33 research outputs found

    The Wide-field Infrared Survey Explorer (WISE): Mission Description and Initial On-orbit Performance

    Full text link
    The all sky surveys done by the Palomar Observatory Schmidt, the European Southern Observatory Schmidt, and the United Kingdom Schmidt, the InfraRed Astronomical Satellite and the 2 Micron All Sky Survey have proven to be extremely useful tools for astronomy with value that lasts for decades. The Wide-field Infrared Survey Explorer is mapping the whole sky following its launch on 14 December 2009. WISE began surveying the sky on 14 Jan 2010 and completed its first full coverage of the sky on July 17. The survey will continue to cover the sky a second time until the cryogen is exhausted (anticipated in November 2010). WISE is achieving 5 sigma point source sensitivities better than 0.08, 0.11, 1 and 6 mJy in unconfused regions on the ecliptic in bands centered at wavelengths of 3.4, 4.6, 12 and 22 microns. Sensitivity improves toward the ecliptic poles due to denser coverage and lower zodiacal background. The angular resolution is 6.1, 6.4, 6.5 and 12.0 arc-seconds at 3.4, 4.6, 12 and 22 microns, and the astrometric precision for high SNR sources is better than 0.15 arc-seconds.Comment: 22 pages with 19 included figures. Updated to better match the accepted version in the A

    Application of track-before-detect techniques in GNSS-based passive radar for maritime surveillance

    Get PDF
    GNSS-based passive radar has been recently proved able to enable moving target detection in maritime surveillance applications. The main restriction lies in the low Equivalent Isotropic Radiated Power (EIRP) level of navigation satellites. Extending the integration times with proper target motion compensation has been shown to be a viable solution to improve ship detectability, but this involves computational complexity and increasing sensitivity to motion model mismatches. In this work, we consider the application of a Track-Before-Detect (TBD) method to considerably increase the integration time (and therefore the detection capability) at the same time keeping the computational complexity affordable by practical systems. Dynamic programming TBD algorithms have been specialized for the considered framework and tested against experimental dataset. The obtained results show the effectiveness of this approach to improve the detection capability of the system despite the restricted power budget

    Novel Methods in Computational Imaging with Applications in Remote Sensing

    Get PDF
    This dissertation is devoted to novel computational imaging methods with applications in remote sensing. Computational imaging methods are applied to three distinct applications including imaging and detection of buried explosive hazards utilizing array radar, high resolution imaging of satellites in geosynchronous orbit utilizing optical hypertelescope arrays, and characterization of atmospheric turbulence through multi-frame blind deconvolution utilizing conventional optical digital sensors. The first application considered utilizes a radar array employed as a forward looking ground penetrating radar system with applications in explosive hazard detection. A penalized least squares technique with sparsity-inducing regularization is applied to produce imagery, which is consistent with the expectation that objects are sparsely populated but extended with respect to the pixel grid. Additionally, a series of pre-processing steps is demonstrated which result in a greatly reduced data size and computational cost. Demonstrations of the approach are provided using experimental data and results are given in terms of signal to background ratio, image resolution, and relative computation time. The second application involves a sparse-aperture telescope array configured as a hypertelescope with applications in long range imaging. The penalized least squares technique with sparsity-inducing regularization is adapted and applied to this very different imaging modality. A comprehensive study of the algorithm tuning parameters is performed and performance is characterized using the Structure Similarity Metric (SSIM) to maximize image quality. Simulated measurements are used to show that imaging performance achieved using the pro- posed algorithm compares favorably in comparison to conventional Richardson-Lucy deconvolution. The third application involves a multi-frame collection from a conventional digital sensor with the primary objective of characterizing the atmospheric turbulence in the medium of propagation. In this application a joint estimate of the image is obtained along with the Zernike coefficients associated with the atmospheric PSF at each frame, and the Fried parameter r0 of the atmosphere. A pair of constraints are applied to a penalized least squares objective function to enforce the theoretical statistics of the set of PSF estimates as a function of r0. Results of the approach are shown with both simulated and experimental data and demonstrate excellent agreement between the estimated r0 values and the known or measured r0 values respectively

    The Wide-Field Infrared Survey Explorer (WISE): Mission Description and Initial On-Orbit Performance

    Get PDF
    The all sky surveys done by the Palomar Observatory Schmidt, the European Southern Observatory Schmidt, and the United Kingdom Schmidt, the InfraRed Astronomical Satellite and the 2 Micron All Sky Survey have proven to be extremely useful tools for astronomy with value that lasts for decades. The Wide-field Infrared Survey Explorer is mapping the whole sky following its launch on 14 December 2009. WISE began surveying the sky on 14 Jan 2010 and completed its first full coverage of the sky on July 17. The survey will continue to cover the sky a second time until the cryogen is exhausted (anticipated in November 2010). WISE is achieving 5 sigma point source sensitivities better than 0.08, 0.11, 1 and 6 mJy in unconfused regions on the ecliptic in bands centered at wavelengths of 3.4, 4.6, 12 and 22 micrometers. Sensitivity improves toward the ecliptic poles due to denser coverage and lower zodiacal background. The angular resolution is 6.1", 6.4", 6.5" and 12.0" at 3.4, 4.6, 12 and 22 micrometers, and the astrometric precision for high SNR sources is better than 0.15"

    Local trajectory parameters estimation and detection of moving targets in Rayleigh noise

    No full text
    The problem of detection of moving targets and estimation of local trajectory parameters based on the analysis of sensor data in the form of two-dimensional image is considered. In accordance with the target and sensor models, probability distribution of noise at the output of the detector is Rayleigh distribution, while probability distribution of signal is Rice distribution. Two trajectory parameters estimation techniques are considered: ordinary least squares and Hough transform. A detection stage based on the integration of an input signal along estimated trajectory is proposed. Statistical modeling was performed and detection characteristics were obtained.Рассмотрена проблема и предложен алгоритм обнаружения и локальной оценки параметров траектории движущихся целей на основе анализа данных в форме двумерного изображения. Исходя из принятых моделей цели и детектора, фоновая помеха имеет распределение Рэлея, а сигнал — распределение Райса. Рассмотрены два метода оценки параметров траектории: метод наименьших квадратов и метод преобразования Хафа. Предложена процедура обнаружения цели, основанная на интегрировании отраженной мощности вдоль вероятной траектории. Проведено статистическое моделирование, по результатам которого построены характеристики обнаружения для предложенного алгоритма.Розглянуто проблему та запропоновано алгоритм виявлення та локальної оцінки параметрів траєкторії рухомих цілей на основі аналізу даних у формі двовимірного зображення. Виходячи з прийнятих моделей цілі та детектора, фонова завада має розподіл Релея, а сигнал — розподіл Райса. Розглянуто два методи оцінки параметрів траєкторії: метод найменших квадратів і метод перетворення Хафа. Запропоновано процедуру виявлення цілі, що ґрунтується на інтегруванні відбитої потужності вздовж імовірної траєкторії. Проведено статистичне моделювання, за результатам якого побудовано характеристики виявлення для запропонованого алгоритму

    Random finite sets in multi-target tracking - efficient sequential MCMC implementation

    Get PDF
    Over the last few decades multi-target tracking (MTT) has proved to be a challenging and attractive research topic. MTT applications span a wide variety of disciplines, including robotics, radar/sonar surveillance, computer vision and biomedical research. The primary focus of this dissertation is to develop an effective and efficient multi-target tracking algorithm dealing with an unknown and time-varying number of targets. The emerging and promising Random Finite Set (RFS) framework provides a rigorous foundation for optimal Bayes multi-target tracking. In contrast to traditional approaches, the collection of individual targets is treated as a set-valued state. The intent of this dissertation is two-fold; first to assert that the RFS framework not only is a natural, elegant and rigorous foundation, but also leads to practical, efficient and reliable algorithms for Bayesian multi-target tracking, and second to provide several novel RFS based tracking algorithms suitable for the specific Track-Before-Detect (TBD) surveillance application. One main contribution of this dissertation is a rigorous derivation and practical implementation of a novel algorithm well suited to deal with multi-target tracking problems for a given cardinality. The proposed Interacting Population-based MCMC-PF algorithm makes use of several Metropolis-Hastings samplers running in parallel, which interact through genetic variation. Another key contribution concerns the design and implementation of two novel algorithms to handle a varying number of targets. The first approach exploits Reversible Jumps. The second approach is built upon the concepts of labeled RFSs and multiple cardinality hypotheses. The performance of the proposed algorithms is also demonstrated in practical scenarios, and shown to significantly outperform conventional multi-target PF in terms of track accuracy and consistency. The final contribution seeks to exploit external information to increase the performance of the surveillance system. In multi-target scenarios, kinematic constraints from the interaction of targets with their environment or other targets can restrict target motion. Such motion constraint information is integrated by using a fixed-lag smoothing procedure, named Knowledge-Based Fixed-Lag Smoother (KB-Smoother). The proposed combination IP-MCMC-PF/KB-Smoother yields enhanced tracking

    Aeronautical Engineering: A continuing bibliography with indexes

    Get PDF
    This bibliography lists 382 reports, articles and other documents introduced into the NASA scientific and technical information system in June 1982

    The 1982 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    A NASA/ASEE Summer Faculty Fellowship Research Program was conducted to further the professional knowledge of qualified engineering and science faculty members, to stimulate an exchange of ideas between participants and NASA, to enrich and refresh the research and teaching activities of participants' institutions, and to contribute to the research objectives of the NASA Centers

    Spatial interferometry in optical astronomy

    Get PDF
    A bibliographic guide is presented to publications of spatial interferometry techniques applied to optical astronomy. Listings appear in alphabetical order, by first author, as well as in specific subject categories listed in chronological order, including imaging theory and speckle interferometry, experimental techniques, and observational results of astronomical studies of stars, the Sun, and the solar system
    corecore