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Abstract
In this paper, we study the MUltiple SIgnal Classification (MUSIC) algorithm 
often used to image small targets when multiple measurement vectors are 
available. We show that this algorithm may be used when the imaging 
problem can be cast as a linear system that admits a special factorization. We 
discuss several active array imaging configurations where this factorization 
is exact, as well as other configurations where the factorization only holds 
approximately and, hence, the results provided by MUSIC deteriorate. We 
give special attention to the most general setting where an active array with 
an arbitrary number of transmitters and receivers uses signals of multiple 
frequencies to image the targets. This setting provides all the possible diversity 
of information that can be obtained from the illuminations. We give a theorem 
that shows that MUSIC is robust with respect to additive noise provided that 
the targets are well separated. The theorem also shows the relevance of using 
appropriate sets of controlled parameters, such as excitations, to form the 
images with MUSIC robustly. We present numerical experiments that support 
our theoretical results.
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1.Introduction

Imaging is an inverse problem in which we seek to reconstruct a medium’s characteristics,
such as the relectivity, by recording its response to one or more known excitations. The output 
is usually an image giving an estimate of an unknown characteristic in a bounded domain, the 
imaging window of interest. Although this problem is in all generality non-linear, it is often 
adequately formulated as a set of ℵ linear systems of the form

Alqρ=blq, q=1,...,ℵ. (1)

Here, ρ∈CK is the unknown vector we seek to estimate and blq∈C
N are different measure-

ment vectors. The essential point in (1) is that the model matrix Alq depends on a parameter
vector lq=[l1q,l2q,...,lKq] that contains the experimental constants ljq, such as the excita-
tions, that we control and change to form the images. To simplify the notation, we will denote 
the  different  excitations  by  the  scalar q  and  write Aqρ=bq  instead,  unless  it  is  necessary
to explicitly state that the model matrix, and the measurements, depend on a vector lq. We 
are  interested  in  underdetermined  linear  systems,  so N  <  K,  where  the  unknown  vector  is 
M-sparse with M≪K.
To solve (1) we consider the MUltiple SIgnal Classiication (MUSIC) algorithm which has

been used successfully in signal processing [16, 18, 21, 22, 31] and imaging [1, 9, 10, 12, 15, 
30]. In this work we make the fundamental observation that the MUSIC algorithm gives the 
exact support of the solution of (1), in the noise free case, when the matrices Aq admit the
following factorization

Aq=AΛq, withΛqdiagonal, (2)

and A independent of the parameter vector lq. In this case, (1) can also be formulated as the
multiple measurement vector (MMV) problem

Aρq=bq, withρq=Λqρ. (3)

Here, the multiple unknown vectors ρq share the same support T=supp(ρ), with |T|=M.
The MMV formulation is usually written as a matrix–matrix equation

AX=B, (4)

where the unknown is now the matrix X∈CK×ℵ whose columns are the vectors ρq=Λqρ,
and B∈CN×ℵ is the data or observation matrix whose columns are the vectors bq.
The main advantage of the MMV formulation is that we can immediately infer that the 

data vectors bq are linear combinations of the same M-columns of A, those that belong to T.
The implication is that, in the absence of noise, the columns of A indexed by T span R(B),
the range or column subspace of B. Thus, MUSIC inds the support T as the zero set of the 
orthogonal projections of the columns of A onto the left nullspace of the matrix B, which is
the orthogonal complement of R(B) and can be easily found with an SVD. Moreover, the sup-
port can be recovered exactly with MUSIC under the assumption that all (M+1)-sets of col-
umns of A are linearly independent. The support T can be recovered approximately if the data
is noisy. In theorem 1 we quantify an acceptable level of noise for such approximate recovery.
The MMV problem can also be solved using an optimization perspective as described in 

[8, 23, 33, 34]. The main idea is to seek the solution matrix X with the minimal (2, 1)-norm,
which consists in minimizing the ℓ1 norm of the vector formed by the ℓ2 norms of the rows 
of the unknown matrix X. This guarantees the common support of the solution’s columns.
We do not pursue this approach here and refer the reader to [6] for an application of this for-
malism to imaging strong scattering scenes as well as to [2] where an MMV formulation for 
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synthetic aperture imaging of frequency and direction dependent reflectivity was introduced 
and analyzed.

In this paper, we present several configurations in array imaging that can be cast under 
the general framework discussed here, such as single- and multiple-frequency array imag-
ing using single- or multiple-receivers. All these problems can be formulated as (1) in which 
multiple measurement vectors are recorded. We show that some array imaging problems 
admit the factorization (2) and, thus, the support of the unknown can be recovered exactly 
by MUSIC. However, there are other configurations such as multiple frequency imaging with 
several transmitters and receivers for which this factorization is not feasible. Still, we show 
that factorization (2) approximately holds under the paraxial approximation, i.e. when the 
image region is far from the array and is small.

We also consider the non-linear phase retrieval problem, which according to [24–26] can
be reduced to a linear system of the form (1). This requires intensity data corresponding to 
multiple coherent illuminations which are transformed to interferometric data using the polar-
ization identity. We consider multiple frequency intensity data collected at a single receiver 
due to multiple coherent illuminations.

To summarize, the main contributions of this work are as follows. We show (i) in section 3 
that the support of the solution of (1) can be recovered exactly with MUSIC when the (noise-
less) data can be structured so that the model matrix admits a factorization in terms of a uni-
versal model matrix multiplied by a diagonal matrix that depends on the excitation as in (2). 
Then the noisy case is considered in theorem 1 that gives conditions under which MUSIC is 
robust with respect to additive noise. We also show (ii) that when we have full data diversity, 
that is, we have data from multiple sources, multiple receivers and multiple frequencies, then 
there is a data structure that is associated with a model matrix that admits an approximate fac-
torization (2) in particular imaging regimes such as the paraxial regime that is considered in 
section 4. As a consequence, MUSIC can be used with full interaction over multiple frequen-
cies to image in this regime as illustrated in section 5.

The paper is organized as follows. In section 2 we present the active array imaging problem 
and its linear algebra formulation. In section 3 we discuss in an abstract linear algebra frame-
work the conditions under which MUSIC provides the exact solution to the MMV problem (3) 
and analyze its performance for noisy data. In section 4 we consider some common configura-
tions used in active array imaging and discuss the adequate data-structures to be used in imag-
ing with MUSIC. In particular, section 4 contains a description of our approximate MUSIC for 
multiple frequency imaging with several transmitters and receivers. In section 5, we explore 
with numerical simulations the performance of multifrequency MUSIC with intensity-only 
data. Section 6 contains our conclusions.

2. The active array imaging problem

The goal of array imaging is to form images inside a region of interest called the image win-
dow IW. In active array imaging the array probes the medium by sending signals and record-
ing the echoes. Probing of the medium can be done with many different types of arrays that 
differ in their number of transmitters and receivers, their geometric layouts, or the type of 
signals they use for illumination. Moreover, they may use single frequency signals sent from 
different positions, or multifrequency signals sent from one or more positions. Obviously, the 
problem of active array imaging also depends on the receivers. They can record the intensities 
and phases of the signals that arrive to the array or only their intensities.
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In igure 1, an array of size a probes the medium by sending and recording signals from 
positions ⃗xs and ⃗xr, respectively, s,r=1, 2,...,N. It can send signals of one or several fre-
quencies ωl, l=1,...,S. The  goal  is  to  reconstruct  a  sparse  scene  consisting  of M  point-
scatterers at a distance L from the array. The positions of the scatterers in the IW are denoted 
by ⃗zj, and their relectivities by αj∈C, j=1,...,M. The ambient medium between the array
and  the  scatterers  can  be  homogeneous  or  inhomogeneous.  In  this  paper,  we  consider  that 
wave propagation is described by the scalar wave equation. Nevertheless, the methodology 
described here directly extends to other types of vector waves such as electromagnetic waves.
In  order  to  form  the  images  we  discretize  the  IW  using  a  uniform  grid  of  points ⃗yk, 

k=1,...,K, and we introduce the true relectivity vector6

ρ=[ρ1,...,ρK]∈C
K,

such that

ρk=
αj, if∥⃗zj−y⃗k∥∞ <grid-size, for somej=1,...,M,

0, otherwise.

We will not assume that the scatterers lie on the grid, so {⃗z1,...,⃗zM}̸ ⊂{⃗y1,...,⃗yK} in gen-
eral. To write the data received on the array in a compact form, we deine the Green’s function
vector

g(⃗y;ω)=[G(⃗x1,⃗y;ω),G(⃗x2,⃗y;ω),...,G(⃗xN,⃗y;ω)] (5)

at location ⃗y in the IW, where

G(⃗x,⃗y;ω)=
exp(iκ|⃗x−y⃗|)

4π|⃗x−y⃗|
, κ=

ω

c0
, (6)

Figure  1.  General  setup  of  an  array  imaging  problem.  The  transducer  at ⃗xs  emits  a 
probing signal and the relected signals are recorded at ⃗xr. The scatterers located at ⃗zj, 
j=1,...,M are at distance L from the array and inside the image window IW.

6 Superscript  here, and throughout the paper, means transpose. It looks similar to T that we use as the index set of 
the support of a vector. As such, T appears as a subscript.
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denotes the free-space Green’s function of the background medium. It characterizes the prop-
agation of a signal of angular frequency ω from point ⃗y to point ⃗x, so (5) represents the signal 
received at the array due to a point source of frequency ω at ⃗y.
We assume that the scatterers are far apart or that the relectivities are small, so multiple 

scattering between them is negligible. In this case, the Born approximation holds and, thus, 
the response at ⃗xr due to a pulse of angular frequency ωl, amplitude one and phase zero sent 
from ⃗xs, and relected by the M scatterers, is given by

P(⃗xr,⃗xs;ωl)=
M

j=1

αjG(⃗xr,⃗zj;ωl)G(⃗zj,⃗xs;ωl)

=
K

k=1

ρkG(⃗xr,⃗yk;ωl)G(⃗yk,⃗xs;ωl). (7)

When all the sources and the receivers in the array are used for imaging, the data are arranged 
in the so called single frequency response matrix

P(ωl)=[P(⃗xr,⃗xs;ωl)]
N
r,s=1=

K

k=1

ρkg(⃗yk;ωl)g(⃗yk;ωl). (8)

If only one frequency is used to probe the medium, all the information available for imaging 
is contained in (8). The most general coniguration is the one of multiple sources, multiple 
receivers and multiple frequencies. In this case, the array response forms a tensor with ele-
ments P(⃗xr,⃗xs;ωl), r,s=1,...,N, and l=1,...,S.

3. The MUSIC algorithm

MUSIC is a subspace imaging algorithm based on the decomposition of the measurements 
into two orthogonal domains. The dominant one is due to the signals and is referred to as the 
signal subspace, while the other is attributed to the noise and is referred to as the noise sub-
space. Both are easily found through the SVD of the data matrix

B=

⎛

⎜
⎜
⎝

b11 b12 ... b1ℵ
b21 b22 ... b2ℵ
... ... ... ...

bN1 bN2 ... bNℵ

⎞

⎟
⎟
⎠=

⎛

⎝
↑ ↑ ↑

b1 b2 ...bℵ
↓ ↓ ↓

⎞

⎠ ∈CN×ℵ, (9)

whose column vectors bq are obtained from a family of linear systems (1).
Our irst  result  is  proposition 1,  which  is  the  key  observation  that  MUSIC  provides  the 

exact support of the unknown vector ρ when the matrices Aq in the original problem (1) admit
a factorization of the form (2). Physically, this factorization means that the data vectors bq are 
just different weighted sums of the same columns of the matrix A in (2).
In  this  framework,  we  also  obtain  theorem 1  which  gives  conditions  for  MUSIC  to  be 

robust with respect to noise in the data.

Proposition 1. Assume ρ∈CK is M-sparse with M  <  N, and assume that (1) can be re-
written in the form

AΛqρ=bq, q=1,...,ℵ, (10)

with the matrix
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A=

⎛

⎜
⎝

↑ ↑ ↑

a1 a2 ...aK
↓ ↓ ↓

⎞

⎟
⎠ ∈C

N×K (11)

independent of the parameter vector lq=[l1q,l2q,...,lKq] and thus ixed, and

Λq=

⎛

⎜
⎜
⎜
⎝

l1q 0

0 l2q
...

0 lKq

⎞

⎟
⎟
⎟
⎠
∈CK×K (12)

diagonal. Then, under the assumptions that all sets of M  +  1 columns of A are linearly inde-
pendent, and the rank of the data matrix B is M, MUSIC provides the exact support of ρ if the 
data are noiseless.

Remark 1. The assumption that rank of the data matrix B is M means that the excitations 
are suficiently diverse, which is usually the case in practice.

Proof. All data vectors bq, q=1,...,ℵ, are linear combinations of the same M columns
ak of A, indexed by T=supp(ρ), with M=|T|. Thus, the columns of A indexed by T span
a vector subspace of CN called the signal subspace. Furthermore, if all sets of M  +  1 columns
of A are linearly independent, no other column of A is contained in the signal subspace in the
noiseless case. Hence, the unknown support T is uniquely determined by the zero set of the 
projections of the columns of A onto the noise subspace, which is the orthogonal complement
to the signal subspace. □

The objective of the MUSIC algorithm is to ind the support T of an unknown sparse vector 
ρ=[ρ1,ρ2,...,ρK], when a number of nonzero entries M is much smaller than its length K.
With a suficiently diverse number of experiments ℵ M we create a data matrix B, and we
compute its SVD

B=UΣV∗=
K

j=1

σjujv
∗
j. (13)

If the data are noiseless there are exactly M nonzero singular values σ1>σ2>···>σM>0
with corresponding left singular vectors uj, j=1,...,M, that span the signal subspace. The 
remaining singular values σj, j=M+1,...,K, are zero, and the corresponding left singular 
vectors span the noise subspace. Since the set of columns of A indexed by T=supp(ρ) also
spans the signal subspace, the sought support T corresponds to the zero set of the orthogonal 
projections of the columns vectors ak onto the noise subspace. Thus, it follows that the sup-
port of ρ can be found among the peaks of the imaging functional

IMUSICk =
∥ak∥ℓ2

N
j=M+1|⟨ak,uj⟩|

2
,k=1,...,K. (14)

In (14), the numerator is a normalization factor. If all sets of M  +  1 columns of A are linearly
independent, the peaks of (14) exactly coincide with the support of ρ.
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Once the support of ρ is recovered, the problem (10) typically becomes overdetermined 
(N  >  M) and the nonzero values of ρ can be easily found by solving the linear system restricted 
to the given support with an ℓ2 or an ℓ1 method [7].
Consider imaging with noisy data. It follows from Weyl’s theorem [36] that when noise is

added to the data so B→Bδ with ∥Bδ−B∥ℓ2<δ, then no singular value σ
δ moves more than

the norm of the perturbation, i.e. ∥σδ−σ∥ℓ2<δ. It follows that (i) perturbed and unperturbed
singular values are paired, and (ii) the spectral gap between the zero and the nonzero singular 
values remains large if the smallest nonzero unperturbed singular value σM≫δ. Hence, if the
noise is not too large, we can determine the number of scatterers because it equals the number 
of signiicant singular values of the data matrix Bδ.
The signal and noise subspaces are also perturbed in the presence of noise. It can be shown 

that the perturbed and unperturbed subspaces also remain close, with changes proportional 
to the reciprocal of the spectral gap β=σδM−σM+1 [35]. We refer to [22], and references
therein,  for  a  recent  discussion  about  how  much  noise  the  MUSIC  algorithm  can  tolerate. 
Next, we give a result that states that MUSIC is robust provided certain orthogonality condi-
tions hold. For this theorem we introduce the parameter matrix

L=

⎛

⎜
⎜
⎜
⎝

l11 l12 l1ℵ
l21 l22 l2ℵ
...

...
...

lK1 lK2 lKℵ

⎞

⎟
⎟
⎟
⎠
∈CK×ℵ , (15)

with which problem (10) can be rewritten as AXL=B, with X  =  Diag(ρ) (see (16) below). In
order to formulate our next result we introduce the following notation.

Deinition 1. Suppose T=supp(ρ). We denote by XT the sub-matrix of X where we keep 
the rows that correspond to T. Similarly, we denote by yT the sub-vector of any vector y where 
we keep the entries that correspond to T.

Theorem 1. Assume ρ∈CK is M-sparse with T=supp(ρ). Let X  =  Diag(ρ) be a diago-
nal matrix that solves

AXL=B, (16)

with B and L given in (9) and (15), respectively. Let

γ=σmin(LT) (17)

be the minimal singular value of LT. Suppose the perturbed matrix B
δ satisies σmax(B

δ−B) 
δ, and that the columns of A are normalized to one, that is ∥ai∥ℓ2=1 ∀i.
If for some ε<1/3 the columns from the support of ρ satisfy the following approximate

orthogonality condition

∀i,j∈T,i̸=j,|⟨ai,aj⟩|<
ε

M−1
, (18)

and δ is small so that

2δ<µγ(1−2ε), withµ= min
ρi̸=0
{|ρi|}, (19)
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then we can ind a decomposition Bδ=Qδ+Qδ0 such that orthogonal projections onto the 
subspaces R(Qδ) and R(B) are close, so

∥PR(Qδ)−PR(B)∥ℓ2
δ

µγ(1−2ε)
. (20)

Theorem 1  is,  to  the  best  of  our  knowledge,  new.  It  gives  conditions  under  which  the 
perturbed and unperturbed subspaces remain close so MUSIC is robust with respect to addi-
tive noise. Note that theorem 1 allows the columns of A to be almost collinear as long as the
columns that are in the support of the solution are approximately orthogonal, so (18) holds. 
The fact that the error in the orthogonal projections (20) is inversely proportional to the mini-
mal singular value γ (see (17)) can be interpreted as a quality control on the different sets of 
parameters lq used to collect the data. It says that MUSIC is not robust if these sets are chosen 
so that the data are not diverse enough so γ is small. In order for MUSIC to be robust the 
parameter vectors lq that form the columns of L should be as orthogonal as possible. The proof 
of theorem 1 is given in appendix A.
We also refer to [20] for a subspace-augmented MUSIC algorithm that improves the per-

formance of MUSIC under unfavorable conditions such as the lack of diversity of the data 
matrix.

4. Data structures in active array imaging

We  consider  here  the  active  array  imaging  problem  introduced  in  section 2.  Our  aim  is  to 
examine for which conigurations the imaging problem can be written in the MMV form (3) 
so that MUSIC can be used. It is known that MUSIC could be used successfully in two cases: 
either  for ixed  frequency  data  (S  =  1)  and  multiple  transducers,  or  for  a  single  transducer 
and multiple frequencies. We show that a factorization as in (2) can be obtained for these two 
cases in sections 4.1 and 4.2, respectively. We discuss these two cases in detail, because they 
are the building blocks of our construction for multiple frequencies and many transducers. We 
show in section 4.3 how to construct an approximate MUSIC for multiple frequencies and 
many transducers. To the best of our knowledge, this is the irst, albeit approximate, MUSIC 
algorithm  for  multiple  frequencies  and  many  transducers.  The  approximation  holds  in  the 
paraxial regime, when the array and the IW are small and the distance between them is large. 
We investigate numerically the quality of this approximation in section 5.2, where we chose 
to use intensity-only measurements. This the most challenging type of data, that we consider 
in this work. In section 4.3.1 (and appendix B) we explain how this type of data can be recast 
as a linear system of the form (3).

4.1.  Single frequency signals and multiple receivers

Fix a frequency ω. We denote by f(ω)=[f1(ω),...,fN(ω)] the illumination vector whose
entries are the signals sent from the corresponding sources ⃗xs, s=1,...,N, on the array. The 
most basic illumination vectors are ei, with all entries equal to zero except the ith entry which 
is 1. We will often use them in this work. Given an illumination f(ω), our imaging data are

bf(ω)=P(ω)f(ω), (21)

where P(ω) is the single frequency response matrix (8). These are the echoes recorded at the 
N receivers located at ⃗xr, r=1,...,N, on the array.
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Let

g
(k)
f(ω)=g(⃗yk;ω)f(ω),k=1,...,K,

be  the ields  at  the  grid  positions ⃗yk  in  the  IW,  with g(⃗yk;ω)  given  by  (5). Then,  the  data 

depend on the vector l=[g
(1)
f(ω),g

(2)
f(ω),...,g

(K)
f(ω)]. With a slight abuse of notation from sec-

tion 3, we have indicated in (21) that the control vectors are the illuminations f(ω) instead of 
the vectors l. The latter depend on the Green’s function vectors g(⃗y;ω) that are ixed by the
physical layout, and on the illumination vector f(ω) that we control.

Lemma 1. Suppose the data bf(ω), corresponding to an illumination f(ω) is obtained by

bf(ω)=P(ω)f(ω).

Then

bf(ω)=Af(ω)ρ;Af(ω)=AΛf(ω) (22)

where

A=

⎛

⎜
⎝

↑ ↑  ↑

g(⃗y1;ω) g(⃗y2;ω) ...g(⃗yK;ω)

↓ ↓  ↓

⎞

⎟
⎠ ∈C

N×K, (23)

and

Λf(ω)=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

g
(1)
f(ω) 0

0 g
(2)
f(ω)

...

0 g
(k)
f(ω)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∈CK×K. (24)

The proof of this lemma immediately follows from the explicit formula

Af(ω)=

⎛

⎜
⎝

↑ ↑  ↑

g
(1)
f(ω)g(⃗y1;ω) g

(2)
f(ω)g(⃗y2;ω) ...g

(K)
f(ω)g(⃗yK;ω)

↓ ↓  ↓

⎞

⎟
⎠ ∈C

N×K.

A  few  remarks  are  now  in  order.  The  lemma  guarantees  that  for any  family bfq(ω), 
q=1,...,ℵ, of illuminations the decomposition

Afq(ω)ρ=bfq(ω) (25)

holds. Hence, it follows from the discussion in section 3 that the support of ρ can be found 
with MUSIC exactly if enough data vectors bq=bfq(ω) are available. How to choose illumina-
tions for these data vectors? A natural choice is to use the ℵ=N illuminations fq(ω)=eq.
Then, the data-matrix is B=P(ω), the single frequency response matrix (8). This is a typical 
choice in practice.
Secondly, in the noisy case the robustness of MUSIC depends on γ deined in (17) as the 

minimum singular vector of the sub-matrix of L with rows corresponding to the support of ρ. 
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Let us investigate further this optimality for the single-frequency regime. Here, the illumina-
tion matrix is

L=

⎛

⎜
⎝

↑ ↑  ↑

A f1(ω) A f2(ω) ...A fℵ(ω)

↓ ↓  ↓

⎞

⎟
⎠∈C

K×ℵ.

The ith  column A fi(ω)=[g
(1)
fi(ω)
,g
(2)
fi(ω)
,...,g

(K)
fi(ω)
]  of  matrix L  contains  the ields  at  all

grid positions ⃗yk, k=1,...,K, due to illumination fi(ω). If we use the ℵ=N illuminations
fq(ω)=f(ω)eq, then L=f(ω)A . Thus, assuming A satisies the conditions of theorem 1,
we get

γ=σmin(LT) (1−2ε)|f(ω)|.

4.2.  Multiple frequencies and one transducer: the one-dimensional problem

Consider a one-dimensional multifrequency imaging problem where we use only one trans-
ducer that works as source and receiver. Denote by yn=L+(n−1)∆y the distance between
the transducer and the scatterer of relectivity ρn, n=1,...,K. Then,

K

n=1

ei2κmynρn=bm, m=1,...,S, (26)

relates  the  positions  and  relectivities  of  the  scatterers  to  the  measurements bm  at  frequen-
cies ωm=κmc0, where c0 is the wave speed in a homogeneous medium. In this problem, we 
seek to recover the unknown vector ρ=[ρ1,ρ2,...,ρK] from the multifrequency data vector 
b=[b1,b2,...,bS] recorded at the single transducer.
Problem (26) is well known in the signal processing literature as the estimation of signal 

parameters  from  a  noisy  exponential  data  sequence  [32].  It  can  be  solved  eficiently  with 
several methods, we refer for example to the SVD-prony method [19] and the matrix pencil 
method [17]. We explain in this section how MUSIC can be used to ind the solution for this 
one-dimensional  imaging  problem.  In  the  next  section we  built  upon  this  methodology  to 
propose a multiple frequency MUSIC algorithm for the array imaging problem with many 
sources and many receivers.
We certainly can write (26) in matrix form Aρ=b, but we will only have one data vector 

b∈CS. The next assumption allows to elegantly formulate our data in the MMV format (3)
using a Prony-type argument [28] (see for example [15]). Namely, suppose that the measure-
ments are obtained at equally spaced wavenumbers κm=κ1+(m−1)∆κ, m=1, 2,...,S,
and let S=2ℵ−1. Then, ill up the ℵ×ℵ data matrix B as the square Toeplitz matrix

B=

⎛

⎜
⎜
⎜
⎝

b1 b2 ... bℵ
b2 b3 ... bℵ+1
... ... ... ...

bℵ bℵ+1 ... b2ℵ−1

⎞

⎟
⎟
⎟
⎠
. (27)

It is straightforward to verify the following claim.

Lemma 2. If bq is the qth column of the matrix B in (27), then

AΛqρ=bq,q=1, 2,...,ℵ,
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where

A=

⎛

⎜
⎜
⎝

ei2κ1y1 ei2κ1y2 ... ei2κ1yK

ei2κ2y1 ei2κ2y2 ... ei2κ2yK

... ... ... ...

ei2κℵy1 ei2κℵy2 ... ei2κℵyK

⎞

⎟
⎟
⎠, (28)

and the K×K diagonal matrices

Λq=(Λ1)
q
, withΛ1:=

⎛

⎜
⎜
⎜
⎝

ei2∆κy1 0 ... 0 0

0 ei2∆κy2 ... 0 0

... ... ... ei2∆κyK−1 0

0 0 ... 0 ei2∆κyK

⎞

⎟
⎟
⎟
⎠
.

As promised, we have obtained the desired structure of our data matrix B for MUSIC to 
work. The key here was to stack the data in the cyclic fashion (27). Such stacking worked 
because wavenumbers were equally spaced. Clearly, B does not have to be square. As always, 
it needs to have at least M linearly independent columns for MUSIC to recover M scatterers.

4.3.  Multiple frequency signals, multiple sources and receivers

Finally, we consider the most general case in which multiple frequency signals are used to 
probe the medium using several transducers that emit and record them. This case considers all 
the possible diversity of information that can be obtained from the illuminations. We discuss 
irst the situation in which the receivers measure amplitudes and phases, and then the case in 
which they can only measure amplitudes squared.
The idea to stack data in the cyclic fashion (27) motivated us to think whether there is a way 

to organize multiple frequency data that guarantees our decomposition

AΛqρ=bq,q=1, 2,...,ℵ. (29)
We  were  not  able  to ind  an  exact  factorization  (29)  in  general,  and  therefore,  at  present, 
MUSIC cannot be used to identify the support of ρ exactly. We claim, however, that factoriza-
tion (29) is approximately valid in the paraxial regime λ≪a≪L if we choose

B=Pc:=[P(ω1),P(ω2),...,P(ωS)], (30)

where P(ωk) are the single frequency ωk response matrices (8). In this case ℵ=N, where
N  is  the  number  of  transducers.  Indeed,  denote κc=ωc/c0  as  the  central  wavenumber, 
y⃗j=(yj,L+ηj), and ⃗xs=(xs,0). Then, we have:

Lemma 3. Suppose we are in the paraxial regime, and the IW is small compared to L. If bq 
is the qth column of the matrix B in (30), then

Aqρ=bq, withAq≈AΛq,q=1,...,ℵ, (31)

where A and Λq are given by
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A=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

↑ ↑  ↑

h(⃗y1;ω1) h(⃗y2;ω1) ...h(⃗yK;ω1)

↓ ↓  ↓

↑ ↑  ↑

h(⃗y1;ω2) h(⃗y2;ω2) ...h(⃗yK;ω2)

↓ ↓  ↓
...

...
...

↑ ↑  ↑

h(⃗y1;ωS) h(⃗y2;ωS) ...h(⃗yK;ωS)

↓ ↓  ↓

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

 (32)

with h(⃗yj;ωl)=e
iκl(L+ηj)g(⃗yj;ωl), and

Λq=

⎛

⎜
⎜
⎜
⎜
⎝

eiκc(xq−y1)
2/2L 0

0 eiκc(xq−y2)
2/2L

...

0 eiκc(xq−yK)
2/2L

⎞

⎟
⎟
⎟
⎟
⎠
. (33)

The approximation is of order O Ba2

c0L
+ωca

4

c0L3
.

Proof. The proof of lemma 3 is straightforward. We only outline the idea here. Assume we 
use an illumination eq, then the jth column of Aq is

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

↑

G(⃗yj,⃗xq;ω1)g(⃗yj;ω1)

↓

↑

G(⃗yj,⃗xq;ω2)g(⃗yj;ω2)

↓
...

↑

G(⃗yj,⃗xq;ωS)g(⃗yj;ωS)

↓

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (34)

where G(⃗yj,⃗xq;ωl) is (6). Thus, if L is much larger than a and the IW is small

G(⃗yj,⃗xq;ωl)=
eiκl|⃗xs−⃗yj|

4π|⃗xq−y⃗j|
≈
1

4πL
eiκl|⃗xq−⃗yj|=eiκl(L+ηj)ei(ϕ+̃ϕ),

with ϕ=κc(xq−yj)
2/2L and ̃ϕ=O Ba2

c0L
+ωca

4

c0L3
. □

Similar  considerations  imply  that  the  factorization  (29)  works  if  illuminations  satisfy 
f(ωl)=f(ωl)f. This means that the array uses the same illumination pattern f for all the 
frequencies. We do not discuss this case for simplicity of presentation.



13

It is natural to ask whether other approaches may be more fruitful. After all, we obtain only 
approximate MUSIC so perhaps one could have used instead an alternative data structure and 
obtain an exact MUSIC. In our previous work [25] we tried to use

B=Pd=

⎛

⎜
⎜
⎜
⎝

P(ω1) ... 0 0

0 P(ω2) ... 0

... ... ... ...

0 0 0 P(ωS)

⎞

⎟
⎟
⎟
⎠

 (35)

to  image  with  MUSIC.  We  showed  that  imaging  with  such  data  structure  is  equivalent  to 
imaging with each frequency separately and summing up the resulting images incoherently. 
Therefore there is no signiicant improvement over imaging with a single frequency if one 
uses (35) for imaging with MUSIC [25].

4.3.1.  Imaging without phases. In its classical form, the phase retrieval problem consists in 
inding a function from the amplitude of its Fourier transform. In imaging, it consists in ind-
ing a vector ρ that is compatible with a set of quadratic equations for measured amplitudes. 
This occurs in imaging regimes where only intensity data is recorded and, thus, most of the 
information encoded in the phases is lost. Phase retrieval algorithms have been developed over 
a long time to deal with this problem [13, 14]. They are lexible and effective but depend on 
prior information about the image and can give uneven results. An alternative convex approach 
that  guarantees  exact  recovery  has  been  considered  in  [3, 4],  but  its  computational  cost  is 
extremely high when the problem is large. When, however, we control the illuminations we 
may recover the missing phase information using a completely different strategy. This strategy 
was introduced in [24–26]. We explain here some of its aspects that are relevant to this work.
Assume that only the intensities can be recorded at the array. In appendix B we show that, 

for  a ixed  receiver  location,  we  could  recover  single  frequency  cross  correlated  data  from 
multiple intensity-only measurements. On the other hand, as noted in [26], the support of the 
relectivity ρ can be recovered exactly by using the MUSIC algorithm on the single frequency 
interferometric matrix M(ω)=P∗(ω)P(ω) if the data are recorded at several receivers. For 
multiple frequencies, multiple sources and multiple receivers one can use the data structure

B=Mc:=

⎛

⎜
⎜
⎜
⎝

P(ω1)
∗P(ω1)

P(ω2)
∗P(ω1)
...

P(ωS)
∗P(ω1)

⎞

⎟
⎟
⎟
⎠

 (36)

for  pairs  of  frequencies (ωl,ω1), l=1,...,S,  to  image  coherently  using  MUSIC.  Indeed, 
the matrix Mc in (36) and the matrix Pc in (30) have the same column space and, therefore, 
MUSIC can form the images using the SVD of Mc and the column vectors of matrix (32) as 
imaging vectors. We denote this data structure with the superscript c to point out that we have 
stacked the one frequency matrices P(ωl) and the two frequencies matrices P(ωl)

∗P(ω1) in 
a column.

5. Numerical simulations

We present here numerical simulations that illustrate the performance of MUSIC. The data 
are simulated using the model in (8) with G(⃗x,⃗y;ω) as in (6). We irst illustrate the relevance 
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of theorem 1 for active array imaging in the presence of noise, and then we discuss multifre-
quency imaging with phaseless data as it was explained in section 4.3.1.

5.1.  Imaging results in the framework of theorem 1

To  study  the  robustness  of  MUSIC  with  respect  to  additive  noise  we  consider  in  this  sec-
tion active array imaging with multiple sources and multiple receivers, but a single frequency; 
see section 4.1. Given a set of illuminations {fq(ω)}q=1,...,ℵ, the imaging problem is to deter-
mine the location and relectivities of the scatterers from a data matrix B whose column vectors 
are given by (21), including phases. This problem admits an exact factorization of the form (2) 
and, therefore, MUSIC can be used for recovering the support of the solution. Furthermore, 
MUSIC provides the exact support of the relectivity under the assumptions of proposition 1.
According to theorem 1 the effectiveness of the illuminations can be characterized by γ 

deined in (17). This parameter quantiies how well the support of the relectivity is illumi-
nated and, thus, it affects the robustness of the MUSIC results. Speciically, from (20) the dis-
tance between the orthogonal projections onto the perturbed and unperturbed signal subspaces 
is inversely proportional to γ and, thus, a good set of illuminations is one for which γ is large.
It was observed in [5, 6] that imaging using the top singular vectors of the data matrix as 

illuminations lowers the impact of the noise in the data. These illumination vectors are opti-
mal in the sense that they result in array data with maximal power, which is proportional to 
the associated singular values. They can be computed systematically from the singular value 
decomposition of the array response matrix (8) if it is available, or with an iterative time rever-
sal process, which is a very eficient acquisition method for obtaining the essential part of the 
array response matrix as discussed in [27].
It is easy to understand theorem 1 when the scatterers are well separated, meaning that the 

Green’s function vectors g(⃗y;ω) evaluated on the support of the solution are approximately
orthogonal. Indeed, in this limit, the top singular vectors correspond one-to-one to the scat-
terers.  Then,  it follows  that γ  is  optimal  and  close  to ∥g(⃗zj;ω)∥

2  evaluated  at  the  weakest
scatterer.
We plot in igure 2 the images obtained with MUSIC using different set of illuminations. 

The value of γ that corresponds to each set of illuminations is displayed above the images. 
The images are obtained in a homogeneous medium using an active array of N  =  81 transduc-
ers that transmit and receive the signals. The frequency used is 600 THz, corresponding to a 
wavelength λ of 500 nm (blue light). The array size is 100λ and the distance from the array to 
the IW is L=100λ as well. The IW is a rectangle of size 5λ×50λ discretized with a regular
mesh of 50×50 rectangular elements. Different sets of illuminations are used to gather the
data matrix B. In all the igures, the true locations of the scatterers are indicated with white 
crosses, and the length scales are measured in units of λ0. In this numerical experiment, the 
scatterers are on the grid. We add to the data mean zero uncorrelated noise corresponding to 
SNR  =0 dB.
The  left  most  image  of igure 2  shows  the  results  obtained  with  MUSIC  using  optimal 

illuminations. We observe that MUSIC is very robust with respect to additive noise. The other 
three images are obtained with random illuminations: from top to bottom and from left to right 
the value of γ decreases. As expected from theorem 1, the results are only good for sets of 
illuminations with large γ. Observe that MUSIC misses several scatterers in the two images in 
the bottom row of igure 2 corresponding to small γ values.
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5.2.  Multifrequency phaseless imaging

Next, we consider imaging with multiple sources, multiple receivers, and multiple frequen-
cies, but phaseless data; see section 4.3.1. This case does not admit an exact factorization of 
the form (2) and, therefore, MUSIC does not provide the exact support of the solution. Still, 
it can be used to estimate the support in the paraxial regime, when the scatterers are very far 
from the array and the IW is small. Next, we examine numerically the deterioration of the 
resolution provided by MUSIC as the IW gets closer to the array.
We  consider  a  central  frequency f0  =  600  THz,  typically  used  in  optics,  corresponding 

to  a  central  wavelength λ0=500  nm.  We  use S  =  12  equally  spaced  frequencies  cover-
ing a total bandwidth of 30 THz. All considered wavelengths are in the visible spectrum of 
green light. The size of the array is a=500λ0, and the distance between the array and the 
IW is L=10 000λ0. The medium between the array and the IW is homogeneous. The IW, 
whose size is 100λ0×100λ0, is discretized using a uniform lattice with mesh size 2λ0×2λ0.
Thus, the unknown image has 51×51 pixels. For this imaging system, we expect the cross-
range and range resolutions to be of the order of λ0L/a=20λ0 and C0/B=λ0f0/B=20λ0, 
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Figure 2.  Imaging results using MUSIC with multiple sources and multiple receivers, 
but a single frequency. SNR  =0 dB corresponding to additive noise. The scatterers are 
on the grid. The top left image is obtained using the optimal illuminations, for which 
γ=0.22. The other three images are obtained using 12 randomly chosen illuminations, 
for which the values of γ vary.
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respectively. In this setup, the propagation distance L is large, and the array and the IW sizes 
are small so that the paraxial approximation holds.
We assume that the phases of the signals received at the array cannot be measured. Hence, 

only their intensities are available for imaging. These measurements are collected at multiple 
receivers, so we use the methods explained in section 4.3.1 to image interferometrically.
In igure 3, the scatterers lie on the grid and no noise is added to the data. Hence, the data 

are exact. We observe that imaging with MUSIC using the block-diagonal matrix Md (left 
image) gives exact recovery, while MUSIC using the Mc matrix (right image) that couples all 
the frequencies is less accurate. This is so because, as we explained in section 4.3, MUSIC 
with Mc is not exact as it only provides, in the paraxial regime, approximate locations of the 
scatterers.
Figure 4 shows the same experiment as igure 3 but with off-grid scatterers. In this ig-

ure, the scatterers are displaced by half the grid size with respect to the grid points in both 
range and cross-range directions. This produces perturbations in the unknown phases of the 
signals collected at the array due to modeling errors. We remark that although the phases are 
not  directly  measured  they  are  encoded  in  the  intensity  measurements. We  observe  in ig-
ure 4 that the image obtained with MUSIC using the Md data structure (left plot) deteriorates 
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Figure 3.  There is no noise added to the data and the scatterers are on the grid. The left 
panel is the image constructed using MUSIC with Md. The right panel is obtained using 
MUSIC with Mc that couples the data over frequencies.
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Figure  4.  Same  as igure 3  but  with  the  scatterers  off  the  grid.  The  scatterers  are 
displaced by half the grid size in both directions from a grid point.
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dramatically because the multiple-frequency information contained in the data is not pro-
cessed in a coherent way. On the other hand, MUSIC with the Mc data structure (right plot) is 
very robust with respect to the off-grid displacements.

As noted above, multifrequency MUSIC using the matrix Mc is not exact. It only gives 
an approximation to the support of the scatterers in the paraxial regime. Thus, we expect the 
resolution to improve (resp. deteriorate) as the IW is moved further (resp. closer) from the 
array. To examine its accuracy, we consider in figure 5 imaging configurations with different 
ratios a/L. We display from left to right the results for a/L equal to 1/100, 1/20, 1/4 and 1. For 
a meaningful comparison, the mesh size in cross-range is adjusted so that it is always one 
tenth of the nominal resolution λ0L/a, i.e. the mesh size in cross-range is λ0L/(10a) in all the 
images shown in figure 5. In order words, the number of pixels in the images is kept constant 
by changing the sizes of the IWs according to the relation 5λ0L/a× 5(C0/B). Thus, all the
images in figure 5 have 51× 51 pixels. As expected, the images in this figure show an almost
exact recovery for small a/L ratios and a worsening of the results as the ratio increases.
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Figure 5. Imaging results using MUSIC with Mc coupling over frequencies. From 
left to right and top to bottom the ratio a/L increases and, therefore, the error due to 
the paraxial approximation increases so the accuracy of the MUSIC reconstruction 
decreases. The scatterers are on the grid.
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6. Conclusions

In this paper we discussed appropriate data structures that allow robust images with MUSIC, 
a method that is well adapted to inding sparse solutions of linear underdetermined systems 
of equations of the form Alqρ=blq. In this work ρ is the relectivity, the image that we want
to form, and lq is a parameter vector that can be varied, such as the illumination proile of the 
imaging system in space and/or frequency. Given the data blq, our irst main result is the key 
observation that MUSIC provides the exact support of the unknown ρ when the matrix Alq
admits a factorization of the form Alq=AΛlq with Λlq diagonal. We also show in theorem 1
that MUSIC is robust with respect to noise provided the diversity of the data is high enough. 
Our second main contribution is an approximate MUSIC algorithm for multifrequency and 
multiple receiver imaging which is obtained under the paraxial approximation. Its robustness 
is illustrated with numerical simulations in an optical digital microscopy imaging regime.
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Appendix A.  Proof of theorem 1

Proof. We claim that

(1−2ε)2∥z∥2ℓ2 ∥(A∗z)T∥
2
ℓ2 (1+2ε)2∥z∥2ℓ2 (A.1)

if z∈R(B) and ε<1/3. Indeed, suppose that

z=
i∈T

αiai.

Then, deining α as the vector in CK whose components are zero except the ith components
with i∈T that are equal to αi, we get

∥z∥2ℓ2−∥α∥
2
ℓ2 =

i,j∈T,i̸=j

ᾱiαj⟨ai,aj⟩ ε∥α∥2ℓ2,

and

(1−ε)∥α∥2ℓ2 ∥z∥2ℓ2 (1+ε)∥α∥2ℓ2.

For any j∈T we have

(A∗z)j=
i∈T

αi⟨aj,ai⟩,
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and, therefore,

∥(A∗z)T∥
2
ℓ2=

i,j,k∈T

ᾱjαi⟨ak,ai⟩⟨ak,aj⟩.

Hence,

∥(A∗z)T∥
2
ℓ2−∥α∥

2
ℓ2 =

j,k∈T,j̸=k

|αj|
2
|⟨ak,aj⟩|

2
+
i,j,k∈T,i̸=j

ᾱjαi⟨ak,ai⟩⟨ak,aj⟩

ε2

M−1
∥α∥2ℓ2+

i,j∈T,i̸=j

|αj|
2+|αi|

2

2

2ε

M−1
+
ε2(M−2)

(M−1)2
(2ε+ε2)∥α∥2ℓ2.

Therefore,

(1−2ε−ε2)∥α∥2ℓ2 ∥(A∗z)T∥
2
ℓ2 (1+ε)2∥α∥2ℓ2,

and we obtain

1−2ε−ε2

1+ε
∥z∥2ℓ2 ∥(A∗z)T∥

2
ℓ2

(1+ε)2

1−ε
∥z∥2ℓ2,

which implies (A.1) if ε<1/37.
In order to compute the smallest nonzero singular value of B we observe that

min
z∈R(B),||z||ℓ2=1

z∗BB∗z= min
z∈R(B),||z||ℓ2=1

(A∗z)∗TXTLTL
∗
T̄XT(A

∗z)T

(1−2ε)2 min
y∈CM||y||ℓ2=1

y∗XTLTL
∗
T̄XTy (1−2ε)2µ2(γ)2,

where we have used that γ is the smallest singular value of L. Since σmax(B
δ−B) δ, we

conclude that Bδ=Qδ+Qδ0, where Q
δ has M nonzero singular values, with smallest nonzero 

singular value

σmin(Q
δ) µγ(1−2ε)−δ,

and Qδ0 has largest singular value σmax(Q
δ
0) δ. If 2δ<µγ(1−2ε), then we can discard Qδ0

by truncation of the singular values smaller than the noise level. We now apply Wedin theorem 
[35] (see theorem A.1 below) to obtain

 
∥PR(Qδ)−PR(B)∥ℓ2

δ

µγ(1−2ε)
.

□

Theorem A.1 (Wedin). Let B=Q+Q0, where Q has the SVD Q=UΣV, and consider
the perturbed matrix Bδ=B+E. If there exists a decomposition Bδ=Qδ+Qδ0, and two 
constants α 0 and β>0 such that largest singular value σmax(Q0) α and smallest sin-
gular value σmin(Q

δ) α+β, then the distance between the orthogonal projections onto the
subspaces R(Q) and R(Qδ) is bounded by

7 This is an overestimate. It sufices to have ε−ε2−4ε3>0.
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∥PR(Qδ)−PR(Q)∥ℓ2
δ

β
, (A.2)

where δ= max(∥EV∥ℓ2,∥E
∗U∥ℓ2).

Appendix B.  The single frequency phase retrieval problem

We consider here the same imaging coniguration as in section 4.1, where signals of only one 
frequency ω are sent from an array of transducers that emit and record the signals. However, 
we assume now that only the intensities of the signals can be measured, so only the amplitudes 
square of the data vectors bq=Aρq are recorded. Then, the phase retrieval problem is to ind
the unknown vector ρ from the family of quadratic equations

|Aρq|
2=|bq|

2, q=1,...,ℵ, (B.1)

where |·| is understood component wise.

B.1.  A single receiver

Problem (B.1) is nonlinear and nonconvex and, hence, dificult to solve. In fact, it is in general 
NP hard [29]. However, if an appropriate set of illuminations is used, we can take advantage 
of the polarization identity

2 Re⟨u,v⟩=|u+v|2−|u|2−|v|2

2 Im⟨u,v⟩=|u−iv|2−|u|2−|v|2
 (B.2)

to solve simple linear systems of the form

Aρq=m
(r)
q , q=1,...,ℵ, (B.3)

for  a ixed  receiver  location xr. The  polarization  identity  allows  us  to ind  the  inner  prod-

uct between two complex numbers and, therefore, its phase differences. In (B.3), m
(r)
q is the

vector whose ith component is the correlation b
(r)
q b

(r)
ei between two signals measured at the

receiver ⃗xr; one corresponding to a general illumination fq(ω) and the other to an illumination 
ei whose entries are all zero except the ith entry which is one. Using the polarization identity 

(B.2) we can obtain b
(r)
q b

(r)
ei from linear combinations of the magnitudes squared |b

(r)
q |2, |b

(r)
ei|
2,

|b
(r)
q +b

(r)
ei|
2, and |b

(r)
q +ib

(r)
ei|
2 [24]. A physical interpretation of (B.3) is as follows. Send an

illumination fq(ω), collect the response at ⃗xr, time reverse the received signal at ⃗xr, and send 

it back to probe the medium again. Then, m
(r)
q represents the signals recorded at all receivers

x⃗i, i=1,...,N.
To wrap up, if the phases are not measured but we control the illuminations, the images can 

be formed by solving (B.3) using a MUSIC algorithm with several vectors m
(r)
q obtained in

the data acquisition process. In the approach explained here the receiver is ixed. In the next 
subsection we explain how to image with the MUSIC algorithm using intensity data gathered 
at several receivers.
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B.2.  Several receivers

In  [26],  we  propose  to  image  using  MUSIC  with  the  frequency  interferometric  matrix 
M(ω)=P∗(ω)P(ω) which can be obtained from intensity-only measurements if the illumi-

nations are controlled. The columns of this matrix are the vectors m
(r)
q, r=1,...,N, obtained

with the illuminations fq=ei, i=1,...,N. Observe that each entry of the interferometric 
matrix M(ω) can be written as

mij=
N

k=1

bkībkj,

where bki=|bki|e
iθki  denotes  the  signal  (with  phase)  received  at ⃗xk  for  illumination ei.  To

recover bkībkj it sufices to measure the amplitudes |bki|, |bkj| and to ind the phase differences 
θki−θkj, k=1,...,N. The amplitudes (squared) are recorded using the illumination vectors
ei, i=1, 2,...,N. The phase differences can be recovered as follows. Since

θki−θkj=(θk1−θkj)−(θk1−θki),

it  sufices  to ind  the  phase  differences θk1−θkj for j=2,...,N,  which  means  that  only
the phase differences between the irst vector b1 and all the other vectors are needed. If all 
bk1≠0, these phase differences can be found from the polarization identities (B.2). When
the  image  is  sparse,  the  assumption bk1≠0  is  not  restrictive  because  of  the  uncertainty
principle [11].
Since matrices M(ω) and P(ω) have the same column space MUSIC can form the images 

using the SVD of M(ω) and the column vectors of matrix (23) as imaging vectors.
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