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Chapter 1 Introduction 
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1.1 Main objective of the dissertation 

This dissertation has two main objectives. On the one hand, it seeks to contribute to ongoing 

research on the structure of urban system in Southeast Asia from a network perspective. On 

the other hand, it tries to integrate recent advances in network analysis that have been 

developed in different disciplines into the modelling and abstraction of urban networks.   

 

As one of the world’s most populous and fastest-growing economies, Southeast Asia has 

been experiencing both accelerated urban transformations and regional integration in the 

wider context of globalization processes. The region’s urban transformations have been well-

documented in the literature dealing with the emergence of megacities, transnational urban 

corridors, and sub-regional cooperations (Jones, 2002; McGee and Robinson, 1995; Yeung 

and Lo, 1996), but here we add to these literatures by adopting the ‘urban network paradigm’ 

to explore the structure of the urban system in this region. To date, research efforts in this 

paradigm have been primarily used to analyze world city networks (Derudder and Taylor, 

2016), the EU (Vinciguerra, 2012), the US (Liu et al., 2012) and China (Zhao et al., 2015), 

and this alongside analysis of mega-city regions (Hall and Pain, 2006). As a result, there is 

lack of attention to the emergence of urban networks in Southeast Asia, so that the spatial 

organization of intra-regional interactions has remained relatively under-reported. The 

dissertation attempts to address this issue by systematically and empirically analyzing the 

characteristics of urban networks in Southeast Asia. By mapping two types of intercity 

transport linkages – multimodal transport linkages and air transport linkages – this 

dissertation aims to describe their spatial patterns and evolving structures, and analyze their 

underlying determinants. 

 

When modelling urban networks, geographers mainly rely on gravity-type models to simulate 

intercity relations (Matsumoto, 2004) as their primary interest lays in studying spatial effects. 

Although topological effects have been shown to be also essential in network formation 
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processes by physicist and sociologist, attempts to consider both spatial and topological 

effects in the study of urban networks have been quite scarce. As Ducruet and Beauguitte 

(2014) have shown, the lack of use of recent insights from network analysis in the spatial 

sciences is a more general feature of this field. Neal (2013b), for example, has shown that 

bespoke node centrality measures could be useful in this literature. This dissertation also 

attempts to help addressing a specific part of this gap, i.e. the lack of engagement with 

network de-densification methods. Overall, this dissertation then aims to model urban 

network by combining spatial and topological effects in a single framework, and offer a 

systematic comparative analysis of different techniques to abstract these urban networks. 

 

The reminder of this introductory chapter is organized as follows. First, I present the broader 

background of my dissertation through a brief introduction to recent developments in network 

analysis in different disciplines, the increasing popularity of the urban network paradigm in 

theoretical and methodological terms, and urbanization in Southeast Asia. The two main 

research questions of this dissertation will then be put forward in light of this discussion. The 

subsequent section elaborates the data used in this study, after which the organization of the 

remainder of this dissertation is outlined in the final section. 

1.2 Background 

1.2.1 Network analysis 

Network analysis can be found at the crossroads of various scientific disciplines, including 

mathematics, physics, sociology, biology, geography, etc. (Lin and Ban, 2013). With the help 

of graph theory, a network can be visualized and analyzed as a graph with a set of nodes 

(vertices) connected by edges (links). The historically notable “Königsberg Bridge problem” 

in mathematics, solved by Euler in 1736, is often considered as the first proof for graph 

theory. The problem asks whether the seven bridges of the city of Königsberg over the river 

Pregel can all be traversed in a single trip without doubling back, with the additional 

requirement that the trip ends in the same place it begins. Euler proved that the problem has 

no solution by representing it as an abstract network (i.e. a graph). Since then graph theory 
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has become an important field in network science, and developed a set of topological and 

mathematic measures to quantify network properties. Despite the success of classical graph 

theory, it does not always work well in explaining real-world phenomena. One empirically 

observation is the fact the ‘distances’ in sparsely and mainly locally connected networks are 

often much smaller than expected (Stam and Reijneveld, 2007). In this respect, the later 

developed complex network analysis and social network analysis could offer some 

enlightened insights. 

 

In the late 1990s, mostly led by physicists, the emergence of complex network theory 

systematically brought in an array of new concepts and methods. Situated at the intersection 

of graph theory and statistical mechanics, this approach has offered new insights into the 

structure and dynamics of large-scale networks of all kinds (Ducruet and Lugo, 2013). 

Arguably one of the major discoveries has been that many real-world networks display 

pronounced structures that are distinct from random networks, in which edges are randomly 

assigned between nodes. For example, a typical feature is that most networks exhibit a right-

skewed distribution of nodal degree (i.e., a node’s number of adjacent neighbors), suggesting 

that a few nodes have many links (hubs) whereas a majority of nodes have few links 

(Barabási and Albert, 1999). Another common feature is that most networks have a shorter 

diameter (i.e., the average number of edges in the shortest path between two nodes) and 

higher transitivity (i.e., probability for a node to have its neighbors interconnected) than a 

random network (Watts and Strogatz, 1998). 

 

In the past few years, sociologists have also started developing a systematic and standardized 

methodology to study networks. In social network analysis, where nodes represent 

individuals and edges represent social relations between them (acquaintance, scientific 

collaboration, etc.), researchers are mainly interested in the position of individuals and 

densely inter-connected parts (i.e., cliques) within a network. Furthermore, recent social 

network analysis provides a promising array of statistical models for explaining structural 

properties of social networks observed at a given moment (cross-sectional, e.g., exponential 

random graph models (ERGM)) (Snijders et al., 2006) or over periods (longitudinal, e.g., 

stochastic actor-based models (SABM)) (Snijders et al., 2010). Related to this, in biology and 

geography, Vértes et al. (2012) and Vinciguerra et al.(2010) have tried to explain the 
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structure and formation of brain network and the Internet network, respectively, through 

different generative network models (Ducruet and Lugo, 2013). 

 

In a nutshell, network analysis has been discussed, applied, and developed in different 

disciplines, with often-interesting inter-disciplinary excursions. However, the more precise 

focus in the field of network analysis varies across research fields, ranging from individual 

nodes and densely connected parts in a network to the entire network, and from the simple 

description of network structures to attempts at explaining these structures through network 

modelling. In such cases, bridging the gaps between different perspectives, integrating recent 

advances from different scientific fields, and constructing an overall understanding of 

networks, becomes increasingly difficult yet important. In this dissertation, this challenge is 

taken up for the case of urban network research. 

1.2.2 The popularity of the urban network paradigm  

Although networks analysis in geography and regional science dates back to at least the 

‘quantitative revolution’ (Haggett and Chorley, 1969), we can observe a surge in interest 

since the 1990s: references to ‘urban networks’ have grown dramatically in the scientific 

literature (Neal, 2013b). This renewed interest is understandable since most networks have a 

spatial structure, with nodes being embedded in space and edges between them crossing a 

particular geographical distance (Barthélemy, 2011). This suggests that distance in urban 

networks takes on two related, yet distinctive forms: geographical distance and topological 

distance. The former simply refers to the distance between two nodes in geographical space 

(in miles or kilometers); and the latter, also called geodesic distance, refers to the shortest 

path between two nodes in a network. Hence, the analysis of urban networks should ideally 

combine both conventional spatial analysis and more recent developments in network 

analysis. This increased popularity of urban network paradigm is not only visible in a range 

of theoretical frameworks, but also in methodological approaches to examine urban systems. 

1.2.2.1 Theoretical frameworks 

“Dependence on a network rather than on the servicing of an environing region, or a wider  

hinterland, existed for a few exceptional cities in the past, but now it has become the general  

rule for the majority of substantial cities anywhere” (Gottmann, 1989: 62). 
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“Connections are the very raison d’etre of cities” (Castells, 1996:1). 

As a textbook of theoretical geography, the well-known analytical model to interpret ‘urban 

system(s)’, also referred to as ‘system(s) of cities’, is central place theory developed by 

Christaller (1933) and Lösch (1944). Under this framework, cities are seen as “central 

place(s) providing goods and services for a surrounding area” (Berry and Pred, 1961: 3), after 

which the function and hierarchy of cities are defined by their regional and local external 

relations (Bunge, 1966). The organizational logic underlying is a territorial logic, 

emphasizing a gravity-type control of market areas and a core-hinterland structure of intercity 

relations.  

 

However, Jacobs argued that “a city does not grow by trading only with a rural hinterland” 

(Jacobs, 1969: 35). Pred (1977) elaborates that it is not only vertical (hierarchical) 

relationships that are important in an urban system, but also the horizontal and cooperative 

linkages, while Bourne and Simmons (1978) define urban systems as a set of regionally, 

nationally or globally linked and interdependent urban areas. As a consequence, ‘urban 

network(s)’ has increasingly become the reference paradigm for ‘urban system(s)’ (Camagni, 

1993), and is believed to provide “a successful theoretical framework for overcoming the 

limiting interpretative power of the traditional central place model” (Capello, 2000: 1928).  

 

In its most basic guise, the urban network paradigm emphasizes the bearing of intercity 

relations regardless of the distance barrier and focuses on flows between cities rather than 

characteristics of cities in and by themselves. ‘Network thinking’ in urban studies has been 

fuelled by the publication of The Global City (Sassen, 1991) and the formalization of the 

concept of space of flows (Castells, 1996) in an era of globalization and informatization. In 

Sassen’s work, global cities (e.g., London, New York, Tokyo) are posited to be related to 

each other through “vast multinational networks” (Sassen, 1991: 173) of advanced producer 

service (APS) firms so that the interactions among these global cities constitute an emerging 

transnational urban system. For Manuel Castells (1996), global cities are “not a place but a 

process. A process by which centers [. . . .] are connected in a global network” (386). He thus 

proposes a spatial logic of “space of flows” that consists of three layers: infrastructural 

support for networked social practices, geographical network spaces formed by nodes and 
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hubs, and the spatial organization of the managerial elite using these networks. Inspired by 

these contributions, Peter Taylor further emphasizes “the necessity to think of cities 

relationally, as the product of networking activities” (Taylor, 2003: 27) and introduces central 

flow theory to complement central place theory when analyzing external urban relational 

processes (Derudder and Taylor, 2017; Taylor et al., 2010) 

 

With the intensification of globalization and the development of transportation and 

telecommunication infrastructures, cities can maintain close linkages with a non-neighboring 

city, and high-order functions can locate in small but specialized centers. As Coe et al. (2004) 

demonstrate, urban and regional development is becoming a globalizing phenomenon while 

Florida (2008) perceives globally interconnected cities as the engines of economic growth. In 

this context, there is a gradual transformation in theoretical frameworks for analyzing urban 

systems with a national, continental or worldwide scope from static, closed, and hierarchical-

centered models to dynamic, open, and multi-centered network models.  

 

Under this new spatial logic, the evolution of cities can be (partly) explained by their position 

in urban networks, which may involve flows of people, capital, information, services, and 

goods. In addition, small- and medium-sized cities can potentially internalize the benefits of 

larger cities by being well-positioned in these urban networks (Burger and Meijers, 2016). It 

is sometimes even argued that the urban network embeddedness currently is more important 

for urban productivity than urban size (McCann and Acs, 2011).  

1.2.2.2 Methodological approaches 

(1) Urban network representation 

An exhaustive review of empirical studies of transnational urban networks reveals that there 

are two types of urban network representations. One is two-mode or bipartite networks in the 

form of a city-to-agent matrix. The other is one-mode or unipartite networks in the form of a 

city-to-city matrix. In practice, corporate networks and infrastructure networks are main 

examples for these two representations, respectively (Derudder, 2008). As shown in Figure 

1.1, a two-mode network is characterized by connections between two separate sets of nodes 

(cities and agents such as firms, respectively). There is no direct linkage within the same set 
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of nodes (i.e. between cities or between firms): researchers simply know which firms are in 

what cities, and which cities house what firms. In contrast, a one-mode network – probably 

the more well-known elaboration of a ‘network’ – consists of only one set of nodes (i.e. 

cities) that are directly interlinked (Liu and Derudder, 2013). 

 

 

Figure 1.1 Two-mode (left) and one-mode (right) network paradigms (C: City; F: Firm). 

In the corporate approach, based on Sassen’s conceptualization, data on the office networks 

of advanced producer services firms are used to analyze the spatial organization of world city 

network by Peter Taylor (2001) and other colleagues from the Globalization and World Cities 

(GaWC, http://www.lboro.ac.uk/gawc) Research Network (Derudder et al., 2010; Liu and 

Derudder, 2013). And later Alderson and Beckfield (2004) try to define this network based 

on the ownership linkages of the world’s largest multinational enterprises, such as the 

Fortune 500 companies. Both of them assume that people, goods, capital, and information 

flows between any of two branches belonging to the same company. The latter suggests that 

it is possible to infer one-mode networks from two-mode datasets by applying a ‘projection’ 

function (cf. Figure 1.1), which in this case essentially represents developing a guesstimate of 

how different parts of the company ‘interact’ across space (Latapy et al., 2008). 

 

Several projection methods have been proposed from different grounds, such as the most 

widely used interlocking world city network model (IWCNM) devised by Taylor (2001), the 

‘sorting process’ algorithm by Neal (2013a), an alternative algorithm combining geographic 

and hierarchical features by Hennemann and Derudder (2014) and its improvement by Zhao 

et al. (2015). However, Neal (2013c) contends that “one-mode projections contain less 

information than their two-mode sources” (915). Meanwhile, methods developed for the 
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direct analysis of two-mode networks are relatively limited whereas for one-mode networks 

‘‘the full range of network analytic methods are available’’ (Borgatti and Everett, 1997: 246). 

Therefore, scholars have great interest in utilizing more straightforward intercity relational 

data, which points to the second type of urban network representation. 

 

In the infrastructure approach, the intercity connections can be expressed by virtual 

telecommunication flows (e.g. the Internet backbone; Zook, 1999) or physical transportation 

flows (e.g. airlines; Smith and Timberlake, 2001). These infrastructure networks correspond 

to the first layer of the space of flows and provide the “fundamental spatial configuration” for 

the networked society put forward by Castells (1996: 433). The underlying rationale is that 

“infrastructure networks are often assumed to be important determinants of the economic 

potential of urban agglomerations” (Bruinsma and Rietveld, 1993: 919). Meanwhile, Keeling 

(1995) points out that the role of transport infrastructure in the evolving world city system is 

both crucial and fundamental since it facilitates the dense interactions between people, goods 

and information, on which the commanding nodes (i.e. world cities) are based. 

 

Due to the relative scarcity of data on the Internet traffic between particular cities (Tranos 

and Gillespie, 2011), most empirical studies on urban interactions are concerned with the 

actual connections through physical transportation flows. These transportation connections 

range from intercity relational data on public transport flow (Cats, 2017) at the city-region 

level, to railway flows (Wang et al., 2009) at the national level, to composite transport 

connectivity (Derudder et al., 2014) at the continental level, and to maritime (Ducruet and 

Notteboom, 2012) and airline flows (Matsumoto, 2007) at the global level. It is within the 

analysis of transport-based urban networks that the present dissertation is situated. 

(2) Urban network description 

Research on network description is both extensive and diverse, with most research being 

cross-sectional. The description can be divided into three levels: 1) local or micro level, 

which compares the relative position/importance of cities within the network; 2) sub-network 

or meso level, which highlights the densely inter-connected clusters/communities within the 

network; 3) global or macro level, which characterizes and analyzes the entire network. 
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First, the ‘importance’ of cities has been examined by calculating a range of centrality 

measures such as degree centrality, closeness centrality and betweenness centrality in Wang 

et al. (2011), eigenvector centrality in Smith and Timberlake (2001), recursive centrality in 

Neal (2011) as well as other centrality measures that have been specifically tailored for urban 

network analysis (Neal, 2013b). Because the various forms of centrality analysis produce 

different city hierarchies, the connectivity structure of a city and its function in the network 

can be revealed. For example, cities with higher degree centrality might have broader 

hinterlands or larger throughput; cities with higher closeness centrality are endowed with 

better accessibility; cities with higher betweenness centrality play a more important brokering 

role in the network; cities with higher eigenvector or recursive centrality may have more 

important neighbors. In addition, nodes with low degree centrality but high betweenness 

centrality reveal their role as a strategic position or intermediacy between different subgroups 

(i.e. a set of closely connected nodes whose intra-community connections exceed inter-

community connections) (Fleming and Hayuth, 1994; Guimera et al., 2005). 

 

Second, a network can be divided into multiple subgroups or communities, thus contributing 

to the analysis of the existence of functionally networked groups (Blondel et al., 2010; Liu et 

al., 2014). In general, algorithms for community detection fall into two broad categories: 

graph partition and hierarchical clustering. Graph partition aims to divide network into 

groups without overlapping with each other, whereas hierarchical clustering aims to construct 

the hierarchical structure of clusters of nodes, which can further be divided into hierarchical 

agglomerative and hierarchical divisive. The most widely used community detection method 

is arguably the modularity maximization method proposed by Newman and Girvan (2004).  

 

Third, on the one hand, there have been analyses of statistical properties of the overall urban 

network. Guimera et al. (2005), for example, present a detailed analysis of the topological 

properties of the global air transport network, and find that it exhibits small-world 

characteristics (Watts and Strogatz, 1998) in that city-pairs tend to be separated by just a few 

links and show a high local clustering coefficient. Meanwhile, Ducruet et al. (2011) point out 

that both worldwide sea and air transport flows exhibit a scale-free structure (Barabási and 

Albert, 1999) with a power-law degree distribution (Reed, 2003) reflecting the hierarchy of 

cities. On the other hand, the structural equivalence and similarity of different urban networks 
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have been assessed through the application of Quadratic Assignment Procedures (QAP; 

Krackardt, 1987), as in Choi et al.’s (2006) analysis of air transport and the Internet backbone 

connections between cities, as well as Ducruet et al.’s (2011) assessment of worldwide sea 

and air transport flows. 

 

With the growing availability of coherent longitudinal datasets, scholars have also traced the 

spatial and structural changes of urban networks. Research in this vein draws on 

methodologies of network description, but aims to extend these by analyzing network 

characteristics from a longitudinal perspective. For instance, Smith and Timberlake (2001) 

examined the changing patterns of airline-based global city system in terms of centrality 

hierarchies and clique membership between 1977 and 1997. Ducruet (2017) and Ducruet et 

al. (2010) have uncovered the evolution of urban hierarchies, regional patterns, and overall 

structures in global maritime networks, while Wang et al. (2009; 2014) have conducted 

similar studies of China’s evolving railway and air transport network.  

 

Network description has predominantly focused on the analysis of a single network (i.e. a 

simplex network). However, there is an increasing awareness that urban networks are diverse 

and should be envisaged as multiplex networks (Tsiotas and Polyzos, 2017). This implies the 

recognition of the need of envisaging urban networks as (1) multimodal networks, networks 

integrating several modes of interdependent transport networks (Zhang and Peeta, 2011) and 

(2) multilayer networks, networks decomposed into differently structured layers (Ducruet and 

Zaidi, 2012). With regard to the former, there exists strong complementarity between 

multiple modes of transport networks in the formation of an urban network. This has been 

highlighted in the joint analysis of global airline and maritime networks by Ducruet et al. 

(2011), and also in the construction of composite network including rail, road, and air 

networks by Derudder et al. (2014) (see a recent review by Ducruet, 2017). With regard to 

the latter, it helps disentangling the complexity of urban networks and providing insights into 

the different layers unevenly contributing to the configuration of the network, as shown in the 

hierarchical core-bridge-periphery structure in China’s and global air networks (Du et al., 

2016; Verma et al., 2014). 
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(3) Urban network modelling 

Complementing the description of urban networks, attention has been paid to model these 

networks with the specific purpose of uncovering their underlying mechanisms. This 

simulation and modelling mainly relies on space-based and/or topology-based techniques.  

 

The most commonly techniques adopted by geographers are gravity-type models, in which 

the flows between two cities are assumed to be proportional to their ‘masses’ and inversely 

proportional to the ‘distance’ separating them (Matsumoto, 2007; Tobler, 1970). These 

gravity-type models are intuitively conceptualized and can be easily extended to include other 

factors with a spatial connotation. However, they are based on the premise of 

interdependence of nodes, while most urban networks are characterized by structural 

independence between cities. For example, the strength of the linkages between London, 

New York and Hong Kong, derives from the interdependence of their financial services 

complexes, a topological property resulting in important long-distance connections that might 

deform gravitational predictions (Van Meeteren et al., 2016). 

 

Two recent topology-based models (i.e., the ERGM and SABM mentioned in section 1.2.1) 

derived from social network analysis have tackled this ‘deformation’ problem. On the one 

hand, Liu et al. (2013a) have employed the ERGM to explore regional differences in the 

underlying formation processes of intercity corporate network. On the other hand, Liu et al. 

(2013b) and Zhang et al. (2016) have drawn on SABM to investigate the different processes 

underlying the dynamics of the global intercity corporate network and the European air 

transport network, respectively. However, both models have their own limitations in the 

context of urban network simulation. EGRM, for instance, sometimes has the problem of 

computational intractability and ‘degenerate’ model behavior, thus being not that stable 

(Karwa et al., 2016). Meanwhile, SABM’s need for clear-cut definition of key actors and 

their network-generating behavior is sometimes hard to implement and/or interpret (cf. 

Broekel et al., 2014). 

 

As can be seen from these previous studies, topological and spatial effects are not mutually 

exclusive and they may exert overlapping (yet separate) influences in the shaping of urban 
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networks (Pflieger and Rozenblat, 2010). To date, geographers have made all in all limited 

attempts to explicitly incorporate topological effects when modelling urban networks. A 

major exception has been Vinciguerra et al.’s (2010) simulation of the formation of the 

Internet backbone in Europe. They show how a combination of topological effects (a 

preferential attachment process whereby nodes have the tendency to connect to nodes that are 

already well-connected) and spatial effects (e.g. borders) help explaining the shape of this 

particular intercity network. Another notable generative network model incorporating 

topological and spatial effects was proposed by Vértes et al. (2012) in biological science to 

model functional human brain networks. Instead of the preferential attachment process in 

Vinciguerra et al (2010), Vértes et al (2012) explained the topological force by transitive 

process, which is arguably much more common in urban and social networks. 

(4) Network backbone extraction 

With the increasing availability of big data and the increasing complexity of transport 

networks, the visualization, description and analysis of transport-based urban networks 

continue to face a range of challenges (Hennemann, 2013; Radicchi et al., 2011; Vertesi, 

2008), which necessities further research of backbone extraction of urban networks. This has 

been studied in a wide range of disciplines using slightly different terms, such as network 

simplification, network sparsification, network reduction and network abstraction. It aims to 

extract the ‘backbone’ of a network: a simplified version that is reduced in size – i.e., some 

edges and/or nodes are deleted – but retains the most ‘valuable’ information contained in the 

original network. The abstracted network can be mapped and explored with significantly less 

effort, and this without too much compromising the real-world remit of the network. 

 

Several strategies have been proposed to achieve this goal in the study of urban networks. 

The most frequently used approach is to introduce an unconditional threshold, which keeps 

edges and/or nodes that have a level of connectivity above a certain value. For instance, 

Dennis (2005) considered air routes with at least 3 weekly non-stop services to unravel the 

distinct markets each European hub airport serves, while Fuellhart and O'Connor (2013) 



14 

 

retain international routes with more than 18250 passengers per annum in their study of air 

services at Australian cities to reduce the original airline network to a more manageable 

scale. 

  

Another well-known alternative is primary linkage analysis (Nystuen and Dacey, 1961) 

which keeps the most important edge for each node in the network so that the number of 

edges contained in the backbone is normally identical to the number of nodes. This approach 

has been applied to outline the backbone of complex global airline network (Grubesic et al., 

2008) as well as worldwide maritime network (Ducruet, 2017). Different from the pre-

determination of a single edge in primary linkage analysis, multiple linkage analysis (Haggett 

et al., 1977) offers a more refined determination of the number of edges for each node. This 

helps simplifying the original network by judiciously removing non-significant edges. Van 

Nuffel et al. (2010) employ the technique to extract the most significant flows in the 

European air transport network, while Wang and Cullinane’s (2014) conduct a similar 

identification of traffic flows through major container ports in East Asia. 

 

Needless to say, these methods are not unique to the study of urban networks: they have for 

example been discussed and applied in fields as disparate as physics (Gemmetto et al., 2017), 

sociology (Neal, 2014), biology (Darabos et al., 2014), and computer science (Foti et al., 

2011). Nonetheless, it can be noted that oftentimes the illustrative examples put forward in 

these domains are infrastructure networks, reinforcing the broader relevance of urban 

network analysis. In spite of this, the adoption of the ideas developed in other scientific fields 

has been limited and uneven in urban geography itself (cf. Ducruet and Beauguitte, 2014), 

thus calling for a systematic comparison of the relevance of different backbone extraction 

techniques for urban-network research in general and for transport-network research in 

particular. 
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1.2.3 Urban studies of Southeast Asia 

1.2.3.1 An overview of Southeast Asia: unity-in-diversity 

Although different delineations abound, Southeast Asia (SEA) can roughly be described as 

the region situated east of the Indian subcontinent, south of China and north of Australia, 

between the Indian Ocean (in the west) and the Pacific Ocean (in the east). As shown in 

Figure 1.2, this region is commonly defined (cf. Rimmer and Dick, 2009) as including 

Cambodia, Laos, Myanmar, Vietnam (CLMV), Thailand, Malaysia, Singapore, Indonesia, 

Philippines, Brunei, and East Timor (formerly part of Indonesia). 

 

 

Figure 1.2 Southeast Asia. 

The term “Southeast Asia” came into general use during the Second World War, especially in 

relation to Japan’s occupation of the area during the Pacific War. Scholars have described this 

region as a “unity-in-diversity” (Jönsson, 2010), in the sense that it contains divergent and 

overlapping features in terms of geography, history, demography and economy, socio-

cultures. For example, they all have been colonized by western powers except for Thailand. 

Despite their relative geographic proximity, some of them are on the mainland while others to 

a large extent consist of archipelagos.  
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The population in Southeast Asian countries varies widely from tiny oil-rich nation, Brunei, 

to Indonesia (see Table 1.1). Furthermore, the urbanization level also exhibits great disparity. 

Countries with the largest levels of gross domestic product (GDP) per capita (Singapore, 

Brunei, and Malaysia) are highly urbanized, with an urbanization rate above 74%. In 

particular, the figure of Singapore reached 100% as early as 1960 (Yap and Thuzar, 2012). 

The middle income countries including Thailand, Indonesia, and Philippines have 

urbanization rates between 40% and 60%, which is approximating the world average of 

53.8%. The less developed countries (CLMV and East Timor) have levels of urbanization 

below 40%. Apart from Singapore, Indonesia and Vietnam have recently shown remarkable 

Foreign Direct Investment (FDI) influxes due to their large market size and cheap labor force. 

Religious and ethnic diversity are also marked. The dominance of Chinese heritage in 

Vietnam and Singapore, the primarily Indianized culture of Myanmar, Thailand, Cambodia, 

and Laos, the Islam of Indonesia and Malaysia, and the Catholicism of the Philippines 

underwrite by intense regional variation. 

  

Table 1.1 Demography and economy of Southeast Asian countries in 2015. 

Country 
Population 

(million) 

Urbanization 

(%) 

GDP 

(billion USD) 

GDP per capita 

(USD) 

FDI 

(billion USD) 

Singapore 5.54 100.00 296.84 53630 70.58 

Brunei 0.42 77.20 12.93 30968 0.17 

Malaysia 30.72 74.71 296.43 9649 9.86 

Indonesia 258.16 53.74 861.26 3336 19.78 

Thailand 68.66 50.37 399.23 5815 8.93 

Philippines 101.72 44.37 292.77 2878 5.64 

Laos 6.66 38.61 14.39 2159 1.42 

Myanmar 52.40 34.10 59.69 1139 4.08 

Vietnam 91.71 33.59 193.24 2107 11.80 

East Timor 1.24 32.77 1.61 1295 0.04 

Cambodia 15.52 20.72 18.05 1163 1.70 

SEA 632.75 47.75 2446.45 3866 134.00 

Source: data.worldbank.org. 

However, in spite of all this, today Southeast Asia displays more homogeneity and 

convergence than ever before (Acharya, 2000), and this mainly due to the increasing regional 
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integration and globalization processes (i.e. a relatively homogenized integration into the 

world economy in as specified in Dick and Rimmer (1998: 2303)). During the last couple of 

decades, cooperation within regions has, in general, rise, among which the most successful 

example is the European Union (EU). In Southeast Asia, Thailand, Malaysia, Indonesia, 

Singapore and Philippines in 1967 formed the Association of Southeast Asia Nations 

(ASEAN) political and economic grouping. Membership of ASEAN has grown over the 

years to include another five member states, with Brunei joining in 1984, Vietnam in 1995, 

Laos and Myanmar in 1997, and Cambodia in 1999. Since its foundation, the ASEAN has 

made persistent efforts to promote regional integration. In 2015, a series of initiatives came to 

fruition to establish the ASEAN Economic Community (AEC). These initiatives are 

designed, among other things, to reduce tariff and non-tariff barriers to trade, to harmonize 

standards and regulations of all kinds, to develop human capital and professional standards, 

to facilitate movement of labor, and generally to serve to strengthen ASEAN as a 

homogeneous economic community, and this broadly along the lines of the early European 

Economic Community. 

 

However, Southeast Asian countries have very different experiences with global and regional 

integration. It is well documented that regional economic integration in East Asia - including 

large part of its Southeast Asian component - has been preceded by fast-paced industrial 

development in Japan and the emergence of newly industrializing countries (NICs) - South 

Korea, Taiwan, Hong Kong, and Singapore - since the mid-1960s (Yap, 2014). Consecutive 

waves of relocating labor-intensive industries then cascaded down to next-tier NICs - 

Indonesia, Malaysia, Thailand - and later to the Philippines after it introduced a transition 

towards more liberal economic policies from the early 1980s onwards (Coclanis and Doshi, 

2000). Meanwhile, the three Indochinese economies (i.e. Vietnam, Laos and Cambodia) were 

trapped in conflicts and isolated from the SEA regional market for more than a decade after 

1975. They subsequently embarked on a trajectory of regional economic integration through 

a fundamental shift in development strategy from a centrally planned economy to a market 
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economy since the late 1980s, as exemplified by Vietnam’s Doi Moi reforms (Hill and 

Menon, 2012). By 1993, CLMV countries had all embraced market mechanisms, 

emphasizing export promotion, welcoming foreign investment, and promoting tourism 

(Thant, 2012). The flows of trade and investment to these newcomers to regional integration 

led to the establishment of broader regional production networks. As a consequence, regional 

integration in SEA has been significantly accelerating since the early 1990s: Tanaka (2009) 

demonstrates that the intraregional trade has almost doubled over the past two decades and 

now constitutes a quarter of the region’s total trade. 

 

 

Figure 1.3 GDP and FDI of Southeast Asia, 2001-2015
1
.  

As a single bloc, this region has emerged as one of the most economically dynamic and 

strategically significant regions in the global economy (Sien, 2003). As the world third 

largest labor market, SEA produces a combined GDP of US$2.45 trillion in 2015, which 

ranks third in Asia, following China and Japan (ASEAN Secretariat, 2016a). In tandem with 

its economic growth, SEA remains a major destination of global investment recently and has 

received increasing FDI except for a short drop during 2008-2009 because of the global 

economic recession (Figure 1.3).  In 2015, it attracted around 18% of the world’s FDI into 

                                                       
1 GDP and FDI data for each of the eleven Southeast Asian countries were gathered from World Bank 

(https://data.worldbank.org/) and then were aggregated, respectively, to represent those for the whole 

region of Southeast Asia. 
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developing economies with an inflows of  US$ 134 billion (ASEAN Secretariat, 2016b), with 

Singapore being the biggest beneficiary (cf. Table 1.1). 

1.2.3.2 Urbanization in Southeast Asia 

Over the past few decades, SEA has experienced substantial urbanization, growing from less 

than one fifth of the population being urban dwellers in 1960 to almost half of the population 

living in cities in 2015 (Figure 1.4), close to the world average of 53.8% . Urbanization of 

individual cities in SEA also differs greatly which can date back to historical development as 

well as recent political systems of each country (Dutt et al., 1994). The evolution of Southeast 

Asian urbanization has been depicted by Dutt and Song (1996) as consisting of four phases: 

(1) indigenous urbanization, (2) colonial urbanization, (3) extended pre-industrial 

urbanization, and (4) industrial city urbanization.  

 

 

Figure 1.4 Urbanization level of Southeast Asia, 1960-2015
2
. 

From the third century B.C., indigenous urbanization developed three types of cities – 

administrative cities, sacred cities, and coastal cities – that exercised different functions 

(McGee, 1967). The administrative cities including imperial capital, provincial or vassal 

                                                       
2 Urban population and total population data for each of the eleven Southeast Asian countries were 

gathered from World Bank (https://data.worldbank.org/) and then the urbanization level was 

calculated by the ratio of total urban population in Southeast Asia to its total population. 
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capital, and regional centers helped organizing the hierarchy of political power. The sacred 

cities, normally located in the interior part of the country, helped housing an elaborate 

religious structure and were  closed societies with limited human interactions (Read, 1976). 

The coastal cities, developed by merchants, were to conduct trade with other regions based on 

free market society and technology innovation. In the stable economic conditions at that time, 

sacred cities seemed to be more prosperous than coastal cities.  

 

However, during the colonial urbanization starting from 1511 A.D., coastal areas or at river 

mouths were selected to support trading activities and, later, to facilitate the export of raw 

materials from colonies to the European countries and America (Thailand was the only 

country not colonized). Therefore, these cities become the nuclei of current great cities and 

the urban development in this region explicitly took place within the context of a global 

economy. Colonialism was also accompanied by the introduction of new transport technology 

needed for colonial administration as well as economic activity. 

 

Beginning with independence from colonialism, SEA entered into the third phase of extended 

pre-industrial urbanization. Counties in this region started to making efforts on postwar 

decolonization and nation building. Since the mid-1960s, beginning with Japan, waves of 

urban explosion and economic growth cascaded down first to newly industrializing countries 

(NICs) such South Korea, Taiwan, Hong Kong, and Singapore. With the increasing 

enthusiasm for new international division of labour, labour-intensive stage of production was 

relocated form the developed economies to the Third World for lower labour cost (Frobel et 

al., 1980). This trend then further spread into the so-called next-tier NICs in Southeast Asia 

(initially mainly Indonesia, Malaysia, and Thailand) and later to Philippine. The economies 

of most countries depended on export to a significant level, so coastal cities received greater 

impetus for development during the post-independence period.  
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For the industrial city urbanization, Singapore has entered into this phase since the 1990s 

when industries started to utilizing high-tech devices and producing goods out of capital-

intensive enterprises. Nowadays apart from Singapore’s prominence in the global economy, 

rapid economic growth have turned Bangkok, Kuala Lumpur, Manila, and Jakarta into 

progressive cities. More recently, Vietnam has emerged after economic reforms in the 1986 

(Freeman, 1996). Laos, Cambodia and Myanmar embarked upon this trajectory by 

fundamental shift in development strategy from a planned economy to market economy. This 

shift leads to the rapid development of some towns which has initial advantages (ports, 

proximity to government policymakers, human capital), or towns where a particular industry 

is rapidly emerging, for example, Luang Prabang and Siem Reap as key tourist destinations in 

Laos and Cambodia, respectively. 

1.2.3.3 Urban network studies of Southeast Asia 

Urbanization in this region has been characterized by the emergence of megacities, extended 

metropolitan areas, mega-urban regions, and transnational urban corridors (Ginsburg, 1991; 

Jones, 1997; McGee and Greenberg, 1992). Among them, the most distinctive characteristic 

is the high degree of urban primacy (Rimmer and Dick, 2009). There is a consensus that the 

urbanization process in Asia has been reshaped and facilitated by globalization processes 

(Huff and Angeles, 2011; McGee, 2009; Shatkin, 2008; Yeung, 2011).Thereby, a ‘paradigm 

shift’ has taken place to engage cities and urbanization in the world-system perspective 

(Smith, 2003).  

 

GaWC’s work clearly suggests this paradigm shift, for instance, with a selection of cities with 

population larger than one million, the position of 25 Southeast Asian cities are analyzed in 

the world city network based on transnational corporate location strategies (Derudder and 

Taylor, 2017). Other research includes the paper by Bowen and Leinbach (2006), who 

explore the role of Kuala Lumpur, Metro Manila, Penang, and Singapore in the global 

production network. The ASEAN mega-urban regions (McGee and Robinson, 1995) are now 
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regarded as international hubs embedded in a competitive urban network centered on Tokyo, 

which is linked with both London and New York. This has also been picked up by Rimmer’s 

(1995) analysis of the nature of transport and communication interactions between world 

cities in Pacific Asia by using data on container movement, air freight and mail, and air 

passengers. In addition, Shin and Timberlake (2000) describe the changing hierarchy, cliques 

and connectivity patterns of Asian cities in the world system of cities by using data on airline 

travel between all pairs of about 100 world cities from 1975 to 1997.  

 

The integration at the global level has been replicated at the regional level (Thant, 2012). Lo 

and Yeung (1996) suggest that a new spatial articulation of the global economy has emerged, 

rendering national boundaries far less salient than in the recent past. Some scholars see 

regionalism as a by-product of globalization processes, i.e. regionalism is “determined by 

location and specificity within the world economy or traditional production structures” 

(Scholte, 2000: 42). Regionalism can be described as a kind of re-territorialization. New 

alliances and collaboration patterns are created in order to cope with the new challenges 

caused by globalization, and even if the states lose some of their power, regionalism 

strengthens the states vis-à-vis the rest of the world (Jönsson, 2010). At the same time, a 

process of de-territorialization is taking place, i.e. territories are not as important as they used 

to be. Borders simply lose their importance through increased integration. 

  

One can discern various trans-border cooperation patterns within Southeast Asia. Examples 

include the Singapore Growth Triangle (Macleod and McGee, 1996), Penang Malaysia - 

southern Thailand - Sumatra (Yeung and Lo, 1996), and the Greater Mekong Sub-regional 

cooperation (Walsh, 2010), which point to a more de-territorialized system of cities 

(Stærkebye, 2005). In this respect, Yeung (2001) analyzes the cross-border activities of 

Singapore-based manufacturing transnational corporations in Southeast Asia, and found the 

spatial fragmentation is rather limited in this regional production network. Li and Dawood 

(2017) specify the connectivity of 33 crucial Southeast Asian cities through the office 
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network of 30 advanced producer services firms with the analogy to GaWC’s immense 

empirical study of world city network, and then identify most dominant cities, inter-regional 

connections, hierarchical and regional structures in Southeast Asia. Dick (2005) also 

examines how Southeast Asia might be imagined from a trans-national urban perspective: 

“Focused on main cities and their hinterlands, trans-national interactions in the movement of 

people, goods, money and information define a core region or corridor, which contrasts with 

dispersed trans-national peripheries in both maritime and mainland Southeast Asia. This 

approach offers a stimulating and realistic way to re-imagine Southeast Asia without 

national boundaries in the foreground.” (Dick 2005: 251). 

Actually, ASEAN’s efforts to promote regional integration is also reflected in a range of 

initiatives to enhance the intra-regional infrastructure connectivity (ASEAN Secretariat, 

2011). A key step in this process was the agreement on an ASEAN Free Trade Area (AFTA) 

in 1992. The AFTA framework carried a commitment to further enhance regional 

cooperation by providing safe, efficient and innovative transportation and communications 

networks. This then boosted a series of sub-regional cooperation and two flagship land 

transport infrastructure projects, namely the ASEAN Highway Network (AHN) and the 

Singapore Kunming Rail Link (SKRL). In addition, air transport began to be liberalized 

based on sub-regional agreements, such as between CLMV countries and in ASEAN’s 

Northern Growth Triangle. Another important step was the 2008 agreement to form ASEAN 

Single Aviation Market by 2016, although the Open Skies policy has not been fully 

implemented to date. Today, cities in this region are increasingly linked by business 

networks, trade relationships, migration, etc., much of which is supported by intercity 

transport connections. The economic bloc is shifting from a mosaic of nations towards an 

integrated and globally competitive single market and production base.  

 

All in all, the changing role of Southeast Asian cities and their regional organization patterns 

have become vital in the context of globalization. As can be seen from previous studies, cities 
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with small populations and/or less advanced economy in Southeast Asia are usually 

overlooked in global and regional urban-network analysis and in a sense ‘off the map’ in 

public media, government reports, and academic studies. While megacities such as Bangkok, 

Kuala Lumpur, Jakarta, Manila are competing for the status of ‘global cities’, relatively little 

is known about secondary cities and other small or less developed cities in the vast Southeast 

Asia. In this light, regional urban networks based on airline data can provide a more detailed 

portray with comprehensive inclusion of airport cities and description of connections between 

cities (e.g. Bowen, 2000; Rimmer, 2000). However, most of them take a transport perspective 

rather than an urban perspective, resulting in relatively limited knowledge of the Southeast 

Asian urban system. Against this backdrop, analyzing the systems of Southeast Asian cities 

in a regional framework based on transport data is of the utmost interest to researchers and 

also of great value in both practice and scholarship (Thompson, 2013). 

1.3 Research questions 

As illustrated in the background section, the urban network paradigm has been marshalled to 

understand transnational urban systems in an era of heightened globalization. However, to 

date there have been limited efforts to investigate urban networks in Southeast Asia. To 

bridge the gap between state-of-art urban network research and the limited knowledge of the 

spatial organization of intercity linkages in this region, this dissertation offers an in-depth 

analysis of urban networks in Southeast Asia drawing on intercity transport linkages. 

Furthermore, this dissertation also explicitly positions itself as part of the methodological 

strands of the network analysis literature: it is argued that integrating spatial analysis with 

network analysis brings a new and more complete perspective to the understanding of 

urban/transport networks. Based on a range of analyses of the intercity transport linkages, this 

dissertation has both conceptual (Q1 & Q2) and methodological (Q3 & Q4) research 

questions.   
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As demonstrated before, Southeast Asia has been experiencing both accelerated urban 

transformations and regional integration, and the development of both countries and  cities in 

this region is quite uneven. The structure of this regional urban system will be explored from 

a network perspective cross-sectionally (Chapter 2) and longitudinally (Chapter 3). 

Specifically, the respective research questions are specified as: Q1: What are the spatial 

patterns of the urban network in Southeast Asia from the lens of composite transport 

linkages? and Q2: What is the evolving structure of the urban network in Southeast Asia from 

the lens of air transport linkages? In Chapter 2, social network analysis will be used to 

examine these spatial patterns in 2016, focusing on cities and city communities. In Chapter 3, 

we will trace the dynamics of overall network structures from 1979 to 2012, both 

geographically and topologically, using complex network analysis.  

 

As reviewed in previous section, urban network analysis has been fertilized by a range of 

scientific fields. We will pay particular attention to network modelling (Chapter 3) and 

network abstraction (Chapter 4) in the study of the urban networks in Southeast Asia by 

employing recent advances in other disciplines. Specifically, the respective research 

questions are specified as: Q3: How can spatial science and network science be bridged to 

better model the formation of urban networks? And Q4: What is the relative usefulness of 

different methods to extract the backbone of urban networks? These research questions will 

be addressed by introducing a generative network model to uncover the spatial and 

topological forces underlying network formation (Chapter 4) and by comparing the 

topological and spatial features of different backbones (Chapter 5). 

1.4 Data: intercity transport linkages 

In the context of the empirical studies in this dissertation, two types of data on intercity 

transport linkages were collected to map urban networks in Southeast Asia. The sample cities 

studied in both networks were slightly different. 
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1.4.1 Intercity composite transport linkages 

The first type of data are intercity composite transport linkages, which will be used in 

Chapters 2 and 4. In this composite network, 47 Southeast Asian cities were selected based 

on two criteria: 1) all metropolises with more than half a million residents (based on 

citypopulation.de’s data); and 2) all capital cities (e.g. Vientiane, Laos and Dili, East Timor) 

regardless of their population size. The units of analysis are not cities proper, but 

metropolitan areas that often aggregate cities within geographic proximity (e.g. Metro Manila 

is composed of the city of Manila and surrounding cities such as Quezon City).  

 

To create a symmetric composite network, intercity road, rail, and air connectivity data were 

first collected in the form of nonstop weekly frequencies in February 2016 from online 

bus/ferry and rail ticketing systems of individual countries and SkyScanner’s commercial 

flight search engine, respectively. The data were cross-validated with multiple sources. Then 

the data in each individual network were logged and normalized, ranging from 0 (no 

connectivity) to 1 (strongest connectivity), after which the composite transport network was 

produced by averaging transformed dyadic values in three individual networks.  

 

In Chapter 4, a third criterion was added to select cities: 3) in order to produce a more 

balanced geographical distribution, we also included the four largest cities in the vast but 

sparsely populated islands of Sulawesi, Maluku and western half of New Guinea even though 

these cities had less than 0.5 million inhabitants. Hence, the resulting composite transport 

network specified the connectivity among 51 major cities in Southeast Asia. 

1.4.2 Intercity air transport linkages 

The second type of data are intercity air transport linkages, and are used in Chapters 3 and 5. 

The air transport data refers to nonstop flights and air passengers scheduled between any pair 

of airports within Southeast Asia, as collected from the Official Airline Guide (OAG) 

database. Each airport city represents a single node except for a number of aggregations 
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related with the presence of multi-airport cities (cf. Derudder et al., 2010), i.e. a combination 

of Suvarnabhumi and Don Mueang into Bangkok, Kuala Lumpur International and Sultan 

Abdul Azziz Shah into Kalua Lumpur, Soekarno-Hatta and Halim Perdana Kusuma into 

Jakarta, and Changi and Seletar into Singapore.  

 

The symmetric air network can be binary, with 1 denoting the presence of nonstop flights 

between two cities in one year and 0 denoting the absence, or weighted by the number of air 

passengers in the year under study. Chapter 3 utilizes a binary air transport network from 

1979 to 2012 to explore the evolution of topological structure and also utilized weighted air 

transport network in 1979, 1996, and 2012 to explore the changing geography of multilayered 

structure. Chapter 5 used the weighted air transport network in 2012. 

1.5 Organization of the dissertation 

Figure 1.5 shows the structure of this dissertation, specifying how the title, research questions 

and chapters are related, as well as data and methodologies used in each chapter. There are 

six chapters, i.e. this introduction, four formative chapters that collectively answer the two 

research questions, and the conclusions. Chapters 2-5 correspond to papers that have been 

published or prepared for publication in international peer-reviewed journals. 

 

 

Figure 1.5 Overview of the dissertation. 
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Inspired by the idea of multiplex network analysis, Chapter 2 analyzes the Southeast Asian 

urban network created by the ensemble of intercity road, rail, and air connectivity in 2016. 

Using a social network analysis perspective, three different centrality (degree, closeness, and 

betweenness centrality) of cities are examined, and four closely interconnected communities 

are detected. This study takes into account the complementarity of multimodal transportation 

in Southeast Asia and sheds light on the spatial inequality in this region from an urban 

network perspective. 

 

Chapter 3 investigates the evolving structure of the Southeast Asian urban network from 

1979 to 2012 through the lens of complex network theory. To our knowledge, both the 

topological properties of the entire network and the multilayered structures are examined for 

the first time in this study. On the one hand, the study of topological properties offers insights 

into the common grounds the Southeast Asia urban network shares with other regions’ as 

well as the specific features it exhibits. On the other hand, the study of multilayered 

structures enhances our understanding of the development of cities at different levels in 

Southeast Asia. 

 

In Chapter 4, extending the work of Vinciguera et al. (2010) and Vértes et al. (2012), who 

incorporate both spatial and topological factors to model networks, we present a generative 

network model combining factors commonly analyzed through traditional spatial simulation 

models (e.g., gravity-type models) and topological simulation models (e.g., SABM). In our 

model, it is assumed that the probability of connections between cities emerges from 

competing forces. Stimulating factors are a measure of city size (i.e., population) and a 

topological rule favoring the formation of connections between cities sharing nearest 

neighbors (i.e., transitive effects). The hampering factors are physical distance between two 

cities as well as institutional distance (i.e., border effects). We discuss the model in the 

context of on-going engagements between urban-geographical research and the network 
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science literature, and validate the credence of the model against empirical data on the 

composite transport linkages connecting 51 major cities in Southeast Asia. 

 

In Chapter 5, we review six frequently-used methods from different scientific fields to extract 

network backbones, i.e. global weight thresholding, k-core decomposition, minimum 

spanning tree, primary linkage analysis, multiple linkage analysis, and the disparity filter 

algorithm. We then present a conceptual and experimental comparison of backbone 

extraction techniques in the context of urban networks in general and transport network in 

particular. In addition, we explore under which circumstances or for which research objective 

the different techniques are particularly useful (or less so). The Southeast Asian intercity air 

transport network in 2012 are used as an empirical case in this chapter. 

 

The sixth and final chapter of this dissertation summarizes the main findings drawn from the 

combined conclusions of the previous chapters, and outlines some avenues for further 

research. 

 

The four formative chapters are co-authored papers. I am the corresponding author for 

Chapter 2 and I was responsible for data collection, data analysis, as well as preliminary 

interpretation and discussion of the results. For Chapter 3-5 where I am the first author, I 

conducted the data collection and statistical analysis, and oversaw the interpretation of results 

manuscript preparation. My co-authors’ work was mainly found in helping better framing  the 

research, assisting with concrete technical difficulties, and improving the manuscript in terms 

of research objectives and language. The first and final chapter of this dissertation were 

entirely completed by myself. 
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Abstract 

Spatial inequality in transport access is both the driver and outcome of rising economic 

inequality in Southeast Asia. Unlike many regional disparity studies that focus on national 

economic indicators, this paper takes an urban network approach to assess the spatial 

inequality in Southeast Asian intercity transport network. We analyze urban connectivity in 

intercity road, rail, and air networks for a total of 47 Southeast Asian cities. Spatial inequality 

at the city and network level is revealed via centrality measures and community detection, 

respectively. Gini coefficients for individual centrality rankings point to a hierarchical degree 

distribution, a rather even distribution of closeness centrality, and a highly concentrated 

distribution of betweenness centrality. Four network communities are identified, reflecting 

the influences of entrenched uneven development, fragmented geography, and economic and 

political policies. 
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2.1 Introduction 

Economic inequality has been rising in Southeast Asia in the past few decades (Yap, 2014). 

Spatial inequality in transport access is both the driver and outcome of rising economic 

inequality. On the one hand, economic development in Southeast Asia has long been 

constrained by its ‘tyranny of geography’ (Armstrong and Read, 2006). The fragmented and 

tropical geography has inhibited efficient transportation and the formation of an integrated 

market (Hooper, 2005). Areas with better physical infrastructure and transport access would 

benefit from lower transaction costs, larger market size, and higher chances of attracting 

foreign direct investment (Munnell, 1992; Fujimura, 2004; Walsh, 2010). On the other hand, 

existing spatial inequality in transport access is conditioned on uneven economic growth, as 

improving physical connectivity requires substantial public investments. 

 

Therefore, spatial inequality in transport access has always been high on regional and 

national agendas. For example, developing efficient and extensive transportation networks is 

highlighted in various Association of Southeast Asian Nations (ASEAN) initiatives (Goh, 

2008; Bhattacharyay, 2009). More recently, Asian Development Bank and Asian 

Infrastructure Investment Bank are actively seeking to help Southeast Asian countries 

develop infrastructure networks. Flagship projects include Singapore to Kunming, China 

railroads and high speed rail networks in Thailand. National imperatives also feature 

predominantly in this process. Beyond economic functions, the development of transportation 

networks has been instrumental in social and political changes of ASEAN countries (Kuroda, 

2008), ranging from promoting national unification and integration (Kissling, 1989; 

Raguraman, 1997), to boosting (labor) migration (Pye et al. 2012), and to minimizing rural-

urban inequalities (Sabandar, 2007).  

 

Rather than examining Southeast Asia as comprised of national political units and based on 

national statistics, this paper will employ a network approach to explore the spatial inequality 

of transportation connections between Southeast Asian cities. Bunnell (2013) suggests that 

this network approach would present an alternative geography of Southeast Asia as 

comprised of a network of cities and thus challenges the ‘methodological nationalism’ in area 

studies. Meanwhile, employing a network approach is consistent with the new network 
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paradigm in the ‘urban system’ literature (e.g., Camagni, 1993; Castells, 2001). The network 

paradigm departs from some of the ‘conventional’ approaches of studying urban hierarchies 

in that the focus is no longer on the ‘characteristics’ or ‘attributes’ of cities in and by 

themselves (e.g. population size and number of companies; e.g., Tonts and Taylor 2010). 

Using data on intercity connections has thereupon become an increasingly popular way to 

examine urban hierarchies (Grubesic et al., 2011). Still, we acknowledge the danger of 

upscaling ‘methodological nationalism’ to ‘methodological regionalism’ by conceptualizing 

Southeast Asia through the lens of transnational urban networks (Bunnell, 2013). For 

example, intercity flows of capital, information, and goods are not confined within regional 

boundaries, thus problematizing the very regional framings such as ‘Southeast Asia’ and 

‘ASEAN’. Nevertheless, Thompson (2013) argues that regional entities such as ‘Southeast 

Asia’ remain valuable in both practices and scholarship. 

 

Using an urban network perspective, our exploratory analysis focuses on the spatial 

inequality of transportation connections in two levels. First, we look into how well individual 

cities are connected in transportation networks, i.e., inequality of network connections at the 

nodal level. This enables us to reveal the hierarchical geography of transportation 

connections produced by the layered economic, political and social processes in Southeast 

Asia. For example, Pacific Rim cities such as Kuala Lumpur and Singapore are emerging as 

well-connected world cities (Perry et al., 1997; Taylor et al., 2000; Bunnell et al., 2002), 

while cities like Phnom Penh are in dire need of adequate road infrastructure (Motomura, 

1996). Second, our analysis will identify groups of cities that are more densely connected to 

each other, i.e., inequality of transportation connections at the network level. In the context of 

urban networks, groups of densely connected cities form network ‘clusters’, where intra-

cluster connections are stronger than inter-cluster linkages (Derudder et al., 2003). These 

clusters correspond to network-based regions in economic geography and reflect functional 

(economic) integration across cities (Liu et al. 2015). Regional integration policies (e.g., 

Brunei Darussalam-Indonesia-Malaysia-Philippines East ASEAN Growth Area (BIMP-

EAGA) are deemed important for reducing economic inequality in Southeast Asia (Yap, 

2014), generating intercity traffic flows and fostering network-based city-regions. 
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Although several studies have examined individual cities’ positions with Southeast Asian 

transportation networks, especially airline networks, they often (1) analyse a limited set of 

cities (e.g., O’Connor, 1995); (2) focus on one transportation mode (Bowen, 2000); and/or (3) 

are limited to one network indicator such as degree centrality (Taylor et al., 2000). Thus, the 

overall pattern of the connectivity of cities in transportation networks remains unclear (Yap 

and Thuzar, 2012). Against this backdrop, we measure how major cities in Southeast Asian 

are connected in the ensemble of road, air, and rail transportation networks. More 

specifically, we will explore the inequality of transportation connectivity across cities and 

look into (1) which cities are important in Southeast Asian transportation networks based on a 

set of network centrality measures (i.e., inequality of transport access at the city level); and 

(2) which groups of cities are more connected to each other, forming densely connected 

network-based sub-regions (i.e., inequality of transport access at the network level).  

 

In the next section, we report the construction of a composite measure of urban infrastructural 

connectivity as well as details the centrality measures and community detection algorithms 

employed to reveal network-based regions. The paper concludes with a discussion of major 

network patterns of intercity transportation networks in Southeast Asia, and points to avenues 

for future research. 

2.2 Data and methods 

2.2.1 Data 

We analyze urban connectivity in intercity road, rail and air networks for a total of 47 

Southeast Asian cities (Figure 2.1). Countries under investigation include Brunei, Cambodia, 

East Timor, Indonesia, Laos, Malaysia, Myanmar, the Philippines, Singapore, Thailand, and 

Vietnam (i.e., all ten members of ASEAN plus East Timor, which has submitted its bid to 

join). Cities are selected based on the following criteria: (1) all metropolises with more than 

half a million residents (based on citypopulation.de’s data); and (2) all capital cities (e.g., 

Vientiane, Laos and Dili, East Timor) are included regardless of their population size. The 

units of analysis are not cities proper, but metropolitan areas that often aggregate cities 

within geographic proximity (e.g., Metro Manila is composed of the city of Manila and 

surrounding municipalities). We adopt this working definition of cities as many nearby cities 
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are functionally connected and share infrastructures. 

 

 

Figure 2.1 Distribution of selected cities in Southeast Asia. 

The data collection process thus creates a 47-by-47 matrix, capturing intercity transportation 

links for passenger flows between the selected 47 cities. The intercity transportation network 

is constructed as a composite network of three different layers, i.e., rail, road, and air 

connections. Each of the three layers contains 47 x (47-1) = 2162 valued dyads. Individual 

layers and the composite network are treated as symmetric by averaging the values of dyads 

between city-pairs. Dyadic values reveal the connectivity of Southeast Asian cities, i.e., the 

strength of connections between individual cities. A higher dyadic value corresponds to more 

connections, and vice versa. Individual transportation network data are then gathered, 

transformed and aggregated into a composite network. The collection of individual network 

layers follows Liu et al. (2015) and is summarized in what follows. 

 

Intercity connectivity in the road network is approximated by the frequency of bus and ferry 

services. The intercity bus schedule is manually recorded from online ticketing systems of 

individual countries and cross-referenced with multiple sources. Ferry capacity is estimated 

and converted to bus-equivalent. The two busiest bus routes are between Kuala Lumpur-

Johor Bahru (1673 weekly buses) and Singapore-Johor Bahru (1099). 
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Data about weekly trains are obtained from websites of railroad agencies and national 

railroad administrations for individual countries. The strongest rail connections are Kuala 

Lumpur-Ipoh, Kuala Lumpur-Penang,  Kuala Lumpur-Johor Bahru (147, 119 and 63 weekly 

trains, respectively) in the densely connected Malay Peninsula, followed by Bangkok-Chiang 

Mai(56) in Thailand, Kuala Lumpur-Johor Bahru-Singapore (49), Jakarta-Semarang (49) in 

central Java, Indonesia, and Yangon-Mandalay (49) in Myanmar. We note that, due to the 

region’s fragmented and tropical landscape, many cities in Laos, Philippines, and eastern 

Indonesia are not served by railroads (Nathan, 2002). 

 

The intercity airline network is estimated by the number of direct weekly flights based on 

SkyScanner’s commercial flight search engine (http://www.skyscanner.com). SkyScanner 

provides information about both traditional and budget airline services. Charter flights are not 

included due to their rather idiosyncratic nature. Weekly flights data are also cross-referenced 

with other databases such as Openflights.org. The strongest aviation connection is between 

Kuala Lumpur-Singapore (582 weekly flights), followed by Ho Chi Min City-Hanoi (522), 

and Jakarta-Surabaya (465). 

 

All data are collected in the first week of February, 2016. Information about the three 

individual transport networks is combined to produce a composite network. Applying the 

following equation thereupon normalized the logged dyadic values in each of the three layers: 

(original-min)/(max-min), where max and min denote maximum and minimum dyadic values 

in individual networks, respectively. All three networks therefore have dyadic values ranging 

from 0 (no connectivity) to 1 (strongest connectivity). Links in the composite network are 

produced by averaging transformed dyadic values in individual networks. The end product of 

the data collection process is an intercity transportation network, which characterizes the 

connectivity among 47 major cities in Southeast Asia. 

 

In comparison with previous studies of Southeast Asia cities (e.g., O'Connor 1995; Bowen, 

2000; Bhattacharyay, 2009; Walsh, 2010; Yap and Thuzar, 2012), our data collection process 

(1) measures multiple transportation networks and includes a larger array of cities; (2) 

features a greater geographic coverage by including major cities from all ASEAN countries; 
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and (3) adopts a systematic approach, thus allowing for replication and longitudinal 

comparisons.   

 

We acknowledge that our analysis of passenger flows represents a specific instance among 

multiple urban networks (Burger et al., 2014). Empirical studies of other urban networks (e.g. 

cargo flows; Lee and Ducruet 2009) may or may not arrive at similar conclusions. 

Nevertheless, a composite measure of three passenger transportation networks is closely 

related to amongst other things labor mobility and external investment, thus providing a 

pertinent reflection of the uneven transport connectivity (Derudder et al., 2014). 

2.2.2 Methods 

We assess the network hierarchy of individual cities with three network centrality measures: 

degree, closeness and betweenness. We also perform a network clustering analysis to reveal 

network-based city clusters. Centrality and community analyses examine the uneven 

distribution of transportation connections at the city and network level, respectively. 

 

Following Alderson et al., (2010), we illustrate the implications of these centrality 

measurements and the community detection algorithm with a ‘toy’ network (Figure 2.2). To 

ease interpretation, the toy network will be binary and all centrality scores will not be 

normalized. We note that in the result section, centrality scores will be reported in a 

normalized fashion (i.e., taking values between 0 and 1; Borgatti and Everett, 2006), to (1) 

make results independent of network size; and (2) incorporate network weights (different 

connectivity levels as detailed in the data construction section). Or, put differently: edges are 

treated as equal in the toy network, while in the real empirical setting they are weighted and 

represent different levels of connectivity. Our toy network depicts a hypothetical transport 

network among 11 Southeast Asian cities, whose degree, closeness, and betweenness 

centrality rankings are presented in Table 2.1. 

 

Degree centrality reflects individual cities’ direct connections to other cities. A city is more 

connected if it has more direct linkages with others. For example, in our toy example, Jakarta 

and Singapore are more connected with 5 linkages, and smaller Philippines cities Cebu and 

Davao attain only 2 connections.  
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Table 2.1 Centrality rankings for the ‘toy’ network. 

Rank City Degree City Closeness City Betweenness 

1 Singapore 5 Singapore 0.063 Jakarta 23 

2 Jakarta 5 Jakarta 0.063 Singapore 21 

3 Kuala Lumpur 3 Manila 0.059 Manila 16 

4 Bangkok 3 Kuala Lumpur  0.043 Cebu 9 

5 Yangon 3 Bangkok 0.043 Kuala Lumpur 0 

6 Manila 3 Yangon 0.043 Bangkok 0 

7 Surabaya 2 Surabaya 0.042 Yangon 0 

8 Bandung 2 Bandung 0.042 Surabaya 0 

9 Cebu 2 Cebu 0.042 Bandung 0 

10 Palembang 1 Palembang 0.040 Palembang 0 

11 Davao 1 Davao 0.030 Davao 0 

 

Closeness centrality measures the overall difficulty for a city to connect with all other cities 

in the network. Closeness centrality is operationalized by looking at individual cities’ inverse 

(network) distances to all other nodes. In our toy example, Jakarta and Singapore have higher 

closeness centrality not only because they have the largest number of direct linkages but also 

because all other cities are only three ‘steps’ or ‘links’ away. While degree centrality 

measures the absolute number of connections, closeness centrality partly reflects the overall 

quality of connections, i.e., whether cities have the right connections to access the network at 

large. For example, while Palembang, Indonesia and Davao, the Philippines both have one 

connection in our toy network, Palembang has a higher closeness centrality and is therefore 

more integrated into the regional system. This is because Palembang’s sole connection is with 

Jakarta, which has many connections and opens doors for Palembang to connect/be 

connected with other cities. In comparison, Davao’s only direct linkage is with the less well-

connected Cebu.  

 

Betweenness centrality captures cities’ brokerage function in the network, i.e., their 

capability of controlling connections between others. In the toy network, all connections 

between Davao and other 9 cities (except itself and Cebu) need to go through Cebu, thus 

giving Cebu a betweenness centrality of 9 as it controls flows in and out of Davao. Within the 

larger regional context, Jakarta, Singapore, and Manila occupy similar brokerage positions 

for Indonesian cities, cities in the Indochina Peninsula, and the Philippine cities, respectively. 
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Connections between cities are not random – cities with social, economic, and geographic 

proximity are more likely to be connected and form network clusters. Similar to the concept 

of ‘functional regions’ in economic geography (Anderson, 2012), a network cluster or 

community refers to a set of closely connected cities whose within-cluster connections 

exceed inter-cluster connections. Community detection algorithms build upon the 

connections between cities and partition the original network into relatively self-contained 

sub-components. For example, in our toy example, most community detection algorithms 

would produce three communities (Figure 2.2): a community of cities on the Indochina 

Peninsula anchored by the city-state of Singapore; a Philippine community consists of 

Manila, Cebu, and Davao; and a group of Indonesian cities centred on Jakarta. We have 

tested a number of community detection methods on our composite network and they 

produce largely consistent results. Therefore, we report community detection results from the 

‘fast greedy modularity optimization method’ (Clauset at al., 2004). All data visualization 

and analyses are performed on the R platform (Csardi and Nepusz, 2006). 

 

 

Figure 2.2 The toy network. Cities are colour-coded to represent their community affiliation. 

2.3 Results and discussion 

2.3.1 Centrality analysis 

Centrality analysis reveals the inequality of transport access at the city level in Southeast Asia. 

Table 2.2 summarizes the three centrality rankings for the 47 Southeast Asian cities. Figure 
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2.3 visualizes the composite transportation network, where thickness of network links 

corresponds to connection strength, node sizes denote degree centrality, and node colours are 

based on community affiliation. 

 

We discern two initial observations from Table 2.2. First, network centralities differ 

significantly across cities. Singapore, Kuala Lumpur, Jakarta, and Bangkok rank consistently 

in the top 5 of all rankings (Bowen, 2000). Unsurprisingly, cities in the sparsely populated 

fringe Indonesian and Philippine provinces occupy bottom spots in all rankings (Santosa and 

Joewono, 2005). Second, although the ranks of cities point to a general theme (connectivity), 

there are sizable differences. Gini coefficients for individual centrality rankings point to a 

rather hierarchical distribution of degree centrality (With a Gini coefficient of 0.390), a 

relatively evenly distributed closeness centrality (0.118), and a highly hierarchical ranking of 

betweenness centrality (0.874).  

 

Rather than examining the trajectories of individual cities, several major sets of processes 

underlying the uneven connectivity are identified: The uneven development which dates back 

to the colonial times; the region’s fragmented and tropical geography; and more recent 

socioeconomic and political strategies.  

 

First, the spatial inequality of transport connectivity dates back to the colonial era, when 

different western powers coordinated development within their respective colonies (Dick and 

Rimmer, 2003). In order to consolidate territorial control and facilitate the extraction of 

natural resources, colonial governments built transportation networks around strategically 

important cities (Saueressig-Schreu, 1986; Sien, 2003; Lange, 2004). For example, the British 

linked cities along the Malay Peninsula with railroads (Nathan, 2002), while tracks were laid 

by the French to connect Hanoi, Vietnam with Kunming, China. 

 

Second, individual cities’ connectivity is affected by the region’s ‘tyranny of geography’, 

including the mountainous terrain, insularity, remoteness within the global context, as well as 

many archipelago countries (Armstrong and Read, 2006). This is most evidenced by the 

Philippine island cities in our analysis. The lack of rail and bus linkages has further 

‘penalizes’ these cities when being compared at the regional level. 
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Third, intercity transport connections are oftentimes related to economic and political projects. 

For example, Singapore’s drive to development high value-added services is supported by the 

city-state’s reliable transportation connections (Lo and Yeung, 1996; Yeung, 2008) and the 

overprovision of air transportation capacity (Phang, 2003). For the large archipelagic 

countries such as Indonesia and the Philippines, national airlines help incorporate cities in 

remote areas into national development (Kissling, 1989). Similarly, national policies also 

help shape connections around major cities in Vietnam (Doi Moi, 1986; Durand and Anh, 

1996). 

Table 2.2 Centrality rankings for 47 Southeast Asian cities. DC: Degree centrality; CC: 
Closeness centrality; BC: Betweenness centrality. 

Rank City DC City CC City BC 

1  Singapore 1.000  Singapore 0.186  Jakarta 1.000  

2  Kuala Lumpur 0.991  Kuala Lumpur 0.179  Manila 0.436  

3  Jakarta 0.909  Jakarta 0.174  Singapore 0.399  

4  Surabaya 0.677  Bangkok 0.167  Bangkok 0.362  

5  Bangkok 0.632  Penang 0.152  Kuala Lumpur 0.355  

6  Ho Chi Minh City 0.518  Johor Bahru 0.152  Ho Chi Minh City 0.281  

7  Penang 0.494  Surabaya 0.151  Yangon 0.182  

8  Bandung 0.483  Ipoh 0.150  Balikpapan 0.093  

9  Johor Bahru 0.482  Denpasar 0.144  Surabaya 0.050  

10  Semarang 0.426  Semarang 0.142  Denpasar 0.045  

11  Manila 0.403  Malacca 0.140  Medan 0.010  

12  Denpasar 0.400  Chiang Mai 0.139  Hanoi 0.008  

13  Hanoi 0.389  Malang 0.134  Bandung 0.002  

14  Medan 0.367  Phnom Penh 0.132  Palembang 0.002  

15  Ipoh 0.353  Bandung 0.131  Penang 0.000  

16  Malacca 0.309  Medan 0.129  Johor Bahru 0.000  

17  Da Nang 0.303  Manila 0.128  Semarang 0.000  

18  Batam 0.289  Ho Chi Minh City 0.127  Ipoh 0.000  

19  Yangon 0.284  Batam 0.124  Malacca 0.000  

20  Palembang 0.280  Pontianak 0.119  Da Nang 0.000  

21  Chiang Mai 0.254  Bandar Lampung 0.117  Batam 0.000  

22  Bandar Lampung 0.251  Vientiane 0.114  Chiang Mai 0.000  

23  Balikpapan 0.248  Makassar 0.114  Bandar Lampung 0.000  

24  Pekanbaru 0.246  Kota Kinabalu 0.113  Pekanbaru 0.000  

25  Malang 0.233  Balikpapan 0.113  Malang 0.000  

26  Makassar 0.210  Palembang 0.113  Makassar 0.000  

27  Cebu 0.201  Hanoi 0.111  Cebu 0.000  
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28  Hai phong 0.195  Kuching 0.111  Hai phong 0.000  

29  Phnom Penh 0.192  Yangon 0.111  Phnom Penh 0.000  

30  Mandalay 0.181  Pekanbaru 0.110  Mandalay 0.000  

31  Kota Kinabalu 0.170  Da Nang 0.109  Kota Kinabalu 0.000  

32  Pontianak 0.164  Padang 0.109  Pontianak 0.000  

33  Vientiane 0.151  Hai phong 0.106  Vientiane 0.000  

34  Jambi 0.151  Banjarmasin 0.104  Jambi 0.000  

35  Bandar Seri Begawan 0.151  Jambi 0.103  Bandar Seri Begawan 0.000  

36  Naypyidaw 0.146  Cebu 0.101  Naypyidaw 0.000  

37  Davao 0.135  Bandar Seri Begawan 0.100  Davao 0.000  

38  Padang 0.133  Cagayan de Oro 0.099  Padang 0.000  

39  Kuching 0.124  Davao 0.098  Kuching 0.000  

40  Banjarmasin 0.118  Bacolod 0.097  Banjarmasin 0.000  

41  Cagayan de Oro 0.104  Mandalay 0.096  Cagayan de Oro 0.000  

42  Can Tho 0.092  Tasikmalaya 0.095  Can Tho 0.000  

43  Zamboanga 0.092  Naypyidaw 0.095  Zamboanga 0.000  

44  Bacolod 0.085  Zamboanga 0.092  Bacolod 0.000  

45  Tasikmalaya 0.077  Can Tho 0.087  Tasikmalaya 0.000  

46  Dili 0.031  Dili 0.077  Dili 0.000  

47  Samarinda 0.024  Samarinda 0.073  Samarinda 0.000  

Gini coefficient 0.390   0.118  0.874 

 

 

Figure 2.3 Intercity transportation network between 47 Southeast Asian cities. The circle size 
reflects cities’ degree centrality; link width and colour are proportional to linkage strength; 
and the circle colour corresponds to individual network communities. 
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2.3.1.1 Degree centrality 

Degree centrality summarizes a city’s total connections with all others cities in the network. 

Having served as the region’s gateway for a long time, Singapore attains the highest degree 

centrality. In addition to its role as an international air hub, Singapore’s leading position 

benefits from its rail and road connections with mainland Southeast Asia. Facilitated by the 

city-state ‘Open Skies’ policy and the emergence of low-cost airlines in recent years, 

Singapore has been increasingly connected with secondary cities in other countries e.g., 

Surabaya and Denpasar in Indonesia, Penang in Malaysia, Chiang Mai in Thailand and Cebu 

in the Philippines; Bowen, 2000). These new connections could help cement Singapore’s 

position as the region’s gateway city.  

 

Oftentimes recognized as another world city in Southeast Asia (Gugler, 2004), Kuala Lumpur 

ranked second in degree centrality.  On the one hand, the government has strengthened East 

Malay’s air connections to Kuala Lumpur to promote East Malay’s economy and foster 

integration between the country’s two halves. On the other hand, the Malaysian government 

has been aggressively redefining Kuala Lumpur’s as a global hub for knowledge, trade, and 

foreign direct investment, thus putting forth transportation infrastructures and 

communications projects (Rimmer and Dick, 2009). 

 

As the largest country in terms of both population and land size in ASEAN and with a 

relatively high urbanization level, Indonesia has the most cities selected in the study. Indeed, 

in addition to Jakarta, large Indonesian cities such as Surabaya, Bandung and Semarang also 

rank in the top ten in terms of degree centrality. The leading positions of Indonesian cities 

could be ascribed to the large number of domestic connections, as evidenced by the dense 

rail, road and air connections on Java Island. Similarly, the high ranks in degree centrality for 

Penang (ranked 7th) and Johor Bahru (ranked 9th) in Malaysia are due to dense domestic 

connections on the Malay Pennisula. 

 

As a textbook example of a primate city (McGee, 1995; Sternstein, 1984), Bangkok 

accumulates almost a third of Thailand’s urban population as well as the nation’s most 

transportation infrastructures (Douglass, 2000). Bangkok ranks fifth in the degree centrality 
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ranking. Though not well connected with secondary cities in Indonesia and the Philippines, 

Bangkok’s more northerly location makes it well-situated to connect the Mekong river basin 

with other parts of Southeast Asia.  

 

Having been Vietnam’s commercial centre since the 1800s, Ho Chi Minh City enjoys a 

higher rank (6
th

) in degree centrality than the nation’s capital Hanoi (13
th

). Manila does not 

stand out in the degree centrality ranking, which could partly be explained by Philippines’ 

island geography. Furthermore, Manila is increasingly integrated with Northeast Asia and has 

intense interactions in trade and investment with Japan, South Korea and Taiwan (Rimmer, 

2000).  

2.3.1.2 Closeness centrality 

The closeness centrality ranking adds another dimension to the connectivity analysis by 

scrutinizing how ‘easy’ it is to reach – via direct and indirect links – the other cities in the 

network. Given that most cities are fairly closely connected to one or more major gateways, 

the ranking is relatively ‘flat’ (Table 2.2). This also resonates with the growth of low-cost 

carriers (i.e., budget airlines), which improve the connectivity of small and medium cities and 

increase of the overall ‘closeness’ scores for these cities (Hooper, 2005; Zhang et al., 2008). 

In addition to close connections with gateway cities, cities in several countries also form 

dense sub-regional networks (Jones, 2002), which is associated with their geographic 

proximity and economic development. For instance, 9 out of the 20 strongest connections 

(Table 2.3) concentrate along the western seaboard of the Malay Peninsula, and this dense 

sub-regional network covers roughly the areas of the ‘Straits of Malacca Economic Corridor’ 

and the ‘Indonesia-Malaysia-Thailand Growth Triangle’. Another case is the intensive 

connections along the Irrawaddy River in Myanmar (Figure 2.3), linking the country’s largest 

port (Yangon) and its major inland administrative centre (Mandalay).  

 

In addition, the formation of some densely connected urban regions is driven by political 

integration strategies (Raguraman, 1997), as many Southeast Asian countries purposely 

pursued economic nationalism after their independence in the 1950s. For example, attempting 

to promote national unification, North-South transportation was improved in Vietnam to 

connect the socialist North around Hanoi and the formerly capitalist South around Ho Chi 
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Minh City. Furthermore, extensive highways were constructed in central Malay Peninsula 

(Bunnel et al., 2002), aiming to connect Kuala Lumpur with its satellite cities as well as 

facilitate transportation within major industrial regions (e.g., the Multimedia Super Corridor; 

MSC). As for Indonesia, while national airlines were established for national integration on 

sprawling islands (Kissling, 1989), the government has strived to promote the connections of 

secondary cities in recent years (Bunnell and Miller, 2011). For instance, there are 11 direct 

flights every week between Balikpapan on the Borneo Island and Singapore (Silas and 

Setijanti, 1996). Similarly, we see closer economic and transportation connections between 

Surabaya and Bangkok (Bowen, 2000; Rimmer, 2000). 

Table 2.3 The 20 strongest dyads. 

Rank Dyad Connectivity (Max=1) 

1  Kuala Lumpur - Singapore 0.900 

2  Kuala Lumpur - Johor Bahru 0.896 

3 Singapore - Johor Bahru 0.875 

4  Kuala Lumpur - Penang 0.847 

5  Bangkok - Chiang Mai 0.797 

6  Ho Chi Minh City - Hanoi 0.748 

7  Ho Chi Minh City - Da Nang 0.728 

8  Jakarta - Surabaya 0.712 

9  Jakarta - Semarang 0.709 

10  Yangon - Mandalay 0.706 

11  Hanoi - Da Nang 0.688 

12  Ipoh - Singapore 0.683 

13  Penang - Singapore 0.655 

14  Yangon - Naypyidaw 0.633 

15  Ho Chi Minh City - Hai phong 0.626 

16  Kuala Lumpur - Ipoh 0.608 

17  Ipoh - Johor Bahru 0.603 

18 Semarang - Surabaya 0.599 

19  Bandung - Surabaya 0.568 

20  Penang - Johor Bahru 0.564 

2.3.1.3 Betweenness centrality 

Betweenness centrality highlights cities’ brokerage functions for the interconnection of cities 

that are not directly linked. This ranking is much more hierarchical (Table 2.2). 

Notwithstanding an overall well-connected transport network, a few cities are still privileged 
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with ‘gateway’ functions and high betweenness centrality. Most notable examples include 

Jakarta, Manila, Singapore, Bangkok and Kuala Lumpur.  

 

Capital cities (i.e., Jakarta, Manila, Kuala Lumpur, Bangkok and Ho Chi Minh City) tend to 

serve as gateways in their respective countries as Southeast Asian urban system has long been 

characterized as a high degree of primacy since the colonial era. With the region’s four most 

populous countries as their hinterlands, Jakarta, Manila, Kuala Lumpur and Ho Chi Minh 

City serve as major gateways for Indonesian, the Philippine, Malaysian and Vietnamese 

cities, respectively (Morshidi, 2000; Bunnell et al., 2002). For example, many cities in 

Sumatra ‘use’ Jakarta to connect to the wider network, making Jakarta a critical gateway for 

articulating Indonesian cities into the ASEAN economy (Bowen, 2000). Although in recent 

years the Indonesian government has been actively developing decentralization schemes 

(Bunnell and Miller, 2011), encouraging the development of low-cost budget airlines, and 

promoting international gateways other than Jakarta such as Surabaya and Denpasar, Jakarta 

international airport still accounts for the largest shares of passengers and cargos within 

Indonesia.  

 

Relatedly, although Bandar Seri Begawan, Brunei is geographically closer to Cebu than to 

Manila, air travels between Bandar Seri Begawan and Cebu may well involve layovers in 

Manila, which thus acts as the Philippine gateway city.  

 

In comparison, even without a large national hinterland, the city-state of Singapore emerges 

as a truly ASEAN transportation hub. This is consistent with Singaporean development 

strategies of projecting economic and political influence over the city-state’s territorial 

neighbours (Yeung and Olds, 1998; Rodrigue, 2006), as well as achieving growth through 

translocal economic activities (e.g., international trade; Rodrigue, 1994; Taylor et al., 2000). 

For example, later mimicked by many other countries in the region (Forsyth et al., 2006), 

Singapore has long adopted policies such as ‘Open Skies’ to proliferate the city’s aviation 

connections (Oum, 1998; Rodrigue et al., 2013) and geared its soft (e.g., management and 

amenities) and hard (e.g., new airport terminals) infrastructures (Phang, 2003) towards 

attracting layover passengers during long-haul inter-continental flights (Lohmann et al., 
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2009). In addition, the planned Singapore-Kunming Railway Link and the ASEAN Highway 

Network could further boost the city-state’s role as the gateway city. 

2.3.2 Community detection 

The community detection algorithm identifies four network communities within the 

Southeast Asian intercity transportation network. These communities represent stronger intra-

community connections and characterize the spatial inequality of transport connectivity at the 

network level. Our community detection analysis identifies a Greater-Mekong community 

that anchored by Hanoi, Yangon, Bangkok and Ho Chi Minh City; a Greater Malaysian 

community incorporating Singapore and Brunei; an Indonesian community organized around 

Jakarta, and a community of the Philippine cities. Among the four communities, the Greater 

Malaysian community has the highest average degree centrality of 0.430, suggesting a most 

connected sub-region in Southeast Asia. It is followed by the Indonesian community (0.292) 

and the Greater-Mekong community (0.281), while the Philippine community only has an 

average degree centrality of 0.175. The delineation of these communities largely reflects the 

archipelago geography of the region (Armstrong and Read, 2006), boundary effects (Grundy-

Warr et al., 1999), as well as the legacy of national integration programs (Raguraman, 1997). 

 

Based on socioeconomic development and environmental conditions, Southeast Asia has 

normally been divided into continental (e.g., Thailand and Myanmar) and insular sub-regions 

(e.g., Indonesia and Philippines). While Singapore and Malaysia are oftentimes treated as part 

of the insular Southeast Asia, our analysis suggests otherwise in the transportation network, 

as Singaporean and Malaysian cities form a network community with their counterparts in the 

continental Southeast Asia. 

 

Economic-wise, the Greater Malaysian community is comprised of three countries with the 

highest GDP in the region (Singapore, Brunei, Malaysia). The GDP per capita in 2010 in 

these three countries is about fifteen times higher than that in the region’s lagged behind 

countries (e.g., Cambodia, Laos, Myanmar and Vietnam, CLMV). The three strongest dyads 

in our analysis are among Singapore, Johor Bahru and Kuala Lumpur, thanks to geographical 

proximity and economic complementarity. Despite the fact the Bandar Seri Begawan has 

direct flight connections with leading cities in other communities (e.g., Bangkok and Ho Chi 
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Minh City in the Mekong sub-region, Manila in the Philippines, Jakarta, Surabaya and 

Denpasar in Indonesia, Kuala Lumpur and Kota Kinabalu in Malaysia and Singapore), 

Brunei’s capital city has far more links with Malaysian and Singaporean cities. Furthermore, 

the dense connections within this network community could be ascribed to Malaysia’s 

national policies to integrate East and West Malaysia. 

 

As discussed previously, the formation of Indonesian and the Philippine communities can be 

ascribed to the dense domestic connections with capital cities as major gateway cities, 

reflecting the primate urban systems in these countries (Bowen, 2004; Huff, 2011). The 

Greater-Mekong network community consists of Thailand and other four least developed 

countries in our analysis (i.e., CLMV). Except for Thailand being one of the five original 

ASEAN members, CLMV joined ASEAN after 1995. Recently, Thailand has played an 

increasingly critical role in reducing regional inequality through strengthening links and 

promoting sub-regional integration (Walsh, 2010). More specifically, Thailand has actively 

promoted cross-border trade with neighbouring countries, importing raw material and 

primary products, exporting manufactured goods, and becoming a major investor in CLMV. 

Thailand has provided much financial and technical assistance for basic infrastructure 

development in neighbouring countries (e.g., the construction of road, bridge, dam and power 

plant) to support a long-term economic development (Fujimura, 2006). 

2.4 Conclusions 

According to neo-classical growth theory, urban connectivity in transportation networks is an 

important harbinger of economic development as well as a facilitator of social and political 

cohesion (Bhattacharyay, 2009). The development of intercity transportation networks in 

Southeast Asia has undergone several major phases, each of which is driven by different 

rationales, emphasizes different modes of transportation (e.g., airline networks in post-war 

era) and focuses on different geographic regions (e.g., the concentration of infrastructures 

around leading cities during colonial times as well as post-independence territorial integration 

targeting at remote areas). Over time, transportation networks in Southeast Asia become more 

integrated and cities are often able to form relationship with others nearby and afar. The co-

existence of these local and trans-local linkages calls for a network approach towards 

understanding the urban system in the ASEAN region: these overlapping developmental 
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patterns create a complex and uneven geography of intercity transportation networks, 

requiring a network-explicit examination that covers multiple transportation modes and 

extensive geographic areas. 

 

In this exploratory analysis, we create a composite intercity transportation network between 

47 major Southeast Asian cities by integrating information about rail, road and air 

transportation. Spatial inequality of transport connectivity at both the city and network levels 

is examined through the lens of centrality analysis and community detection. Gini 

coefficients for individual centrality rankings point to a hierarchical degree distribution, a 

rather even distribution of closeness centrality, and a highly concentrated distribution of 

betweenness centrality. With regard to accessibility at the city level, Singapore, Kuala 

Lumpur and Jakarta are identified as the most dominant nodes in terms of all three 

centralities in Southeast Asia transportation network. Cities in the sparsely populated 

peripheral regions rank at the bottom. With regard to accessibility at the network level, four 

network communities are detected to have denser intra-cluster connections: a Greater-

Mekong community surrounded around Bangkok, a Malaysia community together with 

Singapore and Brunei with Kuala Lumpur and Singapore as gateways, an Indonesian 

community articulated into the wider region by Jakarta, and a Philippine community cantered 

on Manila. Our analysis also highlights important geographic, economic, political and social 

processes underlying the spatial inequality of transport access within Southeast Asia. 

 

Our analysis points to several future research avenues: Firstly, future analyses would account 

for capacity of individual vehicles, airplanes, and trains (Yap and Thuzar, 2012). Secondly, 

this paper focuses infrastructure networks that transport people, and a next step would 

involve measuring the movement of cargos and information (Bowen and Leinbach, 2006). 

Thirdly, future studies would require a multi-scale approach. For example, Bangkok is the 

only Thai city that exceeds the 0.5 million resident selection threshold, and future analyses 

would incorporate smaller Thai cities by looking at both domestic (Bangkok and other parts 

of the Thailand) and international connections. Lastly, our analysis suggests the 

transportation network of Southeast Asia is controlled by a handful of leading cities. 

However, national governments are pursuing strategies to increase domestic equality of 

connectivity as well as compete internationally for more strategic positions within the global 
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transport network. The region’s leading transportation hubs are also facing external 

competitions. For example, Singapore is competing Hong Kong and Dubai for stopovers of 

long-haul routes between Asia-Pacific and Europe (Lohmann et al., 2009). Therefore, we 

anticipate substantive changes would emerge in terms of centrality ranking and network 

communities, all pointing to the need of a longitudinal study. 
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Abstract 

This paper presents a novel approach to investigate and understand the evolving structure of 

the Southeast Asian air transport network (SAAN) over the period 1979-2012. Our approach 

captures the main topological and spatial changes in the network from the perspective of 

complex network theory. We find that the SAAN combines a relatively stable topological 

structure with a changing multilayered geographical structure. Statistical analysis indicates 

that the SAAN is a scale-free network with increasing number of cities functioning as hubs, 

and has been characterized by small-world properties since 1996. Furthermore, the SAAN 

exhibits a recently intensified disassortative mixing pattern, suggesting an increasing 

dependence of small cities on hub-and-spoke configuration for better accessibility. A 

decomposition analysis is used to disaggregate the SAAN into three layers. The core layer 

consists of capital cities, the most economic vibrant secondary cities, and tourist destinations, 

and is densely interconnected with its center of gravity moving towards the western part of 

Southeast Asia. The periphery layer, comprised of cities in remote areas, sustains a low 

significance with declining internal connectivity despite a rising number of cities being 

connected. The bridge layer lies in between both extremes, and is characterized by a high 

volatility over time. The connections and passengers between different layers increase, 

especially those between core and bridge after 1996. In our discussion, we trace these changes 

back to a series of socio-economic and politico-institutional dynamics in Southeast Asia. 
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3.1 Introduction 

Air transportation has emerged as a key facilitator of economic development and social 

change as it greatly enables the flow of people, goods, capital, and information across space. 

This is particularly true for Southeast Asia (SEA), one of the most economically dynamic and 

strategically significant regions in the global economy (Sien, 2003). In 2015, SEA, which is 

commonly defined as including Cambodia, Laos, Myanmar, Vietnam (CLMV), Thailand, 

Malaysia, Singapore, Indonesia, Philippines, Brunei, and East Timor (formerly part of 

Indonesia) (cf. Rimmer and Dick, 2009), ranked third in Asia both in terms of its population 

of 633 million inhabitants (following China and India) and in terms of its economic size with 

a combined gross domestic product (GDP) of US$2.45 trillion (following China and Japan) 

(ASEAN Secretariat, 2016). Important from the perspective of air transport, the region is 

much more geographically fragmented than, say, the European Union (EU) and North 

America. The archipelagic geography, further complicated by often-difficult terrain to cross 

in climatic and physiographic terms, endows air transportation with competitive advantages 

over road, rail, and water transportation (Zhang et al., 2008). Or, as O'Connor (1995: 270) has 

pointed out: “air transportation is the only effective means for intercity links” in this region. 

For example, an express coach covering the 250km trip from Ho Chi Minh City to Phnom 

Penh takes at least 5.5 hours, whereas the flying time is only 45 minutes. Meanwhile, 

travelling by rail from Bangkok to Kuala Lumpur takes about 24 hours compared to a 2-hour 

flight. Similarly, a ferry trip between Singapore and Jakarta via Batam can last 26 hours while 

a flight takes less than 2 hours. As a consequence, the importance of developing efficient and 

extensive air transport networks has been highlighted in various regional and national policy 

agendas (ASEAN Secretariat, 2011). 

 

After several decades of fast-paced development, the Southeast Asian air transportation 

system has evolved into a complex network with mixed structures and large heterogeneities in 

capacity and intensity of connections. However, to date there has been no effort to engage in 

systematic complex-network analysis of the Southeast Asian air transport network (SAAN). 

Such a complex network approach has been shown to provide new insights into air transport 

systems at national (e.g., China; Wang et al., 2011), macro-regional (e.g., the EU; Zanin and 

Lillo, 2013), and global (e.g., Guimera et al., 2005) scales. An analysis of the SAAN may or 

may not reach similar conclusions, as it entails very different sets of underlying geographic, 

institutional, and socioeconomic factors (Lordan et al., 2014). To help filling this gap, in this 
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paper we explore the structural evolution of the SAAN during 1979-2012 from a complex 

network perspective. 

 

When examining a supra-national region such as the SEA region, one obviously risks falling 

into the ‘territorial trap’ (Agnew, 1994; Bunnell, 2013): it can be argued that the crux of the 

geographies of SEA’s air transport connections are not simply confined to the SEA region, 

thus challenging the a priori framings such as SEA and ASEAN (cf. Taylor et al., 2013). 

Indeed, the ‘openness’ of SEA is clearly visible in the possible extension of the system to 

Hong Kong (Dick, 2005), or in the identified functional airline region by including 

neighboring China and Japan (Guimera et al., 2005). However, there has been no consensus 

on how closed a transport or urban system should be to make a regional framing tenable 

(Kratoska et al., 2005), while the liberalization/deregulation geography as circumscribed by 

the move towards open skies in the context of ASEAN Economic Community (AEC) and 

ASEAN Single Aviation Market (ASAM) does lend the region a certain coherence in this 

context (Liu et al., 2017; Thompson, 2013). Our analysis will therefore focus on airline 

connections originating and terminating within SEA.  

 

The main contributions of our study are twofold. First, we conduct a statistical analysis to 

characterize the evolving topological structure of the SAAN over this 34-year period and 

compare the network metrics with some other major regional blocs. Second, a decomposition 

technique is employed to unveil the multilayered structure of the SAAN for the years 1979, 

1996 and 2012, respectively. By doing so, we shed light on how the topological and 

geospatial architecture of the SAAN changes over time. To this end, the remainder of this 

paper is organized as follows: section 2 reviews the literature, focusing on the application of 

complex network theory in the study of the geography of air transport networks. This is 

followed by a discussion of our methodological framework and data in Section 3. Section 4, 

then, presents the results of the complex network analysis of SAAN, after which the paper is 

concluded with an overview of our major findings, the limitations of our approach, and some 

avenues for further research. 
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3.2 Literature review 

3.2.1 A growing air transport market in the context of regional integration 

Southeast Asian countries have very different experiences with regional integration. It is well 

documented that regional economic integration in East Asia - including a large part of its 

Southeast Asian component - has been preceded by fast-paced industrial development in 

Japan and the emergence of newly industrializing countries (NICs) - South Korea, Taiwan, 

Hong Kong, and Singapore - since the mid-1960s (Yap, 2014). Consecutive waves of 

relocating labour-intensive industries then cascaded down to next-tier NICs - Indonesia, 

Malaysia, Thailand - and later to the Philippines after it introduced a transition towards more 

liberal economic policies from the early 1980s onwards (Coclanis and Doshi, 2000). 

Meanwhile, the three Indochinese economies (i.e. Vietnam, Laos and Cambodia) were 

trapped in conflicts and isolated from the SEA regional market for more than a decade after 

1975. They subsequently embarked on a trajectory of regional economic integration through a 

fundamental shift in development strategy from a centrally planned economy to a market 

economy since the late 1980s, as exemplified by Vietnam’s Doi Moi reforms (Hill and 

Menon, 2012). By 1993, CLMV countries had all embraced market mechanisms, emphasizing 

export promotion, welcoming foreign investment, and promoting tourism (Thant, 2012). The 

flows of trade and investment to these newcomers to regional integration led to the 

establishment of broader regional production networks. As a consequence, regional 

integration in SEA has been significantly accelerating since the early 1990s: Tanaka (2009) 

demonstrates that the intraregional trade has almost doubled over the past two decades and 

now constitutes a quarter of the region’s total trade. 

 

Enhanced intercity airline connectivity has been part and parcel of SEA’s evolution towards 

greater regional integration and the development of a single economic market. Since the 

Association of Southeast Asian Nations (ASEAN) was founded in 1967, it has facilitated both 

improved regional economic integration and air transport connectivity, seeing both as being 

fundamentally intertwined. A key step was the agreement on an ASEAN Free Trade Area 

(AFTA) in 1992. The AFTA framework carried a commitment to further enhance regional 

cooperation by providing safe, efficient and innovative transportation and communications 

infrastructure networks. This boosted a series of sub-regional air liberalization initiatives, 

such as a joint agreement by Indonesia, Malaysia, and Thailand in 1994 to promote the 

development of air transport in ASEAN’s Northern Growth Triangle. The agreement was 
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later broadened to include the Philippines and Brunei, and was supplemented with a similar 

CLMV cooperation in 1998, which liberalized air transport between the four countries. 

Another important step was the 2003 agreement to building the AEC by 2015 in order to 

move SEA towards an integrated and globally competitive single market and production base. 

Under this umbrella, Southeast Asian governments have been engaged in concerted efforts to 

work out an open skies policy similar to the one realized in the EU, namely the ASAM. 

Against this background, the airline industry in SEA has been evolving from an assortment of 

individual and highly-protected companies into an increasingly integrated and liberalized 

system of regional business organizations.  

 

 

Figure 3.1 Growth of scheduled air passenger traffic, GDP and population of Southeast Asia, 
1979-2012

3
. The data in 1979 were standardized as 100 and those in other years were scaled 

according to this benchmark. 

According to data from the Official Airline Guide (OAG) database (http://analytics.oag.com), 

SEA has witnessed substantial expansion in its regional air transport network over the past thr

ee decades. More than 60 new airports have been constructed and/or come into operation duri

ng the 1979-2012 period, while the number of direct intra-SEA air connections has nearly dou

bled from 330 to 602. In line with booming regional economic output and surpassing overall p

                                                       
3 Scheduled air passenger traffic from 1979 to 2012 was compiled from the OAG database. 

GDP and population data for each of the eleven Southeast Asian countries were gathered from 

World Bank (https://data.worldbank.org/). Since the World Bank GDP data of CLMV 

countries were incomplete, they were crosschecked and supplemented by data from 

http://ivanstat.com. Data from both sources were counted in current U.S. dollars (at 2015 

prices). There was no GDP information for East Timor before 1999, since it was part of 

Indonesia. This confirmed the necessity to include it in our longitudinal study to keep 

geographic and statistical consistency although it has not become a formal ASEAN member 

yet. 
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opulation growth, the total volume of scheduled air passenger traffic within SEA has increase

d dramatically from 23.9 million in 1979 to 234.9 million in 2012 (Figure 3.1).  

 

These evolutions have drawn considerable attention from air transport geographers. One the 

one hand, transport geographers have been interested in the positionality of cities and the 

(geo)spatial patterns of linkages between them, as well as their complex associations with 

economy, tourism, state policies, etc. For example, Bowen (2000) examined the changes in 

nodal accessibility of Southeast Asian hubs during 1979-1997 and assessed how different 

state policies and strategies shaped the development of air transport networks. Rimmer (2000) 

analyzed the impacts of the Asian Crisis on the geography of ex/intra-SEA air traffic with 

particular attention to changes in city-pair routes. On the other hand, researchers have 

discussed the mixed blessings of deregulation/privatization trends and emerging open skies 

policies for the Southeast Asian aviation market with regard to airports/cities, carriers, and air 

routes (Forsyth et al., 2006; Hooper, 2005).  

 

Taken together, these studies offer insight into the changing geographies of the SAAN in light 

of a series of socio-economic and politico-institutional dynamics in SEA. However, there is 

relatively limited insight into the structural changes of and in the network. An exception is 

O'Connor’s (1995) elaboration of a four-stage model of the historical development of the 

SAAN. He states that the network begins with “major destinations and trunk route stops” due 

to colonialism; then bypassing some places to exhibit “new intermediate conditions” with the 

development of national/regional economies and the advancement of aircraft technology; then 

entering into the “international hub development and proximity” stage by concentration of 

feeder connections from small cities; followed by the final “principal axis shift” from the 

traditional west-east to a north-south orientation with an increased vitality of southern cities. 

Complementing O'Connor’s classical spatial analysis, here we attempt to uncover the 

evolution of overall SAAN structures through complex network analysis, which could provide 

insights into the network topological structure and multilayered geographical structure. 

3.2.2 Complex network analysis on air transport networks 

Situated at the intersection of graph theory and statistical mechanics, complex network theory 

offers an array of useful tools to analyze network structures, dynamics and their underlying 

mechanisms (Ducruet and Lugo, 2013). This has resulted in a bourgeoning literature 

(re)examining various transportation networks, such as urban public transport (Cats, 2017), 
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road (Xie and Levinson, 2009), railway (Wang et al., 2009), maritime (Ducruet and 

Notteboom, 2012), and airline networks (Lin, 2012). 

 

Air transport networks, in which airports/cities represent nodes and flights represent edges 

connecting these nodes can be conceptualized as either binary or weighted networks. 

Obviously, air transport networks are neither simply random or regular. Therefore, a complex 

network analysis of their structures starts with topological characterization and pattern 

recognition, with particular reference to scale-free and small-world networks. A scale-free 

network is characterized by a power-law distribution of nodal degree (i.e., a node’s number of 

adjacent neighbors), showing that a few large degree nodes dominate a large number of less 

connected nodes (Barabási and Albert, 1999). In comparison, a small-world network has a 

larger density of edges because of a shorter average/characteristic path length (i.e., the 

average number of edges in the shortest path between two nodes) and higher transitivity (i.e., 

probability for a node to have its neighbors interconnected) than a random network of the 

same size (Watts and Strogatz, 1998).  

 

These concepts and models have been tested in a number of air transportation networks, 

including the entire world (Guimera et al., 2005), the EU (Lordan et al., 2015), the United 

States (US; Xu and Harriss, 2008), China (Wang et al., 2011), India (Bagler, 2008), and Italy 

(Guida and Maria, 2007). In general, these studies examine overall network structures as well 

as indices for individual nodes, after which the implications of the network analysis results 

are explored. The presence of scale-free properties is related to the existing literature on hub-

and-spoke configurations (O'Kelly, 1998). Nonetheless, the degree distribution can be very 

distinct in different air transportation systems, as can the shape of the distribution ranging 

from (stretched) exponential to power law (with or without cutoff), to two-regime/double 

power law (cf. Reed, 2003). Against the backdrop of this diversity, Paleari et al. (2010) 

compared the structure of air transport networks in the US, EU and China. The results showed 

that all three airport systems are characterized by a double Pareto-law (i.e. a two-regime 

power law) degree distribution, but with the distribution declining more rapidly in the EU. 

Overall, ‘small-worldiness’ is more universal in non-planar networks (i.e. networks that allow 

links to cross without creating a node at the intersection) due to the existence of communities, 

a set of nodes sharing denser connections with each other than with the rest of the network. 

 



69 

 

It can be noted that the above-discussed analyses are cross-sectional. However, with the 

growing availability of coherent longitudinal datasets, several studies focus on the historical 

evolution of air transport networks. For instance, Wandelt and Sun’s (2015) analysis of 

international air transport networks from 2002 to 2013 indicated that the scale-free and small-

world properties were stable and the network shifted towards symmetric, transitive closure 

due to the increasing interconnection between each country’s neighbors. Burghouwt and 

Hakfoort (2001) explored the evolution of the European aviation network during 1990-1998, 

and demonstrated the development of hub-and-spoke structures notwithstanding there being 

no evidence for concentration of intra-European traffic on the primary hubs. Lin and Ban 

(2014) studied both topological and spatial characteristics of the US airline network during 

1990-2010, finding stability in topology and an increasing importance of distance in the 

development of new routes. That is, more and more short- and medium-length (less than 

700km) routes have been created, and passengers increasingly need one or more transfers to 

realize a long-distance connection due to network structure optimization and integration. The 

evolution of the Chinese air transport network since 1930 was examined in Wang et al. 

(2014), indicating a significant improvement of connectivity and a gradual expansion of a 

core network along with the development of China’s economy (cf. Liu et al., 2016). Rocha 

(2009) discovered a relatively high and stable clustering coefficient and a slightly declining 

average path length for the Brazilian airport network, as well as a shrinkage of network routes 

in spite of a more than doubling of air traffic between 1995 and 2006.  

 

Apart from conventional topological analysis in cross-sectional and longitudinal studies alike, 

multilayer/multilevel analysis has become prevalent within the framework of complex 

network theory (Tsiotas and Polyzos, 2017). Recent major contributions in this light are 

Verma et al. (2014), Du et al. (2016) and Lordan and Sallan (2017). These authors employ the 

k-core decomposition method to uncover the multilevel structure of the worldwide, Chinese, 

and European air transport networks, respectively. K-core decomposition is a technique to 

hierarchically identify particular subsets of a complex network, called k-cores, in which the 

degree of every node is larger than or equal to k. Each subset is obtained by recursively 

removing all nodes with degree smaller than a certain threshold k (Ducruet and Zaidi, 2012). 

This approach progressively disentangles the complexity of airline networks, thus providing 

insight into the different layers unevenly contributing to the configuration of the network. 

Because, as we will see, the SAAN exhibits both high complexity and spatial inequality, such 

a multilayer analysis is of the utmost interest to help grasping the geographies of the network. 
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This literature review leads us to three major observations in the context of this paper. First, 

air transport networks have been widely analyzed in terms of the statistical properties of the 

network structure. However, these studies have primarily focused on the US, European 

countries, China, and India: the SAAN thus appears under-researched from this perspective. 

Second, most studies examine the static state of the network in a single year through the lens 

of complex network theory: longitudinal analysis could help revealing underlying geographic, 

political and economic factors in the structuration of the network. Third, multilayer/multilevel 

analysis has evolved into a prominent approach to discover hidden information and extract 

hierarchical structures from complex networks. However, this approach has not yet been 

widely adopted in research on air transport networks. Against this backdrop, this paper 

examines the evolving structure of the SAAN from 1979 to 2012 by means of multilevel 

complex network analysis, and discusses these with key social and economic changes in the 

region. In the next section, we will elaborate on the methodology and data used in this study. 

3.3 Data and methods 

3.3.1 Data 

All our data refer to nonstop flights and air passengers scheduled between any pair of airports 

within Southeast Asia (Figure 3.2), as detailed in the aforementioned OAG database (see 

Derudder and Witlox (2008) for a discussion of data limitations). Our empirical study was 

conducted between 1979 and 2012 on a yearly basis: 1979 was taken as a starting point as it 

can be seen as a benchmark in that it marks the onset of ASEAN air transport liberalization, 

while 2012 was determined by data availability. During this period, the region has seen rapid 

air traffic growth, a wide range of industrial transformations, economic fluctuations and a 

tourism boom, thus providing us with a diverse background for a longitudinal study of the 

evolution of topological and spatial properties of the SAAN.  
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Figure 3.2 The SEA study area
4
.  

3.3.2 Complex network methods 

3.3.2.1 Network representation 

The SAAN takes the form of a symmetric adjacency matrix A wherein aij=1 if there are 

scheduled flights between airport city i and city j in the studied year and aij=0 of otherwise. 

Each airport city represents a single node except for a number of aggregations related with the 

presence of multi-airport cities (cf. Derudder et al., 2010), i.e. a combination of 

Suvarnabhumi and Don Mueang into Bangkok, Kuala Lumpur International and Sultan Abdul 

Azziz Shah into Kalua Lumpur, Soekarno-Hatta and Halim Perdana Kusuma into Jakarta, and 

Changi and Seletar into Singapore. The number of nodes in the SAAN ranges from 177 in 

1979 to 237 in 2012. Given our focus on connections/passengers within SEA, we use the term 

‘domestic’ or ‘internal’ to refer to connections/passengers between cities in the same country 

while ‘international’ or ‘external’ is used to refer to connections/passengers between cities in 

different SEA countries. 

3.3.2.2 Network structure measures 

The starting point for evaluating network structures is to introduce a set of fundamental 

network metrics, such as degree, degree distribution, degree-degree correlation, characteristic 

                                                       
4
 Population of capital cities in 2015 was derived from https://aseanup.com/infographic-top-

cities-urbanization-asean/. Yangon and Ho Chi Minh City were dotted in the map since they 

were formerly capitals of Myanmar and Vietnam, respectively. 
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path length and average clustering coefficient. Degree is the most basic index to measure the 

centrality of nodes in a network, while the degree distribution helps exploring the underlying 

processes by which the network has come into existence. Degree-degree correlation reflects a 

node’s connection preference and reveals the mixing pattern of an observed network. 

Characteristic path length is a global property that is essential to the topology and 

communication efficiency of networks, while the average clustering coefficient allows 

quantifying the degree of clustering of a network. Below we formally specify each of these 

measures. 

(1) Degree and degree distribution  

The degree ki of node i is defined as the number of nodes it is directly connected to, and is 

given by: 

 

ki = ∑ aijj∈V(i)                                                                                                                        (3-1) 

 

Where V(i) denotes the neighbor set of node i.  

For a scale-free network which is generated by a preferential attachment rule, the degree 

distribution p(k) follows a  power law, given by: 

 

 P(k) ~ k−γ                                                                                                                           (3-2)         

 

Where γ is the fitted power-law exponent.  

We compute the cumulative degree distribution P(>k), as it paints a more accurate picture of 

the shape of the distribution in relatively small and noisy datasets (Lordan et al., 2015). The 

cumulative degree distribution P(>k) expresses the probability of nodes with degree equal to 

or greater than k and is given by: 

 

P(> k)  = ∑ p(k′)∞
k′=k                                                                                                           (3-3) 

 

Whose scaling exponent γcum is related to that of P(k) by γ=γcum+1.  

(2) Degree-degree correlation  

This refers to the correlation between degree k and the average degree of their neighbors 

𝐾(𝑘): 
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K(i) =
1

ki
∑ kjj∈V(i)                                                                                                                  (3-4) 

 

Where K(i) is the average degree of the neighbors of node i. For N(k) nodes with degree k, 

𝐾(𝑘) is defined as: 

 

K(k) =
1

N(k)
∑ K(i) ki=k                                                                                                          (3-5)                                                                                                                  

 

A positive coefficient indicates a correlation between nodes of similar degree, termed 

‘assortativity’. A negative value indicates relationships between nodes of different degree, 

termed as ‘disassortativity’ (Newman, 2003). 

(3) Characteristic path length  

The characteristic path length L is defined as the average number of edges along the shortest 

paths for all possible node-pairs in the network: 

 

L =
1

N(N−1)
∑ dij

N
i,j=1   (i ≠ j)                                                                                                 (3-6) 

  

Where dij is the number of edges for the shortest path from node i to j.    

(4) Average clustering coefficient 

The clustering coefficient Ci is defined as the probability that two nodes are connected to each 

other given that both of them are connected to node i, written as: 

 

Ci =
2Ei

ki(ki−1)
                                                                                                                           (3-7)     

 

Where Ei indicates the actual number of edges between the neighbors of node i. The average 

clustering coefficient C is the mean value of Ci of all N nodes in the network: 

 

C =
1

N
∑ Ci

N
i=1                                                                                                                          (3-8) 
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The characteristic path length and average clustering coefficient are two basic indices that 

allow testing whether a network exhibits small-world properties: a network in which most 

nodes are not neighbors of one another, but in which the neighbors of any given node are 

likely to be neighbors of each other and most nodes can be reached from every other node by 

a small number of connections. If a network has a higher C and a shorter L than those in an 

identical-size random network, it suggests the presence of small-worldiness. 

3.3.2.3 K-core decomposition 

In addition to the metrics discussed in 3.2.2, we will also explore the SAAN’s multilayer 

structure by drawing on the k-core decomposition method. A network can theoretically be 

decomposed into 1, 2, 3, …, kmax layers. However, it is not very informative to present all 

layers separately. Rather, and as highlighted in Verma et al. (2014), nodes in the air transport 

network can be categorized into three distinct layers: core, bridge and periphery. The core 

layer contains the nodes belonging to the kmax-core while the periphery layer includes the 

nodes in the 1-core; the remainder of the network forms the bridge layer. We employ this 

classification to decompose the SAAN into a hierarchical core-bridge-periphery structure. 

3.4 Results  

3.4.1 Statistical properties of the SAAN topological structure 

We begin our analysis by looking at the network architecture in 2012 and then tracing the 

changes over the period 1979-2012. Table 3.1 summarizes the basic network metrics of the 

SAAN, and compares these results to those for other regions as reported in the literature. 

Table 3.1 Summary statistics of the SAAN in 2012 and its counterparts. V: number of nodes; 
E: number of edges; P(>k): cumulative degree distribution; L: characteristic path length; C: 
average clustering coefficient. 

Scale Network  Reference V E P(>k) L C 

Macro-regional Southeast Asia  

 

237 602 Power law 3.12 0.21 

Global Worldwide  Guimera et al., 2005 3663 27051 Truncated power law 4.40 0.62 

Macro-regional EU  Lordan et al., 2015 661 8104 Double Pareto law 2.71 0.55 

National US  Xu and Harriss, 2008 272 6566 Truncated power law 1.90 0.73 

China  Wang et al., 2011 144 1018 Exponential  2.23 0.69 

India  Bagler, 2008 79 228 Power law 2.26 0.66 

Italy  Guida and Maria, 2007 42 310 Double Pareto law 1.98 0.10 

Austria  Han et al., 2007 136 1296 Power law 2.38 0.21 

Greece  Tsiotas and Polyzos, 2015 41 154 Exponential  2.09 0.42 

Brazil  Rocha, 2009 142 2601 Streched exponential  2.34 0.63 
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3.4.1.1 Scale-free properties 

As can be seen in Figure 3.3, the SAAN’s P(>k) fits a power-law function with a scaling 

exponent of γcum =1.42 in 2012. Therefore, the corresponding exponent γ for P(k) is 

1+1.42=2.42. Given that this is in the range of 2<γ< 3, this characterizes the SAAN as a scale-

free network as previously observed for India and Austria as well as, to a lesser extent, for the 

global level and the US, the EU and Italy (cf. Table 3.1).  

 

 

Figure 3.3 Cumulative degree distribution of the SAAN plotted using a double-logarithmic 
scale, 2012. 

This pattern reflects the dominance of a few well-connected cities (hubs) in SEA with a large 

number of air passenger routes while the majority of cities (spokes) only have a limited 

number of connections (cf. Bowen, 2000). The shape of the distribution remains roughly 

similar between 1979 and 2012, meaning that even with strong rewiring at the micro level 

(see section 4.2), the overall characteristics of the network have remained roughly the same. 

Nevertheless, the slope of the degree distribution generally decreased (Figure 3.4), meaning 

that there are relatively more cities with a large degree (Rocha, 2017). This is above all the 

result of the recent emergence of capital cities in CLMV, a feature that will be elaborated 

upon in the discussion of the spatiotemporal variations of core cities in section 4.2. The minor 

deviations in some of the years may be attributed to the sensitivity of air transport to sudden 

events, such as the outbreak of economic crisis in 1997 and the severe acute respiratory 

syndrome (SARS) in 2003 (Bowen and Laroe, 2006; Rimmer, 2000). 
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Figure 3.4 Fitted exponents for the power-law distribution, 1979-2012.  

3.4.1.2 Disassortative mixing 

Figure 3.5 demonstrates the presence of a negative correlation between a city’s degree and the 

average degree of its neighboring cities for the SAAN in 2012. This points to a disassortative 

mixing pattern in which high-degree cities such as Singapore, Kuala Lumpur, Bangkok, 

Jakarta and Manila on average have relatively low-degree neighbors.  

 

 

Figure 3.5 Degree-degree correlation for the SAAN, 2012 (SIN: Singapore; KUL: Kuala 
Lumpur; BKK: Bangkok; JKT: Jakarta; MNL: Manila; CEB: Cebu). 

However, Cebu is an outlier here in that, as a medium-sized city, its average neighbor degree 

is less than half of the expected value. This can be ascribed to a ‘shadow effect’ (cf. 

O'Connor, 1995) of its major hub, Manila, which confines Cebu’s connections to domestic 

small cities instead of major cities in other countries. On the other hand, Singapore neighbors’ 

average degree is higher than expected. This suggests that it is directly connected to many key 

hubs and secondary cities in other countries, compensating for the relatively smaller number 

of connections with low-degree cities.  
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Figure 3.6 shows disassortativity to be slowly declining from -0.14 in 1979 to -0.01 in 1995 

(pointing to an almost neutral mixing pattern). Since 1995, however, disassortativity has again 

roughly intensified, although the mixing pattern in 2012 is still not very strong. The two 

stages identified here are the joint result of a changing diversity of pairs of connected cities 

and the partial hierarchical structure (Ru and Xu, 2005). The growing importance of air 

transport and the integration of more remote local cities into the national and regional 

development process had implied that small cities increasingly rely on hub-and-spoke 

configurations to attain better accessibility in SEA (Lin, 2012). 

 

 

Figure 3.6 Disassortativity coefficients for the SAAN, 1979-2012. 

3.4.1.3 Small-world properties 

Figure 3.7 presents the characteristic path length and average clustering coefficient of the 

SAAN and a comparable network (i.e. with the same number of edges and nodes) with a 

random distribution. In the case of the SAAN, L is very close to that of a random network 

with a turning point in 1996 when the random network’s L starts surpassing that of the 

SAAN. The clustering coefficient is nevertheless continuously significantly higher than that 

of a comparable random network. Hence, the SAAN exhibits small-world properties from 

1996 onwards. One possible explanation for this is that major low-cost carriers came into 

focus after 1996, such as Cebu Pacific, Lion Air, AirAsia, Jetstar Asia (Zhang et al., 2008), 

which has greatly densified the overall intercity air transport network and improved the 

accessibility of many secondary cities in this region.  
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Figure 3.7 Characteristic path length (a) and average clustering coefficient (b) of the SAAN 
compared to those of the random network (RN) in the same size, 1979-2012. 

From 1979 to 2012, L decreased from 4.07 to 3.12, conforming to an average decline of one 

step for cities to reach other cities in the SAAN. C remained stable around 0.2, which 

suggests a trade-off between efficiency and economic considerations (Xie et al., 2015). 

Compared with other regions in Table 3.1, the SAAN has a large characteristic path length of 

3.12 whereas the worldwide network has a larger value at 4.4. It can of course be 

hypothesized that L will increase with the scale of the networks because distance and border 

effects still matter in air transport networks (Matsumoto, 2007). As a result, the level of L at 

the national level is usually smaller than that at the macro-regional level, which is in turn also 

smaller than that at the global level.  

 

However, the EU network does possess a shorter characteristic path length of 2.71 and a 

larger average clustering coefficient of 0.55 compared to the SAAN, implying that SEA, as a 

single bloc, remains at a less-developed stage in air transportation with much room to 

improve the efficiency of the connectivity structure of its air transport network (Wang et al., 

2011): in an increasingly liberalized economic environment, the SAAN is still far from an 

integrated and mature market. Compared to the extensive multilateral agreements and low-

cost connections across countries as in the EU (Dobruszkes, 2006), current liberalizing 

processes in SEA still largely rely on bilateral air service agreements in which a substantial 

number of routes are exposed to government regulations (Hanaoka et al., 2014). 

3.4.2 Spatiotemporal variations of the SAAN multilayered structure 

In this section, we present a more detailed morphology of the SAAN’s multilayered structure 

and discuss its changes by taking multiple snapshots at different time points. Figure 3.8 

displays the hierarchical core-bridge-periphery structure of the SAAN in 1979, 1996, 2012, 
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respectively, and Table 3.2 reports the number of cities, connections and air passengers within 

and between layers. 

Table 3.2 Number of cities, connections and air passengers within and between layers to the 
total in the SAAN. 

Type 
Cities 

 
Connections 

 
Passengers (Million) 

1979 1996 2012 
 

1979 1996 2012 
 

1979 1996 2012 

Core 23 12 18 
 

68 45 87 
 

13.85  30.46  85.13  

Core-Bridge - - - 
 

92 162 251 
 

5.88  44.74  114.29  

Core-Periphery - - - 
 

25 22 40 
 

1.16  1.14  8.61  

Bridge 101 168 147 
 

117 283 192 
 

2.69  11.46  24.99  

Bridge-Periphery - - - 
 

21 29 32 
 

0.25  0.57  1.67  

Periphery 53 56 72 
 

7 5 0 
 

0.06  0.03  0.00  

Sum 177 236 237  330 546 602  23.89  88.39  234.69  

 

The SAAN has changed markedly by growing from 177 cities linked through 330 connections 

in 1979 to 237 cities linked through 602 connections in 2012. At the same time, the number of 

air passengers soared to 234.69 million from a relative small base of 23.89 million. Prior to 

the outbreak of the 1997 financial crisis, the SAAN enjoyed faster growth in the number of 

cities, connections and passengers by 33.33%, 65.45% and 270.07%, respectively, than those 

in the subsequent period (0.42%, 10.26% and 165.50%, respectively). In terms of the 

multilayer structure, the three layers (i.e., core, bridge, and periphery) exhibit heterogeneous 

patterns over space and time, in which several major changes can be identified. 

 

First, there is a minor drop in the number of cities in the core layer, but at the same time there 

has been a substantial gain in the intensity of the connections. As can be seen in Figure 3.8, 

the core layer has evolved into a well-developed and tightly connected backbone and the 

gravitational center of this layer explicitly moves towards the northern part of. This tendency 

is in line with O’Connor’s (1995) “principal axis shift”. In 1979, the 23 core cities were 

capital cities of economically developed countries alongside a number of large cities in 

archipelagic countries (i.e. Indonesia, Philippines, Malaysia). The core layer had 68 

connections connecting 13.85 million passengers. However, the number of core cities in 1996 

was almost halved, while the connections between them also decreased to 45 whereas the 

number of air passengers more than doubled. Cities that remained in the core layer were 

capital cities of economically developed countries, provincial capitals of East Malay (Kuching 

and Kota Kinabalu), as well as the second largest city (Surabaya), the most well-developed 

tourist destination (Denpasar) and the busy domestic hub of Makassar in Indonesia. After a 
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further 17 years, the core layer witnessed a moderate growth in size (18 cities and 87 

connections) and a drastic rise in the number of passengers (85.13 million). The layer includes 

all capital cities of the ASEAN region except for Vientiane, a number of critical secondary 

cities and international gateways (i.e., Penang, Surabaya, Medan), as well as the region’s 

important tourist destinations (i.e., Phuket, Siem Reap and Denpasar).  

 

Second, the bridge layer has gone through a mixed growth pattern, above all exhibiting high 

volatility during 1979-2012. Initially, the connections between bridge cities were relatively 

sparse. Air passenger flows were concentrated in the remote parts of East Indonesia around 

Makassar on the one hand, and a Northwest Burmese group around Yangon on the other 

hand. The layer mushroomed in 1996 with connections and traffic more than doubling and 

quadrupling respectively. This is largely due to the emergence of Vietnamese cities as well as 

a number of Indonesian and Philippine cities that were downgraded from the core layer. In 

2012, the number of cities and connections respectively shrank by 12.5% and 32.2%.  It is 

noteworthy that Chiang Mai and Da Nang became prominent bridge cities in the Greater-

Mekong sub-region (GMS) in the face of the rise of Ho Chi Minh City, Hanoi and Yangon to 

the core layer. Besides, Makassar reappeared in this layer after 1996’s temporary upgrade into 

a core city, with the connections between the divided parts of Malaysia being much denser in 

2012. 

 

Third, the periphery layer has a consistent low significance in the SAAN with a gradually 

rising number of cities located at the margins of their national systems and rarely being inter-

connected as expected. However, these cities are increasingly connected to cities in core and 

bridge layers. This phenomenon has also been observed in the spatial organization of freight 

flows between French urban areas, featuring only a few exchanges between small urban areas, 

but more with other levels in the urban hierarchy (Guerrero and Proulhac, 2014). In a similar 

vein, the connections between bridge and core layers ascended drastically from 92 to 251, 

with a parallel growth in air traffic from 5.88 to 114.29 million. This of course leads to the 

disassortative mixing of degrees discussed in the previous section.  

 

The dynamics of the multilayer structure in the SAAN can easily be associated with the 

geographic peculiarities of, and socio-economic and politico-institutional changes in 

Southeast Asia (Liu et al., 2017). First and foremost, the region’s fragmented geographical 

nature continues shaping the spatial and topological patterns of the SAAN. For instance, 
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especially for remote areas with small population and economic output, Makassar acts as a 

local hub in Indonesia to handle frequent air links from densely-populated Java to Sulawesi 

and Irian Java. Given that the Malaysian communities on Borneo are both relatively less 

developed and isolated from the Malay Peninsula, intense air connections are established to 

numerous cities in East Malaysia (often through Kuching and Kota Kinabalu). This 

geographical dispersion of archipelagic countries has placed an unusual dependence on air 

services as a unifying force to keep the national development project on track (Kissling, 

1989).  

 

Furthermore, the evolving multilayered geography of the SAAN is heavily influenced by 

underlying disparities in national development and regional integration as reviewed in section 

2.1. One the one hand, the early NICs, being export-oriented, started to integrate into the 

global economy, thus reinforcing the significance of their respective international hubs by 

synergies of soft (e.g. information, telecommunication) and hard (e.g. airport, port, rail and 

road) infrastructures (Airriess, 2001; Rimmer, 1999; Robinson, 2006). For instance, with the 

development of high tech and value-added manufacturing and business services, Singapore 

has become one of the major investors in other Southeast Asian countries. Therefore, it has 

geared its soft (e.g. management and amenities) and hard (e.g. new airport terminals) 

infrastructures (Phang, 2003) towards attracting layover passengers during long-haul inter-

continental flights. On the other hand, the lagging CLMV got involved into the regional 

production network by economic reforms from the late 1980s and joined ASEAN later on 

(Vietnam in 1995, Laos and Myanmar in 1997, and Cambodia in 1999). In Vietnam, Ho Chi 

Minh City, Hanoi and Da Nang were designated as three development poles and have enjoyed 

rapid economic growth from a small base, which spurs investment in air transport connections 

to external economies. In addition, the CLMV sub-regional cooperation in air transport since 

1998 contributes to an improved competitiveness and gradual participation in the international 

air transport market (Hien, 2003), ultimately bolstering the capital cities of CLMV in the core 

layer in 2012. An equally important contributor has been the growing volumes in tourism 

(Van De Vijver et al., 2014). This shift leads to mushrooming air connections to Siem Reap 

(the world heritage site of Angkor Wat), and Phuket and Denpasar (resort islands), all of 

which are also included in the core layer in 2012.  

 

Finally, government policies play a vital role in the SAAN evolution (Bowen, 2000).  Before 

the 1990s, air services were overwhelmingly state-regulated or even state-operated in SEA. 
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National carriers played an instrumental role the processes of nation-building, serving to 

integrate various parts of a country on the one hand and reinforcing the positionality of the 

national capital/primary cities on the other hand (Raguraman, 1997; Bowen, 2000). Partly in 

order to cope with the rapid growth of air transport demand, most SEA countries started to 

permit the entry of private corporations into the aviation industry (Hooper, 2005), while 

flagship carriers shifted towards regional and international cooperation and competition. The 

gradual deregulation of domestic markets promoted joint-venture Low Cost Carriers (LCCs), 

such as Malaysia’s AirAsia which is perceived to be a pan-ASEAN carrier (Zhang et al., 

2008). The connections provided by these carriers greatly enhanced the nodality of most 

economically vibrant secondary cities and tourism destinations in the region as pronounced in 

the core layers of 1996 and 2012.  

 

The impact of air transport liberalization can also be detected from the presence of Johor 

Bahru and Clark in 2012 as bridge cities with dense connections. The emergence of Johor 

Bahru in the SAAN can be ascribed to the ‘spillover effect’ of Singapore owing to geographic 

proximity (Ooi, 1995) as well as its potential to be the secondary airport of Singapore with 

convenient ground transportation between both places. A similar observation can be made for 

Clark, an airport city 80 kilometers away from Manila, which is increasingly well connected 

by its attraction of connectivity from congested Manila airport (Hanaoka et al., 2014). In our 

empirical framework, we initially opted to aggregate these airports into ‘city nodes’, but these 

findings suggest that a more nuanced reading of connectivity in a city-regional context would 

have been warranted. This is, of course, in line with Addie’s (2014) coining of the concept of 

aero-regionalism to enhance and reshape our understanding of the relations between aviation 

infrastructures and their surrounding regional spaces. 
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Figure 3.8 The three layers of the SAAN in 1979, 1996 and 2012. E denotes the number of 
connections within (Ecc, Ebb, and Epp) or between (Ecb, Ecp, and Ebc) layers; P denotes the 
passengers within (Pcc, Pbb, and Ppp) or between (Pcb, Pcp, and Pbc) layers; and N denotes 
the number of nodes in each layer (Nc, Nb, and Np). 
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3.5 Conclusions 

In this paper, we examined the evolving SAAN using tools developed in the context of 

complex network theory. Both topological features and spatial patterns were taken into 

account. Starting from the longstanding focus of air transport geographers on changing 

positions of cities and connections in air transport networks, we have aimed to contribute to 

the literature by exploring the topology and multilayer structure of the SAAN, and tracing its 

evolution over the period 1979-2012. 

 

The topological structure of the SAAN has exhibited relative stability over the past 34 years. 

It follows a power-law degree distribution, suggesting scale-free properties as previously 

observed for air transport networks in India, Austria and, to a lesser extent, in the global, US, 

EU and Italian networks. The slope of the degree distribution generally decreased, indicating 

more cities now having a large degree. This is largely due to the emerging hubs in CLMV 

countries. Meanwhile, the SAAN has been characterized by small-world properties since 

1996 when its characteristic path length and average clustering coefficient were both above 

values of a comparable random network. Furthermore, the SAAN exhibits an intensified 

disassortativity, showing an increasing dependence of small cities on a hub-and-spoke 

configuration to access the entire network. However, compared to its EU macro-regional 

counterpart, the SAAN is far from mature and integrated. 

 

The multilayer structure of the SAAN has changed over time and space, which can be traced 

back to a range of socio-economic and politico-institutional dynamics. The tourism boom has 

resulted in the entry of Phuket, Siem Reap and Denpasar into the core layer. And because of 

the more recent economic development of CLMV, the core layer is now shifting towards the 

western half of Southeast Asia, leading to a relative marginality of Philippine cities. Our 

analysis shows a prominent increase in connections and traffic between the core and other 

layers. Although more remote cities are integrated into the SAAN, connections between 

peripheral cities remain almost non-existent, which again suggests an increasing dependence 

of small cities on hub-and-spoke configuration to access the network.  

 

There are, of course, a number of limitations associated with our approach. Our binary (as 

opposed to a weighted) specification of connections implies that we have focused on the 

major topological features of the SAAN, but this may result in losing sight on some of the 
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nuances engendered in the edges being unevenly weighted. In addition, our study sheds light 

on the evolving structure of the SAAN from the perspective of air transport capacity/supply; it 

would also be interesting to conduct empirical studies from a demand dimension. Our analysis 

also has its data limitations. First, the network we analyzed is an aggregated one that does not 

differentiate between types of carriers (i.e., Full Service Carrier and Low Cost Carrier) and 

airline companies (e.g., Tiger Airways, AirAsia, Jetstar). Second, the rise and fall of cities in 

these networks may mesh with changes in other modes of transportation, such as port and 

railway development, which cannot be identified in our study. With more refined and 

multiplex data, an improvement in these aspects would provide a more accurate 

understanding of the structural evolution in terms of development strategies and policies for 

cities and the air transport industry. And finally, our all-too-straightforward definition of what 

constitutes a node could be conceptually enriched by triangulating it with research on the 

diversity of the meaning of airport-cities and airport-regions as per Addie (2014) and 

Derudder et al. (2010). 

https://www.airlines-inform.com/world_airlines/Jetstar_Asia.html
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Abstract 

This paper examines the driving forces of urban network formation through the simulation of 

intercity transport networks in Southeast Asia. We present a generative network model 

(GNM) considering geographical and topological effects, thus combining factors commonly 

analysed through traditional spatial simulation models (e.g., gravity models) and topological 

simulation models (e.g., actor-oriented stochastic models)in a single framework. In our GNM, 

it is assumed that the probability of connections between cities emerges from competing 

forces. Stimulating factors are a measure of city size (e.g., population) and a topological rule 

favouring the formation of connections between cities sharing nearest neighbours (i.e., 

transitive effects). The hampering factors are physical distance between two cities as well as 

institutional distance (e.g., border effects). We discuss the model in the context of on-going 

engagements between urban-geographical research and the network science literature, and 

validate the credence of the model against empirical data on the transport networks 

connecting 51 major cities in Southeast Asia. Our results show that (1) the generated 

networks approximate the observed ones in terms of average path length, clustering, 

modularity, efficiency and quadratic assignment procedure (QAP) correlation between the 

observed composite network and the generated one, and that (2) GNM performs best when 

topographical and topological factors are considered simultaneously. Each factor contributes 

differently to network formation, with transitive effects playing the most important role.  
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4.1 Introduction 

Network perspectives have (re)gained increasing attentions in urban geography. This 

increased popularity is not only visible in a range of theoretical frameworks (e.g., Sassen, 

2002; Taylor and Derudder, 2015), but also in matching methodological approaches in which 

‘network thinking’ is invoked to understand the position of cities in urban systems (e.g., 

Decoupigny and Passel, 2014; Hennemann and Derudder, 2014; Rozenblat and Melançon, 

2013). When adopting a network perspective, urban geographers study cities through their 

insertion in various immaterial and material flows (e.g., finance, investment, transportation 

and information) at various scales (cf. Bretagnolle and Pumain, 2010): the spatial outline of 

urban systems is envisaged as the spatial distribution of edges (intercity linkages) connecting 

nodes (cities).As corollary, this emerging urban network paradigm emphasizes the importance 

of the external relations of cities rather than their relations with a hinterland (cf. Camagni and 

Salone, 1993). Taking a broader perspective, this development can be understood as an 

example of the recent forging of closer relationships between geographical science and 

network science (e.g., Barthélemy, et al., 2005; Pasta, et al., 2014). 

 

In spite of the increased popularity of network-scientific methods, the adoption of some of the 

more advanced methods has recently been described as comparatively ‘limited and dispersed’ 

in spatial sciences in general and urban geography in particular (Ducruet and Beaugitte, 2014, 

p. 1). The purpose of this paper is to help contribute to further cross-fertilizations by 

explaining and exploring the potential of a new approach for simulating networks that have an 

explicitly spatial dimension. More specifically, drawing on Vértes et al. (2012), we propose a 

generative network model (GNM) for approximating urban networks. The GNM approach 

takes both spatial and topological processes into consideration, and here we examine the remit 

of hypothesized network-generating processes through a case study of intercity transportation 

networks in Southeast Asia.  

 

The remainder of this paper is organized as follows. In the next section, we review network-

analytical strategies used by urban geographers, with a particular focus on urban network 

modeling and simulation. We use this discussion to posit the potential of GNM. We then 

propose our analytical framework, summarize the datasets, and elaborate the model 

specification and parameter estimation procedure. The model is operationalized and validated 

in the subsequent section by comparing simulated and observed networks from different 
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perspective and exploring how transitivity, distance, borders and population influence 

network formation. The final section summarizes the main implications of our analysis and 

outlines some avenues for further research. 

4.2 Literature review 

4.2.1 Urban network analysis 

Network theory is concerned with the study of graphs as representations of relations between 

discrete objects. Although thinking of cities as discrete and bounded objects has its conceptual 

problems (Saey, 2007; Brenner and Schmid, 2013), examining urban systems as the outcome 

and representation of intercity relations has been shown to make sense in analytical terms 

(Rozenblat and Pumain, 2007; Ducruet et al., 2010; Neal, 2012). Especially fertilized by other 

disciplines ranging from sociology and information science to physics and biology, network 

analysis in urban geography has thus tried to shed new light on hierarchical and regional 

structures of urban systems, as well as the mechanisms by which intercity connections 

develop over time. 

 

A considerable number of studies have sought to describe the structure of urban systems using 

a series of network metrics. First, the ‘importance’ of cities has been examined by calculating 

a range of centrality such as degree centrality and betweenness centrality in Krätke (2014), 

eigenvector centrality in Smith and Timberlake (2001) as well as other centrality measures 

that have been specifically tailored for urban network analysis (Neal, 2013b). Second, spatial 

structures within and of urban networks have been explored by applying community detection 

methods (Liu et al., 2014; Blondel et al., 2010). Third, the structural equivalence of different 

urban networks has been assessed through the application of Quadratic Assignment 

Procedures (QAP) as in Choi et al.’s (2006) analysis of air transport and Internet backbone 

connections between cities, as well as Ducruet et al.’s (2011) assessment of worldwide sea 

and air transport flows. Fourth, there have been analyses of the topological properties of urban 

networks. Guimera et al. (2005), for example, present a detailed analysis of the topological 

properties of the global air transport network, and find that it exhibits small-world 

characteristics (Watts and Strogatz, 1998) in that city-pairs tend to be separated by just a few 

links and show a high local clustering coefficient. Meanwhile, Ducruet et al. (2011) point out 

that both worldwide sea and air transport flows exhibit a scale-free structure (Barabási and 

Albert, 1999) with a power-law degree distribution reflecting the hierarchy of cities. 
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Importantly, thinking about the nature of the hierarchical structure of cities’ positions in urban 

networks has also proven to deliver new insights in established thinking in urban geography 

on the rank-size rule (Pumain et al., 2015).   

 

Pumain et al.’s (2015) paper points to another family of potential network analysis 

applications in urban geography, i.e. modelling and simulation approaches. In their analysis, 

urban growth processes are compared at the macro-scale for seven large countries. Crucially, 

they emphasize that a few common principles such as Gibrat’s Law can explain the diversity 

of trajectories of cities within urban systems. This then aids in the simulation of urban 

systems as put forward in Pumain et al. (2006), who point out that regularities in cities’ 

centralities in urban systems can be expressed in the form of scaling laws previously 

recognized as revealing specific constraints on the structure and evolution of complex systems 

in physics and biology. In such simulation models, the focus tends to be on the outcome at the 

level of nodes (cities) rather than edges (intercity connections). The structure of the latter 

remains somewhat implicit in the operational model. That is, although it is posited that scaling 

laws emerge from intercity relations of competition and cooperation in interdependent 

networks, the focus is ultimately on that scaling of nodes rather than the distribution and 

spatial outline of cities’ interactions. The latter can, however, also be modelled, and herein 

particular a number of recent advances in network sciences have opened up new opportunities 

for urban network research. 

4.2.2 Space and topology in the simulation of urban networks  

Simulating the driving forces underlying the formation of urban networks is bound to be 

complex for a number of reasons. For one thing, it has been pointed out that urban network 

evolution is rarely linear (Barrat, et al., 2004; Hazir, 2013; Taylor and Walker, 2001).In 

addition, effects may play out at the level of nodes and dyads. At the level of nodes, it has 

been demonstrated that city size (in demographic or economic terms) and different sets of 

policies may affect spatial interactions between cities. For instance, metropolitan areas tend to 

produce more connections because they are supported by larger local demand as well as 

having stronger abilities to satisfy these demands (Dobruszkes et al., 2011). Meanwhile, 

provision of air transport links can be the result of decades of aggressive policies and 

strategies as the example of Singapore clearly shows (Phang, 2003; Ducruet and Lee, 2006; 

Lee et al., 2008). At the dyadic level, factors such as physical distance and institutional 

distance (e.g., border effects) have been shown to impinge on intercity relation interactions. 
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Transaction costs and friction increase with distance, making it is easier to forge connections 

among cities with a shorter distance or within the same country (Mun and Nakagawa, 2010). 

Meanwhile, colonial legacies as specific examples of institutional facilitators of intercity 

connections have been shown to be pertinent in the shaping of airline networks (e.g. the 

London-Nairobi dyad as, see Pirie, 2010), just as tight regulation on specific routes can hinder 

the development of connections as has been shown in the past for the Singapore-Kuala 

Lumpur link (Ng, 2009).  

 

There is one further feature of spatial networks that requires closer attention when thinking 

through how a simulation of urban networks might look like. One conspicuous empirical 

feature of Pumain et al.’s (2015) thought-provoking maps is that there are regional densities 

of cities (e.g. regionalized clusters of cities in China). This is due to the strong localization 

component in almost all underlying economic and social networks, which collectively lead to 

a higher probability of short-range connections than of geographically distant connections (cf. 

Tobler 1970, Barthelémy 2011, Hennemann et al., 2012). 

4.2.3 Previous approaches to the simulation of urban networks  

The most frequently adopted strategy for modelling urban networks is to emphasize the 

analogies with Newton’s law of gravity (Ravenstein, 1885; Reilly, 1931; Enault, 2012; 

Josselin and Nicot, 2003). From this perspective, the flow and interaction intensity between 

pairs of cities is assumed to be proportional to their ‘masses’ and inversely proportional to the 

distance separating them. This approach has been validated for a wide range of urban 

networks, including for international trade, migration, tourism, foreign direct investment, etc. 

In addition to its intuitive conceptual appeal and straightforward operationalization, the 

popularity of the gravity-type models resides in the fact that it can be easily extended to 

include other factors with a spatial connotation. For instance, researchers have added political 

barriers (Cattan and Grasland, 1993), remoteness variables (Head and Mayer, 2000), 

heterogeneous coefficients (Behrens et al., 2012) to provide a richer and more accurate 

estimation and interpretation of the spatial characteristics of the urban network. However, in 

spite of these elaborations, the strong assumptions of structural independence amongst nodes 

loom large. From a network perspective, it is precisely the lack of independence of nodes - i.e. 

the interdependence of nodes - that defines a network. The strength of the linkages between 

London, New York and Hong Kong, for example, derives from the interdependence of their 
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financial services complexes, a topological property resulting in important long-distance 

connections that might deform gravitational predictions (Lambiotte et al., 2008). 

 

To date, geographers have made limited attempts to explicitly incorporate topological effects 

when simulating urban networks. A major exception has been Vinciguerra et al.’s (2010) 

simulation of the formation of the European intercity Internet backbone network. They show 

how a combination of topological effects (a preferential attachment process whereby nodes 

have the tendency to connect to nodes that are already well-connected) and spatial effects 

(e.g., borders) help explaining the shape of this particular intercity network. 

 

Two recent approaches from the network analysis literature that may be applied for modelling 

urban networks can be found in the work of Liu et al. (2013a, 2013b). Both papers apply 

stochastic models, i.e. Exponential Random Graph Models (ERGM, Liu et al., 2013) and 

Stochastic Actor-Based Models (SABM, Liu et al., 2013). Both types of models have been 

developed in the social sciences to examine how different kinds of structural 

interdependencies between pairs of nodes at the local scale give rise to the empirically 

observed network patterns at the global scale (Robins et al., 2007; Snijders et al., 2010). In 

addition, both types of models aim to generate a hypothesized network that closely parallels 

an observed network, thus revealing the underlying topological forces that drive the network 

formation. These processes are, however, much more complicated and difficult to interpret 

than gravity-type models. In addition, both approaches have their drawbacks in the context of 

urban network simulation. EGRMs, for instance, is prone to degeneracy problems (i.e., failure 

to converge and hence become unstable) and at present confined to modelling binary edges. 

Meanwhile, while SABM clearly has potential for simulating urban networks that are 

produced by well-defined agents (e.g. firms), this need for clear-cut definition of key actors 

and their network-generating behaviour is sometimes hard to implement(cf. Broekel et al., 

2014). 

 

We also note that topological and spatial effects are not mutually exclusive, as they may exert 

overlapping (yet separate) influences in the shaping of urban networks (Pflieger and 

Rozenblat, 2010). This is because city-dyads characterized by topological proximity (e.g. two 

nodes that have a strong, direct connection) are often also located near each other (cf. the 

China example in Pumain et al., 2015). Or, put differently: interdependent cities are also often 



98 

 

close to each other in Euclidean space. However, this need not be the case: intercity air 

transport connections are much less bound by distance decay effects than say, rail networks.  

 

In our paper, we extend Vinciguera et al. (2010)’s network modelling approach, which 

incorporates both spatial and topological factors. Here we apply Vértes et al.’s (2012) 

generative network modelling approach (GNM), which was initially developed for studying 

functional human brain networks. In their paper, the authors successfully modelled this brain 

network as the outcome of trade-offs between a limited number of plausible generative forces: 

a constraint on connection distance and a tendency for transitive process, resulting in spatial 

and functional clustering of connections between brain cells. 

4.3 Data and Methodologies 

4.3.1 Data: Intercity transport networks in Southeast Asia  

Our analysis draws upon a undirected and weighted network reflecting the strength of the 

transport connections between 51 major Southeast Asian cities. Tie strength is based on the 

strength of intercity connections in different transportation networks. 

 

Cities were selected based on the following set of criteria: (1) all metropolises with more than 

0.5 million residents; (2) all capital cities (e.g., Vientiane, Laos and Dili, East Timor) 

regardless of their population size; and (3) in order to produce a more balanced geographical 

distribution also the four largest cities in vast but sparsely populated islands of Sulawesi, 

Maluku and western half of New Guinea even though these cities had less than 0.5 million 

inhabitants. Table 4.1 and Figure 4.1 list and map the 51 cities.  

Table 4.1 List of selected cities. 

No. Country City Abbreviation Population Notes 

1 Malaysia Kuala Lumpur KUL 6279556 Greater Kuala Lumpur 

2 Malaysia Penang PEN 708127 Greater Penang Conurbation 

3 Malaysia Johor Bahru JHB 1026141  

4 Malaysia Malacca MKZ 788706  

5 Malaysia Ipoh IPH 657892  

6 Malaysia Kota Kinabalu BKI 628725 Greater Kota Kinabalu 

7 Malaysia Kuching KCH 598617  

8 Indonesia Jakarta JKT 17720485 Greater Jakarta 

9 Indonesia Bandung BDO 2936050 Combined with Cimahi (share airport) 

10 Indonesia Surabaya SUB 2765487  

11 Indonesia Medan MES 2097610  
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12 Indonesia Semarang SRG 1520481  

13 Indonesia Palembang PLM 1440678  

14 Indonesia Makassar UPG 1331391  

15 Indonesia Batam BTH 917998  

16 Indonesia Pekanbaru PKU 882045  

17 Indonesia Bandar Lampung TKG 873007  

18 Indonesia Malang MLG 820243  

19 Indonesia Padang PDG 799750  

20 Indonesia Denpasar DPS 788589  

21 Indonesia Samarinda SRI 685859  

22 Indonesia Banjarmasin BDJ 612849  

23 Indonesia Tasikmalaya TKL 578046  

24 Indonesia Pontianak PNK 554764  

25 Indonesia Balikpapan BPN 526508  

26 Indonesia Jambi DJB 515901  

27 Indonesia Manado MDC 394683 Provincial capital of North Sulawesi 

28 Indonesia Palu PLW 310168 Provincial capital of Central Sulawesi 

29 Indonesia Ambon AMQ 305984 Provincial capital of Maluku 

30 Indonesia Jayapura DJJ 233859 Provincial capital of Papua 

31 Singapore Singapore SIN 5076700  

32 Philippines Manila MNL 11236045 Metropolitan Manila + Antipolo, 

Dasmarinas, Bacoor (share airport) 

33 Philippines Davao DVO 1176586  

34 Philippines Cebu CEB 866171  

35 Philippines Zamboanga ZAM 643557  

36 Philippines Cagayan de Oro CGY 602088  

37 Philippines Bacolod BCD 511820  

38 East Timor Dili DIL 192652  

39 Brunei Bandar Seri 

Begawan 

BWN 279924  

40 Vietnam Ho Chi Minh City SGN 6533261 Metropolitan Ho Chi Minh City 

41 Vietnam Hanoi HAN 2316772 Metropolitan Hanoi + Thai Nguyen 

(share airport) 

42 Vietnam Da Nang DAD 770911  

43 Vietnam Hai phong HPH 769739  

44 Vietnam CanTho VCA 731545  

45 Laos Vientiane VTE 754000  

46 Myanmar Yangon RGN 4090000  

47 Myanmar Mandalay MDL 960000  

48 Myanmar Naypyidaw NPD 418000  

49 Cambodia Phnom Penh PNH 1242992  

50 Thailand Bangkok BKK 8280925 Greater Bangkok 

51 Thailand Chiang Mai CNX 1000000 Metropolitan Chiang Mai 

Note: Majority population data are from citypopulation.de in the year 2010 except that 1) 

population of Malaysian cities in 2010 are derived from Department of Statistics Malaysia 

(web) and 2) population data of Lao and Vietnamese cities are obtained from 

citypopulation.de in the year 2009 while that of Bruneian city is in 2011. 
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Figure 4.1 Distribution of selected cities in Southeast Asia. City abbreviations used in the 
figure are given in Table 4.1, hereafter. 

Our composite transport network provides a surrogate measure of three individual transport 

networks: road, rail, and air transport. Based on the 51 selected cities, intercity connectivity in 

each transport network is measured through the number of weekly direct buses (including 

ferries), direct trains and non-stop flights in the first week of November, 2015, respectively. 

Intercity bus and ferry connections were acquired from national and international online-

bus/ferry websites of each country
5
; for train connections we consulted websites of railway 

agencies and national railway administrations for individual countries
6
; and for air transport 

connections, data were collected through the SkyScanner web crawling service. It is worth 

mentioning that, as small differences in the direction of the link had no conceptual bearing, 

the three transport networks have been symmetrized by averaging the value from city A to 

city B and that from city B to city A (with all diagonal cells set at zero). 

                                                       
5Source: www.busonlineticket.com; myanmarbusticket.com; www.vietnambustickets.com; www.buso

nlineticket.co.th; www.camboticket.com; www.kramatdjati.co.id; www.indonesiaferry.co.id; travel.2g

o.com.ph. 
6Source: vietnam-railway.com; www.gahanoi.com.vn; www.thairailways.com; www.ktmb.com.my; w

ww.myanmarmtetours.com; www.pnr.gov.ph; tiket.kereta-api.co.id. 

 



101 

 

To combine the different networks into a single network of connectivity, we first logged 

measures in each layer to alleviate the skewness in the distributions, after which we 

normalized data through:  

𝑥𝑖𝑗 =
𝑥𝑖𝑗−𝑀𝑖𝑛(𝑥𝑖𝑗)

𝑀𝑎𝑥(𝑥𝑖𝑗)−𝑀𝑖𝑛(𝑥𝑖𝑗)
                                                                                                     (4-1) 

Where xij denotes the frequencies of weekly bus/ferry, rail links, flights between city i and j in 

each of the three networks. 

 

All three data layers thus have a distribution between 0 (minimum connectivity) and 1 

(maximum connectivity), after which edges in the composite network were derived by taking 

the average score of the logged and normalized values in each of the different layers.  

Table 4.2 The 10 strongest intercity connections in different layers in Southeast Asia. 

Rank Intercity connection Road Intercity connection Rail 

1 Kuala Lumpur-Singapore 1190 Kuala Lumpur-Ipoh 119 

2 Kuala Lumpur-Johor Bahru 1190 Jakarta-Semarang 49 

3 Kuala Lumpur-Penang 861 Yangon-Mandalay 49 

4 Malacca-Singapore 735 Bangkok-Chiang Mai 42 

5 Kuala Lumpur-Ipoh 448 Hanoi-Da Nang 42 

6 Ho Chi Minh City-Can Tho 336 Singapore-Johor Bahru 42 

7 Kuala Lumpur-Malacca 322 Yangon-Naypyidaw 42 

8 Phnom Penh-Ho Chi Minh City 273 Bandung-Jakarta 42 

9 Malacca-Johor Bahru 252 Jakarta-Surabaya 35 

10 Hanoi-Hai phong 238 Ho Chi Minh City-Hanoi 35 

Rank Intercity connection Air Intercity connection Composite 

1 Jakarta-Surabaya 406 Kuala Lumpur-Singapore 0.857 

2 Manila-Cebu 337 Kuala Lumpur-Johor Bahru 0.792 

3 Denpasar-Jakarta 275 Bangkok-Chiang Mai 0.762 

4 Kuala Lumpur-Singapore 257 Ho Chi Minh City-Hanoi 0.759 

5 Ho Chi Minh City-Hanoi 240 Jakarta-Semarang 0.737 

6 Jakarta-Medan 235 Ho Chi Minh City-Da Nang 0.716 

7 Jakarta-Singapore 217 Hanoi-Da Nang 0.695 

8 Kuala Lumpur-KotaKinabalu 203 Jakarta-Surabaya 0.681 

9 Manila-Davao 197 Kuala Lumpur-Ipoh 0.621 

10 Jakarta-Palembang 182 Kuala Lumpur-Penang 0.595 
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Figure 4.2 The three layers used in the construction of the composite network. 

The connections in each of the three layers are shown in Figure 4.2, while the 10 strongest 

connections are presented in Table 4.2. It is clear that he three layers are quite different in 

structure. The road and rail networks are sparsely connected, and exhibit strong localization 
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tendencies, while the air network is relatively strongly connected. Largely due to the region’s 

mountainous terrain, tropical land covers and archipelagic geography, the three modes of 

transportation are complementary in providing intercity accessibility. The strongest intercity 

connections in the road network are Kuala Lumpur-Singapore and Kuala Lumpur-Johor 

Bahru with 1190 weekly direct buses along the Malaysian North-South highway.. The 

strongest rail connection is between Kuala Lumpur and Ipoh (119 weekly direct trains) in the 

densely connected Malay Peninsula, followed by Jakarta-Semarang (49) in central Java, 

Indonesia, and Yangon-Mandalay (49) in Myanmar. The strongest air transport connection is 

Jakarta-Surabaya (406 weekly non-stop flights), followed by Manila-Cebu (337), and 

Denpasar-Jakarta (275). Except for the strongest Kuala Lumpur-Singapore linkage, the rest of 

the top-10 linkages in the composite network are dominated by domestic connections such as 

the Straits of Malacca Corridor in West Malaysia and the North-South Economic Corridor in 

Vietnam and Thailand. 

 

 

Figure 4.3 Connections in the observed network of composite transport in Southeast Asia. 

In the observed network of composite network displayed in Figure 4.3, it is obvious that flows 

are mostly centred on capital cities (e.g., Jakarta, Kuala Lumpur, Manila) and other important 

cities with large population (e.g., Bandung and Semarang) in each country. Furthermore, five 

communities of strongly interconnected nodes can be detected through the application of a 

community detection method (here we employed the ‘fast greedy modularity optimization 

method’ developed in Clauset et al., 2004). The communities consist of an geographically 

extensive Indonesian community organized around Jakarta and Surabaya, a Philippine 
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community centred on Manila, an integrated Malaysian community including Singapore and 

Brunei, a relatively isolated Burmese community and a transnational community in the north 

comprised by cities in Thailand, Laos, Cambodia and Vietnam together. This pattern suggests 

a combination of border effects and geographical proximity. Therefore, these forces alongside 

topological transitivity are simultaneously considered in the following simulation.  

4.3.2 Model specification 

In our urban network-implementation of GNM, it is assumed that the probability of a 

connection between two cities is adversely proportional to the distance and border between 

them whereas is proportional to the product of their population and a topological tendency 

towards transitivity. Transitivity states that when there is an edge between node A and B, and 

also between B and C, then there is also an edge between node B and C (Weimann, 1983). 

This structural property is commonly observed in social networks that friends of my friends 

are my friends. Here in our weighted urban networks, the manifestation of transitivity can, for 

instance, be linked with the presence of transport corridors such as major rail or road links. It 

helps additionally assessing to what degree intercity connectivity is consolidated between 

nodes having nearest neighbours in common. The resulting specification can be written as: 

 

P𝑖𝑗
(pop𝑖·pop𝑗)𝛼

d𝑖𝑗
𝛽 ·

1

θ
· k𝑖𝑗

𝛾
                                                                                              (4-2) 

 

where Pij is the probability of a connection between cities i and j with (logged) populations 

popi and popj and separated by an Euclidean distance dij; and kij is the number of first-order 

neighbours that city i and j have in common. , ,  and  are the model parameters:  and  

refer to strength of the facilitating impact of population and transitivity; while  is an 

impedance factor reflecting the friction of distance. And finally,  is a parameter assessing the 

impact of border effects in intercity connections. If 0<<1, then borders stimulate intercity 

connections (an unlikely scenario); if =1, borders, then have no effect; and and if >1, then 

borders have an adverse effect on intercity connections. 

 

In practice, it is intuitive how variables of population, distance, border work in the process of 

simulation. In case of topological properties, we consider Transitivity kij based on existing 

total edges. For each newly added edge (which initially will have zero connections), its 

∝
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location is determined by a stochastic sampling in which sampling probability is the 

normalized number of shared neighbours  between two nodes. In the weighted network,  the 

number of shared neighbours can be calculated as: 

 

SN𝑖𝑗 = ∑ 𝑥𝑖𝑘𝑥𝑘𝑗
𝑛
𝑘=1                                                                                                         (4-3) 

 

Where SNij is the number of shared neighbours node i and j; n is the total number of nodes in 

the simulated network; xik and xkj are the weights of dyadi-k and dyadk-j. 

4.3.3 Model parameter estimation 

Although the overall logic underlying Vértes et al.’s (2012) GNM is straightforward, its major 

force lays in its potential to reveal which configuration of what set of generative factors best 

explains the geographical and topological structure of an observed network. After modelling 

factors and their configurations are specified, the modelling exercise entails finding the 

‘optimal’ combination of , ,  and  that generates a network that most closely resembles 

the structures of the observed network. As generative network models produce probabilities, a 

common research strategy is to re-run models after which mean values are used for comparing 

the generated and the observed network.  

 

For reasons of computational ease, we did not employ the simulated annealing method in 

Vértes et al.’s (2012) to seek optimal parameters. Rather, we applied a ‘brute force’ approach 

in which parameter combinations are tested by varying the four parameters from 0 to 4 in 

steps of +0.5 (excluding 0 for ), resulting in 9*9*9*8=5832 model versions. For each 

version, we generated 100 networks with corresponding parameters. We then compare the 

‘mean’ properties of these 100 generated networks and the observed network. An optimal 

combination of parameters would be identified when generated and observed networks are 

considered most ‘similar’.  

 

The assessment of the ‘similarity’ of the generated and observed networks is relatively non-

trivial. Following Vértes et al.’s (2012) approach, the comparison between generated and 

observed networks considers four key topological features: (1) modularity (M), a measure of 

how the network can be decomposed into a set of sparsely interconnected modules, each 

comprising several densely interconnected nodes; (2) average clustering coefficient (C), a 
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measure of cliquish interconnections between topologically neighbouring nodes; (3) global 

efficiency (E), a measure of network integration inversely related to path length; (4) degree 

distribution (D), a measure of the probability distribution of degree or number of edges per 

node. Two networks are considered similar if there is no statistical difference between their 

four topological features. 

 

The differences between the generated and observed networks in terms of these four metrics 

are combined into an energy value (EV; Vértes et al.’s 2012) and the optimal parameter 

combination corresponds to the minimum EV.  The energy value is calculated as: 

 

EV =
1

𝑝𝑀𝑝𝐶𝑝𝐸𝑝𝐷
                                                                                                               (4-4) 

 

where pM, pC and pE is the p value associated with the t test for a difference in the mean 

modularity, mean clustering coefficients and mean global efficiency of 100 simulated 

networks vs. corresponding values calculated from the observed network, respectively. 

Similarly, pD is the p value of the Kolmogorov-Smirnoff test between the degree distributions 

estimated from the simulated and observed networks. The larger the p-values, the less likely 

there is a statistical difference between the metrics of the observed and the generated 

networks, and the lower the energy value. 

4.4 Results 

4.4.1 Comparisons between the simulated and the observed networks 

The model fit with the lowest energy value among the 5832 versions was obtained for the 

following set of parameters: =2, =3.5, =2 and =1. This implies that the probability of a 

link emerging between any pair of cities is best described by:  

 

P𝑖𝑗

(pop𝑖 · pop𝑗)
2

· (
1

d𝑖𝑗
3.5) · k𝑖𝑗

 if i and j are located in the same country = 1, else = 2 
 

 

Table 4.3 and Figure 4.4 compares the values of the network metrics for the observed and the 

simulated networks. The spatial patterns of the simulated networks are shown in Figure 4.5. 

∝
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Topologically, both networks are very similar, especially in terms of average clustering 

coefficient, global efficiency and degree distribution.  

Table 4.3 Network metrics for the observed and the simulated networks. 

Network M C E D QAP (Sig.) EV 

Observed 0.481 0.496 0.534 
Figure 4.4 0.309(0.001) 4.2E+73 

Simulated 0.345  0.453  0.510  

 

 

Figure 4.4 Degree distributions in the observed and the simulated networks. 

The mean QAP correlation between the two networks is 0.309, statistically significant at the 

1% level. A QAP correlation of 0.309 is acceptable given that our random network generation 

process is governed by only four simple parameters and applied to a large geographical 

regional with great cultural, economic, and socio diversities. In addition, the size of QAP 

correlation in our case is comparable with those reported in Vinciguerra et al. (2010). 

Furthermore, as our ‘brute force’ approach does not search for the entire parameter space, our 

model may well reach a local ‘optimal’ instead of the global ‘optimal’, implying that higher 

QAP values and better model fits may be achieved with other parameter specifications. A 

joint interpretation of these network metrics suggests that the four chosen processes explain 

the formation of the transport networks connecting cities in Southeast Asia reasonably well.  

 

The simulated network picks up (1) the formation of the Indonesian and Philippine 

communities by the dense domestic connections with the capital cities of Manila and Jakarta 

functioning as major gateways; (2) the leading position of Jakarta, Singapore, and Kuala 

Lumpur; (3) some of the major transport corridors such as the Straits of Malacca Corridor in 
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West Malaysia and the North-South Economic Corridor in Vietnam and Thailand; (4) and the 

relatively weak connections among the rest of Southeast Asia by cities in the sparsely 

populated peripheral regions (such as Dili, East Timor and Jayapura, Indonesia).  

 

 

Figure 4.5 Connections in the simulated networks. 

At the same time, there are some discrepancies between the simulated and the observed 

networks. The most notable differences are, first, the underestimation of the connectivity 

between cities in the north of mainland Southeast Asia as well as, second, Bangkok's pivotal 

hub position in linking the northern community to West Malaysia. Although the critical 

corridors such as Hanoi-Ho Chi Minh City, Mandalay-Yangon and Chiang Mai-Bangkok-

Kuala Lumpur-Singapore are properly simulated, the strength of those connections is 

underestimated in comparison with the strong Indonesian domestic links centred on Jakarta. 

This may point to an empirical weakness of the model in that the relatively large(r) number of 

Indonesian cities defines a subnetwork that can be more properly modelled to the detriment of 

sparser parts of the network. As a consequence, major Indochinese cities tend to be more 

strongly integrated in the region’s transport network than predicted by the model. 

 

In addition, stronger relations between Singapore and cities in Sumatra, Indonesia are to be 

expected in reality (Charras, 2014). Although the Euclidean distance from Singapore to 

central Sumatra averages around 400 km, it takes almost 51 hours to make this connection in 

the road network by using a ferry via Medan and the direct ferries and buses between them 
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are still limited. This greatly weakens the desired connections and our analysis suggests that 

in reality this is not alleviated by relatively higher flight frequencies.  

4.4.2 Analyses of each driving factor underlying network formation 

To measure the relative effect of each of the four driving forces, we remodelled the networks 

by consecutively setting the parameters to 0 while retaining the original values for the other 

parameters (note, however, that for border effects this implies setting the value of  to 1 rather 

than 0). Table 4.4 and Figure 4.6 shows the simulated models for each of these three-

parameter scenarios and reveals how the topology of simulated model changes after different 

factors are removed. Meanwhile, Figure 4.7 displays the spatial patterns of the four networks. 

Table 4.4 Network statistics for the simulated networks after removal of driving force. 

Force removed α β θ γ M C E D QAP (Sig.) EV  

Population 0 3.5 2 1 0.326  0.432  0.536  

Figure 4.6 

0.260 (0.001) 3.6E+90  

Distance 2 0 2 1 0.247  0.378  0.586  0.161 (0.005) 2.3E+248  

Border 2 3.5 1 1 0.350  0.460  0.493  0.166 (0.004) ∞  

Transitivity 2 3.5 2 0 0.259  0.268  0.601  0.190 (0.000) ∞  

 

 

Figure 4.6 Degree distributions after each removal of the different forces. 

 



110 

 

 

 

Figure 4.7 Simulated networks after removal of the different forces. 

The first thing to note is that although the simulation continues to produce statistically 

significant results in each of the four models, parallels between the simulated and the 

observed network become less strong: each of the topological characteristics is further 

removed from the original network in terms of each tested p values and the respective energy 

value, and the QAP correlation – although remaining significant – declines. 

 

When Transitivity is removed in our simulation, p values of tested for the four topological 

properties are really trivial, suggesting a significant difference between the generated network 

and the observed network. Although the energy value in the scenario of removing border 

effects also tends to be infinite, p values in that scenario are all much bigger, suggesting a 

relatively smaller difference. Therefore, the results suggest that the transitivity effect matters 

most in the intercity transport networks in Southeast Asia. Interestingly, this is exactly the 

kind of topological feature that would not be picked up in classical gravity modelling: when 
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transitivity effects are removed from the network-generating effects, we miss out on a key 

force generating the transportation network. This is also shown from the fact that above all the 

average clustering coefficient deviates from that of the observed network: the disappearance 

of triadic closure configurations leads to the erroneous suggestion of there being more direct 

point-to-point connections than in the observed network, thus resulting in a smaller average 

path length and higher global efficiency. This finding is in keeping with previous findings that 

growth models for analysing the formation of complex systems can be more successful by 

including an additional topological term in the connection probability function (Yook et al., 

2002). 

 

The border effect is another main force in this region to shape the intercity transport networks. 

In the real transport network, The corridor Penang-Kuala Lumpur-Johor Bahru-Singapore 

comes much more to the fore and Malacca Strait separates the Malaysian and Indonesian 

communities. When borders are removed, Singapore’s vital hub function is much more 

expressed as it is suggested to connect two communities to integrate the western part of 

Southeast Asia, which is consistent with ASEAN's effort to facilitate the cooperation and 

development of Northern Growth Triangle including Indonesia, Malaysia and Thailand 

(Henderson, 2001). In addition, in this scenario, Ho Chi Min City is also upgraded and 

included in the hub-and-spoke network of Singapore instead of being relegated to the northern 

local community. However, the strength of connections between Bangkok, Ho Chi Min City 

and Kuala Lumpur, Singapore is in reality impaired by the lower frequencies of direct buses 

and trains than expected. That is also why ASEAN (Association of Southeast Asian Nations) 

has started investing in two flagship land transport infrastructure projects: the ASEAN 

Highway Network and the Singapore Kunming Rail Link (ASEAN Secretariat, 2011). 

 

The model also shows the relevance of distance decay. The energy value increases a lot when 

distance is removed, indicating that the difference between the simulated and the observed 

networks becomes bigger. he simulated network is relatively far removed from the observed 

network in terms of its modularity, clustering coefficients and degree distribution. 

Disregarding distance yields more connections between remote cities that in reality belong to 

different communities.  

 

Amongst the four driving factors, population has least influence on the network topology. 

When population is removed, the observed five communities remain almost unaltered, 



112 

 

especially the Indonesian community. Again, this can probably be attributed to the relatively 

large number of cities in a single country. Meanwhile, due to the long-dispersed shape as well 

as a score of archipelagos, the Indonesian government has invested many resources into the 

development of domestic intercity shuttles, high speed rail networks and flights to reinforce 

national connectivity (Saraswati and Hanaoka, 2013; Soehodho et al., 2003), which in turn 

somewhat exaggerates the transitive effects in this region. The same rationale can be observed 

in the marked ties in the communities of the Philippines, Vietnam and Myanmar. 

4.5 Conclusions and avenues for further research 

In this paper, we have explored the potential of recent advances in network modelling for 

urban network research. To this end, we re-specified Vértes et al.'s (2012) economical 

clustering model to propose a generative network model (GNM) for simulating urban 

networks. To show the practical merit of this approach, we applied our approach to a case 

study of a composite intercity transport network in Southeast Asia. Overall, results confirm 

the potential of the proposed method, with as a major finding that the inclusion of topological 

effects (transitivity) alongside geographical effects as archetypically captured in (extended) 

gravity modelling helps understanding how urban networks are being shaped. This is further 

underscored by our finding that, when removing the different network-generating effects, 

transitivity is found to be the most important force in shaping the structure of the network.  

 

We emphasize that the prime purpose of this paper has been methodological. This is because 

in our particular example results also reflect our operational choices. Both our selection of 

transport modes and their relative importance (they were all equally weighted), as well as how 

these networks were consecutively measured, transformed, and combined have an impact on 

our results. For instance, we have observed that the large number of cities on Java probably 

results in a subset of cities whose clearly defined interconnections imply that the simulation 

converges on this subnetwork. Although this is essentially a proper finding in the sense that it 

shows that regional integration through urban network-formation falls short of national 

network integration (further accentuated by the archipelago nature of Indonesia), it does beg 

the question of how the modelling exercise can be improved. However, that said, we would 

argue that these issues relate to the data specification rather than the simulation approach per 

se. Possible improvements include recognizing physical borders alongside national borders 

(e.g. accounting for weaker connections on Borneo and the Philippines) as well as socio-

cultural issues. 
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Abstract 

Network backbone extraction techniques reduce the size of networks while trying to preserve 

their key topological and spatial features. Various backbone extraction algorithms have been 

proposed in different scientific fields. Although of clear interest to transport geographers, 

backbone extraction techniques have been adopted unevenly and in an ad hoc fashion in 

transport geography research. In this paper we therefore present a conceptual and 

experimental comparison of backbone extraction techniques in a transport-geographical 

context, and explore under which circumstances or for which research objective the different 

techniques are particularly useful (or less so). We review six frequently-used methods, i.e. 

global weight thresholding (GWT), k-core decomposition (KCD), minimum spanning tree 

(MST) analysis, primary linkage analysis (PLA), multiple linkage analysis (MLA), and the 

disparity filter algorithm (DFA), and expose and compare their analytical essence by applying 

them to a real-world transport geography example. To this end, we extract the backbone of 

the intercity air transport network in Southeast Asia. The abstracted networks are compared in 

terms of their topological properties and spatial patterns using the initial network as a 

benchmark. This comparison is then used to discuss the different techniques’ potential and 

drawbacks in light of transport geography research. 
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5.1 Introduction 

In recent decades, there has been burgeoning interest in the topological analysis of transport 

networks of different types and at various scales (e.g. Dobruszkes, 2006; Ducruet and 

Notteboom, 2012; Wang et al., 2014; Liu et al., 2017). In these networks, nodes commonly 

represent spatial units such as cities, airports, ports, stations, etc., while edges identify 

transport-related interactions between the nodes. In addition, the edges are typically weighted 

by capacity, frequency, distance, or the time it takes to ‘travel’ between nodes. In theory, the 

application of the ever-expanding suite of network analysis techniques allows examining 

complex transport systems at the level of nodes and dyads as well as the network in its 

entirety (Barthélemy, 2011; Tsiotas and Polyzos, 2017). To date, network-focused research 

efforts in transport geography have primarily focused on four areas of enquiry: (1) the 

representation of non-planar and planar transportation systems through networks (Lin and 

Ban, 2013); (2) the analysis of the topographical and topological features of transport 

networks (Lin, 2012); (3) tracing the spatial and structural evolution/dynamics of these 

networks over time (Ducruet, 2017); (4) and modelling transport networks with the specific 

purpose of uncovering their underlying mechanisms (Zhang et al., 2016).  

 

The visualization, description and analysis of transport networks continue to face a range of 

challenges. For example, the fact that transport networks are spatial networks where nodes 

are preferably visualized in their exact geographical location makes producing transport flow 

maps a complex proposition (Vertesi, 2008). Dense networks with locally/regionally clustered 

edges in particular pose challenges when trying to explicitly convey the overall structure 

(Hennemann, 2013). Furthermore, analytically trivial edges in a network may give rise to 

biases in the measurement and interpretation of network topologies (Radicchi et al., 2011). 

For these and a number of related reasons, it is often useful to extract the ‘backbone’ of a 

network: a simplified version that is reduced in size – i.e., some edges and/or nodes are 

deleted – but retains the most ‘valuable’ information contained in the original network. The 

abstracted network can be mapped and explored with significantly less effort, and this without 

too much compromising the real-world remit of the network.  

 

To achieve this goal, a large number of methods have been developed. These methods aim to 

de-densify networks by extracting their ‘backbone(s)’, and range from simple thresholding 

(Derudder and Taylor, 2005) to more statistically-grounded methods such as disparity filter 
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algorithms (Serrano et al., 2009). Needless to say, these methods are not unique to transport 

geography: they have for example been discussed and applied in fields as disparate as physics 

(Gemmetto et al., 2017), sociology (Neal, 2014), biology (Darabos et al., 2014), and computer 

science (Foti et al., 2011). Nonetheless, it can be noted that oftentimes the illustrative 

examples put forward in these domains are transport and infrastructure networks, reinforcing 

the broader relevance of the transport geography/network analysis-nexus. In spite of this, the 

adoption of the ideas developed in other scientific fields has been limited and uneven in 

transport geography itself (cf. Ducruet and Beauguitte, 2014).  

 

As a result, to date there has been no systematic comparison of the relevance of different 

backbone extraction techniques for transport geography-related research. A few comparative 

studies have been conducted by physicists to compare simplification methods for real-world 

networks (e.g. Blagus et al., 2014) and by sociologists to compare extraction approaches of 

statistically significant edges for social networks (e.g. Neal, 2013c). In these analyses, the 

assessment of the relevance of techniques is based on methods’ ability to either preserve 

topological properties or capture germane clique structures. However, as transport networks 

sit at the intersection of the study of complex systems (with an emphasis on topology) and 

geography (which is concerned with spatial relations) (Rodrigue et al., 2006), both aspects 

need to be considered in an evaluation framework.  

 

In this paper, we therefore present a comparative analysis of key network backbone extraction 

techniques, discussing their practical usefulness by means of an empirical study of the 

Southeast Asian intercity air transport network. This implies, of course, the potential problem 

of using a very specific example to derive generic claims about the usefulness of techniques. 

However, we believe our findings are broadly robust in the sense that this network shares 

common characteristics with many other transport networks (e.g. a small-world outline, a 

combination of point-to-point and hub-and-spoke configurations, etc.). In our assessment, we 

focus on the topology, geometry and spatial structure of the extracted backbones vis-à-vis the 

original network. Note that our interest is not so much in analyzing this particular network per 

se as in Bowen (2000), but more in assessing the pros and cons of the different techniques for 

de-densifying such a network in light of the transport geography research question at hand. 

More specifically, we aim to provide a nuanced analysis of which technique can best be used 

under what circumstances and/or for what research objective. 
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The reminder part of this paper is organized as follows. In the next section, we review 

backbone extraction techniques in various domains, with a particular focus on six approaches 

that are highly relevant to de-densify transport networks. This is followed by a brief 

description in section 3 of the data and analytical framework used in our paper. Section 4 

presents the empirical results, discusses the performance of different methods in terms of 

topological properties and spatial patterns, and points out their advantages and disadvantages 

in light of transport-geographical applications. The paper is concluded with an overview of 

our major findings, some limitations of our study, and some avenues for further research. 

5.2 Existing techniques for backbone extraction  

5.2.1 Overview 

Network backbone extraction has been studied in a wide range of disciplines under different 

names, such as network simplification (Blagus et al., 2014), sparsification (Mathioudakis et 

al., 2011), abstraction (Zhou et al., 2012), and reduction (Kim et al., 2011). Given that most 

transport networks are one-mode networks which consist of only one set of inter-connected 

nodes (Scott and Carrington, 2011), we will review backbone extraction techniques for one-

mode networks thus excluding techniques for two-mode projections where the original 

networks feature connections between two different sets of nodes (Liebig and Rao, 2016).   

 

In general, network backbone extraction techniques fall into two broad categories: ‘coarse-

graining’ and ‘edge removal’ methods. Coarse-graining methods merge nodes sharing 

common attributes together and replace them by a single, new coarse-grained unit in the 

abstracted network (Itzkovitz et al., 2005). The differences between approaches within this 

overarching logic ultimately relate to the adopted ‘compression’ technique, i.e., the algorithm 

to identify communities and the rules of transformation. However, as most transport 

geography related research questions require retaining original nodes and edges, coarse-

graining methods tend to be less appealing. 

 

Edge-removing techniques focus on removing rather than transforming nodes and edges; they 

single out the most ‘relevant’ nodes and edges and subsequently eliminate the least significant 

ones. This can be achieved by edge sampling for binary networks (Blagus et al., 2014) and 

edge filtering/pruning for weighted networks (Bu et al., 2014). For binary networks in which 

0 and 1 respectively denote the absence and presence of an edge, the abstracted network is 
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represented by a random sample of the raw data based on its goodness of fit to original 

topologies such as degree distribution, average path length, clustering coefficient, 

assortativity (Newman, 2003). The edge sampling methods range from random node/link 

selection to snowball sampling, random walk, forest fire, and so forth (Lee et al., 2006). 

Although useful in several contexts, they are not considered in this paper since most 

geographical research has a vested interested in weighted networks that often combine both 

structural and functional aspects (Chawla et al., 2016). 

 

In light of this, in this paper we focus specifically on the filtering/pruning techniques to 

extract the backbone of one-mode weighted networks. This class of methods typically 

employs a bottom-up strategy: they start by defining a criterion for a nodewise or edgewise 

examination of their ‘importance’ or ‘relevance’ to the network, after which the redundant 

edges/nodes are removed in a stepwise procedure. Different criteria result in more or less 

different backbones, and here we explore the nature of those differences and their impact on 

how we understand the original network. 

5.2.2 Global weight thresholding 

The most common and straightforward method is (variations to) global weight thresholding 

(GWT), a technique that only retains edges whose weights exceed a predefined threshold. The 

threshold can be defined as an absolute value, but also as a certain proportion of the 

maximum observed edge weight or the mean weight (Neal, 2013c). GWT has been 

extensively used since it works efficiently and produces networks that are clearly much 

sparser. However, most real-world networks have their edge weights unevenly distributed at 

multiple scales, thus making this method suffer from arbitrariness, structural bias and 

uniscalarity (Neal, 2014). To lessen the arbitrariness, Derudder et al. (2014) and Dai et al. 

(2016) propose to identify an optimal value in that the smallest network density associated 

with the highest resemblance with the original network is sought.  

5.2.3 Hierarchical topological filter 

A second option is to introduce a hierarchical topological filter, albeit that this is often not 

termed this way. The k-core decomposition (KCD) method is a typical example with a 

filtering rule that acts on the connectivity of nodes (Serrano et al., 2009). The KCD extract 

particular subsets of the network, called k-cores (Seidman, 1983), in which each subset is 

obtained by consecutively deleting all nodes with a degree of less than k (Alvarez-Hamelin et 
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al., 2006). Hence, this method does not work in the case of a fully connected network. It tends 

to focus on the most globally connected part of the network, although this can also generate 

scalar biases and neglect nodes with a specific local importance.   

5.2.4 Spanning tree 

Another well-known method is the extraction of the minimum spanning tree (MST) in which 

all nodes are connected through the shortest total distances (Kruskal, 1956). Kim et al. (2004) 

use the MST approach to represent a communication kernel of real-world networks such as 

Internet and co-authorship networks, while Wu et al. (2006) implement it to reveal the 

superhighways dominating road transport networks. It is also possible to define a maximum 

spanning tree in which edges with larger weights are assumed to indicate a ‘shorter distance’ 

between two nodes. The resulting backbone keeps all nodes connected no matter the scale of 

edges, but does destroy the local cycles. 

5.2.5 Linkage analysis 

Linkage analysis refers to both primary linkage analysis (PLA) (Nystuen and Dacey, 1961) 

and multiple linkage analysis (MLA) (Haggett et al., 1977). The former only preserves the 

edge with largest weight for each node in the network, thus greatly reducing the size of the 

network and putatively identifying the network’s basic skeleton. Similar to MST, it is 

nonetheless confronted with problems such as the omission of cyclic structures and over-

simplification. Furthermore, it is difficult to make a meaningful distinction in significance 

between edges for one node with roughly similar weights (Puebla, 1987).  

 

In response to this, MLA has been proposed. The technique engages in nodewise comparisons 

of the actual distribution of edge weights with a series of hypothetical distributions in which 

those weights are evenly distributed among 1, 2, …, n, neighbors (Haggett et al., 1977). Each 

comparison between the observed and hypothetical distributions produce a goodness of fit 

that can be measured by way of a correlation coefficient (Van Nuffel et al., 2010). The 

number of edges preserved for each node corresponds to the number that produces the highest 

coefficient. In doing so, MLA offers a reasonable way to remove redundant edges (as in GWT 

and KCD), yet at the same time retaining the most important edges at the local level (as in 

MST and PLA). Furthermore, it allows geometrical features such as cycles to be retained so 

that communities remain intact. 
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5.2.6 Multiscale network reduction 

Comparable to MLA, multiscale network reduction also considers local distributions of edge 

weights and preserves edges with statistically significance in a local sense. Techniques in this 

family include parametric algorithms such as the bistochastic filter proposed by Slater (2010), 

the disparity filter by Serrano et al. (2009), the global statistical significance filter by Radicchi 

et al. (2011) and a nonparametric approach called locally adaptive network sparsification by 

Foti et al. (2011). The first method aims to derive a single scale of importance by rescaling 

the edge weights through an iterative proportional fitting procedure, after which a backbone is 

created through an incremental addition of edges until a stopping criterion is met. However, 

the iteration sometimes fails to converge. The latter three assess an edge’s importance by 

comparing observed edge weights to expectations from a local null model (or sometimes from 

global null model) or empirical distributions, respectively.  

 

In our analysis, we will focus on the disparity filter algorithm (DFA) due to its strong 

relevance to transport-network research as well as proven performance in backbone extraction 

of different complex systems such as herb networks (Du et al., 2011), human phenotype 

networks (Darabos et al., 2014), world trade networks (García-Pérez et al., 2016), and 

metabolic networks (Güell et al., 2017). It takes advantages of local heterogeneities present in 

weight distributions to single out edges whose weights are statistically higher than those of 

the null hypothesis, wherein the normalized edge weights are assigned at random according to 

a uniform distribution.  

 

Based on this brief review, six methods (GWT, KCD, MST, PLA, MLA, DFA) are chosen to 

conduct our comparative study, and this because they either have been widely adopted (e.g. 

primary linkage analysis) or seem to hold specific potential (e.g. the disparity filter algorithm) 

in geographical research in general, and transport-geographical research in particular. For 

detailed expressions for each approach, readers are referred to the original publications. For 

the implementation of GWT, KCD, MST, and DFA, free packages in R program are 

available. Meanwhile, PLA and MLA can be processed in ArcGIS or Excel. In the next 

section, we will elaborate on the data and methods used in our comparative study.  
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5.3 Data and methods 

5.3.1 Framework for analytical comparisons  

In order to compare the different methods, several network metrics will be computed for the 

six abstracted networks, using the original network as a benchmark. The selection of these 

metrics is supported by their common use in the analysis of the structure and dynamics of 

transport networks (Ducruet and Lugo, 2013). 

 

First, we will calculate the quadratic assignment procedure (QAP) correlation to evaluate the 

structural similarity between the original and abstracted networks (Choi et al., 2006). QAP is 

often used to measure the extent to which two networks are correlated or have a similar 

pattern of connections, as it can control for the non-independence of dyadic data through a 

permutation test (Krackardt, 1987).  

 

Second, in terms of topological properties, we then focus on five measurements (Li et al., 

2005; Newman, 2003): (1) the cumulative strength distribution P(>s), the probability of 

nodes with strength larger than s; (2) degree mixing DM, a measure of high-degree nodes’ 

preference to connect to other high-degree (assortativity, positive value) or low-degree nodes 

(disassortativity, negative value); (3) average path length L, a measure of the number of steps 

needed to reach other nodes; (4) average clustering coefficient C (also called transitivity), a 

measure of cliquish interconnections between neighbouring nodes; (5) modularity M, a 

measure of how the network can be decomposed into a set of sparsely interconnected 

modules, each comprising several densely interconnected nodes. We compare values for 

extracted backbones on each of these measures to the values for the original network. 

 

Third, in terms of spatial patterns, we compare the hierarchy and clusters of nodes at the 

micro and meso scopes between the original and abstracted networks. The micro scope is 

assessed through the lens of degree centrality, which refers to total edge weights/strengths of 

a node in a weighted network. The meso scope, in turn, is revealed by communities detected 

by the ‘fast greedy modularity optimization method’ (Clauset et al., 2004), which refers to a 

set of closely connected nodes whose within-community connections exceed inter-community 

connections. All calculations and visualizations are performed on the R platform. 
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5.3.2 Data: the Southeast Asian intercity air transport network 

To test the performance of six backbone extraction methods, we apply them to the Southeast 

Asian intercity air transport network (SAAN; see Dai et al., 2018). The SAAN is constructed 

by including all flights between Southeast Asian airports for the year 2012 as derived from 

the Official Airline Guides (OAG) database. Most cities are associated with a single airport, 

but in some cases airports are collapsed into a single urban node, i.e. the combination of 

Suvarnabhumi and Don Mueang into Bangkok, Kuala Lumpur International and Sultan Abdul 

Azziz Shah into Kalua Lumpur, Soekarno-Hatta and Halim Perdana Kusuma into Jakarta, and 

Changi and Seletar into Singapore. Edges in the SAAN are symmetrized and weighted by 

averaging flows (scheduled seats) in both directions, producing a 237x237 inter-city matrix 

connected by 602 links.  

 

As demonstrated in Dai et al. (2018), the SAAN has a scale-free (Barabási and Albert, 1999), 

small-world (Watts and Strogatz, 1998), and modular community structure (Girvan and 

Newman, 2002). In the SAAN, the flows range from 152 scheduled seats between Nay Pyi 

Taw and Vientiane (the capitals of Myanmar and Laos) to 5651314 scheduled seats between 

Singapore and Jakarta in 2012. The strengths vary over five orders of magnitude, presenting a 

highly heterogeneous distribution that confirms to a double Pareto law (Reed, 2003) (see 

Table 5.2). Moreover, on average it takes three steps for any city in SAAN to reach others 

with an overall transitivity of 0.207 and modularity of 0.553. Figure 5.1 visualizes the spatial 

structure of the SAAN, in which the size of nodes is proportional to a city’s degree centrality; 

only the top 20 cities are labelled. The colors of nodes denote their community affiliations. 

The darkness and thickness of edges are proportional to the strength of intercity flows. In the 

SAAN, flows are concentrated on cities like Jakarta, Kuala Lumpur, Bangkok, Manila and 

Singapore (cf. Bowen, 2000). The overall network can be partitioned into six communities: a 

Vietnamese community centered on Hanoi, Da Nang, and Ho Chi Minh City; a Greater 

Mekong community surrounding centered on Bangkok; a Malay community centered on 

Kuala Lumpur and Singapore; a major Indonesian community and a Philippine community 

with their respective capitals as centers; and finally a less significant eastern Indonesian 

community in Sulawesi and Irian Java centered on Jayapura. These communities are primarily 

connected by inter-capital flows. 
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Figure 5.1 The Southeast Asian intercity air transport network (SAAN), 2012 (source: OAG 
data). The size of nodes is proportional to a city’s degree centrality; only the top 20 cities are 
labelled. The colors of nodes denote their community affiliations. The darkness and thickness 
of edges are proportional to the strength of intercity flows, hereafter. 

5.4. Results  

5.4.1. Overview: Size of abstracted networks and their QAP correlation with SAAN 

In this section, the six methods are applied to extract the backbone of SAAN. Table 5.1 

reports the size of different abstracted networks in terms of the number of nodes (Nt), edges 

(Et), weights (Wt) and the corresponding percentages %Nt, %Et, %Wt as well as their QAP 

correlation with the original network.  

Table 5.1 Size of six abstracted networks and their QAP correlation with SAAN. Nt, Et, Wt 
denote the number of nodes, edges, weights, respectively and %Nt, %Et, %Wt are the 
corresponding percentages, hereafter. 

Network Nt Et Wt %Nt %Et %Wt QAP 

GWT 45 52 133941626 18.99 8.64 57.07 0.945 

KCD 18 87 85130499 7.59 14.45 36,27 0.745 

MST 237 236 163907364 100.00 38.54 66.06 0.941 

PLA 237 232 155043553 100.00 39.20 69.84 0.907 

MLA 237 303 183160125 100.00 50.33 78.04 0.964 

DFA 149 245 193530486 62.87 40.70 82.46 0.986 

The GWT method retains the 52 strongest flows between 45 cities at a cutoff of 606311, 

which is 21.45% of the strongest dyad of Singapore-Jakarta. Figure 5.2 plots the evolution of 

the density of abstracted networks and their QAP correlation with the SAAN with the 



127 

 

increasing of thresholds. At the value of 636011, the extracted backbone has a sharply 

reduced density (0.085) whilst keeping a relatively high similarity to the original network 

(QAP=0.945). The KCD extracts a 7-core (the maximal core) sub-network from SAAN with 

18 cities connected by 87 flows. Despite the larger number of connections, the backbone 

extracted by KCD has fewer total weights than that of GWT and bears the least resemblance 

(with a QAP of 0.745) to the original network.  

 

 

Figure 5.2 Evolution of QAP correlation and density in terms of GWT thresholds. 

The MST, PLA and MLA conserve all 237 cities in their backbones. The number of 

connections in MST is the number of cities minus one (236), while in the PLA it (logically) 

equals the number of cities (237). Hence, MST and PLA produce backbones of similar size. 

The abstracted network of the PLA has 232 connections, as five of them are present twice and 

thus deleted in the undirected network. MLA keeps the most connections and PLA can be 

regarded as an extreme case of MLA in which every city’s flows are heavily polarized on 

only one of their destinations. In addition, the MLA backbone has the second highest QAP 

correlation (QAP=0.964) with the SAAN. 

 

In DFA, the majority of air connections are pruned at the significance level of 0.01 whereas 

the extracted backbone includes more than 60% cities and over 80% air traffic, retaining the 

largest similarity (QAP=0.986) to the SAAN. Note that the DFA generates two independent 

probability values αij and αji based on the two cities connected by a single flow. So two 

alternatives exist to determine whether the flow should be preserved: the ‘OR’ rule (αij < α 

OR αji < α) and the  ‘AND’ rule (αij < α AND αji < α). Different from Serrano et al. (2009), 
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we employ a stricter ‘AND’ rule by applying an α cutoff of 0.01 to avoid outliers. Adjusting 

the significance level allows the abstracted network to include more (a larger α) or fewer (a 

smaller α) intercity connections. Since the DFA is rooted in probability theory, the parameter 

offers a precise interpretation: there is less than 1% chance that the flows retained in the 

backbone are created by random fluctuations (Neal, 2014). 

 

It is difficult to tell which technique works ‘best’ based on this alone as each of them 

simplifies networks and pinpoints the main information based on different principles. 

Therefore, we take both topological and spatial characteristics into account and compare 

different methods’ capabilities of presenting or highlighting these characteristics. 

5.4.2. Topological properties of the abstracted networks 

Figure 5.3 plots the cumulative strength distribution on a double-logarithmic scale for the 

original and abstracted networks, while Table 5.2 summarizes the basic statistics of these 

networks’ structures.  

Table 5.2 Statistical properties of the original and abstracted networks. P(>s): the cumulative 
strength distribution; ( 𝛾1, 𝛾2) 𝑜𝑟 𝛾: the fitted exponent of (double) power-law function; DM: 
degree mixing; L: average path length; C: average clustering coefficient; M: modularity, 
hereafter. The number in bold deviates least from that in the original network. 

Network P(>s) (( 𝜸𝟏, 𝜸𝟐) 𝒐𝒓 𝜸) DM L C M 

SAAN (0.058, 0.398) -0.244 3.121  0.207  0.553  

GWT 0.948 -0.559  3.030  0.078  0.551  

KCD 0.761 -0.258  1.431  0.688  0.285  

MST (0.055, 0.424) -0.432  4.642  0.000  0.663  

PLA (0.054, 0.422) -0.439  3.760  0.000  0.706  

MLA (0.061, 0.413) -0.405  4.404  0.058  0.643  

DFA (0.102, 0.674) -0.044  4.352  0.247  0.556  

 
It is evident that the P(>s) of the SAAN follows a double Pareto law distribution with two 

different exponents, i.e., for low strength levels 𝑃(> 𝑠) ~ s−𝛾1  and  𝛾1 =0.058; for high 

strength levels, 𝑃(> 𝑠)~s−𝛾2  and  𝛾2=0.398. Both GWT and KCD overlook a dozen of weak 

dyads as shown in Figure 5.3(a), so the cumulative strength distributions of their backbones 

are better fitted by a Pareto law P(>s) ~s−𝜸 , with 𝛾=0.948 for GWT and 𝛾=0.761 for KCD. 

A larger exponent for GWT demonstrates a more rapid distribution decay (Paleari et al., 

2010), suggesting a higher concentration of air flows on a handful of cities in the GWT 

backbone than that in the KCD. The backbones extracted by MST, PLA, MLA and DFA are 

all able to capture the two-regime power-law strength distribution in SAAN. Among them, 
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MST and PLA produce quite similar distributions in which MLA performs best in terms of 

the fitted exponents, partially due to its preservation of most air connections. The DFA 

backbone has the highest values of 𝛾1 and 𝛾2 since its deletion of almost 40% cities makes the 

fitting scale different from the other three as well as the original network. 

 

 

Figure 5.3 The cumulative strength distribution on double-logarithmic scale for original and 
abstracted networks. 

Since the size of the DFA and GWT backbones is flexible, we also compute their network 

metrics with the same number of edges as retained in the other methods as summarized in 
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Table 5.3. With respect to degree mixing, all backbones present disassortativity, i.e., a 

preference of high-degree cities to connect to low-degree cities. This is intuitive in air 

transport networks with the adoption and intensification of hub-and-spoke configurations 

(Lin, 2012; Wang and Jin, 2007). As observed in Table 5.2, KCD proves best for preserving 

the slightly disassortative mixing pattern in the original network, whereas DFA shows the 

worst performance, which is robust at different significance levels in Table 5.3. 

Table 5.3 Network metrics of the GWT and DFA backbones in different size. 

Network Counterpart Et Nt D L C M 

DFA (α=2E-9) GWT 52 73 -0.126 2.242 0.182 0.687 

DFA (α=3E-7) KCD 87 94 0.264 2.966 0.307 0.619 

DFA (α=0.007) PLA 232 145 -0.024 4.531 0.252 0.563 

DFA (α=0.0075) MST 236 147 -0.036 4.494 0.248 0.561 

DFA (α=0.062) MLA 303 161 -0.078 4.162 0.261 0.551 

GWT (threshold=336144) KCD 87 66 -0.588 3.074 0.123 0.542 

GWT (threshold=83025) PLA 232 125 -0.393 3.097 0.178 0.558 

GWT (threshold=80974) MST 236 126 -0.397 3.096 0.178 0.558 

GWT (threshold=76484) DFA 245 127 -0.374 2.983 0.183 0.558 

GWT (threshold=43951) MLA 303 144 -0.356 2.995 0.194 0.555 

 

In terms of average path length and modularity, GWT outperforms the other methods. 

Nevertheless, the average path length is always investigated together with average clustering 

coefficient to test whether a network has small-world properties. In this light, DFA works best 

as it replicates the average clustering coefficient and simultaneously makes the backbone 

possess an average path length relatively close to that of the original network. With the 

variation of significance level, it has the ability to preserve a L and C similar to the SAAN 

and therefore identify the original network’s small-worldiness. Meanwhile, due to the fact that 

the MST and PLA backbones are by construction acyclic, average clustering coefficients for 

them are zero, which directly leads to their highest modularity – 0.663 and 0.706, 

respectively. It is not surprising the KCD backbone has the smallest modularity because it is 

the most inter-connected component of the original network. 

 

In a nutshell, the GWT backbone produces average path length and modularity closest to the 

original network at the optimal threshold, while the KCD backbone can best replicate the 

disassortative degree mixing pattern. Both of them entail a scalar bias with truncating the 

majority of nodes/edges small connectivities, making them unsuitable for the topological 

analysis of transport networks with edge weights that are unevenly distributed across nodes at 
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multiple scales. In addition, KCD does not work in a fully connected network. MST and PLA 

can be applied to any transport network and are able to extract backbones in a much more 

simplified form but with topological features much paralleled to the original network except 

for transitivity. MLA and DFA basically capture all the key characteristics with MLA’s 

particular strength in preserving double power-law strength distribution and DFA’s particular 

strength in preserving transitivity. However, they both have other limitations for the analysis 

of the spatialities of transport networks that will be revealed in the next section. 

5.4.3 Spatial patterns of the abstracted networks 

Figure 5.4 maps the geographical outline of the six abstracted networks. These methods 

substantially preserve the top-20 cities of SAAN in their backbones except for the KCD. The 

KCD backbone highlights a couple of cities that have more regional connections but are not 

necessarily well connected as shown by the appearance of Yangon, Siem Reap and Phnom 

Penh; meanwhile, the absence of Kota Kinabalu, Kuching, Makassar and Balikpapan from the 

abstracted network is noticeable. With the removal of (semi)peripheral cities (some of which 

are local hubs) and the corresponding intercity flows, communities detected in the KCD 

backbone exhibit the largest deviation from the SAAN, i.e., the three separate Greater 

Mekong community, Malay community, and Philippine community are merged together, with 

Singapore’s centrality becoming even more pronounced. This approach is effective to ‘peel 

off’ the network backbone at different hierarchical levels, and probes into the properties of 

network regions of largest centrality, as shown by Wang et al.’s (2014) analysis of the 

expansion of the core structure in China’s air transport network from 1930 to 2012. Still, the 

method has been applied to extract the core layer of the worldwide and the European air 

networks in Verma et al. (2014) and Lordan and Sallan (2017), respectively. 

 

The GWT does not conserve any geometry and neglects the eastern Indonesian community 

around Jayapura in the original network. In the abstracted network, the strongest flows are 

retained and the relationships between key cities and connections are highlighted. Therefore 

the abstracted network would best fit network research which pays attention to spatial pattern 

of major transport hubs and busy transport routes, but has little interest in the topological 

features of the transport networks (cf. Dennis, 2005; Fuellhart and O'Connor, 2013). 
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Figure 5.4 Spatial patterns of abstracted networks derived from six techniques, i.e. global 
weight thresholding (GWT), k-core decomposition (KCD), minimum spanning tree (MST), 
primary linkage analysis (PLA), multiple linkage analysis (MLA), and disparity filter 
algorithm (DFA). 

The backbones derived from MST, PLA and MLA keep the six communities of SAAN in 

different geometric patterns. The PLA backbone is outlined by six seemingly isolated star-like 

city clusters centered on Ho Chi Minh City, Bangkok, Kuala Lumpur, Jakarta, Manila and 
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Jayapura, revealing the hierarchical and regional nature of the SAAN. This backbone is 

therefore useful to analyze nodal regions in a hierarchically organized network (Grubesic et 

al., 2008), to visualize the relationship between center places and their hinterlands (Ducruet 

and Notteboom, 2012), and to map the unfolding hub-and-spoke configurations in transport 

networks (Wang and Jin, 2007).  

 

In the SAAN, MST is actually defined as maximum-flow spanning tree, so that the MST 

backbone is similar to that produced by PLA but retaining four additional links to connect the 

six communities (Singapore-Bangkok, Singapore-Ho Chi Minh City, Singapore-Manila, and 

Ambon-Kaimana). In this abstracted network, all cities are reachable via the shortest path 

while carrying most traffic flows. This backbone is particularly useful for network design and 

transportation planning, such as satisfying the largest transport demand for all cities with 

lowest costs, locating a central facility in a network with minimal distance (Alumur et al., 

2009). In addition, the overlay analysis of the PLA and MST backbones jointly reveals the 

key inter-community connections, which could contribute to route selection and optimization. 

The MLA backbone is an extension to the PLA backbone by considering other equally 

significant flows in addition to the strongest ones, thereby more or less losing the simplicity 

of the abstracted network. As shown in Figure 5.4, the backbone highlights the star-like city 

communities similar to PLA and the most critical inter-community flows as in MST, and 

meanwhile keeps some important local geometry such as the triadic configuration. However, 

as the number of connections preserved in the MLA backbone is fixed and often much more 

than the number of nodes in the original network, it might fail to achieve the desired 

simplification objective. Therefore, this method seems more apt in the context of a transport 

network with high density (even a fully connected one) but with a small number of nodes. In 

practice, the backbone can shed light on functional regions in commuting networks (Salas-

Olmedo and Nogués, 2012), competing destinations for a certain origin in transport networks 

(Wang and Cullinane, 2014) as well as the degree of polarization of the spatial structure for 

each city (Van Nuffel et al., 2010). 

 
Different from the emphasis on a star geometry in MST, PLA, and to a lesser extent MLA, the 

DFA makes the triadic geometry prominent in the backbone. This is evidenced by the 

preservation of the Bangkok-Manila, Singapore-Ho Chi Minh City, Singapore-Denpasar, Ho 

Chi Minh City-Bangkok, Ho Chi Minh City-Kuala Lumpur, Hanoi-Bangkok flows instead of 

the stronger connections from Kuala Lumpur to most domestic cities in East Malaysia. This is 
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because the DFA aims to retain multiscalar heterogeneous flows against a random 

assignment, while a local cycle is one of the basic indicators to distinguish a city’s 

connectivity profile from this randomness. In this respect, this method cannot work 

effectively in a fully connected or homogenously weighted network. In addition, the removal 

of stronger connections between cities in the bifurcated part of Malaysia renders the Malay 

community integrated into the Greater Mekong community, which deviates from the original 

community structure that is roughly bounded by national borders.  

5.5 Discussion and conclusions  

Network backbone extraction is potentially a key tool for the geographical analysis of large 

transport networks: it allows for faster analysis, clearer visualization, and helps quickly 

distilling key topological and spatial features of the network. For these reasons, a systematic 

comparison of the ‘performance’ of different backbone extraction techniques, focused on 

understanding the similarities between the original and abstracted networks, can help 

transport geographers choosing the most relevant technique if and when the need arises in 

their research. Based on the application of six pertinent methods derived from various 

disciplines to the Southeast Asian intercity air transport network, this paper has engaged in a 

conceptual and empirical comparison of backbone extraction techniques in a transport-

geographical context. Our comparison takes both topological and spatial perspectives into 

account and offers insights into the circumstances in which the different methods are 

particularly useful.  

 

The QAP correlations between the original and the abstracted networks are all statistically 

significant, but the backbone extracted from KCD bears the least structural similarity with the 

SAAN at the network level (QAP=0.745) whereas the DFA performs best (QAP=0.986). 

However, it would be incorrect to simply state that DFA outperforms others with regard to the 

topology, geometry and spatial structure: a careful investigation of topological properties and 

spatial patterns sheds a more detailed light on the different methods’ pros/cons. Table 5.4 uses 

this broader background to summarize their potential in transport geography research. 

Table 5.4 Summary on strengths and weaknesses of different backbone extraction methods. 

Method Strengths Weaknesses Recommendations 

GWT simplicity; replicates average path 

length and modularity 

ignores less-connected cities and 

communities; inaccurate depiction of key 

topological characteristics 

analysis of major transport, 

connections and major network 

communities 

KCD replicates degree mixing pattern; ignores (semi)peripheral cities ;    useless in analysis of the best-connected core 
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highlights central component fully connected networks for multilayered/multiplex networks 

MST highlights star geometry and 

inter-community connections; 

preserve community structure 

omits local cycles analysis of the optimal path to 

connect all cities and critical inter-

community connections 

PLA highlights star geometry; 

preserves community structure 

omits local cycles analysis of hub-and-spoke structures 

and functional/nodal regions 

MLA preserves all information with 

better performance in replicating 

strength distribution 

may be quite complex in the case of 

networks with numerous nodes; useless in 

networks with more or less even weight 

distributions 

analysis of the detailed topological 

and spatial information for each city 

in the network 

DFA preserves all information with 

particular better performance in 

transitivity; adjustable size 

distorts community structures; useless in 

networks with more or less even weight 

distributions 

analysis of the overall topological 

and spatial information for large-

scale networks 

 
The GWT approach cannot give convincing topological information regarding strength 

distribution, degree mixing pattern and clustering coefficient but conserves the strongest 

flows and the most important communities. Moreover, it is the simplest method that allows 

preserving a relatively high structural similarity with good replication of average path length 

and modularity. This makes the technique above all useful for network research where the 

focus is on the spatial pattern of major transport nodes and the busiest transport routes without 

much regard for the topological features of the transport networks per se. The KCD retains 

the central component and captures the degree mixing pattern of the original network, which 

makes it useful for extracting the core from multilayered and/or multiplex networks. As both 

GWT and KCD engender scalar biases, they are useless when the goal is to preserve the key 

components of the multiscalar nature of the network; moreover, KCD makes no sense in the 

analysis of fully connected networks. 

 

MST and PLA neglect local cycles and do not perform particularly well in terms of the 

conservation of topological features but highlight the network’s major hierarchical features 

through star-like configurations. Both of them substantially preserve hierarchies and 

communities in the original network. PLA outlines the complex network through distinct star-

shape communities which might be isolated from each other. It performs best for explicitly 

identifying functional regions or nodal regions as well as sketching key hub-and-spoke 

structures in transport networks. The MST integrates different star-like communities in PLA 

by including critical inter-community connections, which makes all nodes connected through 

a shortest path. This backbone is particularly useful in the context of transport network design 

and optimization, transportation planning, as well as transport resource allocation. 
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On the one hand, MLA outperforms others in capturing the multiscalar strengths. 

Furthermore, it conserves most star configurations and several triadic configurations in 

different communities. It can give insight into detailed topological and spatial information 

such as the functional region and competitive destinations for each city, as well as the degree 

of polarization for its connectivity profile.. Despite excellent performance in both aspects, this 

approach might suffer from the lack of simplicity as the size of backbone is by construction 

dependent on the number of cities in the original network. Hence, it best fits networks with 

large density (even fully connected) but with a small number of nodes. Last but not the least, 

the DFA extracts a multiscalar backbone bearing the highest resemblance with the original 

network and shows its effectiveness in the preservation of all important properties except 

degree mixing pattern and somewhat distorting the community structure. Moreover, the size 

of the abstracted network is flexible with a precise statistical interpretation in terms of 

significance levels. It is especially suitable for large-scale networks with local and global 

heterogeneities and to uncover the regularities in complex transport systems.  

 

In this paper, we have used the example of the Asian intercity air transport network. Since the 

SAAN shares common characteristics of many other transport networks, we believe our 

findings are robust in the sense that the recommendations summarized in Table 5.4 hold for 

the geographical analysis of many other transport networks. Nonetheless, there are obviously 

some shortcomings to our study, which in turn requires future research. First, our current 

analysis focuses on the comparison across methods, whereas future analysis may explore how 

sensitive individual methods are to specific parameterizations. For instance, there is no clear 

rationale for which filtering cutoff to choose in the DFA backbone extraction. In a practical 

application of DFA, sufficient information should be given about the changes of network 

metrics over varying values of α to identify the critical turning point at a certain cutoff as in 

Serrano et al. (2009) and Darabos et al. (2014). Second, our comparison does not address the 

issue of the computational efficiency of the six methods in our study – they have been 

processed in different softwares. This requires the development of a single package to include 

all backbone extraction methods, which would also be useful for a range of other reasons. 

Third and relatedly, the need for assessing computational efficiency is more pronounced in 

light of the emergence of big data about transport geography. For example, smart transit card 

systems in individual cities are recording human trajectories at unprecedented spatial and 

temporal granularity (Liu et al., 2015). Testing how the backbone extraction methods fare 

against these emerging big urban data points to another avenue for future research. 
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6.1 Introduction 

The starting point of this dissertation was the identification of two significant gaps in the 

literature on urban networks. First, although Southeast Asia has witnessed accelerated urban 

transformations and regional integration in the context of globalization, there has been a 

relative lack of analyses of the urban networks in this region. As a result, the structure of the 

Southeast Asian urban system and its evolution from a network perspective is an almost 

uncharted territory. Second, while the analysis of urban networks has been fertilized by 

various theories and methodologies, recent advances from other disciplines in terms of 

modelling networks are still insufficiently explored in urban network studies.  

 

This dissertation has addressed both issues by putting forward four research questions, which 

are: (1) What are the spatial patterns of the urban network in Southeast Asia from the lens of 

composite transport linkages? (2) What is the evolving structure of the urban network in 

Southeast Asia from the lens of air transport linkages? (3) How can spatial science and 

network science be bridged to better model the formation of urban networks? (4) What is the 

usefulness of different methods to extract the backbone of urban networks (using the case of 

Southeast Asia as an example)? We have answered these research questions in four different 

chapters. The purpose of this concluding chapter is to summarize and discuss the main 

findings, and to point out the limitations of this dissertation which in turn helps specifying 

avenues for further research. 

6.2 Overview of the main results 

In chapter 2, a composite transport network integrating road/ferry, rail, and air connectivity is 

created to explore the spatial patterns between 47 major Southeast Asian cities. Spatial 

inequality of transport connectivity in both micro and meso scales is observed through the 

lens of centrality analysis and community detection. Gini coefficients for individual centrality 

rankings point to a hierarchical degree distribution, a rather even distribution of closeness 

centrality, and a highly concentrated distribution of betweenness centrality. With regard to 

accessibility at the city level, Singapore, Kuala Lumpur and Jakarta are identified as the most 

dominant cities in terms of all three centralities in Southeast Asia. With regard to accessibility 

at the subgraph level, four network communities are detected to have denser intra-cluster 

connections: a Greater-Mekong community surrounded around Bangkok, a Malaysia 

community together with Singapore and Brunei with Kuala Lumpur and Singapore as 
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gateways, an Indonesian community articulated into the wider region by Jakarta, and a 

Philippine community cantered on Manila.  

 

In chapter 3, given the availability of coherent longitudinal dataset, the intercity air transport 

networks are utilized to explore the evolving structure of the Southeast Asian urban networks 

at a macro scale. In the context of multilayer complex network approach, both topological 

features and spatial patterns are investigated over the period 1979-2012. The topological 

structure has scale-free, small-world properties and disassortive mixing patterns and these 

features are relatively stable over the past 34 years. The slope of the degree distribution 

slightly decreased, indicating more cities now having a large degree. Meanwhile, the 

disassortativity become intensified recently, showing an increasing dependence of small cities 

on a hub-and-spoke configuration to access the entire network. However, compared to its EU 

macro-regional counterpart, the urban network in Southeast Asia is far from mature and 

integrated. In contrast, the multilayer structure has changed over time and space. The core 

layer is now shifting towards the western half of Southeast Asia, leading to a relative 

marginality of Philippine cities. Our analysis shows a prominent increase in air linkages 

between the core and other layers. Although more remote cities are integrated into this region 

by air connections, the connections between these peripheral cities remain almost non-

existent, which again suggests an increasing dependence of small cities on hub-and-spoke 

configuration to access the network.  

 

In chapter 4, the potential of recent advances in network modelling for urban network has 

been explored. To this end, we re-specified Vértes et al.’s (2012) economical clustering model 

to propose a generative network model (GNM) for simulating urban networks. To show the 

practical merit of this approach, we applied our approach to a case study of a composite 

intercity transport network in Southeast Asia. Overall, results confirm the potential of the 

proposed method, with as a major finding that the inclusion of topological effects 

(transitivity) alongside geographical effects as archetypically captured in (extended) gravity 

modelling helps understanding how urban networks are being shaped. This is further 

underscored by our finding that, when removing the different network-generating effects, 

transitivity is found to be the most important force in shaping the structure of the network.  

 

In chapter 5, the potential of six pertinent methods derived from various disciplines has been 

explored for extracting the backbone of urban networks in general and transport networks in 
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particular. To this end, we constructed a framework for analytical comparisons of different 

abstracted networks, benchmarked by the original network in terms of QAP correlation, 

topological properties, and spatial patterns. To show their practical merit, we applied each 

approach to a case study of a intercity air transport network in Southeast Asia. Overall, while 

the QAP correlations between the original and abstracted networks are all statistically 

significant, the backbone extracted from k-core decomposition bears the least structural 

similarity to the original network whereas the disparity filter algorithm performs best. A 

detailed comparison of topological properties and spatial patterns help illustrating the pros 

and cons of each method and thus points out their potential in different circumstance or for 

different research objectives. The results show that the global weight thresholding method is 

useful for urban network research where the focus is on the spatial pattern of major cities and 

the strongest connections without regard to the topological features of the networks per se. 

The k-core decomposition method can best be applied to extract the core from multilayered 

and/or multiplex urban networks that are not fully connected. Primary linkage analysis 

performs best for explicitly identifying functional regions or nodal regions in urban systems 

as well as sketching key hub-and-spoke structures in transport networks. And the minimum 

spanning tree method allows for identifying important inter-community connections in urban 

systems and is particularly suitable to transport network design and optimization, 

transportation planning, as well as transport resource allocation. Multiple linkages analysis 

best fits urban networks with large density (even fully connected) but with a small number of 

nodes while the disparity filter algorithm is especially suitable for large-scale urban networks 

with local and global heterogeneities. 

6.3 Further discussion 

6.3.1 Structure of the Southeast Asian urban networks 

The Southeast Asian urban networks are characterized by obvious hierarchical tendencies. A 

handful of cities are well-developed in terms of economy and are dominant in intercity 

connections and flows, whereas some cities in the sparsely populated regions are hardly 

interconnected. This is evidenced in the centrality rankings in Chapter 2 and the ‘core-bridge-

periphery’ geographies in Chapter 3, and confirmed by the scale-free properties of the 

network topology in Chapter 3.  
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However, different types of intercity linkages reveal a relatively different pattern. For 

multimodal transport linkages, the border effect is visible since many of well-connected city-

dyads are domestic, usually from capital city to its secondary cities (Chapter 2). The 

community detection suggests that there is a mixed effect of sub-regional cooperations 

(Walsh, 2010) (i.e. Greater-Mekong community and Greater-Malaysia community) and 

border effects that are mainly derived from the island geography (i.e. Philippine community 

and Indonesia community). For air transport linkages, almost all capital cities and important 

secondary cities as well as tourist destinations are densely interconnected, forming a trans-

border core network (Chapter 3). This points to the distinction between planar transport 

networks (i.e. rail, road) and nonplanar transport networks (i.e. airline) as well as the 

multiplexity of urban networks (Burger et al., 2014). In both networks, the marginality of 

Philippine cities and the emergence of Vietnamese cities are pronounced. Although being a 

latecomer in ASEAN, Vietnamese connections to cities in other Southeast Asian countries are 

more pronounced than for cities in the Philippines, which may result from the Philippines 

relatively more active integration into Northeast Asia (Bowen, 2000). This reflects that the 

rates of convergence among Southeast Asian countries are all in all still low (Lee, 2015) 

compared to other macro-regions (e.g. the European Union), which is also be confirmed by 

the topological comparisons of different regions and nations in Chapter 3. 

 

Based on this observations, this dissertation enriches the conceptual debate on the coexistence 

of ‘networks’ and ‘territories’ in the (re)production of regions (Bunnell, 2013). This research 

has shown that the regional integration is bound through ‘networking’ activities, while the 

network structures are products of underlying physical, economic, cultural and administrative 

spaces.  

6.3.2 Main factors shaping the network structure 

The structure of Southeast Asian urban networks is influenced by historical development, the 

region’s fragmented and tropical geography, and a series of socioeconomic and political 

strategies. For instance, today’s patterns of urban primacy (Bowen, 2004; Huff and Angeles, 

2011) date back to the strategical focus of major cities (e.g. capital or costal cities) in the 

colonial era and is later reinforced by post-independent development (Sien, 2003). The 

region’s ‘tyranny of geography’ (Armstrong and Read, 2006) is most evident in the Philippine 

island cities in our analysis. The lack of rail and bus linkages further ‘penalizes’ these cities 

when comparing them to other cities at the regional level. In addition, the more recent 
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economic development of CLMV (Freeman, 1996) and tourism boom (Page, 2001) have, 

respectively, resulted in strong connections of Ho Chi Minh City and Denpasar to other well-

connected cities. However, there are still some observations that cannot be explained by such 

general geographical spatial patterns . 

 

In such cases, a topological approach enriches our understanding. Of course, spatial and 

topological effects are not mutually exclusive but may exert overlapping influences on the 

formation of urban networks (Pflieger and Rozenblat, 2010). This is because city-dyads 

characterized by topological proximity (e.g. two nodes that have a strong, direct connection) 

are often also located near each other (cf. the China example in Pumain et al., 2015). Or, put 

differently: interdependent cities are also often close to each other in Euclidean space. 

However, this need not be the case: intercity air transport connections are much less bound by 

distance decay effects than say, rail networks. As a consequence, both spatial and topological 

effects are worth considering when modelling (Chapter 4) and abstracting (Chapter 5) urban 

networks in general and Southeast Asian urban networks in particular. The results highlight 

the necessity for further bridging spatial science with network science as well as cross-

disciplinary collaborations (Ducruet and Beauguitte, 2014; Reggiani, 2011).  

6.3.3 Policy implications of this research 

Other than examining the structures of the Southeast Asian urban networks from different 

perspectives and unfolding the underlying driving factors, this research may offer some 

general policy implications for regional integration.  

 

Despite notable progress, the integration of Southeast Asia is still at a low level compared to 

other parts of the world.  The rail and road networks are to a large extent bounded by physical 

geography: the completion of SKRL and AHN may greatly enhance the connectivity of cities 

in Mainland Southeast Asia, but will contribute little to include unconnected parts due to the 

presence of maritime borders. Due to the path dependence and Cebu’s ‘shadow effect’ from 

Manila to connect cities in Southeast Asia, there is a high probability for the Philippines to be 

more marginalized in this region if no other mode of connectivity is improved. Therefore, 

extended airline networks are especially important and moving towards the open skies in a 

deeper and broader way would be effective to achieve better regional integration. Meanwhile, 

with the increase of small cities’ reliance on hub-and-spoke configuration to get better 

accessibility, there is a potential danger that the urban primacy in capital cities will be 
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heightened. So it is necessary to open up more cities with point-to-point routes as in the EU. 

In the context of the Belt and Road Initiative, this region will become more connected to 

China through enhanced transport connectivity and trade, and is more likely to integrate into a 

broader East Asian region than to achieve better self-integration. 

6.4 Avenues for future research 

This dissertation has attempted to broaden our understanding of the structure of urban 

networks in Southeast Asia both conceptually and methodologically, showing how recent 

advances from other scientific fields can be borrowed to model and abstract urban networks. 

It also points to a number of blind spots, which need to be taken up for future research. 

 

Firstly, the notion ‘urban network’ is an abstract concept which can be represented in diverse 

forms of intercity linkages. As Burger et al. (2014) point out, different types of linkages do 

not necessarily have the same spatial structure and geographical scope, and cities in urban 

networks constructed by different types of linkages do not necessarily play the same role. 

This dissertation focuses on infrastructure networks that transport people, and an obvious next 

step would involve measuring the movement of cargos and information (Bowen and 

Leinbach, 2006). In addition, if accessibility to other dataset would be possible, urban 

network analysis could also include maritime flows (Ducruet and Notteboom, 2012), Internet 

backbones (Tranos and Gillespie, 2011), knowledge exchange (Li and Phelps, 2016), social 

networks based on big data mining from Facebook or twitter (Lewis et al., 2008), and so 

forth. In addition, the intercity air transport networks in this dissertation focus on nonstop 

connections/flows rather than origin-destination network, which might underestimate some 

cities on the end of trunk lines and overestimate hub cities. A separate and additional analysis 

focusing on these elements would be a welcome complement to this analysis. 

 

Secondly, future studies could adopt a multi-scalar perspective in line with Neal’s (2012) 

conceptualization of a multi-scalar urban network research agenda. For instance, Southeast 

Asia, which was the empirical focus of this dissertation, is a regional entity which is 

constituted by regional gateway cities like Singapore, Kuala Lumpur, Bangkok, Jakarta, 

Manila, etc. as well as a great number of small cities that primarily function locally. At the 

same time, from a global perspective, Singapore can be understood as a pivotal hub between 

Asia Pacific and the global economy, with other cities constituting its hinterland and 

supporting its role as a ‘global city’. This dissertation focuses on urban networks within a 
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macro-region at the continental scale without considering this region’s connections with the 

rest of the world, so that a logical next step would be extend this analysis to a broader global 

scale or zoom out to examine the individual national scale in a more detailed manner. This 

would undoubtedly contribute to a better understanding of the position, function and 

development strategies of cities. 

 

Thirdly, this dissertation predominantly focused on describing the patterns and structures of 

urban networks in Southeast Asia, while the explanation of these characteristics is relatively 

thin and mainly descriptive. This is largely due to the current lack of complete or coherent 

attribute data (e.g. population, GDP, investment and tourism) for most of the studied cities in 

this region. A next step could be to combine relational data analysis and attribute data 

analysis, that is, use city attribute to explain the city hierarchy, spatial patterns, and overall 

structure in a statistical way to provide a more convincing interpretation. This can be achieved 

by conducting a QAP regression (Zhang, 2017) or incorporating socio-cultural determinants 

into our generative network model. 

 

Last but not the least, since six different methods to extract the backbones of urban networks 

in Southeast Asia have been processed in different software packages, this dissertation does 

not address the issue of computational efficiency in the comparison. This highlights the 

necessity to develop a single package to include all backbone extraction methods, which 

would also be useful for a range of other reasons as well. In addition, the need for assessing 

computational efficiency is more pronounced in light of the emergence of big data on 

transport networks. For example, smart transit card systems in individual cities are recording 

human trajectories at unprecedented spatial and temporal granularity (Liu et al., 2015). 

Testing how the backbone extraction methods fare against these emerging big urban data 

points to another avenue for future research. 
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Summary 

The structure, modelling and abstraction of urban networks in Southeast 

Asia: evidence from intercity transport networks 

As the world’s third largest market and marked by rapidly growing economies, Southeast 

Asia has been experiencing both accelerated urban transformations and regional integration in 

the wider context of globalization processes. Urban development is however not evenly 

spread across this region and has been characterized by the emergence of megacities, 

transnational urban corridors, and sub-regional cooperation. Understanding the characteristics 

of the regional urban system is thus of the utmost interest to scholars. This dissertation 

contributes to this research domain by adopting an ‘urban network approach’ to explore the 

structure of the Southeast Asian urban system. In this light, two conceptual topics are studied: 

 

 The spatial patterns are examined in the regional urban system based on composite 

(i.e. road, rail, and air) transport linkages among 47 Southeast Asian cities in 2016. The urban 

network approach helps revealing the urban hierarchy, sub-network structures, and spatial 

inequality at both city and community levels. The results reflect the influences of entrenched 

uneven development, fragmented geography, and economic and political policies in this 

region. 

 

 The evolving structures are also examined in the regional urban system based on air 

transport linkages among all Southeast Asian airport cities over the period 1979-2012. The 

multilayer complex network approach helps revealing a relatively stable topological structure 

with a changing multilayered geographical structure. The multilayered core-bridge-periphery 

structures vary over time, mainly with the core layer additionally including the most 

economic vibrant secondary cities and tourist destinations recently and the bridge layer being 

highly volatile. These can be explained by a series of socio-economic and politico-

institutional dynamics in Southeast Asia.  

 

As urban network analysis has long been fertilized by a range of scientific fields, employing 

advanced techniques from other disciplines could enhance our understanding of the structures 

of transport-based urban networks in Southeast Asia. These dissertation contributes to this 
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aspect by specifically focusing on modelling and abstraction of urban networks using the case 

of Southeast Asia as an example. In this light, two methodological topics are studied: 

 

 A generative network model is proposed to model urban networks by considering both 

geographical effects (distance, border, city size) and topological effects (transitivity). It 

combines factors commonly analyzed through traditional spatial simulation models (e.g., 

gravity models) and topological simulation models (e.g., ABSM) in a single framework. The 

model is validated against empirical data on the transport networks connecting 51 major cities 

in Southeast Asia. The results show the model has potential to better model urban networks as 

well as offer insights into the importance of different underlying forces. 

 

 A systematic comparative analysis of different techniques is offered to abstract urban 

networks in general and transport networks in particular. Six frequently-used methods are 

reviewed in geography and in other disciplines but with strong relevance to intercity 

transport-network study, i.e. global weight thresholding, k-core decomposition, minimum 

spanning tree analysis, primary linkage analysis, multiple linkage analysis, and the disparity 

filter algorithm. The backbones extracted from the Southeast Asia air network in 2012 are 

compared in terms of their topological properties and spatial patterns using the initial network 

as a benchmark. This comparison is then used to explore under which circumstances or for 

which research objective the different techniques are particularly useful (or less so). 

 

Based on the findings drawn from the analysis of these four topics, this dissertation presents 

some avenues for further research in terms of analyzing urban networks in terms of 

multiplexity, multiscalarity, and explaining network characteristics in a more convincing 

statistical manner, as well as on integrating different abstraction methods into a single 

package. 
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Samenvatting 

De structuur, modellering en abstractie van stedelijke netwerken in Zuidoost-Azië: een 

analyse van interstedelijke transportnetwerken 

 

Als ‘s werelds derde grootste markt en gekenmerkt door snelgroeiende economieën, wordt 

Zuidoost-Azië zowel gekenmerkt door snelle stedelijke transformaties als door regionale 

integratie in de bredere context van mondialiseringsprocessen. Stedelijke ontwikkelingen zijn 

echter niet gelijkmatig verspreid over deze regio, en worden gekenmerkt door zowel de 

opkomst van megasteden als transnationale stedelijke corridors. Inzicht in de veranderende 

kenmerken en structuur van het regionale stedelijke systeem is dan ook van groot belang voor 

geografen. Dit proefschrift draagt bij tot dit onderzoeksdomein door op basis van een 

'stedelijke netwerkbenadering' de structuur van het stedelijke systeem in Zuidoost-Azië te 

analyseren. Hierbij worden twee conceptuele onderwerpen behandeld: 

 

 De ruimtelijke patronen in het regionale stedelijke systeem worden onderzocht op 

basis van samengestelde transportverbindingen (weg-, spoor- en luchttransport) tussen 47 

Zuidoost-Aziatische steden in 2016. De netwerkbenadering helpt de stedelijke hiërarchie, 

subnetwerkstructuren en ruimtelijke structuur bloot te leggen op zowel stedelijk als op sub-

regionaal niveau. De resultaten weerspiegelen de invloed van ongelijke ontwikkeling, 

gefragmenteerde fysiografie, en recent economisch en politiek beleid in de regio. 

 

 De evoluerende structuren worden onderzocht op basis van de evoluties in 

luchtvaartverbindingen tussen Zuidoost-Aziatische steden in de periode 1979-2012. De 

toepassing van een complexe netwerkbenadering suggereert een relatief stabiele topologische 

structuur met een veranderende meerlagige geografische structuur. De meerlagige kern-brug-

periferie structuren variëren in de loop van de tijd, voornamelijk doordat de kernlaag recent 

ook de economische sterkst ontwikkelde secundaire steden en toeristische bestemmingen is 

beginnen omvatten. Deze wijzigingen kunnen worden verklaard door een reeks 

sociaaleconomische en politiek-institutionele dynamieken in Zuidoost-Azië. 

 

Aangezien de analyse van stedelijke netwerken wordt beïnvloed door evoluties in andere 

wetenschappelijke domein, kan het gebruik van geavanceerde technieken uit andere 

disciplines ons inzicht in de structuur van stedelijke netwerken verhogen. Deze dissertatie 



154 

 

draagt bij tot deze kruisbestuiving door de analyse specifiek te richten op nieuwe 

benaderingen in het modelleren en abstraheren van stedelijke netwerken, en dit aan de hand 

van de case van Zuidoost-Azië. Twee methodologische bijdragen worden geleverd: 

 

 Een generatief netwerkmodel wordt opgesteld en geïmplementeerd om stedelijke 

netwerken te modelleren met inachtname van zowel geografische effecten (afstand, grens, 

stadsgrootte) als topologische effecten (transitiviteit). Het model combineert factoren die vaak 

worden geanalyseerd via traditionele ruimtelijke simulatiemodellen (bijvoorbeeld 

zwaartekrachtmodellen) en topologische simulatiemodellen (bijvoorbeeld ABSM) in een 

enkelvoudig analytisch raamwerk. Het model wordt gevalideerd op basis van empirische 

gegevens over de transportnetwerken die 51 steden in Zuidoost-Azië met elkaar verbinden. 

De resultaten suggereren dat het model mogelijkheden biedt om stedelijke netwerken beter te 

modelleren en inzicht te bieden in het relatieve belang van verschillende onderliggende 

krachten. 

 

 Een systematische vergelijkende analyse van verschillende netwerk-

abstractietechnieken helpt de beste techniek te selecteren om stedelijke netwerken in het 

algemeen en vervoersnetwerken in het bijzonder te vereenvoudigen tot hun ‘backbone’. Zes 

veel gebruikte methoden worden beoordeeld en vergeleken, met name: global weight 

thresholding, k-core decomposition, minimum spanning tree analysis, primary linkage 

analysis, multiple linkage analysis, en het disparity filter algorithm. De backbones die voor 

2012 uit het Zuidoost-Aziatische luchtnetwerk worden gefilterd, worden vergeleken met het 

originele netwerk op basis van hun topologische eigenschappen en ruimtelijke patronen. Deze 

vergelijking wordt vervolgens gebruikt om na te gaan onder welke omstandigheden of voor 

welke onderzoeksvraag de verschillende technieken relatief meer/minder nuttig zijn. 

 

Op basis van de bevindingen die voortvloeien uit de gedetailleerde analyse van deze vier 

onderwerpen, biedt dit proefschrift pistes voor verder onderzoek in het analyseren van 

stedelijke netwerken in termen van multiplexiteit, meerschaligheid en het statistisch meer 

zinvol begrijpen van de netwerkkenmerken van stedelijke systemen. 
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This dissertation aims to contribute to ongoing research on the structure of urban 

system in Southeast Asia from a network perspective, as well as to integrating recent 

advances in network analysis from different disciplines into the modelling and 

abstraction of urban networks. It is acknowledged that transport infrastructures 

contribute to the economic development of cities and regions by facilitating 

accessibility and connectivity, in this way reducing transaction costs, stimulating trade 

and investment, and improving social welfare. Against this backdrop, this dissertation 

seeks to examine the spatial patterns and structural evolution of the Southeast Asian 

urban networks through the lens of composite transport linkages and air transport 

linkages, after which the modelling and abstraction techniques are employed into the 

analyses of these networks. 
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