188 research outputs found

    Measuring urban social diversity using interconnected geo-social networks

    Get PDF
    Large metropolitan cities bring together diverse individuals, creating opportunities for cultural and intellectual exchanges, which can ultimately lead to social and economic enrichment. In this work, we present a novel network perspective on the interconnected nature of people and places, allowing us to capture the social diversity of urban locations through the social network and mobility patterns of their visitors. We use a dataset of approximately 37K users and 42K venues in London to build a network of Foursquare places and the parallel Twitter social network of visitors through check-ins. We define four metrics of the social diversity of places which relate to their social brokerage role, their entropy, the homogeneity of their visitors and the amount of serendipitous encounters they are able to induce. This allows us to distinguish between places that bring together strangers versus those which tend to bring together friends, as well as places that attract diverse individuals as opposed to those which attract regulars. We correlate these properties with wellbeing indicators for London neighbourhoods and discover signals of gentrification in deprived areas with high entropy and brokerage, where an influx of more affluent and diverse visitors points to an overall improvement of their rank according to the UK Index of Multiple Deprivation for the area over the five-year census period. Our analysis sheds light on the relationship between the prosperity of people and places, distinguishing between different categories and urban geographies of consequence to the development of urban policy and the next generation of socially-aware location-based applications.This work was supported by the Project LASAGNE, Contract No. 318132 (STREP), funded by the European Commission and EPSRC through Grant GALE (EP/K019392).This is the author accepted manuscript. The final version is available from the Association for Computing Machinery via http://dx.doi.org/10.1145/2872427.288306

    Multiplex Graph Association Rules for Link Prediction

    Get PDF
    Multiplex networks allow us to study a variety of complex systems where nodes connect to each other in multiple ways, for example friend, family, and co-worker relations in social networks. Link prediction is the branch of network analysis allowing us to forecast the future status of a network: which new connections are the most likely to appear in the future? In multiplex link prediction we also ask: of which type? Because this last question is unanswerable with classical link prediction, here we investigate the use of graph association rules to inform multiplex link prediction. We derive such rules by identifying all frequent patterns in a network via multiplex graph mining, and then score each unobserved link's likelihood by finding the occurrences of each rule in the original network. Association rules add new abilities to multiplex link prediction: to predict new node arrivals, to consider higher order structures with four or more nodes, and to be memory efficient. In our experiments, we show that, exploiting graph association rules, we are able to achieve a prediction performance close to an ideal ensemble classifier. Further, we perform a case study on a signed multiplex network, showing how graph association rules can provide valuable insights to extend social balance theory.Comment: Accepted for publication in 15th International Conference on Web and Social Media (ICWSM) 202

    Fast Multiplex Graph Association Rules for Link Prediction

    Full text link
    Multiplex networks allow us to study a variety of complex systems where nodes connect to each other in multiple ways, for example friend, family, and co-worker relations in social networks. Link prediction is the branch of network analysis allowing us to forecast the future status of a network: which new connections are the most likely to appear in the future? In multiplex link prediction we also ask: of which type? Because this last question is unanswerable with classical link prediction, here we investigate the use of graph association rules to inform multiplex link prediction. We derive such rules by identifying all frequent patterns in a network via multiplex graph mining, and then score each unobserved link's likelihood by finding the occurrences of each rule in the original network. Association rules add new abilities to multiplex link prediction: to predict new node arrivals, to consider higher order structures with four or more nodes, and to be memory efficient. We improve over previous work by creating a framework that is also efficient in terms of runtime, which enables an increase in prediction performance. This increase in efficiency allows us to improve a case study on a signed multiplex network, showing how graph association rules can provide valuable insights to extend social balance theory.Comment: arXiv admin note: substantial text overlap with arXiv:2008.0835

    Regionalisation and cross-region integration. Twin dynamics in the automotive international trade networks

    Get PDF
    The paper analyses the changes that occurred over 25 years in the geography of trade in automotive parts and components. Using the Infomap multilayer clustering algorithm, we identify clusters of countries and their specific trades in the automotive international trade network, we measure the relative importance of each cluster and the interconnections between them, and we analyse the contribution of countries and of trade of components and parts in the clusters. The analysis highlights the formation of denser and more hierarchical networks generated by Germany's trade relations with EU countries and by the US preferential trade agreements with Canada and Mexico, as well as the surge of China. While the relative importance of the main clusters and of some individual countries change significantly, connections between clusters increase over time
    • …
    corecore