7 research outputs found

    Human Attention Detection Using AM-FM Representations

    Get PDF
    Human activity detection from digital videos presents many challenges to the computer vision and image processing communities. Recently, many methods have been developed to detect human activities with varying degree of success. Yet, the general human activity detection problem remains very challenging, especially when the methods need to work “in the wild” (e.g., without having precise control over the imaging geometry). The thesis explores phase-based solutions for (i) detecting faces, (ii) back of the heads, (iii) joint detection of faces and back of the heads, and (iv) whether the head is looking to the left or the right, using standard video cameras without any control on the imaging geometry. The proposed phase-based approach is based on the development of simple and robust methods that relie on the use of Amplitude Modulation - Frequency Modulation (AM-FM) models. The approach is validated using video frames extracted from the Advancing Outof- school Learning in Mathematics and Engineering (AOLME) project. The dataset consisted of 13,265 images from ten students looking at the camera, and 6,122 images from five students looking away from the camera. For the students facing the camera, the method was able to correctly classify 97.1% of them looking to the left and 95.9% of them looking to the right. For the students facing the back of the camera, the method was able to correctly classify 87.6% of them looking to the left and 93.3% of them looking to the right. The results indicate that AM-FM based methods hold great promise for analyzing human activity videos

    On Orthogonal Modes of Continuous and Discrete Frequency Modulation

    Get PDF

    The Importance of the Instantaneous Phase in Detecting Faces with Convolutional Neural Networks

    Get PDF
    Convolutional Neural Networks (CNN) have provided new and accurate methods for processing digital images and videos. Yet, training CNNs is extremely demanding in terms of computational resources. Also, for simple applications, the standard use of transfer learning also tends to require far more resources than what may be needed. Furthermore, the final systems tend to operate as black boxes that are difficult to interpret. The current thesis considers the problem of detecting faces from the AOLME video dataset. The AOLME dataset consists of a large video collection of group interactions that are recorded in unconstrained classroom environments. For the thesis, still image frames were extracted at every minute from 18 24-minute videos. Then, each video frame was divided into 9x5 blocks with 50x50 pixels each. For each of the 19440 blocks, the percentage of face pixels was set as ground truth. Face detection was then defined as a regression problem for determining the face pixel percentage for each block. For testing different methods, 12 videos were used for training and validation. The remaining 6 videos were used for testing. The thesis examines the impact of using the instantaneous phase for the AOLME block-based face detection application. For comparison, the thesis compares the use of the Frequency modulation image based on the instantaneous phase, the use of the instantaneous amplitude, and the original gray scale image. To generate the FM and AM inputs, the thesis uses dominant component analysis that aims to decrease the training overhead while maintaining interpretability. The results indicate that the use of the FM image yielded about the same performance as the MobileNet V2 architecture (AUC of 0.78 vs 0.79), with vastly reduced training times. Training was 7x faster for an Intel Xeon with a GTX 1080 based desktop and 11x faster on a laptop with Intel i5 with a GTX 1050. Furthermore, the proposed architecture trains 123x less parameters than what is needed for MobileNet V2. The FM-based neural network architecture uses a single convolutional layer. In comparison, the full LeNet-5 on the same image block using the original image could not be trained for face detection (AUC of 0.5)

    Frequency Domain Decomposition of Digital Video Containing Multiple Moving Objects

    Get PDF
    Motion estimation has been dominated by time domain methods such as block matching and optical flow. However, these methods have problems with multiple moving objects in the video scene, moving backgrounds, noise, and fractional pixel/frame motion. This dissertation proposes a frequency domain method (FDM) that solves these problems. The methodology introduced here addresses multiple moving objects, with or without a moving background, 3-D frequency domain decomposition of digital video as the sum of locally translational (or, in the case of background, a globally translational motion), with high noise rejection. Additionally, via a version of the chirp-Z, fractional pixel/frame motion detection and quantification is accomplished. Furthermore, images of particular moving objects can be extracted and reconstructed from the frequency domain. Finally, this method can be integrated into a larger system to support motion analysis. The method presented here has been tested with synthetic data, realistic, high fidelity simulations, and actual data from established video archives to verify the claims made for the method, all presented here. In addition, a convincing comparison with an up-and-coming spatial domain method, incremental principal component pursuit (iPCP), is presented, where the FDM performs markedly better than its competition

    AM-FM methods for image and video processing

    Get PDF
    This dissertation is focused on the development of robust and efficient Amplitude-Modulation Frequency-Modulation (AM-FM) demodulation methods for image and video processing (there is currently a patent pending that covers the AM-FM methods and applications described in this dissertation). The motivation for this research lies in the wide number of image and video processing applications that can significantly benefit from this research. A number of potential applications are developed in the dissertation. First, a new, robust and efficient formulation for the instantaneous frequency (IF) estimation: a variable spacing, local quadratic phase method (VS-LQP) is presented. VS-LQP produces much more accurate results than current AM-FM methods. At significant noise levels (SNR \u3c 30dB), for single component images, the VS-LQP method produces better IF estimation results than methods using a multi-scale filterbank. At low noise levels (SNR \u3e 50dB), VS-LQP performs better when used in combination with a multi-scale filterbank. In all cases, VS-LQP outperforms the Quasi-Eigen Approximation algorithm by significant amounts (up to 20dB). New least squares reconstructions using AM-FM components from the input signal (image or video) are also presented. Three different reconstruction approaches are developed: (i) using AM-FM harmonics, (ii) using AM-FM components extracted from different scales and (iii) using AM-FM harmonics with the output of a low-pass filter. The image reconstruction methods provide perceptually lossless results with image quality index values bigger than 0.7 on average. The video reconstructions produced image quality index values, frame by frame, up to more than 0.7 using AM-FM components extracted from different scales. An application of the AM-FM method to retinal image analysis is also shown. This approach uses the instantaneous frequency magnitude and the instantaneous amplitude (IA) information to provide image features. The new AM-FM approach produced ROC area of 0.984 in classifying Risk 0 versus Risk 1, 0.95 in classifying Risk 0 versus Risk 2, 0.973 in classifying Risk 0 versus Risk 3 and 0.95 in classifying Risk 0 versus all images with any sign of Diabetic Retinopathy. An extension of the 2D AM-FM demodulation methods to three dimensions is also presented. New AM-FM methods for motion estimation are developed. The new motion estimation method provides three motion estimation equations per channel filter (AM, IF motion equations and a continuity equation). Applications of the method in motion tracking, trajectory estimation and for continuous-scale video searching are demonstrated. For each application, we discuss the advantages of the AM-FM methods over current approaches

    Faculty Publications and Creative Works 2001

    Get PDF
    One of the ways in which we recognize our faculty at the University of New Mexico is through Faculty Publications & Creative Works. An annual publication, it highlights our faculty\u27s scholarly and creative activities and achievements and serves as a compendium of UNM faculty efforts during the 2001 calendar year. Faculty Publications & Creative Works strives to illustrate the depth and breadth of research activities performed throughout our University\u27s laboratories, studios and classrooms. We believe that the communication of individual research is a significant method of sharing concepts and thoughts and ultimately inspiring the birth of new ideas. In support of this, UNM faculty during 2001 produced over 2,299* works, including 1,685 scholarly papers and articles, 69 books, 269 book chapters, 184 reviews, 86 creative works and 6 patented works. We are proud of the accomplishments of our faculty which are in part reflected in this book, which illustrates the diversity of intellectual pursuits in support of research and education at the University of New Mexico
    corecore