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Abstract

Fourier analysis techniques remain the staple tools for theprocessing of sinusoidal signals with stationary fre-
quency content. These techniques however, are unsuitable for the analysis of signals with time-varying frequency
content such as those with frequency and amplitude modulation unless approximations regarding stationarity are
made over smaller signal time windows. In this paper, we study and extend a recently introduced Sturm-Liouville
model for both continuous and discrete FM modulation for thepurpose of studying orthogonal modes of contin-
uous and discrete FM modulation. These FM modes are first shown to form an orthogonal system and further
shown to have the same connection with respect to the FM Sturm-Liouville system operator, that complex expo-
nentials or sinusoids have with LTI systems and the convolution operator. The notion of a finite Sturm-Liouville
FM spectrum that measures the strength of the orthogonal FM modes present in a FM signal analogous to the
Finite Fourier Transform, is formally introduced.

Keywords
Frequency modulation, Sturm-Liouville differential and difference equation, orthogonal FM modes,

Sturm-Liouville FM spectrum, instantaneous frequency response.
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Sinusoidal signals and complex exponentials play a significant role in signal processing and spectral analysis
of signals with stationary frequency content. However, they are unsuitable for analysis of signals whose frequency
content such as speech signals, ECG waveforms, that are not stationary with respect to their frequency content.
Frequency modulated (FM) signals in particular are a class of these signals, where the information resides in
the instantaneous frequency of the signal. Traditional approaches for the analysis of these signals such as the
spectrogram are based on assumptions of stationary frequency content over smaller time segments of the signal.
Other time-frequency approaches such as the fractional Fourier transform approaches [10] are specific to just
chirp signals.

Signal processing of these frequency modulated signals using the AM–FM signal model and the quasi-
eigenfunction approximation was discussed in [8, 7]. Theenergy separation algorithm(ESA) and its discrete
version DESA were studied in [8] as a methodolgy for the demodulation of AM–FM signals. In [7] it was shown
that AM–FM signals can only be approximate eigenfunctions of LTI systems and consequently they will un-
dergo harmonic distortion when they are subjected to LTI filtering. Constraints on the frequency response of a
filter for minimizing the eigenfunction approximation and bounds on the demodulation error for AM–FM signals
were developed. However, when these constraints are not met, the eigenfunction approximation incurs significant
demodulation error.

Quasi-orthogonal signals comprised of up-chirps, i.e., with a linearly increasing IF and down-chirps, i.e.,
with a linearly decreasing IF are key components of a chirp-based system that has been proposed for spread
spectrum communications [3]. Orthogonal FM transforms that are derived from simple permutations of the DFT
phase were investigated in [9] for the purpose of concentrating the energy of an image in a few transform domain
coefficients. Recently a Sturm-Liouville (S-L) model for the analysis of FM signals was introduced in [15].
Orthogonal modes of continuous and discrete frequency modulation were developed using the differential or
difference equation satisfied by the FM signal. In this paper, we consolidate and extend the S-L model for FM, by
first studying the orthogonal FM modes to develop a system theory framework for frequency modulated signals.
We introduce the notion of a the finite S-L FM spectrum for FM signals that is analogous to the Fourier spectrum
for sinusoidal signals.

1 Continuous Time FM

Let us first consider a sinusoidal signal of the form:

x(t) = cos(ωot +θo).

This signal satisfies the constant coefficient, homogenous,second-order differential equation of the classical
harmonic oscillator:

ẍ+ω2
ox= 0.

Sinusoids areeigenfunctionsof a LTI system operator and form the basis for LTI system theory:

L(exp( jωot)) = H( jωo)exp( jωot),

whereH( jωo) represents the complex eigenvalue. Now consider a frequency modulated signal of the form:

x(t) = cos(φ(t)) = cos

(∫ t

−∞
ωi(τ)dτ

)

,

whereωi(t) is the instantaneous frequency andφi(t) is the instantaneous phase. This signal satisfies a second-
order differential equation with time-varying coefficients of the form:

ẍ−
ω̂i(t)
ωi(t)

ẋ+ω2
i (t)x=

(

D2−
Dωi

ωi
D +ω2

i

)

x= 0, (1)
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whereD denotes the derivative operator. In general this system is alinear time-varying system. In the specific
case of sinusoidal FM it becomes periodically time-varying. It is also known that even in the simple case, where
the message waveform is sinusoidal, the bandwidth of the FM signal is infinite and requires truncation. In fact
the Carson bandwidth of an FM signal retains just spectral components that have an amplitude of at least 10% of
the maximum spectral amplitude [4].

1.1 Sturm-Liouville Differential Equation

The FM differential equation described in Eq. (1) does not correspond to a self-adjoint operator. The self-adjoint
form of the FM differential equation is [1]:

D

(

1
ωi(t)

Dx(t)

)

+ωi(t)x(t) = 0

The self-adjoint form of the FM differential equation for the FM signalx(t) = cos(nφ(t)) is given by:
(

1
ωi

D2−
Dωi

ω2
i

D

)

x=−n2ωix←→H (ωi)x=−n2ωix. (2)

Comparing this to the differential form of the Sturm-Liouville differential equation:

D (p(x)D(y(x)))+q(x)y(x) = λw(x)y(x),

whereλ is the eigenvalue andw(x) is the weight function, we can see that Eq. (2) is a specific case of the Sturm-
Liouville problem withλn = −n2, p(t) = 1

ωi(t)
, q(t) = 0 and weight function1 w(t) = wi(t). Eq. (2) can in turn

be formulated as a Sturm-Liouville system with periodicityby periodic extension or as a extended S-L system
through extrapolation of the instantaneous frequencyωi(t) without loss of generality.

1.2 Orthogonal FM Modes

This in turn implies that the operatorH has real and positive eigenvalues and a full set of orthogonal eigenfunc-
tionsψn(t) with respect to the weight functionωi(t):

∫ ∞

−∞
w(t)ψm(t)ψn(t)dt = 0,m 6= n. (3)

This result is consistent with earlier work on FAM-lets2 [6], where the sequence of functions:

γn(t) =
√

ωi(t)cos(nφ(t)) ,

ψn(t) =
√

ωi(t)sin(nφ(t)) . (4)

Consequently the complex exponential version of the FAM-lets given by:

αn(t) =
√

ωi(t)exp( jnφ(t))

=
√

ωi(t)exp

(

jnωct + jnωm

∫ t

−∞
ωi(τ)dτ

)

(5)

1For the Sturm-Liouville framework to hold the weight function ωi(t) should be strictly positive. This is not restrictive and is assumed in
most FM modulation systems.

2FAM-lets are constant Q basis functions because both the carrier frequencies and frequency deviations of the FM modes scale linearly.
In the context of sinusoidally modulated FM signals and computer generated music this is called harmonic FM [4]. When theratio of the
carrier frequency to the frequency deviation is not rational it is called non-harmonic FM.

2
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is also an eigenvector of the S-L system. This is a intuitively satisfying result in that it is analogous to the
correspondence between complex exponentials and LTI systems. It is easily seen by a simple substitution of
variablesu= φ(t) that the two basis of eigenfunction defined in Eq. (4) indeed form an orthogonal sequence of
functions [6]:

< γm(t),γn(t)> =

∫ ∞

−∞
ωi(t)γm(t)γn(t)dt,m 6= n

=

∫ 2π

0
cos(mu)cos(nu)du= 0. (6)

It is also well known that many of the special functions encountered in quantum mechanics such as Legendre or
Hermite functions satisfy the Sturm-Liouville framework for specific discrete values of the eigenvalueλ and the
weight functionw(x) [16].

1.3 System Theoretic Implications

There are three important consequences of expressing the FMdifferential equation in the Sturm-Liouville form.
The first implication is that if the FM signalx(t) is input to the systemH (ωi) then the output is just a scalar
multiple of the input signal. In other words, the S-L systemH does not introduce any instantaneous frequency
distortion and that instantaneous frequency of the input signalx(t) remains invariant:

H

(

∞

∑
k=0

a[k]cos(kφ(t))

)

=
∞

∑
k=0

a[k]H (cos(kφ(t)))

= ωi(t)
∞

∑
k=0

b[k]cos(kφ(t))

b[k] = −k2a[k]. (7)

The second implication is that results analogous to LTI systems and sinusoids such as a Fourier series and Fourier
transforms can be developed for FM signals. Withφk(t) = cos(kφ(t)) [5]:

x(t) =
∞

∑
n=0

c[k]φk(t)

c[k] =

∫ ∞

−∞
x(t)φk(t)ωi(t)dt

∫ ∞

−∞
|φk(t)|

2ωi(t)dt
, (8)

wherec[k], the S-L coefficient, measures the strength of a particular FM mode in the signal. The third implication
of the S-L framework is that sequence of S-L coefficientsc[k] is stationary in frequency content even though the
underlying FM signal has non-stationary frequency content. This means traditional signal processing concepts
such as convolution and filtering can be applied to the S-L coefficients:

b[k] = a[k]λk,λk =−k2

F −1(b[k]) = F −1(a[k])∗F −1(λk), (9)

whereF −1 here denotes the inverse DTFT operator and∗ denotes the convolution operator. In this sense, the S-L
coefficients constitute the stationary portion of the FM signal. The ratio of the S-L coefficients of the output to
the input:

λk = H[k] =
b[k]
a[k]

can in essence be interpreted as the discreteinstantaneous frequency response(IFR) of the S-L system analogous
to the frequency response for LTI systems.

3
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2 Discrete time FM

At this point, it is worthwhile pointing out that one could intheory substitute discrete versions of the derivative
operator in the definition of the continuous S-L operatorH to yield different discrete versions of the S-L operator.
However, they would only serve as discrete approximations of the continuous counterpart. Instead, the approach
used here for generating a S-L framework for discrete time FMis to work directly with the difference equation
satisfied by the FM signal. First consider the sinusoidal sequences[n] = cos(Ωon)which satisfies the second-order
difference equation:

s[n]−2cos(Ωo)s[n−1]+ s[n−2]= 0.

Now consider the discrete time FM sequencex[n] given by:

x[n] = cos(Θ[n]) = cos

(∫ n

o
Ωi [m]dm+θo

)

,

where the instantaneous phaseΘ[n] is modeled as a first difference:

Θ[n] = Θ[n−1]+Ωi[n].

It is easily seen that this satisfies a second-order generating difference equation of the form [14]:

x[n]− c1[n]x[n−1]+ c2[n]x[n−2] = 0,

where the time-varying coefficients are given by:

c1[n] =
sin(Ωi [n]+Ωi[n−1])

sin(Ωi [n−1])

c2[n] =
sin(Ωi [n])

sin(Ωi [n−1])
. (10)

First note that the signaly[n] = sinΘ[n] also satisfies the same difference equation. This again is anintuitively
satisfying result in that the complex exponential version of the FM signal given byx[n] = exp( jΘ[n]) will also be
an eigenfunction of the S-L FM operator. It can also be verified that this difference equation will reduce to that of
the sinusoid in the stationary case, i.e.,Ωi [n] = Ωo. The corresponding self-adjoint difference equation obtained
by the S-L difference equation framework described in [11] is given by:

∇− (p[n]∆+(x[n]))+w[n]C[n]x[n] = 0, (11)

where the weight functionw[n], p[n], andC[n] are given by:

w[n] =
n−1

∏
r=0

sin(Ωi [r])
sin(Ωi [r +2])

=
sin(Ωi [0])sin(Ωi [1])

sin(Ωi [n])sin(Ωi [n+1])

p[n] = sin(Ωi [n])w[n] =
sin(Ωi [0])sin(Ωi [1])

sin(Ωi [n+1])

C[n] = sin(Ωi [n])+ sin(Ωi [n+1])

− sin(Ωi [n+1]+Ωi[n]) (12)

and the symbols∇− and∆+ denote the one-sample backward and forward difference operators. As in the con-
tinuous case, the S-L operator is in general a linear time-varying system. It should be noted here that the form
of the FM difference equation and as a result the self-adjoint S-L difference equation are sensitive to the form of
discretization of the instantaneous phaseΘ[n]. As in the continuous case, the difference equation in Eq. (11) can
be formulated as a extended/periodic S-L system by either: (a) periodic extension of the instantaneous frequency
Ωi [n] at the boundaries [2, 17], which would imply a discrete Fourier series representation for the IF or (b) ex-
trapolation of the IF at the boundaries under the assumptionthat IF is varying slowly, where the boundary values

4
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can be repeated [8]. The solution to the discrete S-L difference equation is then formulated as the solution to a
weighted, tridiagonal eigenvalue problem of the form

L(x) = λWx, (13)

whereW = diag(w[0], . . . ,w[N−1]) is a diagonal matrix of the positive weights andλ is the eigenvalue3.

The symmetric, tridiagonal, weighted eigenvalue problem is encountered in the context of the theory of or-
thogonal polynomials which satisfy an associated three term recursion. These polynomials are orthogonal with
respect to a weighted inner product. In the limiting case of the S-L operator, where the S-L operator is a circulant,
Toeplitz-tridiagonal, its eigenvectors are sinusoids, the IF’s of the eigenvectors are constant, and the orthogonal
polynomials associated with the S-L operator are the Chebyshev polynomials of the second kind [18]. As the
modulation depth decreases, the eigenvector approaches a sinusoid. Expressions for the eigenvectors in terms of
the associated orthogonal polynomials and its roots can also be found in [18].

2.1 Orthogonal FM Modes

As in the continuous case, the eigenvectors of the S-L operator:

L(p[n]) = ∇−p[n]∆++w[n]C[n]

corresponding to distinct eigenvalues are orthogonal withrespect to the positive weight functionw[n]:

< vp[n],vq[n]> =
N−1

∑
n=0

w[n]vp[n]vq[n] = 0, p 6= q. (14)

The corresponding expansion of the discrete FM signal in terms of the eigenvectorsvk[n] of the S-L operator is
given by:

x[n] =
N−1

∑
k=0

c[k]vk[n],

c[k] =

N−1

∑
n=0

w[n]x[n]vk[n]

N−1

∑
n=0

w[n]|vk[n]|
2

(15)

As in the continuous case, the weight function can be absorbed into the orthogonal basis of eigenvectors to
produce an orthonormal basis:

γk[n] =
√

w[n]vk[n]. (16)

These eigenvectors contain both amplitude and frequency modulation and the IF of the eigenvectors of the matrix
L furthermore have a form specified by the IF of the input signal, ωi [n]. For example if we use the tridiagonal
formulation of the S-L operator with no corner correction weobtain:

vk[n] =

√

2
N+1

ak[n]sin
(

ω(k)
c (n+1)+φk[n]

)

,

φk[n] = ω(k)
m

∫ n

0
q[m]dm,

ω(k)
c =

π
N+1

(k+1),0≤ k≤ N−1, (17)

3The S-L eigenvalue problem can be solved in various senses: exactly using the MATLAB functionseig(A,B) or qz(A,B) or in the
min-norm sense usingsvd.m or gsvd.m. For situations where the signal of interest and consequently the estimate of the IF,Ωi [n], are noisy,
a generalized SVD version of Eq. (13) is employed

5
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whereq[n] is the normalized message signal. Note that in the limiting case, where the input signal is a sinusoid,
the eigenvector basisvk[n] will reduce to thediscrete sine transform(DST) basis, specifically the symmetric
version of DST-I [12]:

ϒk[n] =

√

2
N+1

sin

(

π
N+1

(n+1)(k+1)

)

. (18)

Note that unlike the continuous case, the corresponding cosine version of the sequence or the DCT-I sequence do
not constitute eigenvectors of the same operator.

If on the other hand, if we use the “Toeplitz plus near Hankel,” framework described in [13] we obtain the
other versions of the DCT. Specifically if we add/subtract and subtract/add 1 from the diagonal corners of the S-L
operator we obtain the DCT-4/DST-4 pair:

ϒk[n] =

√

2
N

ak[n]sin
( π

N
(n+0.5)(k+0.5)+φk[n]

)

. (19)

However, they are obtained from two different operators.

We can now compute the inner-product of two distinct S-L DST-I based FM modes as:

< vp[n],vq[n]>= T1+T2

T1 = −
N−1

∑
n=0

w[n]ap[n]aq[n]

N+1
×

cos
(

ω(n)
c (p+q+2)+φp[n]+φq[n]

)

T2 =
N−1

∑
n=0

w[n]ap[n]aq[n]
N+1

×

cos
(

ω(n)(p−q)+φp[n]−φq[n]
)

. (20)

Each of the terms in the expression above is the inner-product of a lowpass waveformw[n]ap[n]aq[n], i.e., with
spectral content around DC, with a bandpass waveform, i.e.,with spectral content around a much higher carrier
frequency. The lowest carrier frequency of the first term with the(p+q+2) factor is 2π

N+1. Consequently there
is no spectral overlap and therefore by Parseval’s theorem,this first term is approximately zero:

T1 =
N−1

∑
n=0

w[n]ap[n]aq[n]×

cos
(

ω(n)(p+q+2)+φp[n]+φq[n]
)

≈ 0 (21)

The inner product can therefore be approximated as:

< vp[n],vq[n]> ≈
N−1

∑
n=0

w[n]ap[n]aq[n]

N+1
×

cos
(

ω(n)
c (p−q)+φp[n]−φq[n]

)

= 0, p 6= q, (22)

where the last result follows from the same observation thatthere will be no spectral overlap between the low-
pass termw[n]ap[n]aq[n] and the term with carrier frequencyπ(p−q)

N+1 unlessp = q. The lowpass approximation
employed here is a common assumption in narrowband communications systems, where the carrier frequency is
much larger than the message bandwidth [19]. The exact claimof orthogonality of the S-L FM modes follows
from the fact that they are solutions to a S-L difference equation and standard results of S-L theory apply [11].

6
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2.2 System Theoretic Implications

The response of the discrete S-L operator to this signal is given by:

yk[n] = L (zk[n]) = λkw[n]zk[n]. (23)

Suppose the input to the system is a superposition of these FMmodes, then the corresponding output is:

L

(

N−1

∑
k=0

α[k]zk[n]

)

=
N−1

∑
k=0

α[k]L(zk[n])

=
N−1

∑
k=0

λkα[k]w[n]zk[n]

=
N−1

∑
k=0

β[k]w[n]zk[n]. (24)

Specifically the IF modes that are present in the output of theS-L operator are the same IF modes present in the
input to the S-L operator. The ratio of the S-L coefficients isanalogous to the frequency response of LTI systems:

λk = H[k] =
β[k]
α[k]

=

(

VTWDy
)

k

(VTWDx)k
, (25)

whereD denotes the unit sample advance operator,V is the matrix of S-L eigenvectors, andW is a diagonal
matrix of S-L weights. Furthermore, the generalized Fourier coefficient sequencesβ[k] andα[k] are connected
via convolution through:

F −1(β[k]) = F −1(α[k])∗F −1(λk) = F −1(α[k])∗h[k], (26)

whereF −1 here denotes the inverse DFT matrix. This relationship is significant in that conventional LTI system
theory can be applied to the generalized Fourier coefficientsβ[k] andα[k] even though the underlying signalsy(t)
andx(t) are frequency modulated. Specifically the quantity:

α[k] =
(

VTWDx
)

k =
N−1

∑
m=0

vk[m]w[m]x[m+1] (27)

is formally defined as the finite Sturm-Liouville FM spectrum4 of the FM signalx(t), analogous to the Fourier
spectrum for sinusoidal signals, except in this case the spectrum indicates the strength of a particular FM mode
in the signal. The operation of truncation, i.e., retainingjust the S-L coefficients above a certain power threshold
dependent on the SNR, implemented in the example in Fig. (4),is therefore equivalent to applying an ideal
brick-wall bandpass filter on the noisy S-L coefficients.

Fig. (1), fig. (2), and fig. (4) describe the application of thediscrete S-L approach to three different signals:
(a) sinusoidally modulated FM signal, where the MATLAB function eig(A,B) is employed, (b) FM signal with
a triangular IF, where the MATLAB functionqz.m is employed, and (c) FM signal with a triangular IF in noise,
where the generalized SVD function in MATLABgsvd.m is employed. For the triangular IF example in (b),
the carrier frequency of the input FM signal is intentionally chosen to be an integer multiple ofπN+1 so that it
coincides with the carrier frequency of one of the normal FM modes. Fig. (2)(e,f) compare the S-L FM spectrum
which is a one dimensional spectrum to the MA-CDFRFT spectrum that is a two dimensional spectrum [10]. The
distinguishing characteristics of the S-L approach from discrete fractional Fourier transform based approaches is
that the IF of the eigenvectors are of the same form as the IF ofthe FM signal being analyzed and that it is not
specific to just chirps.

4The non-causal definition of the spectrum is a direct result of the non-causal formulation of the S-L operator that is defined with a one
sample noncausal shift.

7



UNM Technical Report: EECE-TR-2011-07-29

Fig. (3)(a,b) describes the center-frequencies and frequency deviations of the orthogonal FM modes for an
input signal with sinusoidal FM modulation. Fig. (3)(c) describes the frequency modulation index for selected
FM modes. S-L eigenvectors with more zero-crossings correspond to high-frequency FM modes, while the
eigenvectors with fewer zero-crossings correspond to lowpass FM modes. While the carrier frequencies of the
FM modes are linearly spaced apart as with the FAM-lets, the frequency deviations of the modes are not linearly
spaced apart, but are rather symmetric about a central mode.The FM modes with modulation index larger than 1
are considered wideband, while the modes with index less than 1 are narrowband. The results with the S-L FM
spectrum in all three examples, where the difference between the largest peak and its nearest neighbor is around
30 dB, are also indicative of the fact that the S-L orthogonalFM modes provide significant energy compaction
in just a few FM modes. Fig. (5)(a) studies the ESA frequency demodulation error between the IF of the mode
corresponding to the S-L spectral peak and the IF of the inputFM signal versus the S-L system size. As the size
increases, the error decreases indicating that one of the FMmodes will eventually capture the input FM signal.
Fig. (5)(b) depicts the frequency demodulation error when the input signal is one of the normal FM modes.

3 Orthogonal FM Modes and Angular Mathieu Functions

Fig. (6) describes the similarity between the orthogonal FMmodes andangular Mathieu functions(AMF) de-
scribed in [21, 20]. For instantaneous frequencies with negative frequency deviations, the orthogonal FM modes
from the S-L framework exhibit the same symmetry or antisymmetry about their mid-point that the cosine and
sine elliptic AMF’s do:

cen(z,−q) = ±cen(π/2− z,q),

sen(z,−q) = ±sen(π/2− z,q). (28)

This is illustrated in Fig. (6)(a,b), where the orthogonal FM modes for negative frequency deviation values are
specific modes are plotted. The orthogonal S-L FM modes also satisfy the same asymptotic behavior as the
AMF’s in that in the limit as the frequency deviation goes to zero we obtain sinusoids:

lim
q→0

cen(z,q) = cos(nz),

lim
q→0

sen(z,q) = sin(nz). (29)

This property is illustrated in Fig. (6)(e), where the first orthogonal FM mode is plotted for different frequency
deviation parameters, depicting the change from a FM modulated signal to a purely sinusoidal signal. Fig. (6)(c,d)
depict the IF’S of selected AMF’s obtained using the approach in [21] and the associated MATLAB functions.
Notice that the AMF’s are sinusoidally modulated, where a change in the parameterq results in a increase in the
frequency deviation of the underlying IF’s. This result is also very similar to the results seen with the orthogonal
S-L FM modes, where the modes are also FM modulated with an IF of the same form as the input FM signal.
Furthermore the AMF’s obtained through the framework in [21] also have the same linear spacing of the FM
mode center-frequencies ofπ

N as depicted in the ESA IF estimates of selected AMF’s in Fig. (6)(c,d), a result
very similar to that seen in the orthogonal S-L FM modes. Additionally the orthogonal S-L FM modes exhibit
both amplitude and frequency modulation, a property that isalso seen in approximate solutions to the Mathieu
differential equation [20].

Effectively these similarities imply that the carrier-spacing of the FM modes is related to the parameterzand
the frequency deviation of the FM modes is related to the parameterq of the AMF’s. Specifically the framework
in [21] and Fig. (6)(f) imply that the parameterq of the AMF’s is a odd function of frequency deviation of the
modes. These striking similarities combined with the results from Fig. (3)(b) lead us to the conjecture that the
S-L orthogonal FM modes are contained in the span of a finite dimensional subset of AMF’s for specific discrete
values of the parameters.

vk[n] =
N−1

∑
r=0

pk[r]cek(qr ,zr)+qk[r]sek(qr ,zr). (30)
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In the case of the symmetric DST based orthogonal FM modes this becomes:

ωo =
π

N+1
, zk = (k+1)ωo,0≤ k≤ N−1

ω(k)
m = Ccsc(zk), qk = sinh(ω(k)

m ). (31)

The result that the AMF’s are sinusoidally modulated, i.e.,have a sinusoidal IF, and yet are able to represent a
general FM waveform as depicted in Fig. (6)(c,d) is consistent with the ESA framework in [7, 8], that allows for
any IF that can be represented through a finite Fourier seriesof cosines/sines:

Ωi [n] = Ωo+
N

∑
k=1

α[k]cos(Ωkn+Θk) , (32)

except at discontinuity points, where the estimated IF goesthrough the mid-point of the discontinuity.

4 Conclusions

We have extended and expanded on the S-L framework for continuous and frequency modulation introduced in
[15]. Orthogonal FM modes arising from the eigenfunctions or eigenvectors of the S-L FM operator are shown
to undergo no IF distortion when subjected to the S-L FM system. A generalized Fourier series representation
of a modulated waveform in terms of the orthogonal FM modes was presented and the notion of the finite S-
L FM spectrum that describes the strength of the FM modes prevalent in a modulated signal was presented.
Simulation results presented indicate that the orthogonalFM modes provide significant energy compaction in
terms of representing a modulated waveform with a few transform coefficients.

These orthogonal S-L FM modes furthermore, reduce to the standard Fourier basis or the symmetric sine
basis, in the limit when the modulation strength becomes negligible. More significantly it was also shown that
S-L coefficients of a FM signal with respect to the orthogonalFM modes are stationary eventhough the under-
lying signal has nonstationary frequency content. The implication is that standard system theory results such as
convolution, filtering, and the DTFT can be applied to the S-Lcoefficients. In the continuous-time case, the S-L
orthogonal FM modes reduce to the better known FAM-let basis, while in the discrete-time case, the striking
similarities between the orthogonal S-L FM modes and angular Mathieu functions were examined and it was
conjectured that the orthogonal FM modes are in the span of a finite dimensional subset of the angular Mathieu
functions for specific discrete values of the underlying parameters.
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Figure 1: Discrete S-L problem, sinusoidal-FM :(a) sinusoidal FM signal, (b) selected eigenvectors of the discrete
S-L operator using the MATLAB functioneig(A,B) depicting different number of zero crossings, (c) IF of
selected eigenvectors extracted using the ESA [8], (d) weighting function of the discrete S-L problem, (e) S-L
FM spectrum of the signal.
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Figure 2: Discrete S-L problem, triangular frequency modulation : (a) FM signal, (b) selected eigenvectors of the
discrete S-L operator using a QZ decomposition for the generalized eigenvalue problem, (c) ESA instantaneous
frequency estimate of selected eigenvectors:k=124 : 129 of the discrete S-L operator using the DESA, (d) weight
function associated with the discrete S-L operator, and (e,f) S-L FM spectrum and discrete fractional Fourier
spectrum of the FM signal. Note that the eigenvectors resemble discrete versions of Gauss-Hermite functions and
that the IF of the eigenvectors is of the same form as the IF of the input FM signal.
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Figure 3: (a,b) center frequency and frequency deviation ofselected FM modes of the discrete S-L operator
for the first sinusoidally modulated example, and (c) frequency modulation indices for specific FM modes for a
triangular IF.
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Figure 4: FM orthogonal mode decomposition in AWGN using thegeneralized SVD version of Eq. (13): (a) noisy
FM signal with SNR = 25 dB, (b,c) selected eigenvectors of thegeneralized SVD solution and ESA IF estimates
for selected eigenvectors, where the dashed line represents the ESA-IF estimate of the FM signal in part (a),
(d) corresponding discrete S-L weight function, and (e,f) FM spectrum for noisy signal and ESA IF estimate after
FM mode rejection below a threshold ofηSNR= -20.5 dB using 10 times simple binomial smoothing of the IF
estimates.
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Figure 5: Effect of parameters: (a) RMS ESA frequency demodulation error percentage for different S-L oper-
ator sizes, (b) RMS frequency demodulation error percentage for different SNR’s in AWGN averaged over 100
experiments
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Figure 6: Orthogonal FM modes and angular Mathieu functions: (a,b) orthogonal FM modes from the S-L
system for positive and negative frequency deviation depicting properties identical with angular Mathieu functions
cen(z,q) or sen(z,q) for negativeq parameters, (c,d) ESA IF estimates of Mathieu functions evaluated using the
framework and MATLAB functions in [21] for differentq parameters depicting sinusoidal FM, (e) first orthogonal
FM mode for different frequency deviation depicting that asymptotically as the frequency deviation goes to zero
the FM modes become purely sinusoidal as is the case with Mathieu functions, (f) ESA IF estimates of a specific
mode for both positive and negative values ofq.
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