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The PET and CT fusion images, combining the anatomical and functional information, have important clinical meaning. This
paper proposes a novel fusion framework based on adaptive pulse-coupled neural networks (PCNNs) in nonsubsampled contourlet
transform (NSCT) domain for fusing whole-body PET and CT images. Firstly, the gradient average of each pixel is chosen as the
linking strength of PCNN model to implement self-adaptability. Secondly, to improve the fusion performance, the novel sum-
modified Laplacian (NSML) and energy of edge (EOE) are extracted as the external inputs of the PCNN models for low- and
high-pass subbands, respectively. Lastly, the rule of max region energy is adopted as the fusion rule and different energy templates
are employed in the low- and high-pass subbands.The experimental results on whole-body PET and CT data (239 slices contained
by each modality) show that the proposed framework outperforms the other six methods in terms of the seven commonly used
fusion performance metrics.

1. Introduction

Medical images are very significant to clinical diagnosis
and treatment. However, only one modality of image could
not provide sufficient clinical information. For example, the
Positron Emission Tomography (PET) images only reflect
functional information and the Computed Tomography (CT)
images only reflect the anatomical information [1]. There-
fore, it is necessary to use different modalities of images
to provide complementary information to physicians for
better diagnosis. Medical image fusion is the process of
collaboratively combining the complementary information
frommultimodal sourcemedical images into one single fused
image for further process. The fused image is suitable for
visual perception, analysis, and diagnosis which is of great
clinical meaning [2, 3].

According to different image domains, image fusion
methods are generally classified into two categories: spatial
domain-based and transform domain-based methods [4].
The spatial domain-based methods perform on the pixels of
the original image directly. They are simple but with poor
performance as they would lead to reduction of the contrast

and distortion of the spectral characteristics [2]. Currently,
the image fusion methods are mainly based on the transform
domain, such as discrete wavelet transform (DWT), nonsub-
sampled shearlet transform (NSST), contourlet transform,
and nonsubsampled contourlet transform (NSCT) [1, 4]. By
transforming, source images could be decomposed into high-
and low-pass subbands. After that, different fusion rules
could be designed for different subbands. Finally, the inverse
transform would be adopted to obtain the final fusion result.

It is known that the fusion result could be improved
by making better use of image information. NSCT is a
multiscale, multidirectional, and fully shift-invariant trans-
form which could well suppress pseudo-Gibbs phenomena
[5, 6]. Besides, more information could be obtained by
NSCT leading to better fusion performance. Thus, NSCT is
suitable for image fusion [7–10]. For example, [5] proposed
a fusion method based on NSCT which outperformed the
DWT-based methods. However, the method did not make
enough use of the feature information (e.g., edges, textures)
contained by source images as only the gray value of pixel was
considered in the low-pass subband. Besides, the fusion rule
of low-pass subband, averaging method, could lead to loss
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of contrast and hence possible cancellation of few patterns
in source images. Reference [8] aimed to improve the fusion
performance by using maximum entropy of squares of the
coefficients in a local window for the low-pass subband and
maximum weighted sum-modified Laplacian for the high-
pass subbands. Quantitative evaluation results demonstrated
that the method was superior to the compared methods. In
[10], the average weighting and maximum regional energy
rules were adopted as the fusion rules for low- and high-pass
subbands, respectively. Results showed the effectiveness of the
method on the fusion of images of brains.

However, there is still room to improve for the fusion per-
formance of NSCT-based methods. PCNN, a visual cortex-
inspired neural network, involves the global features of the
source images that could extract and contain the detailed
information effectively [11, 12]. Therefore, many researchers
are devoted to combine PCNN with NSCT for a better
fusion performance [13–16]. For instance, [13] adoptedPCNN
in the high-pass subbands of NSCT domain and achieved
better fusion results thanmethods based on Laplacian, DWT,
and NSCT. Nevertheless, this PCNN model had lack of
adaptability as there were many parameters needed to be
adjusted manually. To improve the adaptability, [14] devel-
oped a fusion method based on adaptive dual-channel unit-
linking PCNN in NSCT domain to decrease the number
of parameters and achieved satisfactory fusion performance.
Human eyes are sensitive to edge, direction, and texture
information rather than single pixels; however, methods in
[13, 14] only considered the normalized gray level of image
pixels as the external input of PCNN, which could affect the
fusion effectiveness to some extent. Reference [15] employed
an adaptive PCNN-NSCT based fusion method where the
orientation information was utilized as the linking strength
in PCNN model. To make better use of edge information,
[15] adopted the modified spatial frequency (SF) as the
external input of PCNN, which achieved a preferable fusion
performance. However, in [15], the PCNN was only adopted
in the high-pass subbands where the feature information
contained by low-pass subbands was not considered enough.

In conclusion, it is observed that although the PCNN-
NSCT based methods could achieve good results, there
are still some critical factors which could affect the fusion
performance. One is that many parameters need to be set
manually in PCNN, that is, lack of adaptability. Another is
how to design the external input of PCNN and the fusion
rules for more ideal fusion results. To address these issues,
in this paper, a modified fusion framework based on PCNN-
NSCT is proposed for fusing whole-body PET and CT
images. There are mainly three contributions. Firstly, for the
sake of implementing the adaptability of PCNN, the average
gradient of each pixel is utilized as the linking strength.
Secondly, to take better advantages of feature information
contained by input images, we use PCNN model in both the
low- and high-pass subbands, where the novel sum-modified
Laplacian (NSML) and the energy of edge (EOE) are selected
as the external input of the PCNN model in low- and high-
pass subbands, respectively. This is because NSML [14] could
well reflect the edge details of low-pass subband and the EOE
[16] could well retain the details of source input as it could
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Figure 1: Two-stage decomposition framework of NSCT.

denote the edge features in horizontal, vertical, and diagonal
directions. Lastly, the region energy is chosen as the fusion
rule and two different energy templates are used for the low-
and high-pass subbands, respectively. Experiments onwhole-
body PET and CT images showed the effectiveness of our
framework.

The remaining sections of this paper are organized as
follows. Section 2 reviews the theory of NSCT and PCNN.
Section 3 introduces the proposed framework in detail.
Section 4 presents the experimental results and discussion.
Finally, the conclusions are given in Section 5.

2. Background Knowledge

2.1. Nonsubsampled Contourlet Transform (NSCT). NSCT
is a multiscale, multidirectional, and translation invariant
transform [17, 18]. Different from contourlet transform [19],
NSCT does not employ down-samplers/up-samplers so that
it could ensure the translation invariance and could effec-
tively represent the edge and contour information. As a
result, the pseudo-Gibbs phenomena could be well overcome
which could improve the performance of image fusion. The
structure of a NSCT with two-stage decomposition is shown
in Figure 1.

As shown in Figure 1, NSCT is composed by nonsub-
sampled pyramid (NSP) decomposition and nonsubsampled
directional filter banks (NSDFB). These two parts could
ensure the multiscale property and the multidirectional
property, respectively. Firstly, the NSP is performed on the
source image to achieve multiscale decomposition. Through
NSP decomposition, one low-pass subband and one high-
pass subband could be obtained at each NSCT decompo-
sition stage. Then, the NSDFB is employed on the high-
pass subbands at each stage to produce high-pass directional
coefficients. Through this, the more detailed directional
informationwhich is important for fusion could be extracted,
with, finally, iterating the former steps on the low-pass
subband until the defined decomposition levels are reached.
As a result, one low-pass subband coefficient and several
high-pass subband coefficients with the same size as the
source image could be obtained.

2.2. Pulse Couple Neuron Network (PCNN). PCNN is a
single layered, two-dimensional array of laterally connected
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network of integrate-and-fire neurons [20]. Each particular
neuron corresponds to one particular pixel, which would be
also affected by the surrounding neurons. As the traditional
PCNN model is complicated, a simplified PCNN model [21]
is used in this paper. As shown in Figure 2, a PCNN neuron
contains three parts: receptive field, linking modulation field,
and pulse generator. Mathematically, the PCNNmodel could
be descripted as

𝐹𝑖𝑗 (𝑛) = 𝑆𝑖𝑗
𝐿 𝑖𝑗 (𝑛) = exp (−𝛼𝐿) 𝐿 𝑖𝑗 (𝑛 − 1) + 𝑉𝐿∑

𝑘𝑙

𝑊𝑖𝑗𝑘𝑙𝑌𝑘𝑙 (𝑛 − 1)
𝑈𝑖𝑗 (𝑛) = 𝐹𝑖𝑗 (𝑛) (1 + 𝛽𝐿 𝑖𝑗 (𝑛))
𝜃𝑖𝑗 (𝑛) = exp (−𝛼𝜃) 𝜃𝑖𝑗 (𝑛 − 1) + 𝑉𝜃𝑌𝑖𝑗 (𝑛)
𝑌𝑖𝑗 (𝑛) = {{{

1, 𝑈𝑖𝑗 (𝑛) ≥ 𝜃𝑖𝑗
0, 𝑈𝑖𝑗 (𝑛) < 𝜃𝑖𝑗.

(1)

Firstly, the input of the neuron consists of two parts:
the external input (external stimulus) 𝑆𝑖𝑗 and the pulse
output of its neighboring neurons 𝑌𝑘𝑙. Traditionally, 𝑆𝑖𝑗 is
the normalized gray value of the corresponding pixel (𝑖, 𝑗).
Subsequently, the nonlinear modulation is performed in the
linking modulation filed and then the internal activity 𝑈𝑖𝑗
could be obtained. Finally, 𝑈𝑖𝑗 is compared with the dynamic
threshold 𝜃𝑖𝑗. If𝑈𝑖𝑗 is larger than 𝜃𝑖𝑗, then the neuronwould be
ignited. In addition, 𝑛 is the total iteration times. (𝛼𝐿, 𝛼𝜃) and(𝑉𝐿, 𝑉𝜃) are the time constants and normalizing constants for
the linked input and dynamic threshold, respectively. The
linking strength𝛽 reflects theweight of linking field that plays
a key role in fusion. Traditionally, 𝛽 is chosen according to
experiences which is lack of self-adaptability.

3. Our Proposed Fusion Framework

The linking strength 𝛽 plays a key role in PCNN which
determines the lifting range and exciting character. It is gen-
erally determined manually according to experience which
is lack of self-adaptability. In addition, the external input of
the PCNN is usually the pixel coefficient in spatial domain
or in the transform domain which does not make full use
of the edge information of the source image. To address
these shortcomings, this paper proposes a novel PCNN-
NSCT based fusion framework where the regional average
gradient is as the linking strength to achieve self-adaptability.
Moreover, the novel sum-modified Laplacian (NSML) and
energy of edge (EOE) are calculated as the external inputs
for the low- and high-pass PCNNs, respectively. Besides,
it is known that the fusion rules determine the fusion
effectiveness. Generally, the maximum or averaging rules are
used as the fusion rules which will lead to loss of contrast or
information.Thus, the rule of max region energy is employed
as the fusion rule in this paper. To further improve the fusion
effectiveness, different energy templates are used for low- and
high-pass subbands.
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Figure 2: The model of PCNN.

Since devices that capture CT and PET images are
different from each other, it is necessary to correct spatial
displacements such as offset, scale, and geometric distortion
in advance. In image fusion, the alignment or registration
process is important. In this paper, we adopt the registration
framework that we proposed in [22] including preprocessing,
feature extraction, and registration, which would not be
introduced in this paper.

Figure 3 illustrates the process flow of our proposed
fusion framework.The detailed fusion process consists of the
following steps:

(1) The NSCT decomposition is performed on both
the source PET and CT images. Then one low-pass
subband image and a series of high-pass subband
images could be obtained.

(2) The NSML feature and the EOE feature are computed
for the low- and high-pass subbands, respectively.
These features would be used as the external inputs
of the subsequent PCNNmodels. After that, both the
input coefficients of the PCNNmodels of the low- and
high-pass subbands are normalized to [0, 1].

(3) Through PCNN, the firing maps could be produced
for these subbands.

(4) The firing maps of the low- and high-pass subbands
could be fused according to the rule of max region
energy. Note that different energy templates are used
in low- and high-pass subbands.

(5) After getting the fused subbands, the inverse NSCT
is applied and then the final fused image could be
produced.

3.1. Novel Sum-Modified Laplacian (NSML). Laplacian energy
could well reflect the edge features of the low-pass subband
images, so theNSML is employed in this paper as the external
input of PCNN to improve the fusion performance. The
definition of NSML is as

𝑀(𝑖, 𝑗) = 󵄨󵄨󵄨󵄨2𝐶 (𝑖, 𝑗) − 𝐶 (𝑖 − 1, 𝑗) − 𝐶 (𝑖 + 1, 𝑗)󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨2𝐶 (𝑖, 𝑗) − 𝐶 (𝑖, 𝑗 − 1) − 𝐶 (𝑖, 𝑗 + 1)󵄨󵄨󵄨󵄨

NSML (𝑖, 𝑗) = ∑
𝑎

∑
𝑏

𝑊(𝑎, 𝑏) [𝑀 (𝑖 + 𝑎, 𝑖 + 𝑏)]2



4 Computational and Mathematical Methods in Medicine

CT image

PET image

High-pass
subbands

Low-pass
subband

Inverse
NSCT Fused image

Low-pass fusion rule

Computing 
NSML

PCNN
Model

Firing
map

Rule 1: Max 
region energy

Computing 
NSML

PCNN
Model

Firing
map

High-pass fusion rule

Computing 
EOE

PCNN
Model

Firing
map

Computing 
EOE

PCNN
Model

Firing
map

Low-pass
fused
subband

High-pass
fused
subbandsHigh-pass

subbands

Low-pass
sub-band

Rule 2: Max 
region energy

NSCT 
decomposition

NSCT 
decomposition

Figure 3: The process flow of the proposed image fusion framework.

𝑊(𝑎, 𝑏) = 115 [[[
1 2 12 3 21 2 1

]]
]
,

(2)
where 𝐶(𝑖, 𝑗)means the coefficients of the low-pass subband
image at (𝑖, 𝑗). 𝑎 and 𝑏 denote the sizes of neighbor window
which are generally 3 × 3, 5 × 5, and 7 × 7. In this paper, 3 × 3
is chosen for computing NSML. In addition, 𝑊 means the
weighted template, which emphasizes the coefficient at the
center of window.

3.2. Energy of Edge (EOE). Traditionally, the gray value of
the original pixel is utilized as the input of PCNN which
does not consider the effect of the neighborhoods. Moreover,
it is known that human eyes are more sensitive to edge
and directional and texture information rather than single
pixel information. In order to make better use of the edge
information, the EOE is selected as the external stimulation
for PCNN model for high-pass subbands. The definition of
EOE is shown as

EOE (𝑖, 𝑗) = ∑
(𝑖,𝑗)∈𝐷

𝑊(𝑖, 𝑗) 𝐿𝐸 (𝑖, 𝑗)
𝐿𝐸 (𝑖, 𝑗) = (𝐸1 ∗ 𝐶 (𝑖, 𝑗))2 + (𝐸2 ∗ 𝐶 (𝑖, 𝑗))2

+ (𝐸3 ∗ 𝐶 (𝑖, 𝑗))2

𝐸1 = [[
[
−1 −1 −12 2 2−1 −1 −1

]]
]

𝐸2 = [[
[
−1 2 −1−1 2 −1−1 2 −1

]]
]

𝐸3 = [[
[
−1 0 −1
0 4 0
−1 0 −1

]]
]
,

(3)

where𝑊 is the weighted template. 𝐷 denotes the neighbor-
hood of (𝑖, 𝑗). 𝐶(𝑖, 𝑗) means the coefficients of the high-pass
subband image at (𝑖, 𝑗). 𝐸1, 𝐸2, and 𝐸3 mean the directional
filtering operators. The EOE could well reflect the edge
information in horizontal, vertical, and diagonal directions.

3.3. Region Energy. The rules of weighted average and larger
absolute value are commonly used as the fusion rules to
calculate the fused coefficients. However, these methods
might lead to losing part of details of the source images
and reducing the contrast. To improve the fusion perfor-
mance, the relationships of the neighboring regions should
be considered. In this paper, the rule of max region energy is
adopted as the fusion rule. The definition of region energy is
shown in (4) and (5):

𝐸 (𝑖, 𝑗) = ∑
𝑎

∑
𝑏

𝑤 (𝑎, 𝑏) 𝐶2 (𝑖 + 𝑎, 𝑗 + 𝑏) (4)

𝑤1 = 19 [[[
1 1 1
1 1 1
1 1 1

]]
]

𝑤2 = 18 [[[
0 1 0
1 4 1
0 1 0

]]
]

(5)

𝐷𝐹𝐴,𝐵 (𝑖, 𝑗) = {{{
𝐷𝐴 (𝑖, 𝑗) if 𝐸𝐴 (𝑖, 𝑗) > 𝐸𝐵 (𝑖, 𝑗)
𝐷𝐵 (𝑖, 𝑗) if 𝐸𝐴 (𝑖, 𝑗) ≤ 𝐸𝐵 (𝑖, 𝑗) , (6)

where 𝐶(𝑖, 𝑗) means the coefficients of the firing map image
at (𝑖, 𝑗). 𝑤(𝑎, 𝑏) is the energy template. Different energy
templates are used for low- and high-pass subbands.𝑤1 is the
energy template used for low-pass subband images. And 𝑤2
is used for high-pass subbands to strengthen the coefficients
at the window center. In addition, the rule of max region
energy is defined as (6), where 𝐷𝐹𝐴,𝐵 is the fused coefficient
and 𝐷𝐴 and 𝐷𝐵 are the subband images which are obtained
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by employing NSCT on the source images 𝐴 and 𝐵. 𝐸𝐴 and𝐸𝐵 are the region energy for the corresponding firingmaps of𝐴 and 𝐵, respectively.
3.4. Improved PCNN. The linking strength 𝛽, reflecting the
variance of the coefficients of the subband images, plays
a key role in fusion process. In traditional PCNN based
fusion process, 𝛽 is usually assigned manually according to
experiences and all neurons in PCNN are set with the same
linking strength value. However, according to [17], the values
of𝛽 should not be all the same in different neurons. Besides, it
has been verified that 𝛽 is relevant to the image features of the
corresponding pixels of the input images. If the external input
coefficient is larger, then a higher value should be assigned
to 𝛽. As a result, considering the edge information of the
source image, the region average gradient is selected as the
linking strength to improve its self-adaptability in this paper.
The higher value of the average gradient, the higher clarity of
the image.The definition of region average gradient is shown
as

𝛽 (𝑖, 𝑗) = 𝑔 (𝑖, 𝑗) = 19
⋅ 1∑
𝑎=−1

1∑
𝑏=−1

{[𝑔1 (𝑖 + 𝑎, 𝑗 + 𝑏) + 𝑔2 (𝑖 + 𝑎, 𝑗 + 𝑏)]2 }1/2

𝑔1 (𝑖, 𝑗) = [𝐶 (𝑖, 𝑗) − 𝐶 (𝑖 + 1, 𝑗)]2
𝑔2 (𝑖, 𝑗) = [𝐶 (𝑖, 𝑗) − 𝐶 (𝑖, 𝑗 + 1)]2 ,

(7)

where 𝐶(𝑖, 𝑗) means the coefficients of the input image at(𝑖, 𝑗). 𝑔(𝑖, 𝑗) is the average gradient at (𝑖, 𝑗). The larger value
of 𝑔(𝑖, 𝑗)means that the image has a higher clarity. Moreover,
the higher the value of 𝛽 is, the earlier the ignition of the
correspondent neuron would be which will result in better
use of the detailed information of the input image and
increase the fusion effectiveness.

4. Results and Discussions

4.1. Experimental Data and Platform. To verify the effective-
ness of the proposed fusion framework, we conduct exper-
iments on whole-body PET/CT data which are provided by
the General Hospital of Shenyang Military Area Command,
Shenyang, China. All of our data is in conformity with
laws and ethical standards. Each model of data consists of
239 slices. The original PET and CT images captured from
devices are different from each other, such as the images
sizes (the sizes of PET and CT images are 128 × 128 and
512 × 512, resp.) and the scale and geometric distortion,
which would affect the effectiveness of fusion. Thus, it is
necessary to do an interpolation and a registration process
before fusion so that all PET images would be resized to 512 ×
512 and the geometric displacement would be corrected.
In this paper, we use the registration framework that we
proposed in [22] to preprocess the PET andCT images before
fusion. This framework could achieve a good performance
on the registration of whole-body PET and CT images. The

experimental platform is Intel� Core TM i7-2600 CPU @
3.40GHz, 8G RAM, 1 T hard disk, Windows 7 OS. The
integrated development environment is the MATLAB 2015b.
Besides, the ITK-SNAP is utilized to view images in this
paper.

4.2. Performance Measures. To quantitatively evaluate fusion
performance of the proposed framework and the other com-
pared methods, seven commonly used metrics are applied in
this paper including average gradient (AG), Shannon entropy
(EN), joint entropy (JE), cross entropy (CE), image quality
index (IQI), 𝑄𝐸, and 𝑄𝐴𝐵/𝐹 [2, 10, 23].

The average gradient reflects the variance of the gray value
which could be used to evaluate the clarity of one image. The
higher value of gradient value denotes that the image is clearer
and the fusion performance is better. The definition is shown
as

𝐺 = 1(𝑚 − 1) (𝑛 − 1)
⋅ 𝑚∑
𝑖=1

𝑛∑
𝑗=1

√(𝐶 (𝑖, 𝑗) − 𝐶 (𝑖 + 1, 𝑗))2 + (𝐶 (𝑖, 𝑗) − 𝐶 (𝑖, 𝑗 + 1))22 ,
(8)

where 𝐶(𝑖, 𝑗)means the gray value of the input image at (𝑖, 𝑗).𝑚 and 𝑛mean the size of the input image.
The Shannon entropy measures the information content

in the source image. The higher value of Shannon entropy of
the fused image, themore information it contained, the better
fusion performance it has.The definition of Shannon entropy
is shown as

EN = −𝐿−1∑
𝑖=0

𝑃𝑖 log2 (𝑃𝑖) , (9)

where𝑃𝑖means the probability of the gray level 𝑖 in the source
image.

The joint entropy denotes the similarity of the fused image
with the source images. The definition is as

𝐻(𝐹,𝐴) = − 𝐿−1∑
𝑖,𝑗=0

𝑃𝑖,𝑗 log2 (𝑃𝑖,𝑗) , (10)

where 𝑃𝑖,𝑗 means the joint probability of the gray level 𝑖 in
image 𝐹 and the gray level 𝑗 in image 𝐴. The larger joint
entropy denotes better performance.

The cross entropy measures the difference between the
fused image and the source images. The cross entropy image
fusionmetric is defined as the average of the relative entropies
between the source images𝐴 and𝐵 and the fused image𝐹; see
(11)

CE (𝐴, 𝐵, 𝐹) = 𝐷 (ℎ𝐴 ‖ ℎ𝐹) + 𝐷 (ℎ𝐵 ‖ ℎ𝐹)2
𝐷 (𝑝 ‖ 𝑞) = 𝐿−1∑

𝑖=0

𝑝𝑖 log2 (𝑝𝑖𝑞𝑖 ) ,
(11)

where𝐷(𝑝 ‖ 𝑞)means relative entropy of two probability dis-
tribution functions 𝑝𝑖 and 𝑞𝑖.𝐻𝐴 and𝐻𝐵 are the normalized



6 Computational and Mathematical Methods in Medicine

histograms of the source images 𝐴 and 𝐵, respectively. The
lower cross entropy means the better fusion performance.

The IQI between the fused image 𝐹 and the source images𝐴 and 𝐵 are defined as

IQI (𝐴, 𝐵, 𝐹) = IQI (𝐴, 𝐹) + IQI (𝐵, 𝐹)2 (12)

IQI (𝑥, 𝑦) = 𝜎𝑥𝑦𝜎𝑥𝜎𝑦 ⋅
2𝑥 𝑦

(𝑥)2 + (𝑦)2 ⋅
2𝜎𝑥𝜎𝑦

(𝜎𝑥)2 + (𝜎𝑦)2 , (13)

where 𝑥, 𝜎𝑥, and 𝜎𝑥𝑦 are the mean of 𝑥, variance of 𝑥, and the
covariance between 𝑥 and𝑦. If the IQI achieves higher values,
it means the better fusion quality of the fused image.𝑄𝐸 is an edge-dependent fusion quality metric based on
the IQI. The definition of 𝑄𝐸 is introduced as

𝑄𝐸 (𝐴, 𝐵, 𝐹) = 𝑄𝑤 (𝐴, 𝐵, 𝐹) ⋅ 𝑄𝑤 (𝐴󸀠, 𝐵󸀠, 𝐹󸀠)𝛼
𝑄𝑤 (𝐴, 𝐵, 𝐹) = ∑

𝑤∈𝑊

𝑐 (𝑤) (𝜆 (𝑤) IQI (𝐴, 𝐹 | 𝑤)
+ (1 − 𝜆 (𝑤)) IQI (𝐵, 𝐹 | 𝑤))

𝜆 (𝑤) = 𝑠 (𝐴 | 𝑤)𝑠 (𝐴 | 𝑤) + 𝑠 (𝐵 | 𝑤) ,

(14)

where the definition of IQI is given in (13). 𝛼 ∈ [0, 1]
expresses the contribution of the edge images compared with
the original images (usually 𝛼 = 1). IQI(𝐴, 𝐹 | 𝑤) and
IQI(𝐵, 𝐹 | 𝑤) denote the structural similarity measures
between the source images and the fused image in a sliding
local window𝑤. 𝑐(𝑤) is defined as 𝑐(𝑤) = 𝐶(𝑤)/∑𝑤∈𝑊𝐶(𝑤),
where the overall saliency of a window 𝐶(𝑤) is defined as𝐶(𝑤) = max{𝑠(𝐴 | 𝑤), 𝑠(𝐵 | 𝑤)}. 𝑠(𝐴 | 𝑤) and 𝑠(𝐵 | 𝑤)
denote saliency of image 𝐴 and image 𝐵 in window 𝑤. The
larger 𝑄𝐸 means better fusion performance.𝑄𝐴𝐵/𝐹 is a fusion performance metric based on the edge
information to measure the similarity among images. The
definition of 𝑄𝐴𝐵/𝐹 is defined as

𝑄𝐴𝐵/𝐹 = ∑𝑀𝑖=1∑𝑁𝑗=1 (𝑄𝐴𝐹𝑖,𝑗 𝑤𝐴𝑖,𝑗 + 𝑄𝐵𝐹𝑖,𝑗 𝑤𝐵𝑖,𝑗)∑𝑀𝑖=1∑𝑁𝑗=1 (𝑤𝐴𝑖,𝑗 + 𝑤𝐵𝑖,𝑗)
𝑄𝐴𝐹𝑖,𝑗 = 𝑄𝐴𝐹𝑔,𝑖,𝑗 + 𝑄𝐴𝐹𝛼,𝑖,𝑗
𝑄𝐵𝐹𝑖,𝑗 = 𝑄𝐵𝐹𝑔,𝑖,𝑗 + 𝑄𝐵𝐹𝛼,𝑖,𝑗,

(15)

where 𝑄⋅𝐹𝑔,𝑖,𝑗 and 𝑄⋅𝐹𝛼,𝑖,𝑗 denote the edge strength and orienta-
tion preservation values, respectively.The larger value means
the better fusion performance.

4.3. Results Evaluation and Discussions. To evaluate the per-
formance of the proposed PET and CT fusion framework, we
compare the fusion results of the proposed framework with
the following six methods on the same dataset.

Method 1. It is DWT-based method where the fused coeffi-
cients are selected according to the rule ofmaximum absolute
values.

Method 2. It is NSCT-based method (NSCT) where the
maximum selection rule is used for both the low- and high-
pass subbands [24].

Method 3. It is NSCT-PCNN based method (NSCT_PCNN_
1) where the same rules with Method 2 are used here.

Method 4. It is image fusion method in the NSCT domain
using spatial frequency-based PCNN method (NSCT-SF-
PCNN) where the maximum selection rule is used for both
the low- and high-pass subbands [25].

Method 5. It is an improved NSCT-PCNN based fusion
method [10, 12, 14] named as NSCT_PCNN_2, where the
NSML and modified spatial frequency (MSF) are as the
external input of PCNN for low- and high-pass subbands,
respectively.

Method 6. It is an improved NSCT-PCNN based fusion
method [16] named as NSCT_PCNN_3, where EOE is as the
external input of the PCNN.

Figure 4 shows three examples of the fusion results
obtained by these methods. (a) and (b) are the source
CT images and PET images to be fused. (c)–(i) are the
fusion results obtained by different compared methods. (c)
shows the fusion results based on DWT. (d) presents the
fusion results based on NSCT. (e) exhibits the fusion results
produced by NSCT_PCNN_1. (f) shows the fusion results
produced by NSCT_SF_PCNN. (g) and (h) are the fusion
results produced by NSCT_PCNN_2 and NSCT_PCNN_3,
respectively. (i) exhibits the fusion results produced by the
proposed fusion framework. From the visual analysis of
Figure 4, it is observed that the proposed framework could
successfully preserve both the feature information of the
CT images (e.g., the bony structures) and the PET images
(e.g., high metabolic areas). Specifically, the fusion results
produced by NSCT have the worst contrast and there are
many artifacts introduced in the fusion results produced by
DWT. Besides, the rest of the comparedmethods have similar
performance with the proposed framework and it is difficult
to determine which one is better by eyes.

In order to evaluate the fusion results more intuitively,
the 3D reconstruction is performed on the source data
and the fusion result sequences (see Figure 5). In addi-
tion, the pseudo-color coding is also employed on these
reconstructions for visualizing the results better. In Figure 5,
the first row represents transverse plane of the reconstruc-
tion. The second row and third row represent the sagit-
tal plane and the coronal plane, respectively. (a) and (b)
are the reconstructions of the source CT and PET image
sequences, respectively. (c)–(h) are the reconstructions of the
fusion result sequences by DWT, NSCT, NSCT_PCNN_1,
NSCT_SF_PCNN, NSCT_PCNN_2, and NSCT_PCNN_3,
respectively. (i) is the reconstruction of the fusion results
obtained by the proposed framework. From Figure 5, the
fusion results obtained by the proposed framework could
preserve both the structural feature information of CT and
the functional feature information of PET. Besides, there are
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 4:Three examples of the fusion results obtained by different methods. (a) CT images. (b) PET images.The (c)–(i) columns are fusion
results produced by (c) DWT, (d) NSCT, (e) NSCT_PCNN_1, (f) NSCT_SF_PCNN, (g) NSCT_PCNN_2, (h) NSCT_PCNN_3, and (i) the
proposed framework, respectively.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 5: The 3D reconstructions with pseudo-color of the fusion result sequences. The first row represents transverse plane. The second
row represents the sagittal plane. The last row represents the coronal plane. (a) and (b) are the 3D reconstructions of the source CT and PET
image sequences, respectively. (c)–(i) are the reconstructions of the fusion result sequences that are produced by (c) DWT, (d) NSCT, (e)
NSCT_PCNN_1, (f) NSCT_SF_PCNN, (g) NSCT_PCNN_2, (h) NSCT_PCNN_3, and (i) the proposed framework, respectively.

many artifacts in the results produced by DWT. Similar with
Figure 4, the fusion results of NSCT are still the worst with
the lowest contrast.

According to Figures 4 and 5, it is difficult to distin-
guish which method achieves the best performance directly.
In order to evaluate the fusion results between different
algorithms objectively and quantitatively, this paper adopts
seven metrics for performance evaluation which have been
introduced in Section 4.2. Table 1 shows the average values of
these metrics on 239 pairs of PET and CT images. Figures 6
and 7 are the bar charts corresponding to Table 1. Note that
the lower the value of CE, the better the fusion performance.
The higher the values of the rest of metrics, the better the
fusion performance. It can be seen that the performance

of our proposed framework on these metrics is always on
the top two among all algorithms which outperforms other
methods. Although the DWT performs best on AG, CE,
and 𝑄𝐴𝐵/𝐹, its values of EN, HE, and 𝑄𝐸 are worse than
the others. In addition, the NSCT gives poorer results than
other NSCT-PCNN based algorithms because PCNN could
make use of the global feature information of the image
which would improve the fusion performance. Following the
analysis and discussion, a conclusion can be drawn that the
proposed fusion framework outperforms the other image
fusion methods for the fusion of whole-body PET and CT
images. The fusion results of our framework could combine
more information which is useful for diagnoses.
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Table 1: The average fusion performances of different methods on PET/CT data.

Method AG EN JE CE IQI 𝑄𝐸 𝑄𝐴𝐵/𝐹
DWT 2.95607 2.91867 4.47628 0.16158 0.77437 0.78363 0.62640
NSCT 1.77727 2.84131 4.50450 0.18274 0.82343 0.44651 0.42512
NSCT_PCNN_1 2.35760 3.07476 5.32002 0.18201 0.78151 0.81062 0.56454
NSCT_SF_PCNN 2.90817 2.94637 5.30418 0.19419 0.77631 0.79662 0.49532
NSCT_PCNN_2 2.45416 3.03202 5.36200 0.17807 0.79298 0.78664 0.48583
NSCT_PCNN_3 2.58133 2.99083 5.30786 0.18161 0.78944 0.80226 0.59472
The proposed framework 2.90951 3.11046 5.49125 0.16308 0.79330 0.82769 0.69649
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Figure 6: The average values of AG, EN, and JE of the compared
methods.
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Figure 7: The average values of CE, IQI, 𝑄𝐸, and 𝑄𝐴𝐵/𝐹 of the
compared methods.

5. Conclusions

In this paper, a novel fusion framework based on adaptive
PCNN in NSCT domain is proposed for fusing the whole-
body PET andCT images.Our framework utilizes the average
gratitude of each pixel as the linking strength in PCNNmodel
to make it more adaptive. Besides, in order to make full use
of the feature information contained by the input images, the
NSML and EOE are as the linked input of the PCNN model
in low-pass and high-pass subbands, respectively, to improve

the fusion performance. Moreover, the rule of max region
energy is adopted as the fusion rule and different energy
templates are used for low- and high-pass subbands. The
experiments on whole-body PET and CT images with well
alignments demonstrate the good performance of the pro-
posed framework. An evaluation on seven metrics including
AG, EN, JE, CE, IQI,𝑄𝐸, and𝑄𝐴𝐵/𝐹 illustrates objectively that
the proposed framework outperforms the other six methods.
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