14 research outputs found

    Performance Evaluation of Quarter Shift Dual Tree Complex Wavelet Transform Based Multifocus Image Fusion Using Fusion rules

    Get PDF
    In this paper, multifocus image fusion using quarter shift dual tree complex wavelet transform is proposed. Multifocus image fusion is a technique that combines the partially focused regions of multiple images of the same scene into a fully focused fused image. Directional selectivity and shift invariance properties are essential to produce a high quality fused image. However conventional wavelet based fusion algorithms introduce the ringing artifacts into fused image due to lack of shift invariance and poor directionality. The quarter shift dual tree complex wavelet transform has proven to be an effective multi-resolution transform for image fusion with its directional and shift invariant properties. Experimentation with this transform led to the conclusion that the proposed method not only produce sharp details (focused regions) in fused image due to its good directionality but also removes artifacts with its shift invariance in order to get high quality fused image. Proposed method performance is compared with traditional fusion methods in terms of objective measures.

    Survey on wavelet based image fusion techniques

    Get PDF
    Image fusion is the process of combining multiple images into a single image without distortion or loss of information. The techniques related to image fusion are broadly classified as spatial and transform domain methods. In which, the transform domain based wavelet fusion techniques are widely used in different domains like medical, space and military for the fusion of multimodality or multi-focus images. In this paper, an overview of different wavelet transform based methods and its applications for image fusion are discussed and analysed

    Blending of Images Using Discrete Wavelet Transform

    Get PDF
    The project presents multi focus image fusion using discrete wavelet transform with local directional pattern and spatial frequency analysis. Multi focus image fusion in wireless visual sensor networks is a process of blending two or more images to get a new one which has a more accurate description of the scene than the individual source images. In this project, the proposed model utilizes the multi scale decomposition done by discrete wavelet transform for fusing the images in its frequency domain. It decomposes an image into two different components like structural and textural information. It doesn’t down sample the image while transforming into frequency domain. So it preserves the edge texture details while reconstructing image from its frequency domain. It is used to reduce the problems like blocking, ringing artifacts occurs because of DCT and DWT. The low frequency sub-band coefficients are fused by selecting coefficient having maximum spatial frequency. It indicates the overall active level of an image. The high frequency sub-band coefficients are fused by selecting coefficients having maximum LDP code value LDP computes the edge response values in all eight directions at each pixel position and generates a code from the relative strength magnitude. Finally, fused two different frequency sub-bands are inverse transformed to reconstruct fused image. The system performance will be evaluated by using the parameters such as Peak signal to noise ratio, correlation and entrop

    Quality Assessments of Various Digital Image Fusion Techniques

    Get PDF
    Image Fusion is a process of combining the relevant information from a set of images into a single image, where the resultant fused image will be more informative and complete than any of the input images. The goal of image fusion (IF) is to integrate complementary multisensory, multitemporal and/or multiview information into one new image containing information the quality of which cannot be achieved otherwise. It has been found that the standard fusion methods perform well spatially but usually introduce spectral distortion, Image fusion techniques can improve the quality and increase the application of these data. In this Project we use various image fusion techniques using discrete wavelet transform and discrete cosine transform and it is proposed to analyze the fused image, after that by using various quality assessment factors it is proposed to analyze subject images and draw a conclusion that from which transformation technique we can find the better results. In this project several applications and comparisons between different fusion schemes and rules are addressed

    Comparison of DCT, SVD and BFOA based multimodal biometric watermarking systems

    Get PDF
    AbstractDigital image watermarking is a major domain for hiding the biometric information, in which the watermark data are made to be concealed inside a host image imposing imperceptible change in the picture. Due to the advance in digital image watermarking, the majority of research aims to make a reliable improvement in robustness to prevent the attack. The reversible invisible watermarking scheme is used for fingerprint and iris multimodal biometric system. A novel approach is used for fusing different biometric modalities. Individual unique modalities of fingerprint and iris biometric are extracted and fused using different fusion techniques. The performance of different fusion techniques is evaluated and the Discrete Wavelet Transform fusion method is identified as the best. Then the best fused biometric template is watermarked into a cover image. The various watermarking techniques such as the Discrete Cosine Transform (DCT), Singular Value Decomposition (SVD) and Bacterial Foraging Optimization Algorithm (BFOA) are implemented to the fused biometric feature image. Performance of watermarking systems is compared using different metrics. It is found that the watermarked images are found robust over different attacks and they are able to reverse the biometric template for Bacterial Foraging Optimization Algorithm (BFOA) watermarking technique

    A Novel Fusion Framework Based on Adaptive PCNN in NSCT Domain for Whole-Body PET and CT Images

    Get PDF
    The PET and CT fusion images, combining the anatomical and functional information, have important clinical meaning. This paper proposes a novel fusion framework based on adaptive pulse-coupled neural networks (PCNNs) in nonsubsampled contourlet transform (NSCT) domain for fusing whole-body PET and CT images. Firstly, the gradient average of each pixel is chosen as the linking strength of PCNN model to implement self-adaptability. Secondly, to improve the fusion performance, the novel sum-modified Laplacian (NSML) and energy of edge (EOE) are extracted as the external inputs of the PCNN models for low- and high-pass subbands, respectively. Lastly, the rule of max region energy is adopted as the fusion rule and different energy templates are employed in the low- and high-pass subbands. The experimental results on whole-body PET and CT data (239 slices contained by each modality) show that the proposed framework outperforms the other six methods in terms of the seven commonly used fusion performance metrics

    Infrared and Visible Image Fusion Based on Oversampled Graph Filter Banks

    Get PDF
    The infrared image (RI) and visible image (VI) fusion method merges complementary information from the infrared and visible imaging sensors to provide an effective way for understanding the scene. The graph filter bank-based graph wavelet transform possesses the advantages of the classic wavelet filter bank and graph representation of a signal. Therefore, we propose an RI and VI fusion method based on oversampled graph filter banks. Specifically, we consider the source images as signals on the regular graph and decompose them into the multiscale representations with M-channel oversampled graph filter banks. Then, the fusion rule for the low-frequency subband is constructed using the modified local coefficient of variation and the bilateral filter. The fusion maps of detail subbands are formed using the standard deviation-based local properties. Finally, the fusion image is obtained by applying the inverse transform on the fusion subband coefficients. The experimental results on benchmark images show the potential of the proposed method in the image fusion applications

    Non-Standard Imaging Techniques

    Get PDF
    The first objective of the thesis is to investigate the problem of reconstructing a small-scale object (a few millimeters or smaller) in 3D. In Chapter 3, we show how this problem can be solved effectively by a new multifocus multiview 3D reconstruction procedure which includes a new Fixed-Lens multifocus image capture and a calibrated image registration technique using analytic homography transformation. The experimental results using the real and synthetic images demonstrate the effectiveness of the proposed solutions by showing that both the fixed-lens image capture and multifocus stacking with calibrated image alignment significantly reduce the errors in the camera poses and produce more complete 3D reconstructed models as compared with those by the conventional moving lens image capture and multifocus stacking. The second objective of the thesis is modelling the dual-pixel (DP) camera. In Chapter 4, to understand the potential of the DP sensor for computer vision applications, we study the formation of the DP pair which links the blur and the depth information. A mathematical DP model is proposed which can benefit depth estimation by the blur. These explorations motivate us to propose an end-to-end DDDNet (DP-based Depth and Deblur Network) to jointly estimate the depth and restore the image . Moreover, we define a reblur loss, which reflects the relationship of the DP image formation process with depth information, to regularize our depth estimate in training. To meet the requirement of a large amount of data for learning, we propose the first DP image simulator which allows us to create datasets with DP pairs from any existing RGBD dataset. As a side contribution, we collect a real dataset for further research. Extensive experimental evaluation on both synthetic and real datasets shows that our approach achieves competitive performance compared to state-of-the-art approaches. Another (third) objective of this thesis is to tackle the multifocus image fusion problem, particularly for long multifocus image sequences. Multifocus image stacking/fusion produces an in-focus image of a scene from a number of partially focused images of that scene in order to extend the depth of field. One of the limitations of the current state of the art multifocus fusion methods is not considering image registration/alignment before fusion. Consequently, fusing unregistered multifocus images produces an in-focus image containing misalignment artefacts. In Chapter 5, we propose image registration by projective transformation before fusion to remove the misalignment artefacts. We also propose a method based on 3D deconvolution to retrieve the in-focus image by formulating the multifocus image fusion problem as a 3D deconvolution problem. The proposed method achieves superior performance compared to the state of the art methods. It is also shown that, the proposed projective transformation for image registration can improve the quality of the fused images. Moreover, we implement a multifocus simulator to generate synthetic multifocus data from any RGB-D dataset. The fourth objective of this thesis is to explore new ways to detect the polarization state of light. To achieve the objective, in Chapter 6, we investigate a new optical filter namely optical rotation filter for detecting the polarization state with a fewer number of images. The proposed method can estimate polarization state using two images, one with the filter and another without. The accuracy of estimating the polarization parameters using the proposed method is almost similar to that of the existing state of the art method. In addition, the feasibility of detecting the polarization state using only one RGB image captured with the optical rotation filter is also demonstrated by estimating the image without the filter from the image with the filter using a generative adversarial network

    Design and Analysis of A New Illumination Invariant Human Face Recognition System

    Get PDF
    In this dissertation we propose the design and analysis of a new illumination invariant face recognition system. We show that the multiscale analysis of facial structure and features of face images leads to superior recognition rates for images under varying illumination. We assume that an image I ( x,y ) is a black box consisting of a combination of illumination and reflectance. A new approximation is proposed to enhance the illumination removal phase. As illumination resides in the low-frequency part of images, a high-performance multiresolution transformation is employed to accurately separate the frequency contents of input images. The procedure is followed by a fine-tuning process. After extracting a mask, feature vector is formed and the principal component analysis (PCA) is used for dimensionality reduction which is then proceeded by the extreme learning machine (ELM) as a classifier. We then analyze the effect of the frequency selectivity of subbands of the transformation on the performance of the proposed face recognition system. In fact, we first propose a method to tune the characteristics of a multiresolution transformation, and then analyze how these specifications may affect the recognition rate. In addition, we show that the proposed face recognition system can be further improved in terms of the computational time and accuracy. The motivation for this progress is related to the fact that although illumination mostly lies in the low-frequency part of images, these low-frequency components may have low- or high-resonance nature. Therefore, for the first time, we introduce the resonance based analysis of face images rather than the traditional frequency domain approaches. We found that energy selectivity of the subbands of the resonance based decomposition can lead to superior results with less computational complexity. The method is free of any prior information about the face shape. It is systematic and can be applied separately on each image. Several experiments are performed employing the well known databases such as the Yale B, Extended-Yale B, CMU-PIE, FERET, AT&T, and LFW. Illustrative examples are given and the results confirm the effectiveness of the method compared to the current results in the literature
    corecore