works, however, the decision-making is

centralized [52, 53, 54, 55, 56, 57, 58, 59]. In addition, many of these systems also rely on
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heuristics, which cause other problems. To control emerging heterogeneous computers

effectively, we need a new approach that is fast, globally coordinated, and modular.

Across the system layers, there are many proposals on managing resources in a multilayer

environment (e.g., [61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80]). One

approach is to have a single, monolithic controller that takes signals from all the layers and

controls the resources in all the layers. This solution is complex to develop, difficult to

maintain, cannot interoperate across systems, and is not scalable [61,62,63,65,66,69]. Indeed,

to build these controllers, designers have to understand the inner details of all the layers.

Moreover, when one of the layers needs to be modified, these controllers require a complete

re-design. Sometimes, this design is infeasible, as when hardware and OS come from different

vendors.

An alternative is to have a controller at each layer, and have them operate in an uncoordi-

nated, decoupled way. However, without coordination, the overall behavior can be greatly

suboptimal [62, 65,67,68,69,76]. The different controllers may interfere destructively.

An example of such interference is described by Vega et al. [78] in an IBM POWER7. In

this system, there is a per-core hardware DVFS (Dynamic Voltage and Frequency Scaling)

controller that changes the core’s frequency to maintain high utilization and meet power

requirements. In the OS, there is a task scheduler that tries to consolidate threads onto

cores and power-gate the resulting unused cores to save power. When the multicore’s

load goes down, it is expected that the scheduler will consolidate threads to reduce power

without hurting performance. Unfortunately, the DVFS controller immediately reduces the

frequency to increase utilization, preventing the scheduler from ever consolidating threads

and power-gating cores.

There is a need to use modular controllers in each layer of a multilayer system that

collaborate through a mutually agreed interface, without a monolithic or decoupled design.

This is the position taken by industry, where hardware and software companies such as ARM

and Linaro are working on coordinated hardware-software approaches [6]. Other examples

where hardware and software power management modules coordinate with each other include

IBM [81] and Intel systems [1, 5, 82]. In these designs, each layer performs its own resource

management, and interacts with the other layers through well-defined interfaces.

Unfortunately, most existing coordinated, multilevel designs also rely substantially on

heuristics [63,68,69,81]. Using heuristics, it is not obvious how to build algorithms that meet

multiple resource management goals. For example, suppose that, to accomplish certain goals,

we can move jobs across cores and change each core’s frequency, issue width, and load/store

queue size. It is unclear by how much and in what order we need to change each of these

parameters. Second, this approach requires developing complex algorithms, which may end
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up being buggy. As the algorithm executes, there is the danger that unexpected corner

cases cause large deviations from the targets. Third, heuristic designs are highly specific to

particular choices and do not address the general problem. Their algorithms may become

unusable when a different hardware or software platform is used. Moreover, even highly

tuned heuristics can perform poorly on application corner cases [67,83].

As a result, despite their high overheads during design and verification, heuristics are still

suboptimal, unsafe, and cannot be composed across the computer’s subsystems. Continuing

this approach has severe consequences: underperforming systems, resource waste, information

loss, and even life endangerment.

On the security front, research on defenses against power side channels has limitations. One

of them is that most prior research on defenses has focused on encryption circuits (e.g., [28,

84,85,86,87,88,89]). In practice, there are many attacks that are easier to mount, and which

use system- or chip-level power measurements to steal sensitive information not related to

encryption, like application activity, passwords, and browsing data [24,25,26,27,29,30,31,32].

Another limitation of many proposed defense techniques is that they require new hardware

and, hence, leave existing computers in the field vulnerable. Obvious mechanisms such as

maintaining constant power, inserting noise, or simply randomizing DVFS levels have been

proven unsuccessful because they do not completely mask application activity [25, 29,42, 90].

An alternative approach is to modify each application individually, so that its activity is

not visible through physical side channels [41]. However, this is a very costly proposition.

There is an urgent need to develop effective defenses against power side channels that do not

rely on special hardware, and which can be implemented as firmware or privileged software

in an application-transparent manner. It is relevant to note that many common attacks

that steal personal data like keystrokes or browser activity, analyze signals by sampling at

intervals of several milliseconds or longer — suggesting that a firmware- or software-level

defense is a good choice.

1.3 GOAL AND OVERVIEW OF THE DISSERTATION

The goal of this dissertation is to develop computing systems which, through intelligent

adaptation, deliver efficiency along multiple dimensions. The approach that we propose is

to use formal methodologies from control theory, whose properties are well studied [91]. By

using principled methods from formal control, the multiple subsystems of a computer sense

their environment and configure themselves to meet system-wide goals.

This dissertation makes a series of contributions, each building on the previous, to realize

the target of building intelligent computers with formal control. First, it focuses on processors,
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and introduces the idea of formal MIMO (Multiple Input Multiple Output) control, with

which a processor dynamically changes many parameters like frequency and cache size, to

simultaneously optimize many goals like performance, power and temperature [92,93]. Second,

it considers the need to coordinate the multiple layers in which computers are organized. Each

layer, like the hardware, OS, and networking layers, is built independently and has its own

functionality. Hence, to manage the computer scalably and portably, this work introduces

the Yukta control system, which uses modular formal controllers in multiple layers [94,95,96].

With Yukta, the different layers exchange coordination signals, and tolerate any interference

between each other to optimize full-system efficiency.

As computers become large and heterogeneous, they are integrated with CPUs, GPUs,

accelerators and other subsystems provided by many vendors. To manage these computers

effectively, this dissertation proposes the Tangram framework, where the different controllers

are connected hierarchically and exchange standardized coordination signals [97]. Tangram

enables fast, globally coordinated, and decentralized control of computers.

Finally, the more efficient a computer becomes, the easier it is for attackers to capture

information through physical side channels like the computer’s power. Therefore, this work

introduces Maya, an application-transparent defense where firmware or privileged software

uses formal control to reshape the power dissipated by the computer [98]. The resulting

power signature appears to carry activity information which, in fact, is unrelated to the

application, and confuses the attacker.

1.4 SPECIFIC CONTRIBUTIONS AND NOVELTY

This dissertation makes the following contributions to the field of computer architecture

and systems:

1. This dissertation introduces full-fledged MIMO control for processors.

(a) It applies MIMO control theory techniques to develop controllers that dynamically

tune architectural parameters in processors. To our knowledge, this is the first

work in this area.

(b) It gives architectural intuition for the different procedures involved in the design

of MIMO controllers. We develop a methodology to guide architects in designing

MIMO controllers.

(c) It discusses three general ways in which a MIMO controller can be used in computer

systems.
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2. This dissertation introduces modular coordinated controllers for the uncertain, multi-

layered environment of modern computers.

(a) It introduces Yukta, the first approach for independent teams to design coordinated

multilayer controllers.

(b) It presents the first application of Structured Singular Value (SSV) control from

robust control theory to computer systems.

(c) It develops a prototype of Yukta on a big.LITTLE multicore board, evaluates it,

and performs sensitivity studies.

3. This dissertation develops the fundamental insights for building resource control frame-

works for heterogeneous computers.

(a) It presents Tangram, a fast, globally coordinated, and modular control framework

to manage heterogeneous computers.

(b) It introduces a novel controller design that combines multiple engines and uses

formal control principles.

(c) It develops a prototype of Tangram in a server that we build using components

from three different vendors, and evaluates it.

4. Finally, this dissertation develops Maya, a new defense technique against power side

channels using formal control to re-shape the power signal.

(a) It presents the first application of formal control to side-channel defense.

(b) It shows an implementation of Maya using only privileged software. To our

knowledge, this is the first defense against power side channels that is readily-

deployable and application-transparent. It operates at millisecond-level sampling,

and thwarts power attacks that require no physical access.

(c) It develops an evaluation of Maya using machine learning-based attacks on three

different real machines, in one case tapping an AC electric power outlet.
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CHAPTER 2: BACKGROUND

2.1 BASICS OF APPLYING FORMAL CONTROL FOR COMPUTERS

In control theory, a controlled system is represented as a feedback control loop as in

Figure 2.1(a). The controller reads the output y of a system in state x, compares it to the

target value y◦ and, based on the difference (or error), generates the input u to be applied to

the system to reduce the error.

Controller System

Freq

Issue

# Ld/St

+__

+__

Frame

Rate

Power

T
a
rg

et
s

Controller
System

x
+__

Target
y0

u yerror

(a)

(b)

Figure 2.1: Typical feedback control loop.

Control theory has been used to design controllers that tune architectural parameters in

processors (e.g., [1, 13, 99, 100, 101, 102, 103, 104]). To the best of our knowledge, in these

proposals, a controller only controls a single output (y). The large majority of these proposals

use a SISO design: single input to the system (u) and single output (y) [1, 13,102,104]. For

example, Lu et al. [13] control the frame rate of multimedia applications by changing the

frequency. This is a limited approach.

The other designs use a MISO approach: multiple inputs and single output. Some of them

combine multiple SISO models to generate a larger MISO controller. For example, Wang et

al. [101] control the total power of a multicore by changing the frequencies of all the cores.

The multicore’s power is the sum of the powers of all the cores, and each core’s power only

depends on that core’s frequency. Changing a core’s frequency (input) only impacts the

power of that core (output); it does not impact the power of all the other cores — at least,

not directly. A similar approach is followed by others [99,103].

One design that is intrinsically MISO is Fu et al. [100]. The authors control the utilization

of a processor by changing its frequency and the size of its L2 cache. They embed this

controller inside an outer loop that uses a linear programming solver to minimize power.

These designs do not address the general case where we want to control multiple outputs
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in a coordinated manner. For example, having three controllers, one for power, one for

performance, and one for utilization is not optimal. These controllers may end up working

against each other as follows. To keep the average utilization high, the utilization controller

consolidates the work into a few cores and power-gates the rest; the resulting workload

thrashing in the cache lowers the performance, which causes the performance controller to

increase the frequency; then, the power goes over the limit, which causes the power controller

to reduce the frequency and spread the workload into more cores. The cycle then repeats.

Overall, the system runs inefficiently and may violate constraints.

Figure 2.1(b) shows our goal, MIMO control: multiple inputs and multiple outputs [91].

The example controller senses the frame rate and power of a processor, compares them to

their target values, and then actuates multiple inputs (the processor’s frequency, issue width,

and load/store queue size) to ensure both frame rate and power targets are satisfied. Each of

the inputs impacts each of the outputs.

The MIMO approach enables designers to rank the relative importance of the different

outputs. For example, they can declare that the power target is more critical, and the

controller will ensure that power errors are minimal. Most importantly, this approach ensures

the coordinated control of the multiple outputs. The result is more effective control in a

resource-constrained era.

2.2 OVERVIEW OF MIMO CONTROL THEORY FOR PROCESSORS

We take a processor as our system, and abstract it as a controlled system as in Figure 2.1(a).

The system is characterized by state x, inputs u, and outputs y. They are all a function of

time T. The system state x is given as an N-dimensional vector. We assume we have I inputs

(e.g., frequency, issue width, and ld/st queue size) and O outputs (e.g., power and frame

rate). These measures are related as follows [91]:

x(T + 1) = A× x(T ) +B × u(T ) (2.1)

y(T ) = C × x(T ) +D × u(T ) (2.2)

where A, B, C, and D are matrices that characterize the processor. They are obtained from

an analytical model of the processor or from measurements with programs running on the

processor (system identification). A is the evolution matrix, and is N×N; B is the impact

of inputs on the state, and is N×I; C is state-to-output conversion, and is O×N; finally, D

denotes the feed-through of inputs to outputs, and is O×I.

The unpredictability component of the system is represented as two matrices [91]. One
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encapsulates the non-determinism of the system, possibly caused by effects such as interrupts

and unexpected program behavior changes. The other matrix encapsulates the noise in

reading the outputs — e.g., due to inaccuracies in the power sensor. These two effects are

shown in the augmented feedback control loop of Figure 2.2 (together with an uncertainty

effect that we discuss later).

Controller
System

+__
Target
y0

u(T)

y(T)error

Non determinism
Noise

Uncertainty

Figure 2.2: Augmented feedback control loop.

To control this system, we can use a type of MIMO controller called Linear Quadratic

Gaussian (LQG) controller [91,105]. The LQG controller generates the system inputs, u(T ),

based on the state of the system, x(T ), and the difference in the outputs of the system

from their target (i.e., reference) values. However, as the system’s true state is not known,

the controller begins with a state estimate and generates the system inputs based on this

estimate. The controller refines the estimate and learns the true state by comparing the

output predicted using the state estimate and the true output. Both estimation and system

input generation happen simultaneously and their accuracy increases with time. The design

of the LQG controller guarantees that the estimated state converges to the unknown true

state soon and, therefore, the appropriate input values are generated to stabilize the system’s

outputs at their target values quickly.

Specifically, an LQG controller tries to minimize the sum of the squares of a set of costs

(also called errors). Such errors are the differences between each output and its target value,

and between each input and the proposed new value of that input — the controller minimizes

input changes to avoid quick jerks from steady state. These errors can be given architectural

meanings. Moreover, the designer can add weights to each of these errors: the higher the

weight, the more important is for that error to be small. For example, the designer can give a

high weight to power errors. These weights are given by the designer in two positive diagonal

matrices [91]: the Tracking Error Cost matrix (Q) for the outputs, and the Control Effort

Cost matrix (R) for the inputs. We give the architecture insights in Chapter 3.

LQG control also allows a system to be characterized as the combination of a deterministic

part and an unknown part that follows a Gaussian distribution. As indicated above, this

also matches architectural environments, which include unpredictable effects. Finally, LQG
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control is simple and intuitive. It has a low overhead because it only performs simple matrix

vector multiplications at runtime.

Since a processor is a very complex system, even models generated by experimenting with

many applications will be incorrect in some cases. Hence, we add an uncertainty factor to the

model. In practice, this means adding an additional guardband to the parameters generated

by the control theory calculations. This is shown in Figure 2.2 as an extra path that perturbs

the system in a random way.

Then, we perform robustness analysis [91] to ensure that the controller will work correctly

with this level of uncertainty. Robustness analysis is a type of mathematical analysis that

analyzes every type of uncertainty that is possible in the system (e.g., non-linearity or time

variance) and, for a given bound on the size of this uncertainty, determines whether the

system will be stable.

While LQG controllers are good for standalone systems, they are not optimized to work

in multilayer or distributed environments. The main reason is that the LQG controllers

are not natively optimized to work with only partial models of the system. Unfortunately,

in multilayer or heterogeneous environments, a designer has a model only of their own

subsystem, and which could be inaccurate because of the unknown interference from other

layers. Therefore, we next describe Robust control, which can address this limitation.

2.3 ROBUST CONTROL FOR UNCERTAIN ENVIRONMENTS

The MIMO approach is the most applicable to computer architecture, since multiple goals

(performance, power) are typically coupled with each other, and depend on each of the inputs.

However, computers are complex, and program behavior is determined by many factors.

As a result, controlling computer environments intrinsically involves dealing with uncertain

dynamics and approximate models.

A branch of control theory that focuses on hard-to-predict environments is Robust control

theory [91]. In this field, variability and uncertainty of the system dynamics at runtime is an

integral part of the controller synthesis process. Among the robust controller methodologies,

one of the most mature and better understood, with standard packages and tools, is Structured

Singular Value (SSV) control [91,106,107,108].

SSV controllers have four traits that make them desirable in uncertain environments such

as computers. One is the ability to take-in external signals at runtime. The other three are

the ability to accept designer-specified (i) bounds on the deviations of the outputs from their

targets, (ii) uncertainty guardbands, and (iii) descriptions of the allowed discrete settings for

the inputs. We consider each in turn.
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First, SSV controllers can read at runtime an additional type of signals called External

Signals, unlike other formal controllers. These signals provide information on measures that

the controller cannot directly change, but this information helps the controller make better

decisions. For example, a DVFS hardware controller may take, as an external signal, the

number of active application threads from the OS.

Second, designers can specify bounds on the allowed deviation of the outputs from their

targets or goals. The controller guarantees that the output values will be within these bounds

— subject to the existence of inputs that generate such output values. This is in contrast

to non-robust controllers, which generally try to keep the outputs close to the targets, but

cannot guarantee any bounds.

Third, when building robust controllers, the designer specifies model uncertainty guardbands.

They are typically expressed in percentages. For example, a 20% uncertainty means that,

due to limitations of the model or other unanticipated effects, the values of the outputs can

possibly be ±20% different than predicted by the model.

The designer sets the uncertainty guardband based on a combination of suggestions from

theory, system insight, and actual experimentation. Guardbands enable the controller to work

correctly in scenarios that are very different from modeled executions. Unlike non-robust

controllers, SSV controllers do not become slow unless significantly large guardbands (e.g.,

over 400%) are used [107]. On the other hand, if the guardband is not large enough and is

exhausted at runtime, the controller detects it dynamically, and may no longer provide all

the guarantees expected.

Finally, robust controllers accept a description of the allowed input settings. The designer

can specify the range of values taken by the inputs and their discrete values (saturation and

quantization). This is in contrast to typical non-robust controllers, such as PID controllers [91],

where each input is assumed to take values that are continuous and unbounded. This makes

SSV controllers natively applicable to computing systems, which have discrete resources.

2.3.1 Mathematical Theory of SSV Controllers

Figure 2.3a shows the representation of a system when designing an SSV controller. M

is the model of the system that we want to control. M describes how the inputs (u) and

external signals generate the outputs (y). K is the controller we have to design. In practice,

there are real world inaccuracies shown as ∆ in the figure. One is due to the true system

behavior deviating from the model (∆u), caused by any behavior of the system not captured

by the model. This is the model uncertainty for which we specify guardbands. Another

constraint is due to the inputs taking only a discrete (or quantized) and limited (or saturated)
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set of allowed values (∆in) instead of unlimited values. This is the input discretization. The

external signals may also have such effects, but we omit them in this discussion.

The system inside the dotted line boundary in Figure 2.3a is called the nominal closed loop

because it contains the components without any imprecisions. Consolidating the individual

∆ components into an overall ∆, and denoting the nominal closed loop of Figure 2.3a as N,

we can represent the system as Figure 2.3b. In this figure, signals generated from elsewhere

(i.e., external signals and output targets or references) are called exogenous inputs (w). The

outputs of the system that can actually be measured outside are called exogenous outputs

(z). The ∆ block interacts with the system through fictitious signals called perturbation

inputs (d) and perturbation outputs (f) that capture the effects of model uncertainty and

discrete inputs.
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(a) System representation when designing an SSV controller.
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(b) The ∆-N representation of the problem.

Figure 2.3: Mathematical SSV controller design

The controller K in the closed loop N is robust if it: (i) keeps N stable, (ii) generates

optimal inputs according to designer-specified input weights W , and (iii) keeps all visible

outputs z within bounds B of the targets – for all possible model inaccuracies smaller than

the specified ∆. Robust control theory [91] uses the Structural Singular Value (SSV) defined

as follows to assess a controller’s robustness:

SSV (N,∆, B,W ) =
1

min {s | det(I − s×N × [∆;B−1;W−1]) = 0}
(2.3)

where [∆;B−1;W−1] is a diagonal matrix with the inaccuracies (∆), the inverse of the bounds

(B), and the inverse of the input weights (W) in the diagonal; N is the closed-loop matrix

that gives the outputs (z, f) as a function of the inputs (w, d); and I is the identity matrix.

Finally, s is a factor that makes the determinant (det) of I − s×N × [∆;B−1;W−1] equal to

zero.

Physically, s is a scaling factor that multiplies the ∆, 1/B, and 1/W given by the designer.

The minimum scaling factor min(s) gives the worst-case inaccuracy (min(s) × ∆) that

the controller tolerates, the worst-case bounds (1/min(s) × B) that it provides, and the

worst-case weights (1/min(s) × W) that it supports. So, if min(s) is larger than 1, it means
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that the controller can handle the ∆, B, and W requested by the designer. On the other

hand, if min(s) is smaller than 1, the controller is not robust; the specified ∆ is too large,

the specified B is too small, and/or the specified W is too small.

To design an SSV controller (K), the designer specifies the model of the system (M), the

set of ∆ values to tolerate, and the desired B and W values. Then, MATLAB selects an

initial controller and solves Equation 2.3 to find its min(s). If the min(s) value is smaller

than 1, MATLAB changes the controller, and then looks for the new min(s) for the new

controller. MATLAB continues this search until it finds a controller with a min(s) value that

is as close as possible to (and higher than) 1, which will make SSV (N,∆, B,W ) as close

as possible to (and lower than) 1. If MATLAB cannot find a controller with such a min(s)

value, the designer selects lower ∆, 1/B, and 1/W values, and restarts.

Compare this approach to the design of a non-SSV controller such as a PID controller [91].

In such case, the designer can only specify the model M and obtains a controller K. There is

no way to specify inaccuracies ∆, bounds B, and weights W in the controller design. As a

result, such controllers are less useful in complex multilayer environments like computing

systems.

The operation of the SSV controller is listed in the equations below. It is a simple state

machine, characterized by the dimensionality of its state (N), and the number of inputs (I),

outputs (O), and external signals (E).

x(T + 1) = A× x(T ) +B ×∆y(T ) (2.4)

u(T ) = C × x(T ) +D ×∆y(T ) (2.5)

where x is the state of the controller (N-entry vector), ∆y is the external signals and the

deviation of outputs from their targets (vector of O+E entries), u is the new inputs (I-entry

vector), A is the controller evolution matrix (N×N), B is the matrix of impact of output

deviations on the state (N×(O+E)), C is the state-to-input conversion matrix (I×N), and D

is the matrix of feed-through of output deviations to inputs (I×(O+E)).

2.4 SYSTEM IDENTIFICATION

To design formal controllers, we need models of the systems that the controllers should

regulate. We use the black box system identification approach to obtain our models [109].

This black-box methodology involves running a training set of applications on the system we

want to control, while setting the signals that would be actuated by the controller (i.e., the

inputs) in a variety of ways, and recording the changes in the signals that would be observed
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by the controller (i.e., the outputs). When we want to design an SSV controller that reads

external signals, we also change the external signals along with the inputs.

Then, the input and output data is passed to MATLAB to obtain a dynamic model of the

system of the following form:

y(T ) = a1 × y(T − 1) + . . .+ am × y(T −m)+

b1 × u(T ) + . . .+ bn × u(T − n+ 1)
(2.6)

In this equation, y(T ) and u(T ) denote the outputs and inputs at time T . This model

describes outputs at any time T as a function of the m past outputs, and the current and

n-1 past inputs (and the external signals, if present). The constants ai and bi are obtained

by least squares minimization from the experimental data [109].

The system identification methodology is widely used, and captures many subtleties of the

input-output dependencies using targeted tests.

2.5 TAXONOMY OF CONTROLLERS

Table 2.1 presents our taxonomy of designs available from control theory.

Table 2.1: Space of control-theoretic design choices.

Modeling White Box (Analytical), Black Box (Data Driven), Gray Box

Mode SISO, MISO, SIMO, MIMO

Organization Decoupled, Centralized, Cascaded, Collaborative, Hierarchical

Approach Classical, Robust, Gain Scheduling, Adaptive

Type PID, LQG, MPC, SSV

Modeling: A model of the system can be obtained with analytical principles (white box),

experimental data (black box), or a combination of both (gray box). Black box models are

best when the system internals are unknown or too complicated to describe, as in computers.

Mode: We have four modes depending on the number of inputs that a controller actuates

and the number of outputs it monitors. These are: SISO (Single Input Single Output), MISO

(Multiple Input Single Output), SIMO (Single Input Multiple Output) and MIMO (Multiple

Input Multiple Output). MIMO controllers are most relevant for computers because we

target multiple tightly-coupled goals that depend on multiple inputs.

Organization: For multilayer or distributed systems, Decoupled or Centralized designs

cannot achieve modularity and coordination simultaneously. In a Cascaded design [61],

14



controllers are organized as a nested loop, where each controller sets the targets for the

immediately inner one. Only the innermost controller changes the system inputs. This method

is also suboptimal. In a Collaborative architecture, independent controllers communicate to

attain coordination and it is best suited for multilayer control.

Within a layer such as the hardware, there is a natural hierarchy in the system organization

such as the core, chip and the compute node. Here, the best organization is Hierarchical

where local controllers manage each component and constraints are propagated across the

hierarchy.

Approach: There are several approaches used to ensure that the controller works correctly

under uncertainty or highly-changing conditions. The Classical one is to design controllers with

additional stability margins [110]. This works for simple systems. Robust control explicitly

optimizes controllers for large uncertainty, and is applicable to computer environments [91].

The controllers have low complexity and low overheads. In Gain Scheduling, multiple

controllers are used — each suited for a particular type of execution [60]. At runtime, some

logic chooses when each of the controllers is active, based on the execution. This approach

requires additional modeling efforts and expensive selection logic at runtime. Lastly, Adaptive

control synthesizes a new controller online whenever changing conditions are detected [67]. It

has higher runtime overhead.

Type: PID controllers are popularly used for their simplicity, but are not useful to control

MIMO systems. For standalone MIMO systems, LQG controllers (Section 2.2) and Model

Predictive Controllers (MPC) [111] are applicable. However, these controllers are not suitable

for multilayer or decentralized environments. This is because they are not natively optimized

for uncertainty and, instead, trade-off optimality and fast response time for robustness.

Moreover, they do not have channels to communicate among controllers. In multi-controller

environments, controllers need to share information between themselves for coordination.

SSV controllers are optimized to work in uncertain environments and can read communication

signals from other controllers (Section 2.3). This makes them suitable for systems that require

multiple controllers to operate simultaneously.

2.6 COMPARING APPROACHES FOR ADAPTATION

Computer architects use several approaches to perform architecture parameter tuning.

We broadly classify them into optimization, machine learning, control theory, model-based

heuristics, and rule-based heuristics. Table 2.2 compares these approaches, outlining their

problem formulation, design and tuning method, advantages, and shortcomings.

Most of the entries in the table are self explanatory. From the advantages and shortcomings
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Table 2.2: Comparing approaches for architecture tuning.

Approach Problem formula-
tion

Example Design and tuning Advantages Shortcomings

Static
Optimization
[112,113]

Minimize an ob-
jective subject to
constraints. The
objective is a
f(inputs).

Objective:
power.
Constraint:
IPC > k.

Obtain a model of
f(). Use solvers at
runtime to obtain
the inputs.

1) Natural choice
for architecture.
2) Expressive.

1) Model needs to be close to
reality and convex.
2) No feedback.

Machine
learning
[59,114]

inputi =
max([weights]v×o

×
[features]o), where
v is the # of values
for inputi, and o is
the # of features.

Input: fre-
quency.
Features:
power,
misses/Kinstr.

Tune weights by
specifying the best
set of input values
and associated fea-
ture values.

1) Data driven
identification of
relationships.
2) Formal reason-
ing and methodol-
ogy.

1) Hard to add feedback.
2) No guarantees.
3) Requires exhaustive enu-
meration during training.

Control the-
ory
[99,101]

Change inputs
to make out-
puts approach
target values,
where outputs[T]
= f(inputs[T,T-
1,...],outputs[T-
1,...])

Input: fre-
quency.
Output: IPC.
Target value:
QoS◦.

Obtain the f() for
outputs[T]. Specify
several design re-
quirements.

1) Provides guar-
antees.
2) Learns from
feedback.
3) Formal reason-
ing and methodol-
ogy.

1) Hard to obtain model.
2) Specifying target values is
not obvious.

Model-based
heuristics
[55,115]

Use a model to
guide decisions.
The model relates
outputs, inputs
and auxiliary
outputs.

Output: power.
Aux output:
misses/Kinstr.
Input:
frequency.

Find the model.
Use insight to
develop rules on
top of the model.
Train rules to set
thresholds.

1) Model simplifies
decision making.

1) No guarantees.
2) No formal methodology.
3) Hard to add learning.
4) Prone to errors.
5) Hard to deal with
multiple inputs and/or
outputs.

Rule-based
heuristics
[116,117]

Encode in an al-
gorithm decisions
to choose inputs
based on outputs
and auxiliary out-
puts.

Select rules. Train
rules to set thresh-
olds.

1) Lightweight.

columns, we see that the control theory approach is the only one that: 1) uses feedback

to learn automatically at runtime, and 2) provides three guarantees. The guarantees are

Convergence, Stability, and Optimality [91]. Informally, these guarantees mean the following.

Convergence means that, if it is possible for the outputs to take the target values, then they

will eventually reach them. Stability means that, once the outputs converge to their targets

or to the closest they can get to them, then they exhibit no oscillatory behavior. Optimality

means that the final state of the system is optimal according to the cost function specified

by the architect.

In spite of control theory’s advantages, at least two issues have limited its use in architecture.

First, it needs a model of the system that gives the current output values as a function of

the current input values and some history of input and output values. This is hard to obtain

analytically for computers. Second, control theory approaches assume that the target values

for the outputs are specified by a higher entity. This might be easy in some cases, such
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as when targeting a Quality of Service (QoS) requirement, but it is not so when trying to

optimize a metric such as the product of energy and delay (E×D, or EDP—energy delay

product).

We also note two limitations specific to the control theory choices we use here. First, for

MIMO to be effective, the number of outputs cannot be more than the number of inputs.

Second, it is not straightforward to specify a target as “be less/more than this value”; it is

easier to specify it as “attain this value”.

Finally, a general limitation of all of these approaches that use models or history (e.g.,

control theory and machine learning) is that they are reactive. This means that they respond

only after observing changes in the outputs they monitor. Hence, when the system conditions

change abruptly, the monitored outputs may move away from their expected levels before

the controllers actuate.
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CHAPTER 3: USING MULTIPLE INPUT, MULTIPLE OUTPUT FORMAL
CONTROL TO MAXIMIZE RESOURCE EFFICIENCY IN

ARCHITECTURES

As processors seek higher efficiency, they increasingly need to target multiple goals at the

same time, such as certain levels of performance, power consumption, and average utilization.

Unfortunately, most systems today use heuristic control, which is suboptimal, non-robust,

and unsafe. Recent processors like Intel’s Skylake [1], AMD’s Zeppelin [118] and IBM’s

Power9 [46] have begun using simple formal controllers that manage a single outcome, like

power, by changing a single parameter, like frequency. However, processors must meet

multiple interrelated goals, and can best do so by changing multiple parameters at the same

time.

3.1 MIMO CONTROLLERS FOR PROCESSORS

We now propose how to design MIMO controllers for processors. We first outline the steps,

and then explain in detail the steps that require architectural insight.

3.1.1 Steps in Controller Design

Figure 3.1 shows the proposed process to build a MIMO controller, with hexagons showing

steps that need architectural insight. First, we select the outputs to be controlled and the

inputs that can be manipulated. Then, using architectural insights, we decide on the relative

importance of the outputs (to generate the Q matrix), the relative overheads of the inputs

(to generate the R matrix), and the strategy for modeling the system. The latter mainly

involves choosing how to model the system (analytically or experimentally) and the number

of dimensions of the system state x.

We model the system experimentally, performing the experiments for black-box system

identification [109], described in Section 2.4. We pass the experimental data to a least square

solver for a dynamic environment (run with MATLAB) and generate the A, B, C, D, and

two unpredictability matrices. These matrices constitute the model. We pass this model

plus the Q and R matrices to a constraint optimization solver (also run with MATLAB) to

generate the controller. The controller is encoded as a set of matrices that can produce the

changes in the manipulated inputs on observing tracking errors in the controlled outputs.

Next, we validate the model by running additional programs on both the model and the

real system. Based on the observed differences, we estimate the model error and, using
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Figure 3.1: Proposed flowchart of the process of building a MIMO controller.
Architecture-level insight is especially needed in the hexagonal steps.

architectural insights, we set the uncertainty of this model. The uncertainty will be used in

the validation step.

Finally, we proceed to validating the controller in two steps. First, we check if the controller

meets the targets (i.e., it brings the outputs to the targets and does it fast enough). Then,

we use Robust stability analysis [91] to see if, for the worst case of estimated uncertainty,

the system is still stable. We describe this process later. If any of these two checks fail, we

change the initial decisions and repeat the process. Otherwise, we have the final controller.

3.1.2 Detailed Controller Design

Modeling the System

While there are analytical models of processor performance and power [119,120,121,122],

they do not capture the dynamics of the system at the level we need, and are not amenable

for formal controller design. To control the system, we need models that describe the

relation between inputs and outputs as a function of time. Hence, we build an experimental

model using the black-box identification technique of system identification theory [109,123]

(Section 2.4).

Building the Cost Matrices Q and R

The Tracking Error Cost matrix (Q) contains a positive weight for each output, and the

Control Effort Cost matrix (R) a positive weight for each input. Intuitively, the output
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weights represent how important it is for a given output not to deviate from that output’s

target. The input weights represent how reluctant the controller should be to change a given

input from its current value (due to its overhead). These two matrices are set by the designer.

Let us consider the architectural implications.

Consider Q first. For outputs that have a high weight, the controller is more reluctant

to actuate inputs in a manner that changes those outputs away from their target values.

Consequently, we assign the highest output weights to architecture measures that are critical

to correctness. On the other hand, we assign lower weights to architecture measures that

determine result quality or performance. This is because if these measures veer off their

target values, the system still functions acceptably.

Row 2 of Table 3.1 shows a sample of architectural measures used as outputs, with a possible

weight order from higher to lower. Outputs such as voltage guardbands and temperature

limits have the highest weight. Intermediate weights can be assigned to power, utilization, or

energy. Lower weights can go to various measures of performance, as long as the performance

is acceptable.

Table 3.1: Qualitative weights of architectural measures. Input weights only consider change
overheads.

Type of Weight Qualitative Weight Ranking (From High to Low)

System Outputs Voltage guardband, temperature, power, core utilization,
energy, frame rate, instructions per second (IPS)

System Inputs Cache power gating, core power gating, frequency,
issue width, ld/st queue entries

Consider R now. The controller is more reluctant to change inputs that have a high weight.

There are two reasons to be reluctant to change an input. The first one is if changing it

has a high energy or performance overhead. For example, power gating a cache has higher

overhead than changing the number of load/store queue entries.

A second reason results from the fact that inputs often take discrete values rather than

continuous ones — e.g., we only change the frequency in 100 MHz steps. Then, consider an

input that can take a large number of discrete values. If we assign a small weight to this

input, the controller will generate frequent and large changes in the input’s value, jumping

over many possible settings, and not utilizing the range of values available for this input. On

the other hand, if we assign a higher weight, the controller will be more likely to use smaller

steps, utilizing more of the available settings and, hence, using the input for more effective

control.

Row 3 of Table 3.1 shows a sample of architectural measures used as inputs with a possible
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weight order (from higher to lower), taking into account only change overhead. Power gating

a component has a high overhead, especially for components with substantial state such as

caches. Frequency changes often take a few microseconds. Pipeline changes may require only

a pipeline flush or not even that, which is why they have a low weight.

Finally, consider the relative weights of the outputs in Q and the inputs in R. They strongly

determine the behavior of the system. Specifically, if the input weights are low relative to

the output weights, the controller is willing to change the inputs at the minimum change

of outputs — e.g., due to noise. This will create a ripply system. If, instead, the input

weights are high relative to the output ones, the system will have inertia: when the output is

perturbed, the system will react sluggishly, only after a while.

Figures 3.2(a) and (b) illustrate the two cases. Each figure shows how the output (top)

and input (bottom) change with time, relative to the initial conditions. The time starts

when the output suffers some positive noise. Figure 3.2(a) shows a ripply system: the input

immediately reacts, causing the output to change course and get into negative values. After

a few waves, the system stabilizes again. Figure 3.2(b) shows a system with inertia: the

input does not react until much later, and with lower intensity. After a while, both output

and input return to the stable values. Note that the figures are not drawn to scale.
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Figure 3.2: System behavior when input weights are low (a) or high (b) relative to output
weights.

We avoid systems that are too ripply or too sluggish: they take too long to stabilize or may

never do it. Besides this, from an architecture perspective, we note the following. First, when

dealing with critical output measures, such as voltage guardbands and temperature, we want

the output weights to be relatively high. This will ensure that the system reacts immediately

to changing conditions. On the other hand, when we have high-overhead inputs such as

power gating large memory structures or process migration, we want the input weights to be

relatively high. This will avoid continuous input changes due to noise.
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The absolute values of the weights are unimportant; only their relative value matters. The

designer uses offline experimentation and his architectural intuition to set them appropriately.

As an example, consider a weight of 100× for one output (o1) over the other (o2). The

relative quadratic cost of a tracking error ∆ in these outputs becomes 100∆o2
1 and ∆o2

2. If

they are to matter equally, then we have 100∆o2
1 = ∆o2

2, or 10∆o1 = ∆o2. This means that

the controller will not deviate from the reference value for o1 by 1% unless it can reduce the

deviation for o2 by 10%. Applying a similar analysis for inputs, a relative input weight of 100

means that the controller will change the lower-weight input by up to 10% before changing

the higher-weight input by 1%.

Weight selection is an offline procedure used during the design of the controller. It requires

an understanding of the underlying system. The LQG methodology ensures that the resulting

controller is stable for any choice of weights.

Unpredictability Matrices

When MATLAB’s least square solver takes the input and output waveform data and

generates the A, B, C, and D matrices, it also generates two unpredictability matrices. These

unpredictability matrices encapsulate two effects: one that impacts the state x and one that

impacts the outputs y.

The architectural insights are as follows. The first set of effects represents non-deterministic

events such as branches, interrupts, page faults and other probabilistic events; the second set

of effects represents sensor noise, such as that resulting from inaccurate or coarse-grained

sensors.

Uncertainty

Once we have the system model (i.e., the A, B, C, D, Q, R, and unpredictability matrices),

we proceed to design the controller. However, as architects, we know that processors are

complicated, and unusual applications may exercise corner cases. Hence, we validate the

model by running additional, highly compute- and highly memory-intensive applications on

both the model and on the real system, and compare the results. Based on the difference, we

roughly estimate the uncertainty of the model. For example, we may estimate that, under an

unusual application, the model’s predictions may be consistently (i.e., on average) 20% off

from what the real system exhibits.

We want to ensure that the controller, based on a model with this uncertainty, is still stable.

Therefore, in the step labeled Robust in Figure 3.1, we perform Robust stability analysis
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(RSA) [91]. RSA checks whether a perturbation equal in magnitude to the uncertainty, if

coming at the worst time and in the worst manner, can make the system unstable — e.g.,

prevent the output ripples in Figure 3.2(a) from dying down. If the system is unstable, we

have to go back and change the inputs to the controller design. In particular, we can use more

challenging applications in the initial design, or use lower Q weights relative to R weights,

thereby making the system less ripply and more cautious to changes.

Note that, for heuristic algorithms, it is not possible to perform a similar stability analysis.

Hence, there is a risk that a heuristic algorithm can fail when it encounters an unusual

application that it has not been trained on.

3.1.3 Adding Additional Inputs and/or Outputs

The MIMO methodology allows an easy procedure to re-design the controller when new

inputs and/or outputs need to be added. First, the process of system identification is repeated

with the new inputs/outputs. Then, weights are chosen for each of the new inputs/outputs.

It is not necessary to modify the weights for the existing inputs/outputs. If more outputs

are being added, then their uncertainty bounds are measured and specified. The LQG design

process automatically generates and tunes the new controller.

3.2 USES OF THE CONTROLLER

There are multiple ways in which a MIMO hardware controller can be used. In this section,

we discuss three.

Tracking Multiple Targets

In the simplest use, a high-level agent specifies the target value for each of the multiple

outputs. In addition, it can specify the relative importance of each of the outputs and each

of the inputs.

Time-Varying Tracking

A more advanced use is when a high-level agent monitors real-time conditions and, based

on those, changes the target values that it wants the outputs to track [124]. A typical example

is a battery-powered mobile platform that runs a program as the battery is being depleted.

The best tradeoff in performance (or quality of service) versus power consumed changes as

23



the battery energy level decreases. For example, while the battery is above a certain level,

the output targets are high performance and a tolerably-high power consumption. As the

battery level decreases, the OS sets successively lower pairs of performance and power targets

to conserve battery life [1, 124,125,126,127].

Fast Optimization Leveraging Tracking

A final use is when the high-level agent does not want certain target values for its outputs,

but that the value of a combination of the output values is minimized or maximized. For

example, given power (P) and performance in instructions per second (IPS), it wants to

maximize IPS2/P, which is to minimize Energy×Delay (EDP). In this case, the controller

needs to do some search, but the search is at a high level and very efficient. This is in contrast

to a heuristic-based controller, which typically needs to perform a very costly and inefficient

low-level search, apart from requiring heavy tuning.

Figure 3.3(a) shows the envisioned system. The outputs are IPS and P, and we are trying

to maximize IPS2/P. The search is driven by an extension to the original controller that we

call Optimizer. It can be a part of the runtime system or a hardware module.
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Figure 3.3: Using MIMO to optimize a combination of measures such as E×D.

Initially, the optimizer sets a certain target IPS0 and P0. The base controller then generates

the input configuration (e.g., frequency, issue width, and load/store queue size) that attains

this target. After the system converges, the optimizer changes the target outputs so that

IPS2/P increases. Specifically, it either increases P a little and increases IPS much more, or

decreases IPS a little and decreases P much more. This is shown in Figure 3.3(b), where the
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original point is called Current, and the two possible changes are (1) and (2), respectively.

Based on the new (IPS1, P1), the base controller regenerates the input configuration.

This process is repeated a few times. Note that, given an original point, the desirable

points are those to the left of the line that connects the point to the (0, 0) coordinate. Of

course, at any given step, the system may not reach the desired (IPSi, Pi), and we may end

up in a less desirable (IPS, P) point — especially since the inputs and outputs are discrete.

In this case, the optimizer does not choose the new point and moves on. Eventually, the

optimizer settles into a good IPS2/P point. A new search will start only when the controller

detects that the application changes phases.

Overall, we see that the optimizer’s search is very efficient. In contrast, a heuristic-based

algorithm has to figure out how to change the inputs (frequency, issue width, and load/store

queue size) to increase IPS2/P. The algorithm is likely to be complicated and non-robust.

3.3 EXAMPLE OF MIMO CONTROL SYSTEM

We describe the design of a MIMO control system for an out-of-order processor using

the design flow described earlier. Our system is a processor with, initially, two configurable

inputs: (1) the frequency of the core plus L1 cache, and (2) the size of the L1 and L2 caches.

The input settings are shown in Table 3.2. The frequency is changed with DVFS. It has 16

different settings, changing from 0.5GHz to 2GHz in 0.1GHz steps. The cache size is changed

by power gating one or more ways of the two caches. The associativities of the L2 and L1

caches can be (8,4), (6,3), (4,2), and (2,1). We later add an additional configurable input,

namely the reorder buffer (ROB) size. We are interested in two outputs: (1) the power of

the processor plus caches, and (2) the performance in billions of instructions committed per

second (IPS).

3.3.1 Controller Design

Choosing Input/Output Weights

To assign the input and output weights, we proceed based on the discussion of Section 3.1.2.

Specifically, among the outputs, we assign to power a higher weight than to IPS, to minimize

power tracking errors and power budget violations. As shown in Table 3.2, we use weights of

1,000:1 for power:IPS, which makes power
√

1, 000× (or ≈30×) more important than IPS. In

other words, we are willing to trade 1% deviation from the power reference for 30% deviation

from the IPS reference.
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Table 3.2: Control and architecture parameters.

Controller Parameters

Input configurations Frequency: 16 settings

0.5GHz to 2GHz in 0.1GHz steps

Cache size: 4 settings

L2,L1 associativity: (8,4),(6,3),(4,2),(2,1)

ROB size: 8 settings

16 to 128 entries in 16-entry steps

Input/output weights 10,000 for power, 10 for IPS, 0.01 for frequency,

0.0005 for cache size, 0.001 for ROB size

Dimensions of system state 4

Uncertainty guardband 50% for IPS, 30% for power

Controller invocation Every 50µs

Optimizer Parameters

Optimizer invocation Every 10 ms or phase change as in [12]

MaxTries 10

Baseline Core Parameters

Superscalar 3-issue out of order

ROB; Ld/St queue 48 entries (for E×D opt); 32/16 entries

Branch predictor 38Kb hybrid

Frequency 1.3 GHz (for E×D opt)

DVFS latency 5µs

Baseline Memory System Parameters

L1 data cache 32KB, 3-way (for E×D opt), 3 cycles latency, 64B line

L1 instr. cache 32KB, 2-way, 2 cycles latency, 64B line

L2 cache 256KB, 6-way (for E×D opt), 18 cycles lat, 64B line

Main memory 125 cycles latency

Among the inputs, we observe that the overhead of power-gating a cache way, and that

of adjusting the frequency by one step are both large and perhaps comparable. However,

frequency offers more different settings than cache size (16 settings versus 4). Hence, to

ensure that the controller uses all the frequency settings and does not bypass many of them

in each adaptation, we choose a higher weight for frequency. As shown in Table 3.2, we use

weights of 20:1 for frequency:cache, which makes frequency ≈4× less likely to change in large

steps, to account for having 4× more adaptation settings.

We consider that it is more important for the outputs to remain close to their reference

values than to minimize the overheads of changing inputs. Hence, we give higher weights

to the outputs than to the inputs. As discussed in Section 3.1.2, if the ratio of output to

input weights is too high, the system becomes ripply and takes longer to converge; if it is

too low, the inputs are sluggish, and any perturbation also takes long to disappear. We
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need to experiment with MATLAB to ensure that the chosen ratio falls in between the two

scenarios, and hence the system converges reasonably fast. To select the output to input

weight ratio, we need to consider the less important output (IPS) and the most important

input (frequency). As shown in Table 3.2, we use weights of 1000:1 for IPS:frequency, which

makes IPS ≈30× more important than frequency.

Section 3.5.1 performs a sensitivity analysis of the choice of weights for the inputs and

outputs.

Model Identification & Uncertainty Analysis

It is challenging to build analytical processor models that can accurately relate processor

performance and power with cache size and frequency. Hence, we perform experimental

system identification [109,123] of a cycle-level simulator that we wrote to model the processor

system. We run four profiling applications from SPEC CPU 2006 on the simulator — two

integer (sjeng and gobmk) and two floating-point (leslie3d and namd). For each program, we

apply test waveforms of cache size and frequency changes at runtime. We record the time

variation for the inputs and outputs.

System identification tests are designed to extract the most information from the runs of

these training-set applications. With this information, we are able to characterize the system

and build a model. We find that a model of dimension 4 is a good tradeoff between accuracy

and computation cost (Table 3.2). Section 3.5.2 performs a sensitivity analysis of the number

of dimensions. Based on this model, we use MATLAB to construct the first version of the

controller.

As per Section 3.1.2, we use uncertainty analysis to revise the design (Figure 3.1). We

run two additional applications (h264ref and tonto) on both the simulator and the model

obtained with system identification, changing cache size and frequency signals. The outputs

are compared. We find that the maximum error in the model is 14% for IPS and 10% for

power. Then, we conservatively set the uncertainty guardbands to 3× these values, namely

to 50% for IPS and 30% for power (Table 3.2).

Recall from Section 3.1.2 that these uncertainty guardbands refer to the average prediction

errors across the whole application execution that are tolerable. After choosing the uncertainty

guardbands, we run robust stability analysis to see if the system converges. If it does not,

we use MATLAB to reconstruct the controller with larger input weights, until the system is

shown to converge for the desired guardbands.

Section 3.5.3 performs a sensitivity analysis of the uncertainty guardband.
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3.3.2 Optimizer Design

As discussed in Section 3.2, the Optimizer performs a high-level search for the optimal

operating point, according to Figure 3.3(b). Depending on our goal, the search can be in

the E×D, E×D2, . . . E×Dk−1 space. To minimize E×Dk−1, the algorithm tries to maximize

IPSk/P.

Every time that the algorithm is invoked, it starts by setting the inputs to their midrange

values: 1 GHz frequency and (4,2) associativity for (L2,L1) caches. Then, it makes a move in

one of the two directions in Figure 3.3, namely “Up” (higher IPS but only slightly higher

power) or “Down” (slightly lower IPS and much lower power). If the resulting value of the

measure IPSk/P is higher than the previous one, the algorithm continues to explore more

points in the same direction. Otherwise, it reverses the search direction. This process repeats

for a fixed number of trials (MaxTries as shown in Table 3.2). We do not use backtracking in

this algorithm.

3.3.3 Overheads of the Design

Both controller and optimizer operation cause very minor overheads. The controller is

invoked every 50µs, and operates entirely in hardware. It reads performance and power

counters, and computes the difference between the values and their references. It then

performs four floating-point vector-matrix multiplies, and generates the actuations on cache

and frequency. The controller only stores less than 100 floating-point numbers. The optimizer

is invoked every 10 ms or when there is a phase change as detected in [12]. It also runs in

hardware. For this evaluation, we have assumed a system that can change the DVFS level in

5µs. While aggressive by today’s standards, such capability may be reachable in the near

future.

3.3.4 Adding an Additional Input

To show the flexibility of MIMO control, in a second set of experiments, we augment the

controller by adding a third configurable input: the size of the reorder buffer (ROB). The

ROB size is changed by power gating 16 entries at a time, as described in [128]. Since the

full ROB has 128 entries, we have 8 different ROB sizes (Table 3.2).

We repeat the system identification process with the same application training set, now

including ROB size changes. To set the input weight for the ROB resizing, we note that

ROB resizing has less overhead than cache resizing or frequency changes. Hence, it should
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have a low weight. However, since it has more settings that cache resizing, we give it a

slightly higher weight. Hence, we use weights 2:1 for ROB:cache resizing. We place the same

uncertainty guardbands as before and do not change the weights for the other inputs/outputs.

Since we do not change outputs, we reuse the optimizer.

3.4 EVALUATION METHODOLOGY

3.4.1 Infrastructure

We base our evaluation on simulations of a processor like the ARM Cortex-A15 modeled

with the ESESC simulator [129]. The architecture parameters optimized for the best energy

delay product in the baseline architecture are listed in Table 3.2. We modified ESESC to model

the configurable inputs and implement the hardware controller and optimizer. Power estimates

are obtained from the McPAT modules that are integrated within ESESC. We use CACTI 6.0

for cache power estimates. DVFS pairs are obtained from interpolating published A15 DVFS

values [130]. We use MATLAB’s System Identification and Robust Control Toolboxes [131]

for system identification, LQG controller design, tuning, and robustness evaluation. We

run all the SPEC CPU 2006 applications except zeusmp, which our infrastructure does not

support. We group the applications into a training set (sjeng, gobmk, leslie3d, and namd)

and a production set (the remaining ones). Each application is monitored for an average of

50 billion instructions, after fast forwarding 10 billion instructions.

3.4.2 Experiments

Tracking Multiple Targets

The goal of this experiment is for the outputs to track target values. Specifically, we target

2.5 BIPS for IPS and 2 W for power. These values are obtained by performing a design space

exploration on the training set applications, and picking output values that minimize the

average E×D for them. This IPS target is infeasible for highly memory-bound applications.

Hence, we will show results separately for such applications.

Time-Varying Tracking

The goal of this experiment is for the outputs to track time-changing target values. As

indicated before, an example is when a high-level agent throttles performance and limits
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power consumption based on operating conditions such as battery levels [125,126]. We model

such a scenario by changing the IPS and power targets based on the recently-introduced

Quality of Experience (QoE) parameter in handheld devices [127]. We use the analytical

models for QoE and battery charge consumption in [127] to compute how the targets should

be changed. We set the time betweeen changes to 2,000 epochs of 50µs each, and the total

energy supply to 1 J.

Fast Optimization Leveraging Tracking

The goal of this experiment is to generate outputs that minimize energy (E), E×D, or

E×D2. For the optimization (Figure 3.3(b)), the optimizer can try at most MaxTries trials.

3.4.3 Architectures Evaluated

We compare the four architectures of Table 3.3. Baseline is a non-configurable architecture

where the inputs are fixed and chosen to deliver the best outputs. Specifically, we profile

the training set applications and find the cache size, frequency, (and ROB size for the

3-input experiments) that deliver the best output — E, E×D, E×D2, etc, depending on the

experiment.

Table 3.3: Architectures compared.

Baseline Not configurable. Inputs fixed and chosen for best output

Heuristic Configurable with a coordinated-heuristics controller

Decoupled Configurable with decoupled SISO controllers

MIMO Configurable with our proposed MIMO controller

The other designs are our configurable architecture with different hardware controller algo-

rithms to drive input adaptations. Heuristic uses a sophisticated heuristics-based algorithm

similar to [63], which is tuned with the training set applications. The algorithm has two steps.

First, it ranks the adaptive features (cache size, frequency, and ROB size) according to their

expected impact in this application, like [12]. The second step depends on the experiment

performed.

In tracking experiments, the second step involves taking different actions, using the ranked

features in order, depending on the difference (magnitude and sign) between each output

value and its reference value. These actions are qualified by threshold values experimentally

determined. In the optimization experiments, the second step involves searching the space
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(e.g., E×D2) using an iterative process, testing a few configurations of each of the adaptive

features in rank order. This is similar to earlier schemes [63,78,115,132].

Details of Heuristic were released as a technical report [93]. Note that, for Heuristic, the

algorithms developed and tuned for the two-input system (cache size and frequency) have to

be completely redesigned from scratch for the three-input system (cache size, frequency, and

ROB size).

Decoupled uses two formally designed SISO controllers. One changes cache size to control

IPS, and the other changes frequency to control power. There is no coordination between

the two. The optimizer works as the MIMO optimizer. Note that we cannot use Decoupled

in the three-input experiments.

MIMO uses our MIMO controller and optimizer. The optimizers in all the architectures

are limited to trying at most MaxTries trials per search.

3.5 RESULTS

This section evaluates our four architectures.

3.5.1 Impact of Input and Output Weights

To see the impact of input and output weights, we run the MIMO controller with the

different sets of weights in Table 3.4, tracking 2.5 BIPS for IPS and 2 W for power (P). For

the application namd, Figure 3.4 shows the epochs taken to achieve steady state (a), and

the output tracking errors (b) — i.e., the difference between output values at steady state

and their reference values. In all cases, we initialize the system with the same input values,

which are 20% and 30% different than the reference IPS and power values, respectively.

Table 3.4: Different sets of weight choices.

Label Description [Wcache Wfreq WIPS WP ]

Equal Same weights inputs & outputs [1 1 1 1]

Inputs Lower weights for inputs [0.01 0.01 1 1]

Power Higher weight for power [0.01 0.01 1 100]

Size Lower weight for cache size [0.001 0.01 1 100]

In Equal, all inputs and outputs have the same weight. In this case, the relatively high

input weights make the controller reluctant to change inputs significantly. The controller

makes only small input changes, many of which are rounded to zero. As a result, for the
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Figure 3.4: Epochs to achieve steady state (a) and output tracking errors (b) for different
weight choices.

duration of our experiment, the outputs do not converge yet. Hence, the Equal datapoint

is missing in Figure 3.4(a), and has not moved from initial conditions in Figure 3.4(b). In

Inputs, minimizing input changes is less important than meeting the output targets. Hence,

the output tracking errors decrease (Figure 3.4(b)) and the system converges within the

measured time (Figure 3.4(a)).

In Power, P has a higher weight and, hence, tracking P has a higher priority. The resulting

controller reduces the P tracking error to less than 10%, and the IPS error also comes down

as a side-effect. Fewer epochs are needed for steady state. Finally, in Size, by choosing

a lower weight for the cache size, cache size changes are favored over frequency changes.

Consequently, the steady state cache size is reached faster, without changing the output

tracking errors.

3.5.2 Impact of Model Dimension

The number of model dimensions is a tradeoff between accuracy and computation overhead.

With more model dimensions, we model the true system more accurately, but the controller

requires more computations. In practice, for our small system, computation overhead is not

a concern. Still, we would like to use as few dimensions as possible while retaining accuracy.

Hence, we compare the IPS and P attained by the true system (i.e., the simulator) and our

model with different dimensions. We refer to the difference as the error. Figure 3.5 shows the

maximum errors for different dimensions. Based on this result, we use a model dimension of

4.
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3.5.3 Impact of Uncertainty Guardband

The size of the uncertainty guardband is a tradeoff between the time to attain steady state

and the risk of system instability. If we bet that production applications will behave more

like the training applications and, hence, a smaller uncertainty guardband is acceptable, we

can reduce the input weights. Then, the system will reach the steady state faster. However, if

a production application deviates more than we expected, the system will become too ripply

and not reach steady state. As per Section 3.3.1, to design our controller, we use uncertainty

guardbands equal to 50% for IPS and 30% for power. Figure 3.6 shows the resulting number

of epochs needed to reach steady state with our controller (High Uncertainty). It also shows

the number needed if we had used a more aggressive design with lower uncertainty guardbands

equal to 30% for IPS and 20% for power (Low Uncertainty). From the figure, we see that the

more aggressive design is still stable — and hence needs fewer epochs to achieve steady state.

Hence, our controller design is conservative.
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Figure 3.6: Time to achieve steady state for different uncertainty guardbands.
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3.5.4 Using MIMO for Tracking Multiple Targets

We compare how effectively MIMO, Heuristic, and Decoupled can track multiple output

target values — specifically, 2.5 BIPS for IPS and 2 W for P. As indicated in Section 3.4.2,

this IPS reference value is high, and several memory-bound applications cannot reach it.

For these applications, which we call Non-responsive, no amount of control can get IPS and

P very close to their targets. For the rest, which we call Responsive applications, different

control architectures have different effectiveness. The non-responsive applications are bzip2,

gcc, hmmer, h264ref, libquantum, mcf, omnetpp, perlbench, Xalan, bwaves, dealII, GemsFDTD,

lbm, and soplex.

Figure 3.7(a) and (b) show the average error in IPS and P for the responsive and non-

responsive applications, respectively, for the MIMO, Heuristic, and Decoupled architectures.

For each architecture, the figures show a small data point for each application and a large

datapoint for the average of all the applications.
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Figure 3.7: Results for tracking multiple targets.

Focusing on the responsive applications, we see that while all three architectures result in

good power tracking, they differ in IPS tracking. The average IPS error is 7%, 13%, and 24%

for MIMO, Heuristic, and Decoupled, respectively. MIMO works best, as it can learn and

adapt to the runtime characteristics of the workload. Decoupled has a high error because the

two SISO controllers sometimes trigger antagonistic actions. In particular, one controller

increases cache size to improve IPS, inadvertently increasing P, while the other reduces

frequency to meet the P goal, degrading IPS. The result is a suboptimal working point.

Heuristic is also limited in its capability. Even though it uses metrics such as the memory
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boundedness of the execution to choose its actions, its thresholds and rules are based on

static profiling with the training set. It lacks a learning framework like MIMO. Hence, it

may not make the choices that align best with the dynamic execution of the production set

applications.

For the non-responsive applications, all the architectures perform similarly.

3.5.5 Using MIMO for Time-Varying Tracking

We change the IPS and P target values periodically, to minimize the decrease in quality of

experience in handheld devices [127], and observe the outputs using the MIMO, Heuristic,

and Decoupled architectures. Figure 3.8 shows the resulting IPS values as a function of time

for each architecture and the reference. Figures 3.8(a) and (b) correspond to astar and milc,

respectively. We do not show P values as all the architectures perform similarly well.
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Figure 3.8: Examples of time-varying tracking.

The figure shows that MIMO is able to track the time-varying reference IPS values well,

much closer than the other architectures. Heuristic and Decoupled attain an IPS that is lower

than the target. For the lowest IPS at the end of the battery life, MIMO performs a bit

worse than expected (but still better than the other architectures). This is because we set an

IPS target that is too aggressive when combined with the companion P target.

3.5.6 Using MIMO for Fast Optimization Leveraging Tracking

We compare the ability of the different controllers to optimize a combination of outputs.

We first consider minimizing E×D. Figure 3.9 shows the E×D of the different applications
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under MIMO, Heuristic, and Decoupled. For each application (and the average in the far

right), the bars are normalized to the E×D of Baseline.
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Figure 3.9: Energy×Delay minimization.

On average, MIMO, Heuristic, and Decoupled reduce the E×D of the applications by 16%,

4%, and -3%, respectively. MIMO is effective in practically all the applications, even though

there is substantial variation across integer and floating-point applications. Heuristic does

well on some codes, but not on others, such as perlbench and dealII. This is because some

of the heuristics and thresholds from the training set do not work well all the time. In

perlbench, the application is classified in a way that results in limiting the set of cache sizes

explored in the search, resulting in sub-optimal E×D. In dealII, the code has a relatively low

number of memory accesses per operation, but is fairly sensitive to L2 misses. The heuristic

assumes that dealII is compute intensive and has little sensitivity to cache size, which is

incorrect. Finally, Decoupled chooses bad values for cache size and frequency because of lack

of coordination between the sub-controllers.

We obtain similar results for energy (E) and E×D2. However, we do not show results for

brevity. MIMO, Heuristic, and Decoupled reduce the E×D2 by 18%, 7%, and 4%, respectively,

and the E by 9%, 1%, and 0%, respectively, over Baseline. Most importantly, for these

experiments, the MIMO and Decoupled controllers remain unmodified. Even the optimizer

search in the IPSn–P space is parameterized by n and remains unchanged. However, the

Heuristic controller needs to be completely redesigned and retuned to optimize E×D2 or E.

3.5.7 Adding a New Input: Configurable ROB Size

We augment the processor with the resizable ROB of Section 3.3.4, and repeat the

experiments in the previous section. We cannot use Decoupled because the system has 3

inputs and only 2 outputs. Note that, while the controller for MIMO is regenerated semi-
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automatically as explained in Section 3.3.4, the controller for Heuristic needs to be redesigned

largely from scratch.

Figure 3.10 shows the E×D of the different applications under MIMO and Heuristic. As

usual, the bars in each application (and the average) are normalized to the E×D for Baseline.

On average, MIMO and Heuristic reduce the E×D of the applications by 25% and 12%,

respectively.
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Figure 3.10: Energy×Delay minimization with 3 inputs.

We note that MIMO attains a substantial E×D reduction. Heuristic does not do as

well, and is affected by several outliers. The rules and threshold values have become more

complicated with more inputs, and some of the tuning performed based on the training set

does not work well all the time. In some cases, finding the best values of each of the inputs

in sequence, one by one, produces a configuration that is inferior to the one attained by

considering all three inputs simultaneously.

3.6 CHAPTER SUMMARY

Control-theoretic MIMO controllers, which actuate multiple inputs and control multiple

outputs in a coordinated manner are likely to be key as future processors become more resource-

constrained and adaptive. In this chapter, we applied MIMO control to the development of

controllers for dynamic architecture parameter tuning. To our knowledge, this is the first

work in this area. We discussed three ways in which a software agent, such as the OS or

the runtime, can use a MIMO controller. We developed an example MIMO controller and

showed that it is substantially more effective than controllers based on heuristics or built by

combining single-output formal controllers.

37



CHAPTER 4: YUKTA: MULTILAYER RESOURCE CONTROLLERS TO
MAXIMIZE EFFICIENCY

After introducing MIMO control for processors, we consider the need to coordinate

the multiple layers in which computers are organized. Examples are the hardware, OS,

and networking layers. Each layer is built independently and performs different functions.

Managing such a system scalably and portably requires a controller in each layer, and that

the different controllers coordinate their operation. To achieve this capability, we conceive a

new design called Yukta.

There have been many works on managing resources from different layers of a computer

system (e.g., [61, 62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80]). As indicated

in Section 1.2, designs vary depending on whether they manage resources in a monolithic,

decoupled, or coordinated manner. In addition, they also vary depending on whether they

use heuristics, control-theoretic methods, machine learning, or optimization theory.

There is no prior work on formal control methods to develop coordinated multilayer

controllers. Popular formal control designs such as PID controllers [91] and similar SISO

proposals [1, 13, 102, 104] can only monitor one goal and change one parameter. Some

designs [66,67,79,80] use a collection of separate SISO controllers, but cannot manage the

interaction between the goals [111,133]. There are controller designs which are MISO [99,100,

101,103] or MIMO (e.g., MPC controller [111] and the LQG controller from Chapter 3) but all

of these controllers are intended for standalone use, and do not have channels for coordination

between multiple controllers. Some designs employ heuristics to make up for this deficit [66],

but this defeats the purpose of formal control methods. Importantly, existing designs are not

natively robust to the large uncertainty that appears in the presence of multiple controllers,

each acting with partial system information. To our knowledge, Yukta is the first approach

that uses control-theoretic methods to build coordinated, modular multilayer controllers.

4.1 CHALLENGE: CONTROLLING MULTIPLE LAYERS

The operation of a computer involves interactions between multiple layers, including the

hardware, OS, and networking layers. In such an environment, designing a single, unified

formal controller that senses and actuates on signals from all the layers is both impractical

and non-portable. This is because each layer has its own specialized design team, which is

intimately familiar with the control signals in that layer, but not with those of other layers.

Moreover, any controller designed by this team should be useful even if the other layers’

implementation changes — e.g., the same hardware controller should work for different OSs.
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Hence, control should be organized in multiple layers, with a per-layer controller. However, a

decoupled design with independent controllers is also undesirable.

4.2 SOLVING THE PROBLEM WITH SSV CONTROLLERS

To address the challenge of controlling multiple layers, we propose using Collaborative

MIMO SSV controllers. In this solution, there is preferably an SSV controller in each layer.

Less desirably, there is an SSV controller at least in the layer that controls outputs requiring

accurate control (e.g., temperature or power), and other types of controllers in the other

layers. We call this general approach Yukta. In the following discussion, we assume an SSV

controller in each layer; in the evaluation section, this is relaxed.

SSV control is suitable for multilayer computer control. To see why, compare the traits of

SSV control as per Section 2.3 to the needs of computer systems. First, SSV controllers take

external signals. Traditionally, these signals were used by the controller to monitor “external

disturbances”. In computer systems, we use them to pass information from the controller of

one layer to that of another layer at runtime. The second controller can use the signals to

make better decisions, although it cannot control such signals. For example, an OS controller

can pass the number of running threads as an external signal to a hardware DVFS controller.

Second, in SSV controllers, designers can specify bounds for the output value deviations.

This ability allows the design of more accurate computer controllers. In addition, if any

output is passed as an external signal to another layer’s controller, the availability of precise

output bounds helps the pair of controllers improve their coordination.

An important case is when two controllers have the same output — e.g., both the hardware

and the OS controllers limit the temperature. In non-SSV controllers, this output is liable to

large value oscillations, as both controllers attempt to push its value up, overreach the limit,

then push its value down, and overreach again. Instead, two SSV controllers can coordinate.

If each controller knows the bounds that the other controller has set for the output value, it

will take a more measured action based on the expected response of the other controller.

Third, consider the ability to design SSV controllers with uncertainty guardbands. In a

multilayer controller, one controller’s actions may indirectly affect the outputs that a second

controller is supposed to control. This interference can be incorporated in the SSV controller

design by increasing the uncertainty guardband of the second controller.

Finally, with SSV controllers, designers can specify realistic inputs, rather than assuming

that inputs take continuous, unlimited values. In computer systems, inputs typically take

a discrete set of values within a range. For example, core frequency can only take a few

discrete values. In our SSV design, we provide, for each input, a notion of allowed discrete
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values. This information enables more accurate controller design. In addition, if an input

is passed as an external signal to another layer’s controller, it allows better coordination

between controllers.

Figure 4.1 shows the envisioned Yukta control system for a two-layer system. Each

controller takes external signals from the other controller.
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Figure 4.1: Yukta multilayer SSV controller.

4.3 DESIGNING SSV CONTROLLERS

Figure 4.2 shows the process of designing a Yukta multilayer SSV controller. In each layer,

a team initiates the design of the layer’s controller by selecting the input signals and their

discretized values, the output signals and their deviation bounds, and the external signals

that the controller takes.
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Figure 4.2: Process to design a Yukta multilayer SSV controller.

Then, the teams exchange Interface information. This is meta-information about external

signals and common outputs. Specifically, for outputs common to both controllers, the teams

exchange their layer’s deviation bounds; for an external signal to a controller from a second

layer, the second layer team passes the allowed discrete values if the signal is an input in the

second layer, or the deviation bounds if it is an output in the second layer.

After this communication step, each team develops a model of the system according to

their layer’s perspective (possibly with the system identification methodology [109]), sets its

controller’s uncertainty guardband, designs the SSV controller using MATLAB controller
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synthesis routines [134], and validates it. Finally, the designs of all the layers are combined,

validated as a group, and deployed.

This process can work across companies. For example, Intel Skylake [1] includes new

hardware control algorithms for which some parameters must be set by the user or the OS.

Soon after the processor release, Microsoft announced power management features in the

Windows OS to take advantage of these features [5].

If the timelines of the two teams do not overlap, or close communication between teams

is not desired, an approach like Figure 4.2 can still work, albeit less effectively. Teams can

use historically-available or standard information from the other layer for their external

signals. An example is how OS teams use the popular P-state interface of processors [135,136].

Alternatively, a team can do without any extra information for their external signals. In

this case, the team should increase their uncertainty guardband. This works because SSV

controllers withstand inaccurate assumptions.

A multilayer SSV controller can be used in two ways. The basic use is when we want each

output to meet a certain target value. In this case, the controllers will attain output values

within the allowed bounds around the target values.

A second use is when we want some outputs (or combination thereof) to maximize or

minimize their value, subject to other outputs to be within certain limits. An example is

to minimize the energy delay product (E×D or EDP) subject to a power constraint. In

this case, the controller needs to perform some search to find the best configuration. Hence,

each SSV controller is augmented with an optimizer module (Figure 4.3). We discuss the

operation of the optimizer in Section 4.5.4.
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Figure 4.3: Yukta controller augmented with optimizers.

4.4 SCALABILITY TO SEVERAL LAYERS

In an environment with several layers, we envision the controller of a given layer to

communicate mostly or only with the controllers of its two neighboring layers. This is

consistent with the design of abstractions in a layered structure. As layer i passes signals to
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layer i+1, such signals already implicitly include the contribution of layers i-1, i-2, etc. The

latter layers should not need to communicate directly with layer i+1.

4.5 PROTOTYPING YUKTA

We prototype a multilayer SSV controller in a challenging environment: an ODROID XU3

board [137], which has an 8-core asymmetric processor running Linux. The processor is

Samsung Exynos 5422, built using ARM big.LITTLE technology [138]. It has a cluster of

four little cores (the in-order, low power Cortex A7), and a cluster of four big cores (the out-

of-order, high performance Cortex A15). The multicore runs Ubuntu 15.04, which contains

the HMP (Heterogeneous Multi-Processing) task scheduler [139, 140]. This scheduler was

designed for ARM big.LITTLE platforms. The scheduler can turn cores on/off dynamically

(called CPU hotplugging) based on requests from a thermal management module. Figure 4.4

shows a picture of our experimental platform.

Figure 4.4: The Odroid XU3 used for our prototype.

We prototype a two-layer SSV controller. One controller controls hardware parameters

(hardware controller), and another controls thread scheduling parameters (software/OS

controller). Our goal for the hardware controller is to minimize EDP while keeping power and

temperature below certain limits. Our goal for the software controller is to simply minimize

EDP. It relies on the hardware controller to keep power and temperature within limits.

Our choice of controllable parameters is limited by what is feasible on the board. We cannot

actuate on internal structures of the processor, such as its pipeline configuration. Similarly,

the HMP scheduler for big.LITTLE systems has dependencies on parts of the OS [141,142],

so we need to carefully choose what we modify. Since our goals involve minimizing EDP, we

also design optimizer modules for each of the controllers. The resulting system is shown in

Figure 4.5. In the following sections, we consider each controller in turn.
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Figure 4.5: Prototyped controllers on the Odroid XU3.

4.5.1 Designing a Hardware Controller

Table 4.1 shows the inputs, outputs, and external signals for the hardware controller.

The controller actuates on four system inputs: number of big cores, number of little cores,

frequency of the big cluster, and frequency of the little cluster. The number of active cores

in either cluster can vary from 1 to 4. The big cluster frequency can vary from 0.2 to

2.0 GHz, and the little cluster frequency from 0.2 to 1.4 GHz, both in steps of 0.1 GHz. As

per Section 2.3, SSV designs take saturation and quantization information for each input

signal. Hence, we give the possible values that each input can take.

Table 4.1: Parameters of the hardware controller in our prototype multilayer SSV system in
an ODROID XU3 board.

Goal Inputs Outputs External Signals ∆unc

Signals Wts Signals Bnds

Minimize EDP s.t.
Powerbig < Powermax

big ,
Powerlittle < Powermax

little,
and Temp < Tempmax

#big cores 1 Performance ±20% #threadsbig ,
avg #threads per non-idle core in clusterbig ,
and avg #threads per non-idle core in
clusterlittle

±40%
#little cores 1 Powerbig ±10%

frequencybig 1 Powerlittle ±10%

frequencylittle 1 Temp ±10%

We set the weights (listed as Wts in the table) of each input. The relative weights of

the inputs determine the eagerness of the controller to change each input. Specifically, the

controller will change low-weight inputs more eagerly than high-weight ones. Since the

overhead of changing a cluster’s frequency is comparable to the overhead of turning a core

on/off with hotplugging, we set the weights of all the inputs to be the same.

Additionally, the absolute values of these weights determine the aggressiveness of the

controller response. High absolute weights produce a sluggish controller, which changes the

inputs only slowly when the outputs are perturbed from their target value. Low input weights

produce an eager controller, which changes the inputs quickly. Neither extreme is desirable in

43



processor control. We perform a sensitivity analysis of weight values in Section 4.7.5. Based

on that, we set all the weights to 1 (Table 4.1).

The hardware controller monitors four system outputs: the performance of the workload

measured in total billions of instructions committed per second (BIPS), the big cluster

power, the little cluster power, and the hot-spot temperature. To set the bounds of the

output deviations (listed as Bnds in Table 4.1), we proceed as follows. When we characterize

the processor with a training set of applications to build the system model (Section 4.5.3),

we record the range of values exhibited by each output. We then set the bounds to be a

percentage of such range.

Of the four outputs considered, the power of both clusters and the temperature are critical

for the integrity of the board. Hence, we assign them a bounds range that is ±10% of their

maximum range; for the performance, since it is less critical, we assign a ±20% bounds range.

The synthesis routines inform the designer when tighter bounds than those specified can be

achieved. Alternatively, if any of these bounds is too tight, the MATLAB SSV controller

synthesis routines will fail to build the controller. At runtime, the controller keeps the

deviations of all outputs within these bounds for feasible targets. If it cannot, it keeps the

deviations at least proportional to their relative bounds values as given by the designer. We

perform a sensitivity analysis of bounds ranges in Section 4.7.5.

We provide three external signals to the hardware controller (Table 4.1). They are the

signals that the software controller actuates on (i.e., its inputs). We will discuss them later.

Finally, as we generate the SSV controller, we need to provide an uncertainty guardband

(∆unc in Table 4.1). Uncertainty is the result of limitations in how the model describes the

real system, and of unpredictability in various system components. An example of the latter

is aspects of the HMP scheduler, which sometimes packs multiple threads on a core while

leaving another core idle. In Section 4.7.5, we evaluate several uncertainty guardbands for

the hardware controller. Based on that, we pick a guardband of ±40%. If the guardband is

too large, MATLAB routines cannot build a controller that can deliver the output deviation

bounds. If the guardband is too small, the controller will report so at runtime.

In contrast to these few intuitive parameters, industry heuristic controllers have an order of

magnitude more parameters. For example, in the Samsung Exynos 5422 hardware we use, to

change the big cluster frequency based on the current temperature, there are many thresholds

(each with its own rule) [143, 144, 145]. These rules are used to assess the impact of the

temperature, detect whether temperature is rising or falling, and then change the big cluster

frequency. Furthermore, to control all the four hardware outputs (i.e., performance, power

of big and little clusters, and temperature), the Exynos 5422 uses tens of interdependent

settings that require tuning. Our approach eliminates the need for this extensive tuning.
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4.5.2 Designing a Software Controller

Table 4.2 shows the inputs, outputs, and external signals for the software controller. The

controller assigns the application’s threads to cores. Ignoring any differences between threads,

the first decision is how to partition the threads between the big and little clusters. The

second decision is how to assign the threads in a cluster to cores, possibly leaving some

cores idle. For example, in a cluster with 4 threads and 4 cores, it may be better to assign

two threads per core, enabling the hardware controller to power-off two cores. Therefore,

the software controller actuates on three inputs: the number of threads assigned to the big

cluster (leaving the rest for the little cluster), the average number of threads running on each

non-idle big core, and the average number of threads running on each non-idle little core

(Table 4.2).

Table 4.2: Parameters of the software controller in our prototype multilayer SSV system in
an ODROID XU3 board.

Goal Inputs Outputs External Signals ∆unc

Signals Wts Signals Bnds

Minimize
EDP

#threadsbig 2 Performancelittle ±20% #big cores,
#little cores,
frequencybig ,
and
frequencylittle

±50%Avg #threads per non-idle
core in clusterbig

2 Performancebig ±20%

Avg #threads per non-idle
core in clusterlittle

2 ∆ SpareComputebig−little ±20%

To set the input weights, we first note that changing any of the three inputs involves

migrating a thread. Since the change overhead is roughly the same for all three inputs, we

assign the same weight to all inputs. However, we want the software controller to react more

conservatively to output changes than the hardware controller. This is because applications

change the number of threads dynamically in an unpredictable manner for the controller —

e.g., some threads block on I/O. We do not want the controller to react immediately and

cause oscillations. Consequently, we set the weight of all inputs to 2 (Table 4.2), which

happens to be twice the weight of the hardware controller’s inputs.

The controller monitors three outputs: performance of the big-cluster threads (in total

committed BIPS), performance of the little-cluster threads, and difference in Spare Compute

Capacity (SC) between the big and little clusters. At a high level, the higher the difference

in SC is, the more threads the controller will move from the little to the big cluster.

The SC of a cluster is estimated as follows. SC should be raised when there are many

cores in the cluster that are both on and idle. On the other hand, SC should be lowered

when the cluster has many threads multiplexed on the busy cores; these threads could be
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spread over all the cores that are on. So, we define a cluster’s SC as:

SC = #idle cores on− (#threads−#cores on) (4.1)

Since we consider all outputs to have similar importance, we set their deviation bounds to

±20% of their maximum range — like the non-critical outputs in the hardware controller.

To coordinate with the hardware controller, the software controller takes as external signals

all the signals that the hardware controller actuates on. Finally, the uncertainty guardband

used for the software controller should be higher than that of the hardware controller. This

is because the main action of the software controller (i.e., assign threads to cores) is directly

affected by an unpredictable event: dynamic changes in the number of application threads.

After evaluating several uncertainty guardbands, we set the guardband value to ±50%.

4.5.3 Modeling the Controlled System

The process of designing a controller requires that we build a model of the controlled

system — i.e., the Odroid board. To build the models for both controllers, we use the System

Identification methodology [109] (Section 2.4). From the system identification data, we use

the Box-Jenkins polynomial model structure [146] to obtain a dynamic model of the system.

The model generated for both controllers has dimension four — i.e., it predicts the value of

an output at time T as a function of the values of all the outputs at times T-1, ... T-4, and

the values of all the inputs at times T, ... T-3.

4.5.4 Designing Optimizers

The goal of each of the optimizers is to provide increasingly better targets for the output

signals, so that the corresponding controller can tune the input signals (Figure 4.3). To see

how they operate, consider the hardware controller. The optimizer reads the outputs of the

system (Perf, Powerbig, Powerlittle, and Temp), computes the resulting EDP, and changes the

output targets passed to the controller (Perf◦, Powerbig ◦, Powerlittle ◦, and Temp◦) to attain

a lower EDP. This will trigger the controller to actuate on the input signals (#big cores,

#little cores, freqbig, and freqlittle) so the system converges to the new output targets. The

optimizer will then read the new outputs and repeat the process, progressively generating

better targets that produce lower EDP values.

Recall that EDP is proportional to Power/Perf2. Hence, to lower EDP, the optimizer

keeps increasing Perf◦ a lot while increasing Powerbig ◦ and Powerlittle ◦ a little. When the

result is that EDP has increased, the optimizer discards the latest move, and moves in the
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opposite direction: it decreases Perf◦ a little while decreasing Powerbig ◦ and Powerlittle ◦ a

lot. Eventually, the optimizer settles into a desirable set of output targets. The algorithm of

the optimizer is given in Section A.1 of the appendix.

4.6 EXPERIMENTAL METHODOLOGY

4.6.1 Infrastructure

The ODROID XU3 has on-board power sensors that measure the power drawn by the

big and little clusters. These sensors update every 260 ms. There are on-chip sensors that

measure temperature. We set up performance counters on all cores using the Linux perf

API [147] to measure the number of instructions committed per second. The number of cores

in each cluster and the cluster frequency can be changed by writing to appropriate cpufreq

files. Thread scheduling is performed through sched setaffinity system calls.

The controllers are invoked every 500 ms. This time is determined by the update period

of the power sensors. Many prior works that use real systems use comparable sampling

intervals (e.g., 0.5 s – 2 s in [65,66,78,148]). Both controllers are implemented as independent

privileged processes, as we cannot add hardware modules to the board.

The power and temperature limits that we use in our evaluation are constrained by the

emergency power and thermal heuristics of the board. These heuristics are automatically

triggered when power or temperature increase beyond preset thresholds for extended periods

of time [143, 144, 145]. We identify the minimum thermal threshold that triggers these

heuristics and use it as the limit for temperature. Similarly, we set the limits for the power

consumed by the little and big clusters to be below the emergency-triggering values. The

limits we use are 0.33 W, 3.3 W, and 79 ◦C for the power of the little cluster, power of the big

cluster, and temperature.

We evaluate Yukta with 8-threaded PARSEC programs with native datasets (blackscholes,

bodytrack, facesim, fluidanimate, raytrace, x264, canneal, streamcluster), 8 copies of SPEC06

programs with train datasets (h264ref, mcf, omnetpp, gamess, gromacs, dealII ), and program

mixes. For training, we use a different set of programs: swaptions and vips from PARSEC,

astar and perlbench from SPECINT06, and milc and namd from SPECFP06.

4.6.2 Schemes for Comparison

In our ODROID XU3 board, we implement the four two-level controllers shown in Figure 4.6.

Table 4.3 lists their names and describes them in detail.
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Figure 4.6: Two-level controllers evaluated.

Table 4.3: Description of the controllers.

Scheme Description of the OS and HW controllers

(a) Coordinated heuristic
OS: Scheduler with power and performance heuristics. Uses number, type, and
frequency of cores.

HW: Increases frequency and #cores while operation is safe. Uses thread distribu-
tion to make decisions.

(b) Decoupled heuristic
OS: Roubd-robin assignment of threads to cores.

HW: Sets frequency, #cores to maximum value. On a violation, it reduces frequency
first, then #cores.

(c) Yukta: HW SSV+
OS heuristic

OS: Like the OS controller in Coordinated heuristic.

HW: SSV design from Section 4.5.1.

(d) Yukta: HW SSV+
OS SSV

OS: SSV design from Section 4.5.2.

HW: SSV design from Section 4.5.1.

In the Coordinated heuristic scheme, the OS controller is similar to the HMP task scheduler

from ARM, Linaro and Samsung [139, 140], except that it is modified to optimize E×D. The

OS controller coordinates with the hardware controller in that it uses the number, type,

and frequency of the available cores to schedule threads. The hardware controller sets the

number of cores and their frequency to maximum values until the power or temperature

exceeds the limits; when this happens, it finds a lower, safe frequency value for that cluster.

It coordinates with the OS controller in that it uses how the threads are distributed across

all the cores to determine the safe frequency. This OS-hardware scheme is representative of

industry-standard controllers in big.LITTLE systems, and we use it as a baseline.

The Decoupled heuristic scheme takes uncoordinated decisions at each layer. The OS

controller distributes threads on cores in a round-robin manner. The hardware controller

is similar to the performance power governor in Linux [149]. It sets the number of cores

and their frequency to maximum values whenever temperature and power are within limits.

When the limits are exceeded, it uses threshold-based rules to temporarily reduce frequency

first, and then the number of cores — irrespective of the number of threads.
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We design two schemes based on our proposed coordinated Yukta methodology. The first

one, Yukta: HW SSV+OS heuristic, uses an SSV hardware controller as in Section 4.5.1 and

a heuristic-based OS controller like the one in Coordinated heuristic. The second one, Yukta:

HW SSV+OS SSV, uses an SSV hardware controller as in Section 4.5.1 and an SSV OS

controller as in Section 4.5.2.

4.7 EVALUATION

4.7.1 Multilayer Controller Evaluation

Figure 4.7 compares our four two-layer controller schemes running our applications. Fig-

ure 4.7(a) shows the EDP of the applications, and Figure 4.7(b) the execution time. In each

chart, the bars from left to right correspond to individual SPEC applications, the average of

the SPEC applications (SAv), individual PARSEC applications, the average of the PARSEC

applications (PAv), and the average of all the applications (Avg). Each application has a bar

for each of the four controller schemes. The bars are normalized to Coordinated heuristic.

Figure 4.7(a) shows that Decoupled heuristic has higher EDP than Coordinated heuristic.

On average, decoupling the controllers results in a 52% higher EDP. On the other hand, using

Yukta causes EDP to decrease. On average, Yukta: HW SSV+OS heuristic has a 37% lower

EDP than Coordinated heuristic. Furthermore, having both SSV controllers as in Yukta: HW

SSV+OS SSV results in an average EDP that is 50% lower than Coordinated heuristic. Thus,

SSV controllers offer substantial improvements over existing systems.

The execution times in Figure 4.7(b) show similar results. Decoupled heuristic increases the

execution time by 30% on average. On the other hand, Yukta: HW SSV+OS SSV reduces the

time by 29% on average, and Yukta: HW SSV+OS SSV by even more, namely a substantial

38% on average.

To gain insight into the impact of Yukta, we focus on the execution of the blackscholes

application (labeled bla in Figure 4.7). This application begins with a single thread and later

executes 8 parallel threads. The work in the parallel phase does not have large variations.

Figure 4.8 shows the power consumed by the big cluster in blackscholes as a function of time,

for the four controller schemes. Recall that the limit in sustained power is 3.3 W.

The figure shows that, under all schemes, the power fluctuates. At certain points, it goes

over the limit but, immediately after, the system reacts and brings the power down again.

What varies between the four schemes is the number and amplitude of these peaks and

valleys, and the average value of the power in the steady-state periods. In general, a better
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Figure 4.7: Energy×Delay (a), and execution time (b) for the four two-layer controller
schemes considered.

controller will minimize the number and amplitude of these peaks and valleys, and keep the

power in the steady-state periods as close as possible to 3.3 W.

In Decoupled heuristic (Figure 4.8(b)), there are many oscillations. In this scheme, the

hardware controller increases the number of cores and their frequency to the maximum, while

the OS controller simply assigns threads round-robin. This causes the power to go over

the limit and trigger the emergency system, which reduces the frequency of the cores and

shuts off some cores. The power then drops to low values, and the hardware controller again

increases the number of cores and their frequency to the maximum. The result is continuous

power oscillation.

The Coordinated heuristic scheme (Figure 4.8(a)) drastically reduces the amplitude and

number of these peaks and valleys. This is thanks to the coordination between the two

controllers: the hardware controller knows the distribution of the active threads, and the OS

controller knows the number, type, and frequency of the active cores.
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Figure 4.8: Power consumed by the big cluster in blackscholes as a function of time for the
four controller schemes.
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Figure 4.9: Performance of blackscholes in BIPS, as a function of time for the four controller
schemes.

As we move to Yukta: HW SSV+OS heuristic (Figure 4.8(c)) and, especially, Yukta: HW

SSV+OS SSV (Figure 4.8(d)), the number of peaks and valleys decreases. Moreover, the

power during the steady-state periods gets closer to 3.3W. The Yukta controllers control

power much better.

These differences in power control translate directly into different performance. Figure 4.9

shows the performance of blackscholes in BIPS, as a function of time, for the four schemes.

We see that the performance of the Decoupled heuristic scheme (Figure 4.9(b)) oscillates, and

the application takes nearly 320 seconds to complete. In the Coordinated heuristic scheme

(Figure 4.9(a)), the steady-state performance increases, and the application completes in 270

seconds. Finally, in Yukta: HW SSV+OS heuristic (Figure 4.9(c)) and Yukta: HW SSV+OS

SSV (Figure 4.9(d)), the steady-state performance keeps increasing, and the application

completes sooner, in 205 and 180 seconds, respectively.

4.7.2 Comparing to LQG Control

We compare Yukta to the MIMO LQG controller described in the previous chapter. Like

Yukta, the LQG controller can change many inputs to meet many output targets, and accepts
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weights for inputs and outputs. Unlike Yukta, however, it does not accept external signals,

deviation bounds for outputs, saturation/quantization of inputs, or design with uncertainty

guardbands.

Since an LQG controller cannot use external signals, we evaluate the two ways in which it

can be used for multilayer control: one that has independent LQG controllers in the hardware

and OS layers (Decoupled HW LQG+OS LQG), and one that has a single LQG controller

that manages both layers (Monolithic LQG). The latter is the use in Chapter 3. We use

input and output weights comparable to the SSV controllers.

Figures 4.10 and 4.11 compare the EDP and execution time, respectively, of Coordinated

heuristic, Decoupled HW LQG+OS LQG, Monolithic LQG, and Yukta: HW SSV+OS SSV.

The bars are normalized to Coordinated heuristic. We see that, on average, Decoupled

HW LQG+OS LQG delivers EDP and performance similar to Coordinated heuristic. This

is because each controller works independently without coordination, making the system

inefficient.
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Figure 4.10: Comparing EDP for LQG-based designs.

Monolithic LQG delivers better results, thanks to the centralized decisions taken by the

controller. On average, it reduces EDP by 20% and execution time by 11% relative to

Coordinated heuristic. This is consistent with the 16% EDP reduction reported in [92].

However, these gains are small compared to those of Yukta: HW SSV+OS SSV, which attains

average reductions of 50% in EDP and 38% in execution time.

The reason for this gap is that LQG controllers have several limitations, as listed above.

First, they assume that inputs are continuous and have no bounds. Hence, a controller

sometimes attempts to change an input beyond its physical limit, and observes no output

change. Only later does the controller try changing another input. This slows down the

configuration search. For example, in bodytrack, the LQG controller wastes 9% of the time
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Figure 4.11: Comparing performance for LQG-based designs.

trying to change an input beyond its limit and observing no change.

Second, LQG controllers accept no output bounds; they try to keep output deviations to

be proportional to the inverse of the output weights. As a result, the optimizer steers the

system to a less optimal configuration, or takes longer to find the best configuration. For

example, it can be shown that, in bodytrack, the LQG controller takes on average 6 sampling

intervals to make the big cluster power converge to a specified target; the SSV controller

can achieve this in 2 sampling intervals. Over the entire application, the optimizer takes 90

intervals to find the optimum targets for the LQG controller, while it takes only 30 for the

SSV one.

Finally, LQG controllers are not natively optimized for uncertainty. The framework

that generates LQG controllers uses uncertainty guardbands to discard unstable designs

(Chapter 3). When this happens, it changes the output weights, which slows down the

controller. In the framework that generates SSV controllers, instead, uncertainty is an explicit

parameter. Hence, the resulting controller is optimal within the uncertainty guardband.

Overall, LQG controllers are no match for Yukta designs.

4.7.3 Heterogeneous Workloads

We evaluate four heterogeneous workloads created by combinations of 4-threaded PARSEC

codes and 4 copies of SPEC codes: blmc (blackscholes+mcf), stga (streamcluster+gamess),

blst (blackscholes+streamcluster), and mcga (mcf+gamess).

Figure 4.12 compares the normalized EDP of these workloads under all the heuristic, LQG

and Yukta-based designs we built. The results are similar to the homogenous workloads,

with the Yukta-based designs exhibiting the lowest EDP, then Monolithic LQG, and then
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Coordinated heuristic. The reduction in Yukta: HW SSV+OS SSV is 47%, which is close to

the 50% attained before. This demonstrates the robustness of the Yukta-based designs in

diverse environments.
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Figure 4.12: Comparing EDP for heterogeneous workloads.

4.7.4 Implementing a Hardware SSV Controller

A hardware implementation of our hardware SSV controller is a simple state machine.

From Section 2.3.1, it is characterized by the dimensionality of its state (N), and the number

of inputs (I), outputs (O), and external signals (E). It implements the following equations in

hardware [91]:

x(T + 1) = A× x(T ) +B ×∆y(T ) (4.2)

u(T ) = C × x(T ) +D ×∆y(T ) (4.3)

where x is the state of the controller (N-entry vector), ∆y is the external signals and the

deviation of outputs from their targets (vector of O+E entries), u is the new inputs (I-

entry vector), A is the controller evolution matrix (N×N), B is the matrix of impact of

output deviations on the state (N×(O+E)), C is the state-to-input conversion matrix (I×N),

and D is the matrix of feed-through of output deviations to inputs (I×(O+E)). In our

case, I=4, O=4, E=3, and N=20. At every millisecond-level invocation [1], the controller

performs these computations, which are nearly 700 32-bit fixed-point operations (additions

and multiplications), and needs to store nearly 2.6 KB of data. We have measured that

performing these computations on an ARM Cortex A7 core consumes ≈20–25 mW and takes

≈28µs. We envision that a hardware state machine implementation of this functionality

would consume a few milliwatts and have negligible area.
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4.7.5 Hardware SSV Controller Analysis

Analysis of Output Deviation Bounds

The hardware controller of Yukta: HW SSV+OS SSV in Section 4.5 has deviation bounds

of ±20% for its performance output (i.e., ±1 BIPS in absolute terms). In this section, we

change them to ±30% (i.e., ±1.5 BIPS) and ±50% (i.e., ±2.5 BIPS). Since the OS controller

also monitors the performance of each of the clusters, we also increase the bounds for the OS

controller proportionally, to ±30% and ±50% for the big and little clusters.

We perform two experiments. In the first one, we set fixed targets for each of the outputs.

Specifically, for the hardware controller, we set the performance target to 5.5 BIPS, the power

of the big and little clusters to 2.5 W and 0.2 W, respectively, and the temperature of the big

cluster to 70◦C. For the OS controller, we set the performance targets of the little and big

clusters to 1 BIPS and 4.5 BIPS, respectively, and the difference in SC between big and little

clusters to 1.

Figure 4.13(a) shows the performance of the computer system as a function of time for the

three output deviation bounds (absolute values of bounds are shown for convenience). The

data is for blackscholes. Ignoring the initialization and termination stages, we see that the

performance remains close to the target, and within the deviation bounds. The tighter the

bounds are, the closer the performance is to the target.
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Figure 4.13: Sensitivity to the output deviation bounds.

The second experiment is like the one in Section 4.7.1, where we minimize EDP. Fig-

ure 4.13(b) shows the EDP of Yukta: HW SSV+OS SSV for the different output deviation

bounds (absolute values of bounds shown for convenience), and of Coordinated heuristic. The

bars are the average of all the applications, and are normalized to Coordinated heuristic. We

see the EDP with deviation bounds of ±20% (±1 BIPS), ±30% (±1.5 BIPS), and ±50%
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(±2.5 BIPS) to be 50%, 41%, and 30% lower than with Coordinated heuristic, respectively.

As bounds grow wider, the execution is less optimal: output changes that would cause a

controller with tight bounds to actuate, do not cause a controller with loose bounds to

actuate.

Analysis of Uncertainty Guardband

We examine uncertainty guardbands from ±40% to ±500%. Figure 4.14(a) shows how

the output deviation bounds guaranteed by the controller change with different uncertainty

guardbands. These bounds are normalized to those in Section 4.5.1, namely ±20% for

performance, and ±10% for the rest.
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Figure 4.14: Sensitivity to the uncertainty guardband.

The figure shows that the guaranteed output deviation bounds increase slowly with the

uncertainty guardband. Even for a ±250% guardband, we can synthesize a controller with

similar deviation bounds as for a ±40% guardband. This is thanks to using robust control

theory.

Figure 4.14(b) shows EDP for different uncertainty guardbands, all normalized to Coor-

dinated heuristic. For ±40% guardband, EDP is 50% lower than the baseline. For large

guardbands, EDP increases for two reasons. First, the controller is slower to respond to

the optimizer-generated targets. Second, the output bounds grow larger, which causes the

controller to work less effectively. Overall, we use ±40% as our default guardband.

Analysis of Input Weights

We examine input weights from 0.5 to 2 for all the inputs. This results in controllers that

respond at different speeds to output changes. In our experiment, we consider the big-cluster
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power output and set its target value to 2.5 W. Figure 4.15 shows the big-cluster power as a

function of time for the different input weights. The data corresponds to blackscholes.
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Figure 4.15: Big-cluster power for different input weights.

Ideally, the power should remain at 2.5 W for the whole execution. However, at 45 s, the

application launches multiple threads, causing power to rise suddenly. The controller with

input weights of 0.5 responds rapidly, creating a series of quick power oscillations. The system

is too ripply. The controller with input weights of 2 is slow to change its inputs, keeping

the big-cluster power high for about 40 s, before stabilizing at the reference value. Finally, a

controller with input weights of 1 responds at modest speed and has no oscillations. Hence,

we use input weights of 1.

4.8 CHAPTER SUMMARY

To address the challenge of computers increasingly operating in constrained environments,

this chapter presented a new approach to build coordinated multilayer formal controllers for

computer systems. The approach uses SSV controllers from robust control theory. These

controllers can read external signals from other controllers to coordinate multilayer operation.

In addition, they allow designers to specify the discrete values allowed in each input, and

the desired bounds on output value deviations. Finally, they accept uncertainty guardbands,

which incorporate the effects of interference between the different controllers. We called

this approach Yukta. To assess its effectiveness, we prototyped it in an 8-core big.LITTLE

board. We built a two-layer SSV controller, and showed it was very effective. Yukta reduced

the EDP and the execution time of a set of applications by an average of 50% and 38%,

respectively, over what advanced heuristic-based coordinated controllers attain. We expect

that the Yukta design can be applied to many computing environments.
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CHAPTER 5: TANGRAM: INTEGRATED CONTROL OF
HETEROGENEOUS COMPUTERS

Large computers are integrated from heterogeneous subsystems like CPUs, GPUs and

accelerators built by different vendors. In managing such systems, there is a tension between

the need to quickly generate local decisions in each subsystem and the desire to coordinate

the different subsystems for global optimization. Leading systems from IBM, Intel, and

AMD manage their computers with centralized heuristic-based control. Centralization results

in slow response. In addition, control is often ineffective because the separately designed

subsystems do not expose enough information to the central controller. On the other hand,

implementing global coordination among decoupled control is considered hard and is usually

avoided. We now consider the problem of developing a fast, decentralized and coordinated

resource control framework for heterogeneous systems. Then, we will describe the Tangram

framework that solves the problem effectively.

5.1 COMPUTER CONTROL TODAY

Controlling the operation of heterogeneous computer systems is a challenging problem that

is currently addressed in different ways.

5.1.1 Organization

Most controllers from leading vendors are centralized (Figure 5.1). As shown in Figure 5.1a,

Intel uses the Dynamic Power and Thermal Framework (DPTF) to manage the CPU and

GPU in their multi-chip Core i7-8809G [51,150]. The DPTF is a centralized kernel driver.

Each chip exposes sensor data and allows DPTF to set its controllable inputs.
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Figure 5.1: State-of-the-art resource control architectures for heterogeneous computers from
leading vendors.

Figure 5.1b shows the On Chip Controller (OCC) in IBM POWER9. It is a centralized
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hardware controller that actuates each on-chip core and the GPUs attached to the chip [47,151].

In a 2-socket system, one OCC becomes the master for global control, and the other a slave

with restricted decision-making. The slave OCC is limited to sending sensor data and applying

input values given by the master.

Figure 5.1c shows the hardware System Management Unit (SMU) design from AMD [9].

AMD’s EPYC and Ryzen processors consist of one or more dies, each of which has one SMU.

When multiple dies are used in a socket, one SMU becomes the master and the others are

slaves, as with IBM. The slave SMUs handle only events like high temperatures or current,

where quick response is necessary. The master SMU makes centralized decisions for the

modules in all the dies in the system. In a two-socket system, there is a single master for

both sockets.

When an on-die GPU is integrated with the CPU, AMD uses the Bidirectional Application

Power Management (BAPM) algorithm, which is a centralized algorithm running on firmware

to manage power between the CPUs and GPU [50]. With discrete GPUs, there is no

communication channel between the CPU and GPU controllers. Therefore, system-level

coordination needs to be handled through software drivers, as with the Intel design above.

Centralized hardware control is also the choice in research [52,53,54,55,56,57,58,59,92,

94, 111]. Unfortunately, centralized control is slow because data and decisions must cross

chip boundaries, and experience contention at the single controller. It is also non-modular

because integrating a new component or using a different configuration of the subsystems

requires a full re-design of the controller.

As an alternative, Raghavendra et al. [61] describe a Cascaded design for power capping

in datacenters. The proposal is shown in Figure 5.2. The datacenter is organized as a

set of enclosures, each containing a set of server blades. A Group divider splits the total

power budget among the enclosures. Then, the Enclosure divider in each enclosure splits its

designated power level Penclosure among its blades. Then, each blade supervisor (Sup) receives

its designated power level Pblade, and enforces it by providing a target for a PID controller.

The PID controller changes the blade frequency to achieve the target. The enclosure divider

and the blade supervisor always keep the power of the enclosure and blade at the respective

Penclosure and Pblade values they receive.

While this design is scalable, it has the limitation that the dividers are not controllers

that could optimize the system; they just divide the power budget. In addition, changing a

blade’s power budget requires a long chain of decisions. When it is necessary to increase the

blade’s power, the group divider first increases Penclosure, after which the enclosure divider

can raise Pblade. Then, the supervisor changes the target and, finally, the PID controller can

increase frequency. As the group divider’s decision loop is much slower than the innermost
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Figure 5.2: Cascaded control of a datacenter.

PID controller [61], there is a long delay between the need for a power increase and the actual

increase. This may cause suboptimal operation and instability [152].

5.1.2 Controller Objectives

There are Safety controllers that protect the system from dangerous conditions (e.g., high

current or voltage droops), and Enhancement controllers that optimize the execution for

goals like power, performance, or EDP [9]. Safety controllers usually provide continuous

monitoring and an immediate response, while enhancement controllers periodically search

through a multidimensional trade-off space for the best operating point. In current industrial

designs, these two types of controllers typically operate in a decoupled manner [9].

Designs from research typically focus on enhancement, disregarding interaction with safety

mechanisms. Some exceptions are works that consider temperature as a soft constraint

(e.g., [61, 94, 113]), or those that probabilistically characterize safety mechanisms like circuit

breaker tripping (e.g., [58]).

5.1.3 Formal Control vs Heuristics

Current industrial designs typically use heuristics for resource control [3, 4, 47, 50, 153, 154].

A few use heuristics plus PID controllers [9, 46, 51, 81]. In most cases, controllers monitor

one single parameter (i.e., output), like power or skin temperature, and actuate a single

parameter (i.e., input), like frequency. Hence, they are SISO. Often, multiple controllers

actuate the same input, such as the CPU frequency. In this case, the conflicting decisions

are combined using heuristics. For example, IBM’s OCC assigns each controller a vote and a

majority algorithm sets the input [151].
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Heuristics can result in unintended inefficiencies [78, 79, 92, 101, 111, 155]. Further, they

make it difficult to decentralize resource control [51], which is necessary for fast response

and modularity. Paul et al. [52, 53] show real examples of how multiple controllers using

heuristics fail to coordinate in a system with a CPU and GPU. For instance, in a workload

whose performance is limited by the GPU, CPU heuristics see low CPU memory traffic and

boost CPU frequency. This does not improve performance and wastes power.

5.2 TANGRAM: DECENTRALIZED CONTROL

Our goal is to design and prototype a control framework for heterogeneous computers that is

decentralized, globally coordinated, and modular. Decentralization is needed for fast control.

However, it should not come at the expense of global optimization. Further, the framework

should be modular to be usable in different computer configurations. These requirements

rule out the conventional centralized and cascaded organizations. Moreover, for effectiveness,

the controllers in this framework should combine safety and enhancement functionalities, be

formal rather than heuristic-based, and be MIMO. We call our new framework Tangram.

In this section, we start by introducing the novel controller in Tangram, and then the

Tangram modular control framework. Later, in Section 5.3, we build a Tangram prototype.

5.2.1 Controller Architecture

To the Safety and Enhancement types of controllers, we add a third one, which we call

Preconfigured. Table 5.1 shows the controller differences and the control strategies they

follow. Section 5.1.2 described safety and enhancement controllers. A preconfigured controller

looks for a certain well-known operating condition. When the execution is under such a

condition, the preconfigured controller uses a preset decision to bring the system to an optimal

configuration. The priority of preconfigured controllers is lower than safety controllers but

higher than enhancement controllers.

Table 5.1: Types of controllers.

Safety Enhancement Preconfigured

Goal: Hardware safety Optimality Optimality
Strategy: Simple, preset Complex, search based Simple, preset
Priority: Highest Low Medium

Operation: Nearly always Periodic Nearly always
Response time: Immediate Fast Immediate
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In Tangram, we propose to build a controller that combines enhancement, safety, and

preconfigured engines.

Enhancement Engine

We use robust control [91] to build a MIMO enhancement controller. The controller

monitors all local outputs to be optimized, like performance, power, and temperature, and

sets the local inputs to keep all outputs close to the desired targets. It works with a Planner,

which changes these targets to match changing conditions and to optimize metrics combining

multiple outputs like EDP. The combination of controller and planner is the enhancement

engine (Figure 5.3).
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Figure 5.3: Enhancement engine.

For example, to minimize EDP, the planner can search along two directions: increas-

ing performance targets more than power targets, or decreasing power targets more than

performance targets. For each target point selected, the robust controller will determine

what inputs can make the system outputs match the targets. The planner then computes

the EDP and may select other performance and power targets that may deliver a better

EDP. In Section A.2 of the appendix, we describe a generic search algorithm for the planner.

Algorithms like Gradient Descent can also be used to search for the best targets.

The planner is also the point of communication with other controllers, if any, and exchanges

coordination signals with them. It uses some of these incoming signals to generate the local

targets.

Adding Safety and Preconfigured Engines

We add a safety engine that continuously monitors for hazards like high temperature or

current. If the engine is triggered, it picks the most conservative values of the inputs. This is

done without any search overhead. For example, if the computer overheats, the safety engine

simply runs the cores at the lowest frequency.

Similarly, we add a preconfigured engine that continuously monitors for execution conditions

that are well understood and for which there is an optimal configuration. If the engine
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is triggered, it sets the inputs to a predefined configuration, skipping any search by the

enhancement engine. For example, if there is a single thread running, the engine boosts the

active core’s frequency, and power-gates the other cores.

Figure 5.4 shows the full architecture of our controller, with potentially multiple safety and

preconfigured engines in parallel with the enhancement engine. All engines are connected to

an arbiter. A mode detector chooses one engine by controlling the arbiter. Each engine can

monitor potentially different outputs.
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Figure 5.4: Proposed controller.

The mode detector uses the following priority order to select the engine that sets the

system’s inputs: (i) any active safety engine, starting from the most conservative one, (ii)

any active preconfigured engine, starting from the most conservative one, and (iii) the

enhancement engine.

At runtime, the enhancement engine optimizes the system. It may inadvertently trigger a

safety engine, which then sets the inputs to the lowest values. The change induced by the

safety engine is within the uncertainty guardband used in the controller’s design. Once the

hazardous condition is removed, the enhancement engine resumes operation but it remembers

(using its state) to avoid further safety triggers. Thus, the enhancement engine can optimize

inputs without repeated conflicts with the safety engines [106].

5.2.2 Subsystem Interface

Computers are organized as a hierarchy of subsystems, possibly built by different manufac-

turers. For example, a motherboard that contains a GPU and a CPU chip is a subsystem,

and a multicore chip that contains multiple cores is also a subsystem. To build decentralized,
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globally-coordinated modular control, we propose that each subsystem has a controller with

a standard interface.

Figure 5.5 shows the interface. To understand it, we logically break a subsystem into its

controller and the rest of the subsystem, which we call the Component. The figure shows one

subsystem with its controller and its component. The controller generates or receives three

sets of signals:
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Figure 5.5: Proposed controller interface. In the figure, C means controller.

• Coordination Signals 3©. These signals connect a controller with its parent controller

and its potentially multiple child controllers. The figure shows a controller with two child

controllers. The Coordination signals are shown on the right of the figure. From a controller

to its child controllers, the signals set the operating constraints (i.e., the maximum power

allowed, maximum temperature allowed, minimum performance required, and number of

active subsystems). The child controllers use this information as constraints as they optimize

their own components. From a controller to its parent controller, the signals report on the

operating conditions (i.e., actual power consumed, actual temperature measured, actual

performance delivered, and number of active subsystems). The parent controller uses this

information to potentially assign new constraints to all of its children. The coordination

signals use parameters readily available in current systems.

• Local Inputs 1© and Local Outputs 2©. These are the conventional signals that a

controller uses to change and sense its component, respectively. They require no coordination

and, therefore, can be manufacturer-specific. Examples of local inputs are frequency and

cache size, and of local outputs are performance, power, temperature, and dI/dt. Figure 5.4

shows how the inputs are generated from the output measurements.

To build a modular control framework, the manufacturer of a subsystem has to include a

controller that provides and accepts the standard coordination signals from parent and child

controllers.
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5.2.3 Tangram Control Framework

As a computer is built by assembling different subsystems hierarchically, the controllers of

different subsystems are also connected hierarchically, exchanging the standard Coordination

signals (Section 5.2.2). The result is the Tangram control framework. Figure 5.6 shows the

framework – without the proprietary Local Input and Local Output signals – for a computer

node that contains two modules, with one of the modules containing two chips.
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Figure 5.6: The decentralized, modular Tangram framework. C means controller.

The Tangram control framework is modular, fast, and globally coordinated. It is modular

because each controller is built with knowledge of only its subsystem. For example, in

Figure 5.6, the designers of Chip 1 and Chip 2 develop their controllers independently.

Similarly, the Module 1 controller is developed without knowing about the Chip 1 and Chip

2 controllers. Further, changing a subsystem is easy – only the interfacing controllers need to

be rewired and reprogrammed. For example, if we change Module 2, only the Node controller

is affected.

The framework is fast because each controller makes decisions on its own subsystem

immediately. This is unlike in cascaded designs where, to make a change that affects the

local system requires a long chain of decisions (Section 5.1.1). It is also unlike centralized

systems, where decisions are made in a faraway central controller.

Finally, the framework is globally coordinated because there are coordination signals that

propagate information and constraints across the system. These signals are used differently

than in cascaded systems. In Tangram, the local controller in a subsystem uses the constraints

given by the coordination signals from the parent to identify the subsystem’s best operating

point; the local controller in a subsystem passes constraints to the child controllers. In the

cascaded design discussed earlier (Section 5.1.1), instead, the divider simply provides, at each
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level, the exact parameters that fully determine the subsystem’s operating point; the local

controller at the leaf node tries to keep the outputs at this operating point.

5.2.4 Comparison to Contemporary Systems

The modular structure of Tangram may make the design appear obvious. Therefore, why

do current systems not use a similar framework? A major reason is that their controllers

do not use formal control. The use of a MIMO robust controller in each subsystem ensures

that its optimizations work in the presence of other controllers in other subsystems. The

controllers connected in a hierarchy can coordinate their actions. These benefits cannot be

guaranteed by the current heuristic controllers used in individual subsystems, and simply

using them together does not lead to cohesive decisions [51,53].

5.2.5 Tangram Implementation

Tangram can be implemented in hardware or in software. For time-critical and hardware-

specific measures such as DVFS, the controllers should be implemented in hardware or

firmware, and signals should be carried by a special control network. Examples of such a net-

work are AMD’s SMU in EPYC systems [9] and IBM’s OCC in POWER9 [47] (Section 5.1.1).

For less critical measures, controllers can be implemented in software, and communication

between controllers can proceed using standard software channels.

In a hardware implementation, it is not necessary to have dedicated pins and physical

connections for every signal. A few ports and links are sufficient, as controllers can pass

information in the form of <property,value> pairs.

While verifying a decentralized system is a challenging task in general, Tangram reduces

verification cost because it uses formal control. Further, each Tangram controller is simple,

compared to a single, large centralized controller.

5.2.6 Example of Tangram’s Operation

Figure 5.7 is an example of how Tangram works. The figure considers a module com-

posed of a CPU chip and a GPU chip. It shows the timeline of the actions of the three

controllers, as they run in preconfigured, safety, or enhancement modes. The figure shows

the coordination signals passed between the three controllers, which can be the local values

measured (solid) or new constraints (dashed). For simplicity, we only consider power-related

and activation/deactivation signals. As shown in the # Tasks timeline, the execution starts
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with zero tasks, then one CPU task appears, then one GPU task is added, and then many

CPU tasks are added.
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Figure 5.7: Example of coordination in Tangram. Solid arrows send measured local values,
while dashed arrows provide new constraints.

All controllers begin in preconfigured modes. At 1©, the module controller turns the GPU

chip off. When a CPU task arrives, the CPU controller changes to a new preconfigured

mode. As the module realizes that there is one thread running ( 2©), it changes the power

assignment to the CPU chip, and changes to a new preconfigured state. When a GPU task

arrives, the module changes to enhancement mode, wakes up the GPU chip and assigns it a

power budget ( 3©). The GPU controller enters enhancement mode. The GPU chip optimizes

itself using the power assigned. When many CPU tasks arrive, there is a current emergency

in the CPU chip, which causes the controller to enter safety mode ( 4©). The CPU chip

controller eventually transitions to enhancement mode. At 5©, the module reads values from

both chips and shifts power from the GPU chip to CPU chip. There is local optimization

and some communication to find the best power across the module in 6©. At 7©, there is

a thermal emergency in the module, which causes the controller to lower the power limits

of the chips. On recovery, the module controller continues in enhancement mode, reading

values and providing constraints ( 8©). At 9©, the GPU chip overheats and recovers from it,

but the other subsystems are unaffected. At 10©, the Node controller, which is the parent of

the module controller, reads the module’s state and provides new constraints for it.

5.2.7 Scalability of Tangram

Tangram’s scalability is helped by the fact that Tangram uses MIMO control and has

a hierarchical organization. Using MIMO helps scalability because we can increase the

number of inputs and outputs of the controller, and the controller’s latency increases only

proportionally to the sum of the number of inputs and outputs. A hierarchical organization
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helps scalability because the depth of Tangram’s network typically grows only logarithmically

with the number of subsystems. Of course, with more subsystems, the root controller has

longer timescales. However, this is generally not a problem because the time constants at

which control is required also grow with large systems. For example, a chip’s power supply

cares about fine-grain current changes because it has a modest input capacitance, but a

node’s power supply only cares about longer timescales because it has a large capacitance.

5.3 TANGRAM PROTOTYPE

We prototype Tangram in a multi-socket heterogeneous server that we build using compo-

nents from different vendors. We bought a computer motherboard from GIGABYTE [156],

which we call the Node. The motherboard comes with an AMD Ryzen 7 1800X CPU cluster

that has two quadcore processors with 2-way SMT [157]. To this, we add a GPU card from

MSI [158] that contains an AMD Radeon RX 580 GPU [159]. Figure 5.8a shows a picture of

the computer, and Figure 5.8b its organization. The system is a node with two subsystems:

a CPU Cluster and a GPU Chip. The CPU Cluster has two quad-core CPU chips. The

computer has subsystems from GIGABYTE, AMD, and MSI.

(a) Physical system.
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(b) Subsystems.
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(c) Controllers.

Figure 5.8: Tangram organization.

Figure 5.8c shows the Tangram framework. To demonstrate Tangram’s modularity, we

build it in two stages, similar to how we assembled the computer. In stage one, we design

and interconnect the controllers in the CPU Cluster subsystem. In stage two, we design the

controllers for the GPU Chip and the Node subsystems, and interconnect them with the

stage one controllers to build the full Tangram network.

We built the controllers as software processes. They run as privileged software, accessing

the System Management Units (SMUs) of the subsystems with internal calls. An alternative,

higher performance implementation in hardware requires major changes to the testbed, as
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the SMUs are inside the chips.

The controllers read outputs and change inputs using Model Specific Registers (MSRs) [50]

and internal SMU calls with proprietary libraries. Since AMD GPUs do not provide public

access to dynamic performance counters, we read them using an internally developed library

that intercepts OpenCL calls to identify the running kernel and its performance.

5.3.1 Stage One: CPU Cluster Subsystem

Figure 5.9 shows the Tangram network for the CPU cluster subsystem, with the different

signals labeled. Table 5.2 shows the controllers’ output and input signals that we use,

based on the available sensors and actuators in our testbed. As we see, in a controller, the

enhancement, safety, and preconfigured engines measure different outputs.
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Figure 5.9: Tangram network in Stage One.

Table 5.2: Inputs and outputs of Stage One controllers.

Controller
Local outputs

Local inputs
Enhancement Safety Preconfigured

CPU
Chip

5©Chip
performance,
power

5©Current,
temperature

5© #threads 4© frequency,
#cores on

CPU
Cluster

2©Cluster
performance,
power

2©Current,
temperature

2©#threads 1© Cluster
frequency,
#chips on

Consider Table 5.2. A CPU chip controller monitors many outputs. The enhancement

engine monitors the chip’s performance (measured in billions of instructions committed per
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second or BIPS), and power. The safety engine monitors the Thermal Design Current (TDC)

used to prevent voltage regulator overheating [160], and the hotspot temperature. The

preconfigured engine monitors the number of running threads. The controller sets two inputs,

namely, the chip’s frequency (2.2 GHz – 3.6 GHz) and the number of active cores (0 – 4).

The CPU cluster controller monitors the same outputs at its level, which combine the

contributions of both chips, caches, and other circuitry in the cluster. The controller sets the

cluster frequency of peripheral components (1.6 GHz – 3.6 GHz) and the number of active

chips (0 – 2).

The coordination signals ( 3©) measure the values and set the constraints discussed in

Section 5.2.2.

5.3.2 Stage Two: Node Subsystem

Figure 5.10 shows the Tangram network for the whole node. It shows the details for the

new controllers at this stage, namely, the controllers for the GPU Chip and Node. Table 5.3

lists the controllers’ output and input signals, organized as in Table 5.2.
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Figure 5.10: Tangram network in Stage Two.

As shown in Table 5.3, the GPU chip controller monitors the following outputs: the GPU

performance and power (enhancement), the current and temperature (safety), and the number

of kernels (preconfigured). The controller sets the frequency of the GPU compute units (300

– 1380 MHz) and of the graphics memory (300 – 2000 MHz). The node controller monitors

similar outputs at its level (including whether the threads are CPU-type, GPU-type, or both),

and sets the node frequency for the board’s circuitry (300 – 2000 MHz).
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Table 5.3: Inputs and outputs of Stage Two controllers.

Controller
Local outputs

Local inputs
Enhancement Safety Preconfigured

GPU
Chip

5© GPU
performance,
power

5©Current,
temperature

5©#kernels 4© Compute
frequency,
memory frequency

Node 2© Node
performance,
power

2©Current,
temperature

2©#tasks,
task type

1© Node
frequency

The coordination signals ( 3©) measure the values and set the constraints discussed in

Section 5.2.2. The Node controller has no parent controller.

5.3.3 Structures in the Controllers

We now build the structures in each controller: enhancement engine (robust controller plus

planner), safety engines, and preconfigured engines.

Enhancement Engine - Robust Controller: To design a robust controller, we need to

(i) model its system (e.g., a CPU chip), and (ii) set the controller’s input weights, uncertainty

guardband, and output deviation bounds [91]. For the former, we use the System Identification

modeling methodology [109] (Section 2.4). In this approach, we run training applications on

the system and, during execution, change the system inputs. We log the observed outputs

and the inputs. From the data, we construct a dynamic polynomial model of the system.

For the CPU chip and CPU cluster, we run two training applications from NAS and

two from PARSEC. The obtained models have an order of 2 for the CPU chip and CPU

cluster (i.e., m = n = 2 in Equation 2.6). For the GPU chip and node, we use two training

applications from Chai [161]. The model orders for the GPU chip and node are 2 and 4,

respectively.

Next, we need to set the controller parameters: input weights, uncertainty guardband, and

output deviation bounds.

We specify the weight for each input in a subsystem based on the relative overhead of

changing that input. For the CPU chip, turning a core on/off takes at least twice as long

as changing the frequency. Hence, we use weights of 1 and 2 for the CPU frequency and

number of active cores, respectively. For the CPU cluster, we also use weights of 1 and 2

for the CPU cluster frequency and number of active CPU chips. The GPU chip inputs are

compute frequency and memory frequency. They have similar overheads and hence, we use
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weights of 1 for both. The node has a single input, namely the node frequency, and we set

its weight to 1.

Next, we specify the uncertainty guardbands. The robust controllers must work with safety

engines which can force the inputs to their minimum values when hazardous conditions are

detected. For example, while the CPU chip frequency can range from 2.2 GHz to 3.6 GHz,

the worst case is when the enhancement engine wants to set it to the maximum value and

the safety engine sets it to the minimum one. Hence, we set the uncertainty guardband of

every robust controller to 100%, to ensure optimality in this scenario.

With the system model, weights, and uncertainty guardband, MATLAB [108] gives the

smallest output deviation bounds the controller can provide. We use the priority of outputs

along with these suggestions to set the final output deviation bounds. In each controller,

we rank performance bounds as less critical than power bounds. With these specifications,

MATLAB generates the set of matrices that encode the robust controller (Equations 2.4

and 2.5). The output deviation bounds guaranteed by the robust controller in the CPU chip,

CPU cluster, and GPU chip are [±15%,±10%] for performance and power, respectively. For

the node, the bounds are [±25%,±20%] for performance and power, respectively.

With the model and these parameters, standard tools [108] generate the set of matrices

that encode the robust controller (Section 2.3).

Enhancement Engine - Planner: The planner monitors local outputs and receives

coordination signals from the parent and child controllers. With this information, it issues

the best targets for all local outputs to the robust controller, and coordination signals to

parent and child controllers. For example, the planner in a CPU chip’s controller receives

power, performance, temperature, and activation settings from the CPU cluster controller,

and generates targets for its controller to optimize EDP. Our planners use the Nelder-Mead

algorithm [162] described in Section A.2 of the appendix to search for the best targets under

constraints received from the parent controller. We choose this search algorithm for its

simplicity, effectiveness, and low resource requirements to run on firmware controllers [162].

Safety Engines: We consider two safety conditions: current and temperature. A hazard

occurs if any exceeds the limits. The maximum values that we use for current (TDC) and

thermal safety of each subsystem are shown in Table 5.4.

Table 5.4: Limits used in safety engines in all controllers.

CPU Chip CPU Cluster GPU Chip Node

Current (A) 15 25 30 50
Temperature (◦ C) 55 65 60 70
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If a hazard occurs in the CPU chip, the controller turns off all the cores except one, and

sets the latter to the lowest frequency. If it occurs in the CPU cluster, the controller turns

off one CPU chip and runs the other at the lowest frequency. If it occurs in the GPU chip or

in the Node, the controllers set the frequencies to the lowest values.

Preconfigured Engines: We build the preconfigured engines of the different controllers to

have the modes in Table 5.5.

Table 5.5: Modes of the different preconfigured engines.

Controller Preconfigured Regime Action

CPU chip
No active thread Only one core on, which runs at the lowest frequency

Single active thread Only one core on, which runs at the highest frequency

CPU cluster
No active thread One CPU chip can use up to 1/8 of its TDP;

the other CPU chip is turned off

Single active thread One CPU chip can use up to 1/2 of its TDP;
the other CPU chip is turned off

#threads ≤ 8 (i.e., # of SMT
contexts in a chip)

One CPU chip can use its full TDP;
the other CPU chip is turned off

GPU chip No active task GPU chip goes to a low power mode

Node
CPU-only tasks CPU cluster can use its full TDP;

GPU chip can use up to 1/8 of its TDP

GPU-only tasks CPU cluster can use up to 1/8 of its TDP;
GPU chip can use its full TDP

5.3.4 Controller Overhead and Response Time

To show the nimbleness of our prototype, we list the overhead and response time of the

controllers. Table 5.6 lists the overhead of the four structures that comprise the CPU Chip

controller. For each structure, the table lists the dimension, storage required, number of

instruction-like operations in the computation needed to produce an output, latency of

computation, and power consumption. A robust controller’s dimension is the number of

elements in its state (i.e., the length of vector x in Equation 2.4 of Section 2.3.1). A planner’s

dimension is the number of possible modes in the Nelder-Mead search in the appendix

(Section A.2). From the table, we see that the storage, operation count, latency, and power

values are very small – especially for the safety and preconfigured engines. The overheads of

the controllers in the CPU cluster, GPU chip, and Node are similar.

We now consider the response time of the enhancement engines. Each enhancement engine

has a robust controller and a planner (Figure 5.3). The response time of the robust controller
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Table 5.6: Overheads of Tangram’s CPU chip controller.

Structure Dimension Storage # Ops Latency Power

Robust controller 9 1 KB ≈245 ≈15 µs 10-15mW
Planner 5 125 B ≈350 ≈25µs 10-15mW

Safety engines – 8 B 2 < 1µs < 1mW
Preconfigured engines – 8 B 2 < 1µs < 1mW

includes reading outputs and targets, deciding on new inputs, and applying the new inputs.

The response time of the planner includes reading outputs and coordination signals, deciding

on targets, and communicating targets to the controller. Table 5.7 shows the measured

response time of the robust controllers and planners in the enhancement engines of the

different controllers in Tangram. For a parent controller/planner, the response time includes

the time for its decisions to propagate through all the children and grandchildren until

they affect the leaf robust controller’s decision to change inputs. This may take multiple

invocations of the leaf robust controller, which is activated every 50 ms. For comparison, we

also show data for a centralized and a cascaded control framework that we implemented.

Table 5.7: Response time of the enhancement engines.

Subsystem Tangram Centralized Cascaded

Robust Planner Robust Planner Robust Divider
Controller Controller Controller

CPU Chip 15 ms 15 ms – – 15 ms –
CPU Cluster 115 ms 115 ms – – – 165 ms

GPU Chip 15 ms 15 ms – – 15 ms –
Node 515 ms 515 ms 200 ms 200 ms – 665 ms

The Tangram robust controller and planner in the CPU chip and GPU chip have a response

time of 15 ms. Hence, performance, power, and temperature can be controlled in a fine-grain

manner. As we move up in the hierarchy of controllers, the response time increases. At the

node level, the response times are close to 500 ms.

In Centralized, we place the single enhancement engine in the Node subsystem. Since the

engine has to read many sensors, buffer the data, and change many inputs across the system,

it has a sizable response time (200 ms). Hence, it is not suited for fast response.

In Cascaded, we build the design in Figure 5.2. Only the leaf subsystems (CPU and GPU

chips) have robust controllers, and their response time is similar to those in Tangram. Higher

levels in the hierarchy only have dividers, which set the power levels. A leaf controller cannot

steer the system to new outputs until all the dividers in the hierarchy, starting from the

topmost one, have observed a change in regime and, sequentially, agreed to a change in the

74



power assignment. Because each divider is activated at longer and longer intervals as we

move up the hierarchy, a round trip from the leaf subsystem to the outermost divider in the

Node and back to the leaf takes 665 ms. Therefore, Cascaded has a long response time.

Table 5.7 shows that our software implementation of Tangram is fast. In mainstream

processors, control algorithms are typically implemented as firmware running on embedded

micro-controllers [1,9,47,51,163], and operate at ms-level granularity. Therefore, we envision

the controllers in Tangram to be deployed as vendor-supplied firmware running on micro-

controllers in their respective subsystems. This requires little change to existing hardware.

Further, the storage overhead and number of operations from Table 5.6 indeed show that

Tangram can be easily run as firmware on a micro-controller. With a firmware implementation,

we estimate that Tangram’s response times in Table 5.7 reduce by about one order of

magnitude, providing much better real-time control. A firmware implementation would also

lower the response times of the other frameworks in Table 5.7, but is unlikely to change the

relative difference between the frameworks.

5.4 EVALUATING THE PROTOTYPE

5.4.1 Applications

We use the Chai applications [161], which exercise both the CPUs and the GPU simulta-

neously, unlike most benchmarks. They cover many collaboration patterns and utilize new

features in heterogeneous processors like system-wide atomics, inter-worker synchronization,

and load balancing of data parallel tasks. We use two applications for training (pad and sc)

and five for evaluation (bfs, hsti, rscd, rsct, and sssp). For Stage One controllers, we run

NAS 3.3 [164] and PARSEC 2.1 [165]. From NAS, we use two applications to train (bt with

dataset D and mg with dataset C) and nine for evaluation (dc with dataset B, cg, ft, lu,

sp and ua with dataset C, and ep, is and mg with dataset D). From PARSEC, we use two

applications to train (raytrace with dataset native and swaptions with dataset simlarge) and

eight for evaluation (blackscholes, bodytrack, facesim, ferret, swaptions, fluidanimate, vips

and x264, all with dataset native).

5.4.2 Designs for Comparison

Our evaluation is comprised of three sets of comparisons, each evaluated using the appro-

priate subsystem of the prototype that can give us the most insights. The systems compared

are: different enhancement engine designs on a CPU chip, different control architectures on a
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CPU cluster, and different complete frameworks on our full prototype. In all cases, our goal

is to minimize the EDP of the system under constraints of maximum power, temperature,

and current in each subsystem.

Comparing Enhancement Engine Designs.

We compare our enhancement engine (which we call Robust) to alternative designs, such

as LQG and Heuristic (Table 5.8) on a CPU chip. LQG is the Linear Quadratic Gaussian

approach proposed in Chapter 3. Heuristic is a collection of heuristics that use a gradient-free

search to find the inputs that optimize the EDP metric. Instead of using a controller or a

planner, it approximates the gradient using the past 2 output measurements and navigates

the search space. The search uses random-restart after convergence, to avoid being trapped

in local optima. This design is based on industrial implementations [9, 50,166].

Table 5.8: Comparing enhancement engine designs.

Strategy Description

LQG LQG controller from [92].

Heuristic Industrial-grade gradient-free optimization heuristics [50].

Robust Our enhancement engine of Figure 5.3

Comparing Control Architectures.

We take our proposed controller from Figure 5.4 and use it in Tangram, Centralized, and

Cascaded architectures on a CPU cluster. Centralized uses a single instance of our Figure 5.4

controller in the CPU cluster. Cascaded follows the design by Raghavendra et al. [61]. It

uses a controller in each leaf subsystem, and a divider in the CPU cluster. For Centralized

and Cascaded, each subsystem has its own safety engine for fast response time, as in existing

systems [9].

Comparing Complete Frameworks.

Finally, we compare complete framework designs on our full computer. The framework

designs are built with combinations of the above control architectures and enhancement engine

designs, as listed in Table 5.9. Specifically, Tangram Robust is our proposed framework with

our robust controller. Cascaded LQG is a state-of-the-art design combining prior work [61,92].

Tangram LQG uses our control framework with LQG-based controllers. Tangram Heuristic

uses our control framework with controllers based on industry-class heuristics. For this

complete framework evaluation, we use the Chai programs.
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Table 5.9: Comparing complete control frameworks.

Control System Description

Cascaded LQG Architecture based on [61] with LQG controllers from [92].
Tangram LQG Tangram architecture using LQG-based controllers.

Tangram Heuristic Tangram architecture using industry-standard heuristics.
Tangram Robust Tangram architecture with our proposed controllers.

5.5 RESULTS

5.5.1 Comparing Enhancement Engine Designs

We compare the enhancement engine designs in Table 5.8 on a single CPU chip running

NAS and PARSEC applications. Figures 5.11a and 5.11b show the execution time and EDP,

respectively, with LQG, Heuristic, and Robust enhancement engines, normalized to LQG.

cg dc ep ft is lu mg sp ua bl bo fa fe sw fl vi x2 Av
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Normalized Execution Time

LQG Heuristic Robust

(a) Normalized execution time (lower is better).

cg dc ep ft is lu mg sp ua bl bo fa fe sw fl vi x2 Av
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Normalized Energy Delay Product

LQG Heuristic Robust

(b) Normalized EDP (lower is better).

Figure 5.11: Comparing enhancement engine designs.
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We see that LQG has the highest average execution time. To understand why, note

that LQG controllers converge more slowly than robust controllers, as they are less capable

of handling the relatively unpredictable execution of the applications. For example, LQG

controllers in our design converge on the targets given by a planner after ≈6 intervals. For a

robust controller, this value is 2.

This effect worsens when there is interference with safety engines. For example, when

the LQG enhancement engine inadvertently increases current or temperature too much, the

safety engines lower the frequency. As a result, performance falls much below its target.

Then, the LQG engine responds aggressively to reduce its output deviations, but lacks the

robustness to avoid future safety hazards. The planner does revise the output targets, but it

is invoked only every 6 intervals of the LQG, because of the LQG’s longer convergence time.

Heuristic also operates inefficiently, with oscillations between safety and enhancement

engines as with LQG. It cannot effectively identify a configuration that is optimal and

safe with heuristics alone. It has the highest average EDP. Finally, Robust has the fastest

execution because the robust controller learns to optimally track output targets without

safety hazards. Since it converges faster than LQG and keeps the output deviations within

guaranteed bounds, the planner’s search is effective and completes fast. Overall, Figure 5.11

shows the superiority of the Robust engine. On average, it reduces the execution time by

33%, and the EDP by 27% over LQG.

For more insight, Figure 5.12 shows a partial timeline of the power consumed by a CPU chip

when running ep, an embarrassingly parallel NAS application that has a uniform behavior.

The power is shown normalized to the maximum power that the CPU chip can consume in

steady state. For this application, LQG and Heuristic have many oscillations due to switching

between the safety and enhancement engines. However, the power in Robust converges rapidly

and stays constant, thanks to the better control of its enhancement engine.
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Figure 5.12: Partial timeline of the power consumed by ep.
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5.5.2 Comparing Control Architectures

We compare Tangram to the Centralized and Cascaded architectures running applications

in the CPU cluster. They all use our proposed controller from Figure 5.4 with a robust

enhancement engine. Tangram uses a controller in each subsystem, Centralized uses a single

controller in the CPU cluster, and Cascaded uses a controller in each leaf subsystem and a

divider in the CPU cluster. Figures 5.13a and 5.13b show the execution time and EDP of

the architectures, respectively, normalized to Centralized.
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Figure 5.13: Comparing control architectures.

These architectures differ mainly in the response times of their robust controllers and

planners/dividers. In Centralized, there is a single planner and robust controller that have

long response times. As a result, they sometimes miss opportunities to adjust power and

performance, even though they have a global view. This results in inefficient execution. In

Cascaded, the CPU chip controllers respond fast, but their interaction with the next-level

divider is slow. As a result, the targets used by the controller lag behind the system state,

limiting efficiency. Moreover, a divider is not as effective as a controller in setting the targets.
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Finally, Tangram has the lowest response times at all levels. Therefore, on average, it reduces

the execution time by 11% and the EDP by 20% over Centralized.

To provide more insight, Figure 5.14 shows the power consumed by the entire CPU cluster

as a function of time in dc, another NAS application. The power is shown normalized to the

maximum power that the CPU cluster can consume in steady state. We see that Tangram uses

higher power than Centralized and Cascaded. This is because it is responsive to application

demands with its fast response time. While controllers communicate, they independently

optimize their components for changing conditions by generating output targets and inputs

fully locally. Therefore, the application finishes the earliest and even consumes the least

energy.
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Figure 5.14: CPU cluster power in dc as a function of time.

Due to their longer response time, Centralized and Cascaded consume lower power even

when the application can use higher power. Cascaded attempts to follow application demands,

thanks to the low response times of the CPU chip controllers. However, the longer response

time of the next level of control often results in stale targets, which triggers oscillations. This

results in worse behavior than Centralized.

5.5.3 Comparing Complete Frameworks

Finally, we compare our proposed Tangram Robust framework to state-of-the-art designs

(Table 5.9) on our full heterogeneous prototype. Figures 5.15a and 5.15b show the execution

time and EDP, respectively, running the heterogeneous Chai applications. The bars are

normalized to those of Cascaded LQG, which we consider the state-of-the-art.

If we compare Cascaded LQG to Tangram LQG, we see that the latter has a lower execution

time and EDP. This is because Cascaded is a slow response-time architecture in large systems

(Table 5.7). Moreover, it lacks the hierarchy of MIMO controllers that optimize each level of
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Figure 5.15: Comparing complete control frameworks.

the control hierarchy. In particular, the bfs application suffers from this limitation.

Comparing Tangram LQG to Tangram Heuristic, we see that the latter is a worse design.

With heterogeneity and complex application patterns (e.g., hsti), the heuristics are unable to

identify system-wide efficient settings.

Finally, we see that our proposed framework (Tangram Robust) has the lowest execution

time and EDP. This efficiency is due to two factors: its fast response time (Table 5.7), and the

safety and optimality guarantees from using robust controllers at each level of the hierarchy.

We see large gains even for programs like rsct that finely divide compute between the CPUs

and the GPU. Overall, Tangram Robust reduces, on average, the execution time by 31% and

the EDP by 39% over the state of the art Cascaded LQG. This makes Tangram Robust a

significant advance.

For more insight, consider rsct, which has rapidly-changing GPU kernels and CPU threads.

Figure 5.16 shows a partial timeline of the number of active CPU threads and GPU kernels.

Figure 5.17 shows a partial timeline of the power consumed by the CPU Cluster and the

GPU. The power is shown normalized to the maximum power that the node can consume in

steady state.
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Figure 5.16: Partial timeline of the number of active threads in the CPU cluster and number
of kernels in the GPU in rsct.
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Figure 5.17: Partial timeline of the power consumed by the CPU cluster and the GPU in
rsct.

The frequent peaks and valleys in the three charts of Figure 5.16 show that this application

is very dynamic. The number of active threads in the CPU cluster and the number of kernels

in the GPU changes continuously. Hence, all the frameworks try to continuously change the

power assigned to the CPU cluster and the GPU, based on their activity. In many cases,

they trigger the preconfigured engines, such as when only a few CPU threads are active or

no GPU kernel is running.

However, as shown in Figure 5.17, the different frameworks manage power differently. In

Figure 5.17a, we see that Cascaded LQG is slow to shift power between the CPU cluster and

the GPU, and vice-versa. This framework reacts slowly for two reasons. First, the cascaded

architecture intrinsically has a long response time (Table 5.7). Second, the LQG controller

takes long to converge. As a result, many tasks in the CPU or GPU start and complete

before the power to that subsystem is changed.

In Figure 5.17b, we see that Tangram LQG is more responsive. However, the slow LQG

engine in Tangram LQG can hardly match the fast-changing execution. In contrast, Tangram

82



Robust in Figure 5.17c quickly reassigns power to the subsystem which best improves the

overall EDP. This capability explains the programs’ lower execution time and EDP in this

framework.

5.6 CHAPTER SUMMARY

To control heterogeneous computers effectively, this chapter introduced Tangram, a new

control framework that is fast, globally coordinated, and modular. Tangram introduces

a new formal controller that combines multiple engines for optimization and safety, and

has a standard interface. Building the controller for a subsystem requires knowing only

about that subsystem. As a heterogeneous computer is assembled, the controllers in the

different subsystems are connected, exchanging standard coordination signals. To demonstrate

Tangram, we prototyped it in a multi-socket heterogeneous server that we assembled using

subsystems from multiple vendors. Compared to state-of-the-art control, Tangram reduced,

on average, the execution time of heterogeneous applications by 31% and their energy-delay

product by 39%.
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CHAPTER 6: MAYA: OBFUSCATING POWER SIDE CHANNELS WITH
FORMAL CONTROL

Security is the prime concern in some environments, even above performance or power.

Unfortunately, a computer’s physical outputs like its power, temperature, or electromagnetic

(EM) emissions leak information about the execution. Attackers can measure such outputs

to recover a wealth of information like keystrokes, details of active applications or browsing

history. Prior defenses try to keep the signals at constant levels or add noise, using special

circuits. However, these techniques require new hardware, leaving existing systems in the

field vulnerable. In this chapter, we describe Maya which, for the first time, uses formal

control to dynamically re-shape the power of a computer to confuse attackers.

6.1 PHYSICAL SIDE CHANNELS

Physical side channels like power, temperature, and EM emissions can be used to uncover

many details about an execution. For example, attackers have used these signals to infer the

characters typed by a user [25], to identify the running application, the length of passwords on

smartphones [24], and browser activity on personal computers [167], to disrupt operation in

multi-tenant datacenters [168], and even to recover encryption keys from a cryptosystem [169].

Physical side channels originate because the dynamic power of the computer is proportional

to its switching activity. This activity varies with instructions, groups of instructions, and

application tasks, which all leave distinct fingerprints in the power trace [24,25,37,170,171].

Temperature and EM emissions are also directly related to the computer’s power, and leave

similarly-analyzable patterns [30, 172,173].

6.1.1 Signal Measurement

Attackers can capture physical signals in many ways, most of which are non-intrusive.

For example, attackers can use a malicious application that reads unprivileged hardware

and OS counters for power or temperature [4, 30, 174]. In cloud systems, an application

can use the thermal coupling between cores to infer the temperature or power profile of

a co-located application using its own counters [30]. When power/thermal counters are

unavailable, attackers can estimate power from OS metrics like utilization or from code

analysis [39]. Malicious smart-batteries are another source of energy counters [25].

Power can also be measured by tapping AC electricity outlets [175], power distribution

units (PDUs) [31], and public USB charging booths [26]. If proximity to the victim is possible,
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low-cost infrared thermometers and antennas can be used to read temperature and EM

emissions respectively [176, 177]. With direct access to the computer, attackers can use

multimeters or oscilloscopes [28]. Such high-end equipment is necessary to extract encryption

keys.

Trojan hardware such as chips, co-processors, FPGAs, and other IP modules that are co-

located with the target chip can also surreptitiously measure the target’s chip-level power or

temperature [40, 43,44,178]. Cloud systems share FPGAs across processors and accelerators,

and can be exploited for remote power measurement [44, 178, 179]. In multicore systems,

the hierarchical power management policies can be abused to act as power covert channels

between cores [33].

Recently, it has even been shown that the detailed power activity of a computer can be

measured from a different room in a large building, as long as the victim and the attacker

computers are connected to the same power delivery network [42]. The attacker needs no

physical access, and can measure power using widely-available commercial equipment. This

greatly amplifies the risk of leaking information through power signals.

6.1.2 Signal Analysis

To extract sensitive information from signals, attackers can apply machine learning (neural

networks), signal processing, and statistical analysis techniques [24, 25, 180]. Such techniques

can identify information-carrying patterns in the signal, like its phase behavior and peak

locations over time, and its frequency spectrum after a Fourier transform. To extract

encryption keys, attackers either use simple power analysis (SPA) on a single trace [176], or

differential power analysis (DPA) over thousands of traces [28,29].

The timescale over which the signals are analyzed is determined by the information that

attackers seek and the available measurement channels. Most attacks steal information like

the details of the running applications, keystrokes, or browser data, and are performed with

samples at intervals of milliseconds or more [24, 25, 26]. These are the timescales that our

design focuses on. For cryptographic keys, it is necessary to record and analyze signals with

samples at intervals of a few microseconds or less [28].

6.1.3 State-of-the-Art Defenses

Prior defenses against power side-channel attacks have mostly focused on encryption

circuits. In practice, there are many attacks that are easier to mount, and which use system-

or chip-level power measurements to steal sensitive information not related to encryption,
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like application activity, passwords and browsing data [24,25,26,27,29,30,31,32].

Moreover existing defenses try to mask activity information by keeping physical signals at

constant levels or by adding noise [28,84,85,86,87,88,89]. Unfortunately, all of these defenses

need new hardware and, hence, cannot protect existing systems in the field.

Some of these defenses have additional limitations. For example, adding noise [89] or

randomizing DVFS in the encryption circuits is easily countered by averaging multiple signal

samples [90]. Further, some of these circuit defenses first measure the encryption circuit’s

power and then change their own activity to keep the overall power constant. Unfortunately,

since the defense reacts only after observing the power changes, they too, cannot fully hide

application activity [87].

It is possible to implement software versions of these defenses to defend against information

leaking through chip-level or system-level power signals. However, as we will show later,

these software schemes also have limitations.

An alternate strategy is to modify applications so that they do not leak information through

the physical signals [41]. This is possible for a few critical applications (e.g., OpenSSL) but

is impractical for the rest – like browsers, videos or cameras. To our knowledge, there are

no defenses that can be readily used in existing machines against power side channels in an

application-transparent manner.

There is an urgent need to develop effective defenses against power side channels that do not

rely on special hardware, and which can be implemented as firmware or privileged software

in an application-transparent manner. It is relevant to note that many common attacks

that steal personal data like keystrokes or browser activity, analyze signals by sampling at

intervals of several milliseconds or longer — suggesting that a firmware- or software-level

defense is a good choice.

6.2 THREAT MODEL

We consider power side-channel attacks that perform signal analysis at the timescale

of milliseconds, and which use pattern recognition techniques such as machine learning,

signal processing, and statistics to analyze the signal. As demonstrated in the recent

attack [42], such attacks do not need physical access and can use widely-available commercial

equipment. These attacks can steal information like the identity of the running applications,

the keystrokes typed, and the browser data accessed. This threat model covers the majority

of attacks [24, 25, 26, 27, 30, 33, 37, 42, 44, 168, 180, 181] described in Section 6.1.1, except

for those attacks identifying encryption keys [41,169,176,177,178]. The latter attacks are
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harder to mount, and typically need more expensive equipment and detailed knowledge of

the cryptosystem being attacked.

We assume that attackers can know the algorithm used by Maya to reshape the computer’s

power. They can run Maya’s algorithm and see its impact on the time-domain and frequency-

domain behavior of applications. Using these observations, they can develop machine learning

models to adapt to the defense and try to defeat it.

Finally, we assume that the firmware or privileged software that implements the control

system to reshape the power trace is uncompromised. In a software implementation, the OS

scheduler and DVFS interfaces need to be uncompromised.

6.3 OBFUSCATING POWER WITH CONTROL

We propose that a computer system defend itself against power attacks by distorting

its power consumption. Unfortunately, this is hard to perform successfully because simple

distortions like adding noise can be removed by attackers using signal processing. This is

especially the case if, as we assume in this work, the attacker knows the general defense

algorithm used to distort the signal. Indeed, past approaches have been unable to provide a

solution to this problem. In this chapter, we propose the new approach of using formal control

to re-shape power. In the following, we describe the architecture of Maya, the rationale

behind using formal control, and the generation of effective distortions.

6.3.1 Maya Defense Architecture

Figure 6.1 shows the Maya architecture. Maya has a Mask Generator, a Controller, and

mechanisms or inputs to change the power of a computer that is running an application.

At each time-step, the mask generator computes the target power to mislead attackers and

communicates it to the controller. The controller reads this target and the actual power

consumed by the computer as given by the sensors. Then, it actuates all the inputs so that

power is brought to the target.
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Figure 6.1: High-level architecture of Maya.
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The inputs that the controller actuates are the levels of DVFS, the balloon task, and

the idle activity. A balloon task is one that performs power-consuming operations (e.g.,

floating-point operations) in a tight, tunable loop. The balloon level determines the number

of power-consuming operations. The idle activity level determines the percentage of processor

cycles in which the processor is forced into an idle state.

To understand the environment targeted by Maya, consider Table 6.1. The table shows

two types of power side-channel environments, which we call Mainstream and Specialized.

Our envisioned Maya design targets the Mainstream environment.

Table 6.1: Two types of power side-channel environments.

Characteristic Mainstream Specialized

Attacks [24,25,26,27,30,33,37,42,44,168,180,
181]

[41,169,176,177,178]

Attacker’s sensors counters, electric line tapping Oscilloscopes, on-die trojan circuits

Signal analysis ≥milliseconds ≤microseconds

Controller type Matrix-based controller in firmware or
privileged software

Table-based controller in hardware

Controller response time 5–10µs ≈ 10 ns

Example actuations Change frequency and voltage, regu-
late balloon and idle levels

Insert compute instructions and bub-
bles in pipeline

Example uses Hide what application runs or the
keystrokes typed

Hide features of a crypto algorithm

In Mainstream, attackers measure power with methods like reading counters or tapping

electric power outlets. Since the signal analysis is at the granularity of a few milliseconds,

one can use typical matrix-based controllers, as described in Equations 2.4 and 2.5. They are

implemented in firmware or privileged software. The controller can respond in 5–10µs, and

can actuate by setting the DVFS level, and regulating the balloon and idle activity levels.

This implementation can hide information like the application running or the keystrokes

typed. This environment is the focus of this dissertation, as it is the easiest to set up and is

widely used.

Table 6.1 also shows the Specialized environment, which would require a different design for

Maya. Here, attackers use better sensors, such as oscilloscopes or on-die trojan circuits, and

perform signal analysis at the nanosecond timescale. In this case, the controller would have

to be fast, and hence, cannot use the matrix-based approach. Instead, it has to use a table

of precomputed values, from which it quickly reads the action to be taken. This controller

has to be implemented in hardware and have a response time of no more than ≈10 ns.
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Possible actuators in this environment are hardware modules that insert compute-intensive

instructions or bubbles into the pipeline. With such fast actuation, this implementation could

be used, e.g., to prevent information leaking from crypto-algorithms. We do not consider

this environment in this dissertation.

6.3.2 Why Use Formal Control?

Formal control is necessary to reliably keep the computer’s power close to the target power

given by the mask generator. To understand the importance of formal control, consider the

following scenario. We measure the power consumed by an application at fixed timesteps to

record a trace, as shown in Figure 6.2a. To prevent information leakage, the trace must be

distorted into a different, uncorrelated shape using the balloon application and idle activity.
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Figure 6.2: Example of the power trace for an application.

One way to mislead the attacker is to try to keep the power consumption at constant level

P (Figure 6.2b). To achieve this, we can measure the difference between P and the actual

power pi at each timestep, and schedule a combination of balloon thread and idle level based

on P − pi. Unfortunately, this approach is too simplistic to be effective. It ignores how the

application’s power itself changes. For example, when a balloon thread is scheduled at the

0th timestep based on P − p0, the power in the 1st timestep may end-up being p′1 rather than

our target P .

If this control algorithm is repeatedly applied, it will always miss the target and we will

obtain the trace in Figure 6.2b, where the measured power is not close to the target, and in

addition, has many features of the original trace.

An approach that uses control theory is able to get much closer to the target power level.

This is because the controller makes more informed power changes at every interval based on

history. Moreover, the controller can easily set multiple inputs at a time for accurate control.
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To understand why, we rewrite the equations of controller operation (Equations 2.4 and 2.5

from Section 2.3.1) slightly:

State(T + 1) = A× State(T ) +B × Error(T )

Action(T ) = C × State(T ) +D × Error(T )
(6.1)

The second equation shows that the action taken at time T (in our case, regulating the

balloon and idle activity) is a function of the tracking error observed at time T (in our case,

P − p0) and the controller’s state. The state is a summary of the controller’s experience in

regulating the computer’s power. The new state generated for the next timestep is determined

by the current state and error. Thus, the “accumulated experience” in the state helps to get

closer to the target.

Further, the controller’s actions and state evolution are influenced by the matrices A, B,

C, and D, which were generated when the controller was designed. That process included

running a set of training applications while scheduling the balloon and idle threads and

measuring the resulting power changes. Consequently, these matrices embed the intrinsic

behavior of the applications under these conditions.

Finally, with formal control, the outputs can be kept close to the targets even when runtime

behavior is unpredictable [91], which is often the case with computers. Overall, with a formal

controller, the resulting power trace will be much closer to the target. If the target signal is

chosen appropriately, the attacker cannot obtain application information.

6.3.3 Generating Effective Targets (Masks)

It is important to construct the target power function (or mask) such that it can hide

application activity effectively. Consider what happens if the target is simply set to a constant.

As the application activity changes, any method to maintain the computer’s power at a fixed

level would have to first observe power deviating from the target, and then set the inputs

accordingly. Hence, the output signal would have power activity leaking at all change-points

in the application.

On the other hand, choosing a random target power at every timestep is not a good design

either. The attacker could run the application many times, and then use signal processing

techniques to remove the noise. Then, the native change-points in the application would

stand out. Therefore, the targets must be changed intelligently to hide such inadvertent

leakage, and this is the role of Maya’s mask generator.

An effective mask must hide information in both the time domain and the frequency
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Figure 6.3: Examples of different masks. In each case, the time-domain curve is at the top,
and the frequency-domain one at the bottom.

domain (i.e., after obtaining its FFT). We postulate that such a mask must have three

properties. First, the mask should have several phases, each with a different mean level and

variance (e.g., Figure 6.3c top).

Second, the phase transitions must have different rates – from smooth to abrupt. As a

consequence, the FFT of the mask is spread over a range of frequencies (e.g., Figure 6.3c

bottom). If the mask has the first and second properties, the resulting power signal will have

many artificially-induced change-points that are indistinguishable from the original ones,

effectively hiding them.

Finally, the mask must have repetitive activity with varying periodicity. This is to create

several peaks in the power signal’s FFT (Figure 6.3e bottom). Applications naturally ccreate

peaks in the FFT if they have loops. By introducing repetitive activity, any natural peaks

are overwritten and/or hidden.

We now examine generating a mask with the above properties using standard signals.

Table 6.2 lists some well-known signals, showing whether each signal changes the mean and

the variance in the time domain, and if it creates spread and peaks in the frequency domain.

Figure 6.3 shows segments from each signal graphically.

A Constant signal (Figure 6.3a) has no change in either time or frequency domain. As

discussed earlier, perfectly constant power cannot be realized in practice and information

leaks at application change-points when a constant target is used.

In a Uniformly Random signal (Figure 6.3b), a value is chosen randomly from a range, and
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Table 6.2: Some standard signals and what they change in the time and frequency domains.

Time-domain Frequency-domain

Signal Mean Variance Spread Peaks

Constant – – – –
Uniformly Random Yes – Yes –
Gaussian Yes Yes Yes –
Sinusoid Yes Yes – Yes
Gaussian Sinusoid Yes Yes Yes Yes

is used as a target for a random duration. After this period, another value and duration are

selected, and the process repeats. This signal changes the mean but not the variance in the

time domain. In the frequency domain, the signal is spread across a range but has no peaks.

This mask too, is not a good choice because any repeating activity in the application would

be hard to hide in the time domain signal.

The Gaussian noise (Figure 6.3c) is constructed by sampling values from a Gaussian

distribution whose mean and variance are randomly changed over time. The resulting FFT

is spread over multiple frequencies, but does not have peaks.

The Sinusoid signal (Figure 6.3d) generates a sinusoid and keeps changing the frequency,

amplitude, and the offset randomly with time. This signal changes the mean and variance in

the time domain. In the FFT, it has clear sharp peaks at each of its sinusoid frequencies.

However, there is no spread. Therefore, this signal is not effective at masking abrupt

application changes.

Finally, the Gaussian Sinusoid (Figure 6.3e) is the addition of the previous two signals.

This signal has all the properties that we want (Table 6.2): it changes the mean and variance

in the time domain, and has spread and peaks in the frequency domain. Specifically, consider

the FFT plots. The Gaussian signal (Figure 6.3c) has a noisy spectrum that is spread across

a continuous range of values. In contrast, the Sinusoid signal (Figure 6.3d) has sharp and tall

peaks. Therefore, the combination of the two signals (Figure 6.3e) results in a spectrum that

has peaks that are both large and spread across a range. This is the mask that we propose.

6.4 IMPLEMENTATION ON THREE SYSTEMS

We implement Maya to protect the three different computers listed in Table 6.3. Sys1 is a

consumer-class machine with 6 physical cores, each with 2-way SMT, totaling 12 logical cores.

Sys2 is a server with 2 sockets, each having 10 cores of 2-way SMT, for a total of 40 logical

cores. Sys3 is another consumer-class machine with 4 physical cores, each with 2-way SMT.
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On all systems, the architecture of Maya is the same, as shown in Figure 6.1. We target the

Mainstream attack environment described in Table 6.1. Therefore, the controller and mask

generator run as privileged software, actuating software-level parameters.

Table 6.3: Implementation platforms.

Name Configuration

Sys1 Sandy Bridge (12 cores) + CentOS 7.6
Sys2 Sandy Bridge (40 cores) + CentOS 7.6
Sys3 Haswell (8 cores) + CentOS 7.7

In the systems, the Maya controller measures the power in the processors plus L1 caches

(Sys1), in the package (Sys2), and in the chip (Sys3) using RAPL [182] every 20 ms. It

actuates three inputs: the DVFS level of all cores, the percentage of idle activity, and the

balloon power level. DVFS levels are set through the cpufreq utility [149], and can change

from 1.2 GHz to 2.0 GHz on Sys1, from 1.2 GHz to 2.6 GHz on Sys2, and from 800 MHz to

3.5 GHz on Sys3, with 0.1 GHz increments in all cases.

The idle activity level is changed using Intel’s powerclamp driver interfaces [183], and can

be set from 0% to 48% in steps of 4%. The powerclamp system launches as many kernel-level

threads as the number of cores. These threads repeatedly displace other running threads and

force the cores into idleness, until the desired level of idleness is achieved.

We develop a simple balloon application that runs floating-point operations in a loop. The

percentage of the balloon activity is set using a sysfs file and can change from 0% to 100%

in steps of 10%. The balloon application first spawns as many threads as the total number

of cores. Then, in the main loop, the master thread reads the desired balloon activity and

configures each thread to run a loop of matrix multiply operations for a few milliseconds

followed by sleep cycles. If the desired power balloon level is high, the fraction of sleep is low

and vice-versa. One iteration of the main loop (read level, run compute-sleep loop), takes

around 10 ms. The balloon threads are created with OpenMP, and are run with root priority.

Maya introduces performance overheads in the system. The slowdown comes because the

idle threads and balloon threads can interrupt and displace

the application tasks. The controller and mask generator, by themselves, are simple

functions; their overheads, as we will see in Section 6.6.4, are low. Maya’s slowdown can

be reduced by selectively activating Maya as needed, similar to the power governors in

Linux [149]. However, in this dissertation, we show the worst-case performance overheads,

which is when Maya is always on.

93



6.4.1 Designing the Controller

We design the controller using robust control [91]. For this, we need to: (i) obtain a

dynamic model of the computer system running the applications, and (ii) set three parameters

of the controller (Section 2.3.1), namely the input weights, the uncertainty guardband, and

the output deviation bounds [91].

To develop the model, we use the system identification [109] experimental modeling

methodology as before. We perform system identification by running two applications from

PARSEC 3.0 (swaptions and ferret) and two from SPLASH2x (barnes and raytrace) [165] on

Sys1. The models we obtain have a dimension of 4.

The input weights are set depending on the relative overhead of changing each input.

In our system, all inputs have similar changing overheads. Hence, we set all the input

weights to 1. Next, we specify the uncertainty guardband by evaluating several choices. For

each uncertainty guardband choice, MATLAB tools [108] give the smallest output deviation

bounds the controller can provide. Based on insights from Chapters 3 and 4, we set the

guardband to be 40%, which allows the output deviation bounds for power to be within 10%.

With the model and these specifications, standard tools [108] generate the A, B, C, and D

matrices that encode the controller (Section 2.3.1). The controller’s dimension is 11 i.e., its

state vector in Eq. 2.5 has 11 elements. The controller runs periodically every 20 ms; we set

this duration based on the update rate of RAPL sensors and the latencies to change inputs.

6.4.2 Mask Generator

As stated in Section 6.3.3, we use a Gaussian sinusoid mask (Figure 6.3e) to generate the

targets. This signal is the sum of a sinusoid and a gaussian, and its value at any time T is:

Offset+ Amp× sin(
2π × T
Freq

) +Noise(µ, σ) (6.2)

where the Offset, Amp, Freq, µ and σ parameters keep changing. Each of these parameters

is selected at random from a range of values, subject to two constraints. First, the maximum

power target is always below the Thermal Design Power (TDP) of the system. Second, the

sinusoid’s frequency (Freq) cannot exceed 25 Hz, because the power measurement rate itself

is 50 Hz (from the 20 ms sampling interval). The power measurement has to be at least twice

as fast as the sinusoid (Nyquist criteria).

Once a particular set of parameters is chosen, the mask generator uses them for Nhold

samples, after which the parameters are updated again. Nhold itself varies randomly between

6 to 120 samples.
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6.5 EVALUATION METHODOLOGY

6.5.1 Machine Learning Based Power Attacks

We consider multiple common attacks based on machine learning as listed in Table 6.4.

These attacks try to identify which application is running on the machine, which video is

being encoded, and what is the user’s browsing activity. They are widely reported in prior

work [24,25,26,27,167,175,184]. The defense (i.e., the controller) samples power at 20ms

intervals because RAPL provides reliable measurements only at this timescale. The attacker

also samples power at 20 ms intervals except in Sys3 where, as we will see, samples at 50 ms

intervals because the measurements are taken from an AC power outlet cycling at 60 Hz.

Table 6.4: Machine learning based power attacks.

Attacker’s goal Victim computer Signal capturing method

Detect the active application Sys1 Counters
Identify video being encoded Sys2 Counters
Identify webpages visited Sys3 AC outlet power

1. Detecting the active application: This is a well-known fundamental attack [24, 25,

175,184]. Attackers capture many power traces of the applications they want to identify and

build a machine learning classifier to recognize the application running from a power trace.

We launch this attack on Sys1 using unprivileged RAPL counters to measure power. As

in prior work, we assume that a malicious module installed by the attacker captures these

counters [24,25].

We run applications from PARSEC 3.0 (blackscholes, bodytrack, canneal, freqmine, ray-

trace, streamcluster, vips) and SPLASH2x (radiosity, volrend, water nsquared, and wa-

ter spatial) with native datasets and record 1,000 traces for each application. From each

trace, we extract multiple segments of 15,000 RAPL measurements, and average the 5

consecutive measurements in each segment to remove effects of noise. For accurate training,

we quantize the power values into 10 levels and encode the traces in one-hot format. We use

60% of the data we collect for training, 20% for validation, and report the results for the

remaining 20% test set.

For classification, we use a three-layer multilayer perceptron (MLP) neural network. The

network uses ReLU units for its hidden layers and the output layer uses Logsoftmax.

2. Detecting video data: There is one application, a video encoder, that operates on

multiple videos, and the attacker’s goal is to identify the video being encoded. This is also

a common attack [24, 25, 26, 27, 184]. We perform it on Sys2 targeting the ffmpeg video
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encoder [185]. As with the previous attack, power signals are captured through RAPL.

We take four common test videos saved in raw format: tractor, riverbed, wind and

sunflower [186]. We transcode each video using ffmpeg’s x264 compression for 200 runs and

record the power traces. From each trace, we obtain multiple windows of 1000 samples long,

quantize the power values, and use one hot encoding to train our MLP classifier.

3. Detecting webpages: This is a popular attack [24, 25, 26, 167], and we set it up on

Sys3. Unlike the previous attacks, we capture the power traces by measuring the AC electric

outlet power. Figure 6.4 shows a picture of our test platform. We tap the electric outlet used

by the victim computer with wires connected to a multimeter. This multimeter (Yokogawa

WT310) passes its measurements into another computer using a USB connection. This is a

powerful and stealthy attack because information is obtained by simply rigging electricity

outlets without installing any modules on the victim. Since the natural frequency of AC

is 60 Hz (corresponding to 16.6 ms cycles), the multimeter collects the root mean square

(RMS) power samples every 50 ms (i.e. for every three AC cycles).

Figure 6.4: Tapping AC electric outlet power.

We record 100 power traces when visiting the popular websites google.com, ted.com,

youtube.com, chase.com, ieeexplore.ieee.org/Xplore/home.jsp (IEEE Xplore), amazon.com

and paypal.com using the Google Chrome browser. Each trace is nearly 15 seconds long.

Unlike before, we use the signals’ FFT to train our MLP because browser activity has varying

rates of change in a short duration. FFT captures this better.

6.5.2 Designs Compared

Table 6.5 lists the designs whose security we compare. In Noisy Baseline, each run of the

applications is executed with random DVFS and idle activity levels that are configured before

the application runs. Since the application is frequently interrupted to enforce idleness, the

power trace is noisy.

Random Inputs is a defense where the values of the inputs (DVFS, balloon and idle activity

levels) are changed randomly at runtime. Once a value for an input is chosen, it is kept
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Table 6.5: Designs compared.

Design Description

Baseline High-performance insecure system without added noise
Noisy Baseline Each run has new DVFS and idle activity levels
Random Inputs Input values are set randomly at runtime
Maya Constant Maya (Figure 6.1) but with a constant mask
Maya GS Maya with a Gaussian Sinusoid mask (Proposed defense)

unchanged for a random duration, after which another value is selected. This makes the

application’s power profile significantly noisy.

Maya Constant uses Maya’s formal controller but the target is kept constant. Finally, Maya

GS is our proposal that uses the formal controller and Gaussian Sinusoid mask generator.

We evaluate the security of the designs in Table 6.5 against Basic and Adaptive attacks. In

the Basic attack, attackers collect training data when the victims run with Noisy Baseline,

and test the MLP classifier on signals obfuscated with the other defenses (Random Inputs,

Maya Constant or Maya GS ).

The Adaptive attack is where attackers adapt to each defense. They train their MLP with

obfuscated traces collected when a defense is active (e.g., Maya GS ) and use the MLP to

recognize new obfuscated traces from the same defense.

6.6 RESULTS

We describe the effectiveness of the defenses, give insights using signal statistics, show

the effectiveness of formal control, present the defense overheads, compare the effectiveness

across machines, and consider attacks at higher frequency.

6.6.1 Effectiveness of the Defenses

Detecting the active application: The MLP classifier trained on Noisy Baseline signals

has an average accuracy of 85% when predicting other Noisy Baseline signals. The accuracy

drops to nearly 9% when this classifier is tested on signals obfuscated by any of the other

defenses in Table 6.5 (Random Inputs, Maya Constant and Maya GS ). Note that the random

chance of correct classification is ≈9%, as there are 11 applications. An accuracy near or

below this value indicates a classification failure. Hence, in the Basic attack mode, the MLP

classifier is no better than chance prediction. This is because the obfuscated signals are not

similar to the Noisy Baseline traces.
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Figure 6.5: Confusion matrices for detecting the active application from power signals using
Advanced attacks.

Next, consider Adaptive attacks where attackers train their MLP on the traces obfuscated

by a defense, and classify other traces obfuscated by the same defense. We show these

results using confusion matrices (Figure 6.5a). The confusion matrix is a table where each

row corresponds to the true labels of the applications (0 – 10) and each column has the

fraction of the signals classified as the predicted labels. For example, the entry in the 0th row

and 1st column gives the fraction of signals that had a true label of 0 but were classified as

application 1. The diagonal entries give the correct predictions and averaging all the diagonal

entries gives the overall average accuracy.

Figure 6.5 shows the confusion matrices for Adaptive attacks on the three defenses we

test. The average classification accuracy is 94%, 62% and 14% for Random Inputs, Maya

Constant, and Maya GS, respectively. Random Inputs fails at obfuscation because randomly

changing the system inputs does not hide the inherent activity of the application. For

example, changing DVFS has a different impact in compute and memory bound phases of

the application. The MLP catches such differences.

Maya Constant manipulates the system inputs to maintain constant power instead of

changing them randomly. It has better obfuscation than Random Inputs but is ultimately

ineffective. As described in Section 6.3.3, ensuring constant power is not realistic, and

information leaks at all application change-points.

Finally, the advanced attack on Maya GS has only 14% average accuracy. This is close to

the chance prediction accuracy of 9%. The only difference is because the MLP’s classification

is biased towards a few labels (e.g., labels 9, 10). This occurs sometimes when the MLP

cannot find patterns to learn in the training data. We verify this by training another MLP
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directly on the Gaussian sinusoid masks, which have no correlation with the applications,

and see an accuracy of 13%.

Thus, Maya GS achieves excellent obfuscation. The Gaussian sinusoid mask and the

formal controller thoroughly overwrite and hide any original patterns in the application with

false activity. Moreover, Maya GS produces a different trace in each run. Therefore, the

MLP cannot find any common pattern.

Detecting video data: In the Basic attack, an MLP trained with Noisy Baseline signals

has a video detection accuracy of 84%, 25%, 34% and 18% when tested on Noisy Baseline,

Random Inputs, Maya Constant, and Maya GS signals, respectively. Here, the accuracy of

random chance classification is 25%, as we have four videos. Therefore, we can construe that

the basic attack does not succeed with any of the 3 defenses.

For the Adaptive attack, Figure 6.6 shows the confusion matrices. The average accuracy of

the MLP attack is 72%, 90% and 24% respectively, for Random Inputs, Maya Constant and

Maya GS. As with the previous attack, Random Inputs and Maya Constant fail to obfuscate

activity, and only Maya GS can hide activity.

Although both Random Inputs and Maya Constant are ineffective, the MLP has a lower

accuracy against the former. It cannot clearly distinguish traces of video 1 (tractor) from

video 2 (wind) with Random Inputs. Originally, these videos have similar traces except for

a few peaks. Therefore, the noise caused by Random Inputs results in misclassification. In

contrast, Maya Constant, makes the peaks more prominent because the signal is otherwise

constant. Thus, the MLP has a higher success rate with Maya Constant.
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Figure 6.6: Confusion matrices for Adaptive video detection attacks.

Detecting browser data: Recall that we run this attack using FFT values from AC outlet
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power traces. Here, the accuracy of random chance classification is 15%, as we have seven

webpages. In the Basic attack, an MLP trained with Noisy Baseline signals has an accuracy

of 88%, 14%, 21% and 14% when tested on Noisy Baseline, Random Inputs, Maya Constant,

and Maya GS signals, respectively. This indicates that the three defenses can withstand the

basic attack.

For the Adaptive attack, the average accuracy of the MLP models is 51%, 40% and 10%

respectively, for Random Inputs, Maya Constant and Maya GS. Websites like Google (0),

Youtube (2), Chase banking (3) and Amazon (5) are recognized even with Maya Constant,

thus endangering privacy. In contrast, Maya GS achieves perfect obfuscation.

Overall, the several attacks establish that Maya GS is successful in obfuscating power side

channels. Other defenses that maintain constant power or randomize the system settings fail

to achieve this level of security. Maya’s strength is clear when it resisted Adaptive attacks

where the attacker could train with thousands of signals generated from Maya. This comes

from the effective mask (Gaussian Sinusoid) and the formal controller that keeps power close

to the mask.
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Figure 6.7: Confusion matrices for Adaptive webpage detection.

6.6.2 Signal Statistics and Analysis

For more insights, we analyze the signals produced by each defense of Table 6.5 using

signal summary statistics and changepoint analysis.

Signal summary statistics: We perform this analysis for each defense to study its behavior

across runs. For each application, we collect all the traces produced by the defense across

runs and average them. Then, we examine the distribution of values in this averaged signal.

An effective defense would have similar distribution across applications.
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Figure 6.8: Summary statistics of the average of 1,000 signals. The Y axis of each chart is
drawn to a different scale.
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Figure 6.9: Average of 1,000 traces for blackscholes, bodytrack and water nsquared (labels 0,
1 and 9). The Y axis of each chart is drawn to a different scale.

Figure 6.8 shows the box plots of values in the averaged traces for Noisy Baseline, Random

Inputs, Maya Constant and Maya GS. The averages are obtained from 1,000 raw traces of

each PARSEC application. Each chart labels the applications on the horizontal axis from 0

to 10. Each box shows the 25th and 75th percentile values for the application and the line

inside the box is the median value. The whiskers of the box extend up to the maxima and

minima. The ‘+’ markers represent values detected statistically as outliers in the distribution.

For legibility, the Y axis on each chart is drawn to a different scale.

With the Noisy Baseline (Figure 6.8a), the value distribution is distinct for each application,

and acts like a fingerprint. In Random Inputs (Figure 6.8b), the boxes shrink in size, but

the relative difference remains the same. This is because changing inputs randomly does not

hide the inherent changes induced by the application. With Maya Constant (Figure 6.8c),

the boxes shrink further and the median values of applications become closer to each other.

However, the distribution is sufficiently different to identify each application.

Finally, with Maya GS (Figure 6.8d) the distributions are near-identical. The median

values are nearly the same because Maya GS produces a different trace in each run that is

uncorrelated with other runs. Moreover, each run uses the whole range of allowed values.

Therefore, averaging traces cancels out the patterns — simply leaving a constant-like value

with small variance. Hence, the median, mean, variance, and the distribution of the samples
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are close, indicating a high degree of obfuscation. Note that the resolution of this data is

0.01W.

As an example of the differences, Figure 6.9 shows the averaged signals of three applications

for all the designs. Again, the Y axis for each chart is drawn to a different scale. Following

the earlier discussion, Noisy Baseline (Figure 6.9a), Random Inputs (Figure 6.9b) and Maya

Constant (Figure 6.9c) show distinct traces for each application. Indeed, with Random

Inputs, the different iterations in the water nsquared application are clear because the random

noise is averaged out. For this application, Maya Constant (Figure 6.9c) also leaves some

change-points in the initial iterations

It is only in Maya GS (Figure 6.9d) that the average traces are indistinguishable from

each other. This results in the highest degree of obfuscation.

Change Point Detection: This is a signal-processing technique used to identify times

when the properties of a signal change. The properties can be the signal mean, variance,

edges, or fourier coefficients. We use a standard change point detection algorithm [187] to

identify the phases found in the re-shaped signals. We present the highlights of this analysis

using the blackscholes application.
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Figure 6.10: Change point detection in blackscholes using traces over time. Figure 11(a)
shows all four phases being detected.

In the Noisy Baseline (Figure 6.10a), four phases of the application can be clearly dis-

tinguished: (1) sequential, (2) parallel, (3) sequential and (4) idleness after the application

completes. The difference between the different phases is not too large and there is some noise

because of interference with idle and balloon activity. Nonetheless, the algorithm detects all

the four major phases.

With Random Inputs, (Figure 6.10b), the profile is significantly noisy. Since the noise is

random, the inherent application activity is uniformly perturbed and hence, any phases in

the application are still visible. The change-point detection algorithm could identify all the

phases.

In Maya Constant (Figure 6.10c), the power profile is mostly around 25 W because the

mask is held constant at that value. However, the algorithm can still recover all the phases.
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Recall that a constant target cannot prevent activity from leaking at the phase transitions.

There are sharp peaks at all phase change points. The FFT of the signal (not shown) also

preserves such abrupt changes. All such information is used by the changepoint detection

methods to identify phase behavior.

Figure 6.10d shows the signal with Maya GS. Change point analysis detects many phases,

but these are all artificial. The signal and its FFT (not shown) are totally different from

the original signal. In fact, it is also not possible to infer when the application completed.

The application actually completed around 105 s, but the power signal has no distinguishing

change at that time.

6.6.3 Effectiveness of Formal Control

Figure 6.11 shows the value distribution in the averaged signals as given by: (i) the

Gaussian Sinusoid mask generator (Figure 6.11a) and (ii) the actual power measured from

the computer (Figure 6.11b). It can be seen that the formal controller is effective at making

the measured power appear close to the target mask. Indeed, this accurate tracking is what

helps Maya in effectively re-shaping the system’s power and hiding application activity.
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Figure 6.11: Value distribution in the average of targets and measured powers, showing
high-fidelity power-shaping.

6.6.4 Overheads and Power/Performance

Finally, we examine the implementation overheads of Maya and its impact on application

power/performace.

Overheads of Maya: The controller reads one output, sets three inputs and has a state

vector x(T ) that is 11-element long (Equations 2.4 and 2.5). Hence, the controller needs less

than 1 KB of storage. At each invocation, it performs ≈200 fixed-point operations to make a

decision. This completes within 1µs.
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The mask generator requires (pseudo) random numbers to compute the mask and change

the properties of the gaussian distribution and sinusoid signal (Equation 6.2). In our

implementation, we use a software library that takes less than 10µs to generate the random

numbers. A hardware implementation can use off-the-shelf hardware instructions and IP

modules to generate them in sub-µs [188,189].

Maya needs few resources to operate, making it attractive for firmware, software or even

hardware implementations. The primary bottlenecks in our implementation were the sensing

and actuation latencies, which are in the ms time scale.

Application-Level Impact: We run the PARSEC and SPLASH2x applications on our

three systems with all the designs and on Baseline. Baseline runs all applications at the

highest available frequency without inserting idle threads or the balloon application. We

measure the impact of the other designs relative to Baseline.

Figure 6.12 shows the power and execution time of all the designs, normalized to that

of the high-performance Baseline. From Figure 6.12a, the average power consumed by the

applications with Noisy Baseline, Random Inputs, Maya Constant, and Maya GS is 30%,

31%, 11% and 31% lower than Baseline, respectively. The power is lower because all defenses

hinder the execution with idle threads and low DVFS values.

Figure 6.12b shows the normalized execution times. On average, the execution time

increases of Noisy Baseline, Random Inputs, Maya Constant, and Maya GS are 95%, 126%,

124% and 61%, respectively, over the Baseline. Maya Constant uses a single power target that

is lower than the maximum power at which Baseline runs. Therefore, its execution time is the

worst. Noisy Baseline and Random Inputs are also slow because of continuous interference

between the application and the idle and balloon threads. Maya GS has relatively lower

execution time than the others because its execution spans a wider range of power levels

thanks to its many choices. As a result, it allows applications to run steadily at higher power

occasionally. Note that only Maya GS provides security among all the designs.

It can be shown that the power and performance overheads of the designs in Sys2 and

Sys3 are similar to those in Sys1. This shows that Maya is robust across different machines.

We believe that the loss of performance with Maya GS is justified by the highest level of

security it provides. To reduce the slowdown further, Maya can be activated only on demand

like the Linux power governors [149]. Authenticated users or secure applications can activate

Maya before commencing a sensitive task, and stop it once it completes.
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Figure 6.12: Overheads of our environments on Sys1 relative to a high-performance insecure
Baseline.

6.6.5 Effectiveness Across Machines

Using multiple machine learning-based attacks, signal analysis, and different forms of signal

collection (counters and AC outlet measurements), we showed how Maya GS can obfuscate

the power signals from different computers. Maya’s security comes from an effective mask,

and from the formal controller that can shape the computer’s power into the given mask. We

want to emphasize that we implemented Maya on three different machines without modifying

the controller or the mask generator, demonstrating our proposal’s robustness, security, and

ease of deployment.

6.6.6 Attacks at Higher Frequency

We repeat the application detection adaptive attack on Sys1, but reduce the attacker’s

power sampling interval from 20 ms to 10 ms, 5 ms, and 2 ms. In all cases, the Maya defense
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samples power at 20 ms. Figure 6.13 shows the average application detection accuracy across

the sample intervals. We see that the average detection accuracy does not change much, and

remains low like in Figure 6.5c, even with the faster sampling by the attacker.
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Figure 6.13: Accuracy of machine learning classifiers in the application detection attack on
Maya GS for different attacker sampling intervals.

Faster sampling does not improve detection accuracy in this attack because the distinguish-

ing patterns of the applications (e.g., phases) occur at longer timescales than the sampling

intervals. Furthermore, even though Maya’s controller only changes inputs every 20 ms, the

idle and balloon threads are always running, and add noise to the application. Finally, faster

sampling inherently has more noise, affecting detection.

6.7 THWARTING A NEW REMOTE POWER ATTACK

Maya is practical and mitigates attacks that require no physical access. A recent work [42]

implemented a new power covert-channel attack that involved four victim computers connected

to AC electric power outlets in a building. An attacker computer situated 90 feet away

from the victims taps to an AC electric power outlet connected to the power network of the

building. The attacker listens to high-frequency voltage ripples with an oscilloscope every

2µs, and decodes one bit of information every 33 ms, exfiltrating data from each victim.

That work then implements Maya in software, with controller actions taken every 40 ms. It

shows that Maya effectively thwarts that covert channel. When Maya is used, the attacker

cannot even detect the pilot sequence necessary to extract the transmitted bits. It also shows

that Maya is the only software defense that provides security. Other approaches like adding

random noise fail to prevent information leakage. Overall, this shows Maya’s effectiveness

and ease of deployment.
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6.8 CHAPTER SUMMARY

This chapter presented a simple and effective solution against power side channels. The

scheme, called Maya, uses for the first time, formal control to distort, in an application-

transparent way, the power consumed by a computer—so that the attacker cannot obtain

information about the applications running. The controller keeps the power close to a desired

time-varying target, even as runtime conditions change unpredictably. The power signal is

made to appear to carry activity information which, in reality, is unrelated to the program.

We implemented Maya on three machines using OS threads, and showed that it is very

effective at obfuscating application activity. Maya has already thwarted a newly-developed

remote power attack.
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CHAPTER 7: RELATED WORK

7.1 DYNAMIC CONTROL FOR PROCESSORS

The argument for systematic coordinated control of multiple power/performance man-

agement policies has been advocated in prior research [59,61,78,155,190,191]. In addition,

hardware support for adaptive power/performance management is increasingly being used in

modern processors [1,2,3,4]. The Intel Skylake processor [1] uses a SISO PID controller within

its energy management architecture. The IBM POWER 8 processor [2] has reconfiguration

registers within the pipeline, and supports fast and fine-grained per-core DVFS. The Intel

IvyBridge processor [3] can resize its last-level cache by power gating its ways.

We discuss some past research in this area, following the classification in Table 2.2.

Rule-Based Heuristics: There are some works that use rule-based heuristics to adapt

configurable architectures. Some of these works adapt one resource (e.g., [11, 12]). Other

works adapt multiple resources in a coordinated manner (e.g., [10,78,116,117]). In particular,

Vega et al. [78] demonstrate the conflicting nature of decoupled management of multiple

policies. Zhang and Hoffmann [63] propose a framework for maximizing performance under a

power cap using a heuristic algorithm.

Model-Based Heuristics: There are some works that use models to drive the adaptation

heuristics. For example, they use models for joint memory and processor DVFS [55], cache

size [192], multicore thermals [115], or on-chip storage [193]. Our MIMO methodology also

uses an offline model of the processor dynamics.

Control Theoretic Techniques: In addition to the SISO schemes discussed in Sec-

tion 2.1( [1, 13, 102, 104]), there are works that use multiple SISO controllers managed

together with heuristics [194, 195, 196]. The use of such decoupled controllers has to be

planned carefully before deploying them. If there are cross dependencies between the input

of one and the output of another, then the controllers will conflict with each other.

The approach that combines multiple SISO models to generate a larger MISO controller [99,

101, 103] still requires heuristics to encode some decisions. This may make the controllers

suboptimal and error prone [113, 133]. The MIMO methodology can natively model the

required interactions, eliminating unanticipated behavior and finding better solutions.

There have been some designs that use hierarchical control loops to coordinate multiple

conflicting policies or objectives. Specifically, Raghavendra et al. [61] propose such a scheme

to control power in datacenters, and Fu et al. [100] propose another such design to control

utilization in processors. In these proposals, a formal controller is used only in the innermost
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loop, and each higher level works on a different abstraction and specifies the targets for the

lower levels. This approach is specific for hierarchically organized systems. For other cases, it

might reduce the freedom of the slower timescale controller, hence resulting in a sub-optimal

operation.

Machine Learning techniques: Machine learning techniques have been used to tune

architectural parameters (e.g., [59,114,197]). They have two main differences with control

theory techniques. The first difference is runtime feedback.

Machine learning techniques learn by recording what input values are best for different

observed output conditions. However, if they find different output conditions at runtime

than those they were trained on, they provide a lower-quality solution unless they go through

an expensive re-training phase. Control theory techniques, instead, when they find runtime

output conditions to be different than those modeled, they use their intrinsic feedback loop

to adapt to the new conditions with low overhead. The second difference is design guarantees.

Unlike machine learning techniques, control theory techniques can provide convergence,

stability, and optimality guarantees.

Optimization techniques: There are some works that adapt based on optimization for-

mulations. For example, they optimize inputs to minimize power consumption [198, 199],

performance subject to power constraints [112], or E×D2 [120]. STEAM [113] models the

power and performance of cores as a function of P- and T-states, IPC, temperature, and mem-

ory accesses. It then uses a convex optimization solver to maximize the ratio of performance

over power.

7.2 MULTILAYER RESOURCE CONTROL

Expanding on Chapter 1, we discuss additional aspects of prior work on multilayer control.

We consider controller organization (Table 2.1) and methodology.

Organization: Decoupled controllers are simple to design and modular, while monolithic

controllers can achieve better results due to a global view of the system. However, decoupled

techniques can exhibit destructive interference between controllers, even at a single layer [61,

62, 69, 78, 92, 200]. In turn, monolithic techniques have design complexity and are less

maintainable, scalable, or portable [61,62,63,65,66,69].

Some designs use decoupled controllers that are coordinated implicitly by the use of

controller ranking [63, 66, 67, 79, 80]. In these designs, each controller runs at a slower

timescale than its immediately higher-ranked one. The highest-ranked controller adjusts one

resource first, to attain the most important goal. Each subsequent lower-ranked controller
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modifies a different resource, to meet a different goal. Bhattacharya et al. [152] and Maggio

et al. [111] show that such designs may have responsiveness and stability issues.

Graybox [71] creates middleware that exposes useful OS information to the application to

coordinate software controllers. Other authors argue for collaborative control [69]. However,

as we see next, most of the existing collaborative controllers (e.g., [68,69,81]) have limitations.

Methodology: Multilayer controllers can be based on heuristics, control theory, machine

learning, or optimization theory. Many works rely on heuristics to modify parameters

and coordinate controllers [63,68,69,81]. However, researchers have shown how heuristics

can fail [67]. Other designs use a combination of heuristics and control theory [61, 66],

heuristics and optimization [190], or just optimization [201]. The xTune framework [73]

uses Monte Carlo simulations at runtime to pick the statistically-best action from a list of

designer-specified actions. Some designs use a combination of machine learning and PID

control [67,202]. Muthukaruppan et al. [65] use price theory for big.LITTLE systems.

7.3 DECENTRALIZED CONTROL OF HETEROGENEOUS COMPUTERS

General Control

There is a large body of work on controlling homogeneous or single-ISA heterogeneous

processors [54,55,58,61,78,92,94,102,111,166,202,203,204,205,206,207,208]. Only a few

consider heterogeneous processors with CPUs and GPUs [4,52,53,209,210]. Still, they use

non-modular controllers that do not match the modular heterogeneous environments we

target.

Resource control in production computers is predominantly heuristic [1, 2, 3, 4, 9, 50, 52,53,

78,81,153,154,166,211,212,213,214]. As we indicated, heuristic control has limitations.

Research works propose many optimizing controllers [56, 57, 58, 61, 92, 94, 101,111, 113, 116,

207]. Most do not consider interference from dedicated safety controllers. Therefore, they do

not simultaneously guarantee optimality and safety. Some works do consider temperature as

a soft constraint [61,94,113] while some probabilistically characterize mechanisms like circuit

breaker tripping for their search [58]. In real designs, there are many safety engines that

interrupt and override optimizing engines unpredictably. We guarantee optimality and safety

simultaneously.

Enhancement Approaches

Heuristic Control: Many designs rely heavily on heuristics for resource control [1, 2, 3, 4,

52, 53, 54, 55, 78, 116]. While easy to implement for simple systems, designing, tuning and

verifying heuristics becomes dramatically expensive as systems and resource management
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goals become complex. This can result in unintended inefficiencies [78,79,92,101,111,155].

Formal Control. PID controllers are popularly used in many works due to their simplic-

ity [1, 9, 61, 79, 80, 194, 196,202, 204,215,216, 217]. However, PID controllers are SISO designs,

inadequate to meet the multiple objectives in computers [92, 94, 111]. LQG [60, 92] and

MPC [111] controllers can handle MIMO systems, but are relatively less effective in uncertain

and multi-controller environments [91,94]. Yukta [94] (Chapter 4) proposes the use of robust

controllers for computer systems. These controllers operate well in environments that are not

fully modeled. Yukta introduced the use of a robust controller for each system layer (e.g.,

the hardware and OS layers).

Other Systematic Methods. Some works formulate Energy×Delayn minimization as a convex

optimization problem solved with linear programming solvers [113,201,203]. Solver-based

approaches require more time to generate a decision than robust controllers. Some use

market-theory [56,57] or game-theory [58] to manage resources in specific contexts. Finally,

some researchers use machine learning techniques for resource management [59, 197, 218, 219].

Mishra et al. [202] use machine learning to tune a PID controller and a solver that manage a

big.LITTLE processor.

Control System Architectures

Centralized. Most works use centralized frameworks (e.g., [52,53,92,101,111,113,201]). Some

use two-step proxy designs where a proxy module in each component requests resources and

a centralized manager performs the allocation [56,57,58,59,116,207]. Centralized designs are

not modular, do not scale to multi-chip computers, and do not fit IP-based system designs.

As systems grow large, the controller’s response time degrades quickly because it runs a

bulky algorithm and becomes a point of contention.

Cascaded. Raghavendra et al. [61] propose a multilevel cascaded system to manage power

in a datacenter. Rahmani et al. [60] propose a similar 2-level design for a big.LITTLE

processor. Here, each component has two LQG controllers. A supervisor chooses one of them

to control the system and provides targets for all local outputs. We showed that cascaded is

non-modular and has a poor response time.

Other Architectures. Muthukaruppan et al. [66] use a combination of cascaded and decoupled

PID controllers for a big.LITTLE processor. Some designs order decoupled controllers by

priority for limited coordination [79,80].
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7.4 PHYSICAL SIDE-CHANNEL SECURITY

Attacks

Many attacks identify sensitive information from physical signals using machine learning (ML)

based pattern recognition [180]. Yan et al. recover the running application’s identity and

the number of keystrokes typed [24]. They measured power through unprivileged counters.

Lifshits et al. identified browser, camera and location activity, and the characters typed [25],

using measurements from a malicious battery. Chen et al. recovered Android app usage

information from power signals [37]. Yang et al. showed that compromised public USB

charging booths can recover the user’s browser activity [26].

Clark et al. [167] and Hlavacs et al. [175] identified the webpages and virtual machine

applications, respectively, using the server’s electrical outlet power. Islam et al. showed

the vulnerability of multi-tenant datacenters to voltage, thermal and acoustic (from cooling

devices) side channels [31,168,181].

Michalevsky et al. showed that malicious smartphone applications could track the user’s

location without GPS, by only using unprivileged OS-level power counters [27]. Conti et

al. [220] showed that a laptop’s power signals differ by the user, and they could identify the

laptop’s original user among other occasional users.

Shao et al. developed a covert channel that uses the power delivery network to which a

computer is connected [42]. Masti et al. developed a covert channel in multicores based

on temperature coupling between the cores [30]. Khatamifard et al. build a power covert

channel based on the hierarchical power management policies in multicores.

There are several attacks that use trojan chips, circuits and FPGAs to measure physical

signals of co-located chips [40,43,44,45,178]. Cloud systems are offering FPGA platforms,

and are vulnerable to power analysis attacks [44,178,179].

Attackers have also used software analysis or modeling to estimate power when direct

measurement is difficult [24,34,35,36,38].

Kocher et al. [28] give a detailed overview of exploiting power signals with Simple Power

Analysis (SPA) and Differential Power Analysis (DPA) to recover encryption keys. How-

ever, they assume physical access. There are other attacks which could circumvent this

restriction [178].

There are attacks that capture EM emissions using antennas, and recover sensitive data

using similar techniques as with power [41,172,176,177,184,221].

Defenses

Trusted execution environments like Intel SGX [222] or ARM Trustzone [223] do not contain
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physical signals [173,224]. Therefore, several countermeasures against power side channels

have been proposed [28,29,84,85,86,87,88,89,225,226,227,228]. Their goal is primarily to

protect encryption circuits, and require new hardware.

Known defenses usually operate by either suppressing power signal changes that arise

due to changing activity [84, 85, 225, 226], or adding noise to drown activity [28, 29], or

both [87]. A common approach to adding noise is to randomize DVFS levels using special

hardware [86,88,89].

Baddam and Zwolinski showed that randomizing DVFS is not a viable defense [229]. Yang

et al. suggest randomly scheduling the encryption task among the cores in a multicore, apart

from randomly setting the clock frequency and phase [227]. Real et al. showed that adding

noise or empty activity can be filtered out, and is ineffective [90]. The defense we propose,

Maya, does not simply add noise to the power signal. Instead, it re-shapes it to a suitable

mask.

A different approach is to temporarily cut-off a circuit from the outside and run it with

a small amount of energy stored inside itself [228]. Alternatively, each application can be

modified so that its physical outputs do not carry sensitive information [41]. However, it is

not practical to modify all applications to have indistinguishable power traces.
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CHAPTER 8: CONCLUSIONS AND FUTURE WORK

To address the urgent need for building resource efficient and secure computers, this

dissertation made a series of contributions. The key idea has been to manage computers

with principled methods from formal control. First, it applied MIMO techniques to the

development of controllers for processors. Then, it presented Yukta, which is a new approach

to build coordinated multilayer formal controllers for computer systems. Next, it introduced

a new control framework Tangram, which is fast, globally coordinated, and modular, to

manage heterogeneous systems. Finally, it presented a simple and effective solution against

power side-channels called Maya. Maya uses, for the first time, formal control to distort, in

an application-transparent way, the power consumed by a computer—so that the attacker

cannot obtain information about the applications running.

The proposed solutions in the dissertation have been prototyped on several platforms

including one built along with AMD engineers. These designs significantly outperformed the

state of the art.

The research in this dissertation brought formal control closer to computer architecture

and has been well-received in both domains. It has the first application of full-fledged MIMO

control for processors, the first use of robust control in computer systems, and the first

application of formal control for side-channel defense. We expect this work to be key in

architecting future intelligent systems that are efficient, secure, and reliable.

Building on this dissertation, there are several exciting research directions to achieve

extreme efficiency and security at scale. A promising approach is to augment the control

theory-based techniques proposed by this work with machine learning (ML) methods. ML

methods can use data to develop control policies, although the guarantees they provide are

about the average case and are stochastic in nature. In contrast, control theory can provide

worst case guarantees about stability, convergence and optimality. We can have ML agents

dynamically reconfigure parts of the computer proactively, while robust control corrects the

settings after sensing the actual conditions.

In another direction, we can use reinforcement learning (RL) to fully customize the system

to application activity. However, online RL training is too slow. Hence, we could use only

robust control initially and, in parallel, train the RL agent by observing the controller. Once

the RL agent is sufficiently confident, it fully takes over the system.

On the security front, it is well known that computers have many side-channels. Extending

the Maya approach with MIMO control, we can envision the development of obfuscation

controllers (obfuscators) that obfuscate multiple side-channels at the same time. Different
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parts of the chip, like the prefetcher, cache controller and branch predictor can include these

obfuscators to prevent many side-channels. Such obfuscators could be turned-on/off on

demand, and even be reconfigured when different energy/performance/security trade-offs

are desired. Moreover, these obfuscators could be realized by intelligently re-programming

existing controllers that already exist in computers (e.g., cache or memory controllers), to

reduce the hardware overhead.

An important related question to answer is: how to achieve both resource efficiency and

security? Fundamentally, these are opposing goals. Efficiency requires customizing resource

utilization to application activity. However, this makes system outputs like power to be

highly correlated with the application activity, which leaks information. A possible approach

is to use information analysis and properties of formal control to identify the optimal strategy

for combining efficiency and security.
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APPENDIX A: OPTIMIZER AND PLANNER ALGORITHMS

A.1 OPTIMIZER ALGORITHM IN YUKTA

The optimizer searches for the output targets to minimize a metric in its layer. Intuitively,

the optimizer searches along two directions: a high throughput region (Up) and a low

throughput region (Down). To move up in the high throughput region, the algorithm

increases the target of Throughput and the target of the output, which is significantly below

its maximum limit. Alternatively, to move down in the low throughput region, the algorithm

decreases the target of Throughput and the target of the output, which is close to its limit.

The algorithm that the hardware optimizer runs to maximize Throughput2

Power
(equivalent to

minimizing EDP) under constraints (Section 4.5) is listed in Algorithm A.1. It is based on the

algorithm in Section 3.2, and it is modified to support search constraints and multiple outputs.

The hardware optimizer reads the outputs in its layer, the limits (Section 4.6), convergence

bound ε, and restart probability δ. The optimizer converges if the relative improvement in the

metric being optimized is below ε. The restart probability δ determines the probability with

which the optimizer’s search can restart, even after convergence is achieved. The optimizer is

initialized to search in the Up direction.

When invoked, the optimizer first computes the margins of all outputs [defined as the

difference between the maximum limits and the actual values of the outputs (line 1)] and

the errors [defined as the difference between the targets and the actual outputs (line 2)]. It

then identifies Outputagg (the output other than Throughput that has the smallest margin),

Outputlaz (the output other than Throughput that has the largest margin), and Outputlag

(the output with the largest error).

A negative margin of Outputagg means that an output exceeded its limit (line 3). The

optimizer must then reduce the target for this output (line 4). Additionally, the optimizer

reduces the target of Outputlag because its tracking error is the largest (its target is too

high). When an output’s target is too high, the controller may cause the remaining outputs

to go over their targets, so that the lagging output is brought closer to the target. Since this

can result in some of the outputs going over their limits, the target for Outputlag must be

reduced. The reduction in targets is performed by the decrease() function in lines 3 and 4.

When no output is above its limit, the optimizer computes the value of the metric that

was achieved with the previous choice of targets (line 7). It then calculates ∆metric, which

is the relative improvement of the metric’s value over the previously achieved value (line 8).

If the relative improvement is smaller than the convergence bounds ε, then the targets are
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Algorithm A.1: Algorithm for the hardware optimizer in Yukta.

Input: outputs, targets, limits (Section 4.6), convergence bound ε, restart probability
δ

Output: New targets for hardware outputs
Initialize : direction ← Up, prev metric ← 0, stop search ← False

1 margins ← limits − outputs
2 errors ← targets − outputs

// Outputagg is the output other than Throughput with the smallest margin

// Outputlaz is the output other than Throughput with the largest margin

// Outputlag is the output with the largest error

3 if margin[Outputagg] < 0 then
4 target[Outputagg] ← decrease(target[Outputagg])
5 target[Outputlag] ← decrease(target[Outputlag])

6 else

7 metric ← Throughput2

Power

8 ∆metric ← abs(metric−prev metric
prev metric

)

9 if ∆metric > ε or rand() < δ then
10 if direction = Up then
11 if metric > prev metric then
12 target[Throughput] ← large increase(target[Throughput])
13 target[Outputlaz] ← increase(target[Outputlaz])

14 else
15 dir ← Down
16 target[Throughput] ← decrease(target[Throughput])
17 target[Outputagg] ← large decrease(target[Outputagg])

18 end

19 else
20 if metric > prev metric then
21 target[Throughput] ← decrease(target[Throughput])
22 target[Outputagg] ← large decrease(target[Outputagg])

23 else
24 dir ← Up
25 target[Throughput] ← large increase(target[Throughput])
26 target[Outputlaz] ← increase(target[Outputlaz])

27 end

28 end

29 end
30 prev metric ← metric

31 end

not modified. New targets must be generated when ∆metric is larger than ε, or with a small

probability δ, even when ∆metric is below ε (line 9). The rand() function in line 8 returns a
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number drawn randomly from a uniform distribution between 0 and 1. If the search direction

is Up and the metric’s value is increasing, the optimizer continues to search in the Up region.

It increases the target for Throughput and Outputlaz that has the largest margin from the

limit (lines 12 – 13). The target for Throughput is increased by a larger amount than the

increase in the target for Outputlaz. It is expected that the controller will be able to increase

throughput much more than the increase in power or temperature. Increasing the target for

Outputlaz gives the controller some freedom to increase Throughput. Otherwise, it may be

possible that Throughput cannot be increased without an increase in power or temperature.

When the metric’s value is not improving in the Up region, the optimizer reverses its

direction to Down (line 15). In this direction, it decreases the target for Throughput

and Outputagg that has the smallest margin from the limit (lines 16 – 17). The target

for Throughput is decreased by an amount smaller than the decrease in the target for

Outputagg. The expectation of this move is that the controller would be able to reduce power

or temperature much more than the reduction in throughput.

Similar decisions occur when the optimizer’s search direction is Down (lines 20–26). The

optimizer continues to proceed in the Down direction until the metric improves. If not, it

reverses to the Up direction.

On the prototype computer, the increase() and decrease() functions increase and decrease

the targets by 15% and 10%, respectively. The large increase() and large decrease() functions

perform the respective changes by 20% and 15%. When decreasing, the targets are not

reduced below zero; when increasing, they are capped at the maximum values the outputs

can withstand. The convergence bound ε is 0.05 and restart probability δ is 0.05. The search

does not cycle through the same points.

The optimizer’s algorithm is simple but effective in practice. The algorithm follows the

intuition that the best value of the metric Throughput2

Power
occurs either in the high throughput

region or the low throughput region. Therefore, instead of searching for all output targets

simultaneously, each decision of the algorithm changes the throughput target and the target

of another output necessary to improve throughput. Additionally, the algorithm did not have

to explicitly account for changing system conditions because it relies on the SSV controllers

to robustly keep outputs near the targets. Finally, implementing the algorithm requires only

small computation and a few comparisons (which is one of the design requirements).

The algorithm for the OS optimizer differs only slightly and is not shown. The OS optimizer

also has two search directions: Big-side (where the big cores contribute more to performance)

and Little-side (where the little cores contribute more to performance). The algorithm finds

the best targets for the OS outputs in this space.
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A.2 NELDER-MEAD SEARCH USED BY THE PLANNERS IN TANGRAM

The planners inside the Tangram controllers use Nelder-Mead search [162] to generate the

local output targets and the coordination signals to the child controllers. As shown in the

outline below, the algorithm moves through the following five modes.

1) Initialize: To find N targets, chose N + 1 initial points with random output targets and

observe the EDP at each point.

2) Rank: Based on EDP , identify three points out of these N + 1 and rank them as Best,

Worst, and Lousy (i.e., the point better only than Worst). Compute the centroid of all the

N + 1 points except Worst. The Best, Worst, and Lousy points, plus the centroid are shown

in Figure A.1.

3) Reflect: Find a new point by reflecting the Worst point about the Centroid. This is shown

as Point 1 in Figure A.1. If the EDP at this point is better than Worst, Point 1 replaces

Worst and the search returns to Step 2. Otherwise, the search moves to Step 4.

4) Contract: The search finds a new point which is the midpoint between Centroid and

Worst. This is Point 2 in Figure A.1. If this point is better than Worst, it replaces Worst

and the search returns to Step 2. Otherwise, the search moves to Step 5.

5) Shrink: All points except Best are moved towards Best, and search returns to Step 2.

This process repeats until the value of the Best point converges.

Best

Lousy Worst

Centroid

1

23 3

Figure A.1: Nelder-Mead search used by the planner.
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[161] J. Gómez-Luna, I. El Hajj, V. Chang, Li-Wen Garcia-Flores, S. Garcia de Gonzalo,
T. Jablin, A. J. Pena, and W.-m. Hwu, “Chai: Collaborative Heterogeneous Applica-
tions for Integrated-architectures,” in IEEE International Symposium on Performance
Analysis of Systems and Software, 2017.

[162] J. Mathews and K. Fink, Numerical Methods Using MATLAB. Pearson
Education, Limited, 2006. [Online]. Available: https://books.google.com/books?id=-
DpDPgAACAAJ

[163] Kenneth Mitchell and Elliot Kim, “Optimizing for AMD Ryzen CPU,”
http://32ipi028l5q82yhj72224m8j.wpengine.netdna-cdn.com/wp-content/uploads/
2017/03/GDC2017-Optimizing-For-AMD-Ryzen.pdf, 2017, accessed: 2019.

[164] NASA Advanced Supercomputing Division, “NAS Parallel Benchmarks,” https://www.
nas.nasa.gov/publications/npb.html, 2003.

[165] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark Suite: Char-
acterization and Architectural Implications,” in International Conference on Parallel
Architectures and Compilation Techniques, Oct. 2008.

[166] Advanced Micro Devices, Inc, “AMD FX Processors Unleashed — a Guide to Per-
formance Tuning with AMD OverDrive and the new AMD FX Processors,” https:
//www.amd.com/Documents/AMD FX Performance Tuning Guide.pdf, Oct. 2011,
Advanced Micro Devices, Inc.

133

http://www.hardwarecanucks.com/forum/hardware-canucks-reviews/66162-amd-mullins-beema-mobile-apus-preview.html
http://www.hardwarecanucks.com/forum/hardware-canucks-reviews/66162-amd-mullins-beema-mobile-apus-preview.html
http://www.hardwarecanucks.com/forum/hardware-canucks-reviews/66162-amd-mullins-beema-mobile-apus-preview.html
http://www.gigabyte.us/Motherboard/GA-AX370-Gaming-5-rev-10#kf
http://www.gigabyte.us/Motherboard/GA-AX370-Gaming-5-rev-10#kf
http://www.amd.com/en/ryzen
https://www.msi.com/Graphics-card/Radeon-RX-580-8G
https://www.msi.com/Graphics-card/Radeon-RX-580-8G
https://www.amd.com/en/products/graphics/radeon-rx-580
https://www.amd.com/en/products/graphics/radeon-rx-580
https://www.intel.ie/content/www/ie/en/power-management/voltage-regulator-module-enterprise-voltage-regulator-down-11-1-guidelines.html
https://www.intel.ie/content/www/ie/en/power-management/voltage-regulator-module-enterprise-voltage-regulator-down-11-1-guidelines.html
https://books.google.com/books?id=-DpDPgAACAAJ
https://books.google.com/books?id=-DpDPgAACAAJ
http://32ipi028l5q82yhj72224m8j.wpengine.netdna-cdn.com/wp-content/uploads/2017/03/GDC2017-Optimizing-For-AMD-Ryzen.pdf
http://32ipi028l5q82yhj72224m8j.wpengine.netdna-cdn.com/wp-content/uploads/2017/03/GDC2017-Optimizing-For-AMD-Ryzen.pdf
https://www.nas.nasa.gov/publications/npb.html
https://www.nas.nasa.gov/publications/npb.html
https://www.amd.com/Documents/AMD_FX_Performance_Tuning_Guide.pdf
https://www.amd.com/Documents/AMD_FX_Performance_Tuning_Guide.pdf


[167] S. S. Clark, H. Mustafa, B. Ransford, J. Sorber, K. Fu, and W. Xu, “Current Events:
Identifying Webpages by Tapping the Electrical Outlet,” in Computer Security – ES-
ORICS 2013, J. Crampton, S. Jajodia, and K. Mayes, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 700–717.

[168] M. A. Islam, S. Ren, and A. Wierman, “Exploiting a Thermal Side Channel for
Power Attacks in Multi-Tenant Data Centers,” in Conference on Computer and
Communications Security. New York, NY, USA: ACM, 2017, pp. 1079–1094. [Online].
Available: http://doi.acm.org/10.1145/3133956.3133994

[169] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in Annual International
Cryptology Conference. Springer, 1999, pp. 388–397.

[170] E. Vasilakis, “An Instruction Level Energy Characterization of Arm Processors,” https:
//www.ics.forth.gr/carv/greenvm/files/tr450.pdf, 2015.

[171] Y. S. Shao and D. Brooks, “Energy Characterization and Instruction-level Energy
Model of Intel’s Xeon Phi Processor,” in International Symposium on Low Power
Electronics and Design, Sep. 2013, pp. 389–394.

[172] R. Callan, N. Popovic, A. Daruna, E. Pollmann, A. Zajic, and M. Prvulovic, “Compar-
ison of Electromagnetic Side-channel Energy Available to the Attacker from Different
Computer Systems,” in 2015 IEEE International Symposium on Electromagnetic Com-
patibility (EMC), Aug. 2015, pp. 219–223.

[173] S. K. Bukasa, R. Lashermes, H. Le Bouder, J.-L. Lanet, and A. Legay, “How Trust-
Zone Could Be Bypassed: Side-Channel Attacks on a Modern System-on-Chip,” in
Information Security Theory and Practice, G. P. Hancke and E. Damiani, Eds. Cham:
Springer International Publishing, 2018, pp. 93–109.

[174] “Power Profiles for Android,” https://source.android.com/devices/tech/power/, an-
droid Open Source Project.

[175] H. Hlavacs, T. Treutner, J. Gelas, L. Lefevre, and A. Orgerie, “Energy Consumption
Side-Channel Attack at Virtual Machines in a Cloud,” in International Conference on
Dependable, Autonomic and Secure Computing, Dec. 2011, pp. 605–612.

[176] D. Genkin, L. Pachmanov, I. Pipman, E. Tromer, and Y. Yarom, “ECDSA Key
Extraction from Mobile Devices via Nonintrusive Physical Side Channels,” in Conference
on Computer and Communications Security, ser. CCS ’16. New York, NY, USA: ACM,
2016, pp. 1626–1638. [Online]. Available: http://doi.acm.org/10.1145/2976749.2978353

[177] D. Genkin, I. Pipman, and E. Tromer, “Get Your Hands Off My Laptop: Physical
Side-Channel Key-Extraction Attacks on PCs,” in Proceedings of the 16th International
Workshop on Cryptographic Hardware and Embedded Systems — CHES 2014 - Volume
8731. Berlin, Heidelberg: Springer-Verlag, 2014, pp. 242–260. [Online]. Available:
https://doi.org/10.1007/978-3-662-44709-3 14

134

http://doi.acm.org/10.1145/3133956.3133994
https://www.ics.forth.gr/carv/greenvm/files/tr450.pdf
https://www.ics.forth.gr/carv/greenvm/files/tr450.pdf
https://source.android.com/devices/tech/power/
http://doi.acm.org/10.1145/2976749.2978353
https://doi.org/10.1007/978-3-662-44709-3_14


[178] M. Zhao and G. E. Suh, “FPGA-based Remote Power Side-channel Attacks,” in IEEE
Symposium on Security and Privacy. IEEE, 2018, pp. 229–244.

[179] S. Trimberger and S. McNeil, “Security of FPGAs in Data Centers,” in 2017 IEEE
2nd International Verification and Security Workshop (IVSW), 2017, pp. 117–122.

[180] N. Chawla, A. Singh, M. Kar, and S. Mukhopadhyay, “Application Inference using
Machine Learning based Side Channel Analysis,” in International Joint Conference on
Neural Networks. IEEE, 2019, pp. 1–8.

[181] M. A. Islam, L. Yang, K. Ranganath, and S. Ren, “Why Some Like It Loud: Timing
Power Attacks in Multi-tenant Data Centers Using an Acoustic Side Channel,” Proc.
ACM Meas. Anal. Comput. Syst., vol. 2, no. 1, pp. 6:1–6:33, Apr. 2018. [Online].
Available: http://doi.acm.org/10.1145/3179409

[182] S. Pandruvada, “Running Average Power Limit – RAPL,” https://01.org/blogs/2014/
running-average-power-limit--rapl, Published: June, 2014.

[183] A. van de Ven and J. Pan, “Intel Powerclamp Driver,” https://www.kernel.org/doc/
Documentation/thermal/intel powerclamp.txt, Last modified: April, 2017.

[184] X. Wang, Q. Zhou, J. Harer, G. Brown, S. Qiu, Z. Dou, J. Wang, A. Hinton, C. A.
Gonzalez, and P. Chin, “Deep Learning-based Classification and Anomaly Detection of
Side-channel Signals,” in Proc. SPIE 10630, Cyber Sensing, 2018. [Online]. Available:
https://doi.org/10.1117/12.2311329

[185] FFmpeg Developers, “ffmpeg tool,” http://ffmpeg.org/, 2016.

[186] Xiph.org Video Test Media, “derf’s collection,” https://media.xiph.org/.

[187] MathWorks, “Find Abrupt Changes in Signal,” https://www.mathworks.com/help/
signal/ref/findchangepts.html, Accessed: April, 2019.

[188] John M, “Intel Digital Random Number Generator (DRNG) Software Implementa-
tion Guide,” https://software.intel.com/en-us/articles/intel-digital-random-number-
generator-drng-software-\implementation-guide, Oct. 2018.

[189] Intel, “Random Number Generator IP Core User Guide ,” https://www.intel.
com/content/www/us/en/programmable/documentation/dmi1455632999173.html, Feb.
2017.

[190] C. J. Hughes and S. V. Adve, “A Formal Approach to Frequent Energy Adaptations
for Multimedia Applications,” in International Symposium on Computer Architecture,
2004.

[191] M. C. Huang, J. Renau, and J. Torrellas, “Positional Adaptation of Processors: Appli-
cation to Energy Reduction,” in International Symposium on Computer Architecture,
2003.

135

http://doi.acm.org/10.1145/3179409
https://01.org/blogs/2014/running-average-power-limit--rapl
https://01.org/blogs/2014/running-average-power-limit--rapl
https://www.kernel.org/doc/Documentation/thermal/intel_powerclamp.txt
https://www.kernel.org/doc/Documentation/thermal/intel_powerclamp.txt
https://doi.org/10.1117/12.2311329
http://ffmpeg.org/
https://media.xiph.org/
https://www.mathworks.com/help/signal/ref/findchangepts.html
https://www.mathworks.com/help/signal/ref/findchangepts.html
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-\implementation-guide
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-\implementation-guide
https://www.intel.com/content/www/us/en/programmable/documentation/dmi1455632999173.html
https://www.intel.com/content/www/us/en/programmable/documentation/dmi1455632999173.html


[192] R. Sen and D. A. Wood, “Reuse-based Online Models for Caches,” in ACM SIGMET-
RICS/International Conference on Measurement and Modeling of Computer Systems,
2013.

[193] S. Dropsho, A. Buyuktosunoglu, R. Balasubramonian, D. Albonesi, S. Dwarkadas,
G. Semeraro, and G. Magklis, “Integrating Adaptive On-Chip Storage Structures for
Reduced Dynamic Power,” in International Conference on Parallel Architectures and
Compilation Techniques, Sep. 2002.

[194] A. Mishra, S. Srikantaiah, M. Kandemir, and C. Das, “CPM in CMPs: Coordinated
Power Management in Chip-Multiprocessors,” in International Conference for High
Performance Computing, Networking, Storage and Analysis, Nov. 2010.

[195] K. Ma, X. Wang, and Y. Wang, “DPPC: Dynamic Power Partitioning and Control for
Improved Chip Multiprocessor Performance,” IEEE Trans. Comput., vol. 63, no. 7, pp.
1736–1750, Jul. 2014.

[196] P. Juang, Q. Wu, L.-S. Peh, M. Martonosi, and D. Clark, “Coordinated, Distributed,
Formal Energy Management of Chip Multiprocessors,” in International Symposium on
Low Power Electronics and Design, Aug. 2005.

[197] C. Dubach, T. M. Jones, and E. V. Bonilla, “Dynamic Microarchitectural Adaptation
Using Machine Learning,” ACM Trans. Archit. Code Optim., vol. 10, no. 4, pp. 31:1–
31:28, Dec. 2013.

[198] K. Meng, R. Joseph, R. P. Dick, and L. Shang, “Multi-optimization Power Management
for Chip Multiprocessors,” in International Conference on Parallel Architectures and
Compilation Techniques, 2008.

[199] W. Wang and P. Mishra, “Leakage-Aware Energy Minimization Using Dynamic Voltage
Scaling and Cache Reconfiguration in Real-Time Systems,” in International Conference
on VLSI Design, Jan. 2010.
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