1,136 research outputs found

    Synthetic aperture imaging with intensity-only data

    Get PDF
    We consider imaging the reflectivity of scatterers from intensity-only data recorded by a single moving transducer that both emits and receives signals, forming a synthetic aperture. By exploiting frequency illumination diversity, we obtain multiple intensity measurements at each location, from which we determine field cross-correlations using an appropriate phase controlled illumination strategy and the inner product polarization identity. The field cross-correlations obtained this way do not, however, provide all the missing phase information because they are determined up to a phase that depends on the receiver's location. The main result of this paper is an algorithm with which we recover the field cross-correlations up to a single phase that is common to all the data measured over the synthetic aperture, so all the data are synchronized. Thus, we can image coherently with data over all frequencies and measurement locations as if full phase information was recorded

    Image fusion techniqes for remote sensing applications

    Get PDF
    Image fusion refers to the acquisition, processing and synergistic combination of information provided by various sensors or by the same sensor in many measuring contexts. The aim of this survey paper is to describe three typical applications of data fusion in remote sensing. The first study case considers the problem of the Synthetic Aperture Radar (SAR) Interferometry, where a pair of antennas are used to obtain an elevation map of the observed scene; the second one refers to the fusion of multisensor and multitemporal (Landsat Thematic Mapper and SAR) images of the same site acquired at different times, by using neural networks; the third one presents a processor to fuse multifrequency, multipolarization and mutiresolution SAR images, based on wavelet transform and multiscale Kalman filter. Each study case presents also results achieved by the proposed techniques applied to real data

    Multifrequency VLBA Monitoring of 3C 273 during the INTEGRAL Campaign in 2003 - I. Kinematics of the Parsec Scale Jet from 43 GHz Data

    Full text link
    In this first of a series of papers describing polarimetric multifrequency Very Long Baseline Array (VLBA) monitoring of 3C 273 during a simultaneous campaign with the INTEGRAL gamma-ray satellite in 2003, we present 5 Stokes I images and source models at 7 mm. We show that a part of the inner jet (1-2 milliarcseconds from the core) is resolved in a direction transverse to the flow, and we analyse the kinematics of the jet within the first 10 mas. Based on the VLBA data and simultaneous single-dish flux density monitoring, we determine an accurate value for the Doppler factor of the parsec scale jet, and using this value with observed proper motions, we calculate the Lorentz factors and the viewing angles for the emission components in the jet. Our data indicates a significant velocity gradient across the jet with the components travelling near the southern edge being faster than the components with more northern path. We discuss our observations in the light of jet precession model and growing plasma instabilities.Comment: Accepted for publication in Astronomy & Astrophysics, 16 pages, 15 figure

    Robust multifrequency imaging with MUSIC

    Get PDF
    In this paper, we study the MUltiple SIgnal Classification (MUSIC) algorithm often used to image small targets when multiple measurement vectors are available. We show that this algorithm may be used when the imaging problem can be cast as a linear system that admits a special factorization. We discuss several active array imaging configurations where this factorization is exact, as well as other configurations where the factorization only holds approximately and, hence, the results provided by MUSIC deteriorate. We give special attention to the most general setting where an active array with an arbitrary number of transmitters and receivers uses signals of multiple frequencies to image the targets. This setting provides all the possible diversity of information that can be obtained from the illuminations. We give a theorem that shows that MUSIC is robust with respect to additive noise provided that the targets are well separated. The theorem also shows the relevance of using appropriate sets of controlled parameters, such as excitations, to form the images with MUSIC robustly. We present numerical experiments that support our theoretical results.Part of this material is based upon work supported by the National Science Foundation under Grant No. DMS-1439786 while the authors were in residence at the Institute for Computational and Experimental Research in Mathematics (ICERM) in Providence, RI, during the Fall 2017 semester. The work of M Moscoso was partially supported by Spanish grant FIS2016- 77892-R. The work of A Novikov was partially supported by NSF grant DMS-1813943. The work of C Tsogka was partially supported by AFOSR FA9550-17-1-0238

    Modeling of Subsurface Scattering from Ice Sheets for Pol-InSAR Applications

    Get PDF
    Remote sensing is a fundamental tool to measure the dynamics of ice sheets and provides valuable information for ice sheet projections under a changing climate. There is, however, the potential to further reduce the uncertainties in these projections by developing innovative remote sensing methods. One of these remote sensing techniques, the polarimetric synthetic aperture radar interferometry (Pol-InSAR), is known since decades to have the potential to assess the geophysical properties below the surface of ice sheets, because of the penetration of microwave signals into dry snow, firn, and ice. Despite this, only very few studies have addressed this topic and the development of robust Pol-InSAR applications is at an early stage. Two potential Pol-InSAR applications are identified as the motivation for this thesis. First, the estimation and compensation of the penetration bias in digital elevation models derived with SAR interferometry. This bias can lead to errors of several meters or even tens of meters in surface elevation measurements. Second, the estimation of geophysical properties of the subsurface of glaciers and ice sheets using Pol-InSAR techniques. There is indeed potential to derive information about melt-refreeze processes within the firn, which are related to density and affect the mass balance. Such Pol-InSAR applications can be a valuable information source with the potential for monthly ice sheet wide coverage and high spatial resolution provided by the next generation of SAR satellites. However, the required models to link the Pol-InSAR measurements to the subsurface properties are not yet established. The aim of this thesis is to improve the modeling of the vertical backscattering distribution in the subsurface of ice sheets and its effect on polarimetric interferometric SAR measurements at different frequencies. In order to achieve this, polarimetric interferometric multi-baseline SAR data at different frequencies and from two different test sites on the Greenland ice sheet are investigated. This thesis contributes with three concepts to a better understanding and to a more accurate modeling of the vertical backscattering distribution in the subsurface of ice sheets. First, the integration of scattering from distinct subsurface layers. These are formed by refrozen melt water in the upper percolation zone and cause an interesting coherence undulation pattern, which cannot be explained with previously existing models. This represents a first link between Pol-InSAR data and geophysical subsurface properties. The second step is the improved modeling of the general vertical backscattering distribution of the subsurface volume. The advantages of more flexible volume models are demonstrated, but interestingly, the simple modification of a previously existing model with a vertical shift parameter lead to the best agreement between model and data. The third contribution is the model based compensation of the penetration bias, which is experimentally validated. At the investigated test sites, it becomes evident that the model based estimates of the surface elevations are more accurate than the interferometric phase center locations, which are conventionally used to derive surface elevations of ice sheets. This thesis therefore improves the state of the art of subsurface scattering modeling for Pol-InSAR applications, demonstrates the model-based penetration bias compensation, and makes a further research step towards the retrieval of geophysical subsurface information with Pol-InSAR

    All-sky interferometric riometry

    Get PDF
    The first implementation of a Fourier-based interferometric riometry technique for measuring electron density induced ionospheric opacity at VHF radio frequencies is presented. Unlike multibeam riometers, which form discrete beams on the sky, the interferometric technique permits all-sky sampling of incoming cosmic radio noise emissions resulting in a spatially-continuous radiogram of the entire sky. The map of the received power at each time may then be compared to the equivalent map from a “quiet day”, allowing the morphology of ionospheric absorption of cosmic radio noise to be ascertained. In this work, the high-latitude Kilpisjarvi Atmospheric Imaging Receiver Array (KAIRA) was used to carry out the first interferometric riometry measurements in late 2013, producing all-sky absorption maps of space weather related ionization in the D region

    Multi-frequency Black Hole Imaging for the Next-Generation Event Horizon Telescope

    Full text link
    The Event Horizon Telescope (EHT) has produced images of the plasma flow around the supermassive black holes in Sgr A* and M87* with a resolution comparable to the projected size of their event horizons. Observations with the next-generation Event Horizon Telescope (ngEHT) will have significantly improved Fourier plane coverage and will be conducted at multiple frequency bands (86, 230, and 345 GHz), each with a wide bandwidth. At these frequencies, both Sgr A* and M87* transition from optically thin to optically thick. Resolved spectral index maps in the near-horizon and jet-launching regions of these supermassive black hole sources can constrain properties of the emitting plasma that are degenerate in single-frequency images. In addition, combining information from data obtained at multiple frequencies is a powerful tool for interferometric image reconstruction, since gaps in spatial scales in single-frequency observations can be filled in with information from other frequencies. Here we present a new method of simultaneously reconstructing interferometric images at multiple frequencies along with their spectral index maps. The method is based on existing Regularized Maximum Likelihood (RML) methods commonly used for EHT imaging and is implemented in the eht-imaging Python software library. We show results of this method on simulated ngEHT data sets as well as on real data from the VLBA and ALMA. These examples demonstrate that simultaneous RML multi-frequency image reconstruction produces higher-quality and more scientifically useful results than is possible from combining independent image reconstructions at each frequency.Comment: 25 pages, 15 figures. Accepted to Ap
    • 

    corecore